1
|
Li P, Ma W, Cheng J, Zhan C, Lu H, Shen J, Zhou X. Phages adapt to recognize an O-antigen polysaccharide site by mutating the "backup" tail protein ORF59, enabling reinfection of phage-resistant Klebsiella pneumoniae. Emerg Microbes Infect 2025; 14:2455592. [PMID: 39817558 PMCID: PMC11795761 DOI: 10.1080/22221751.2025.2455592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of Klebsiella pneumoniae (K. pneumoniae) 111-2 and phage ZX1Δint in vitro. Our experiments revealed that phage ZX1Δint successfully completed the adsorption phase by binding to the host surface, specifically targeting the capsular polysaccharide (CPS) receptor via the primary receptor-binding protein (RBP) ORF60 and the auxiliary RBP ORF59. Upon exposure to phage predation, mutations in genes wbaP, wbaZ or wzc, which encode the synthesis of the CPS, conferred resistance by reducing phage adsorption. In response to these host defense mechanisms, the adaptive mutant phages have evolved to utilize an alternative binding site located on an O-antigen site of lipopolysaccharide (LPS) through a mutation in the backup RBP ORF59. This evolutionary change enabled the phages to reinfect previously phage-resistant strains. Notably, the adaptive mutant phage PR2 carrying the ORF59 mutation Q777R, demonstrated the capacity to infect both wild-type and resistant strains, exhibiting prolonged antimicrobial activity against the wild strains. In conclusion, our findings elucidated a complex phage-host adsorption-antagonism mechanism characterized by mutation-driven alterations in phage receptor recognition. This work contributes to a deeper understanding of phage adaptability and highlights the potential for phages to combat phage-resistant bacteria through an in vitro evolutionary approach.
Collapse
Affiliation(s)
- Ping Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjie Ma
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jun Cheng
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Cuixing Zhan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hongzhou Lu
- National Clinical Research Center, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Jiayin Shen
- National Clinical Research Center, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, People’s Republic of China
| |
Collapse
|
2
|
Ascari A, Morona R. Recent insights into Wzy polymerases and lipopolysaccharide O-antigen biosynthesis. J Bacteriol 2025; 207:e0041724. [PMID: 40066993 PMCID: PMC12004945 DOI: 10.1128/jb.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize a plethora of complex surface-associated polysaccharides which enable them to persist and thrive in distinct niches. These glycans serve an array of purposes pertaining to virulence, colonization, antimicrobial resistance, stealth, and biofilm formation. The Wzx/Wzy-dependent pathway is universally the predominant system for bacterial polysaccharide synthesis. This system is responsible for the production of lipopolysaccharide (LPS) O-antigen (Oag), enterobacterial common antigen, capsule, and exopolysaccharides, with orthologs present in both Gram-negative and Gram-positive microbes. Studies focusing principally on Pseudomonas, Shigella, and Salmonella LPS Oag synthesis have provided much of the framework underpinning the biochemical and molecular mechanism behind polysaccharide synthesis via this pathway. LPS Oag production via the Wzx/Wzy-dependent pathway occurs through the stepwise activity of multiple key biosynthetic enzymes, including primarily the polymerase, Wzy, which is responsible for the Oag assembly, and the polysaccharide co-polymerase, Wzz, which effectively modulates the length of the glycan produced. In this review, we provide a comprehensive summary of the latest genetic, structural, and mechanistic data for the main protein candidates of the Wzx/Wzy-dependent pathway, in addition to an examination of their substrate specificities. Furthermore, we have reviewed recent insights pertaining to the dynamics/kinetics of glycan synthesis by this mechanism, including the interplay of the key proteins among themselves and in complex with their substrate. Lastly, we outline key gaps in the literature and suggest future research avenues, with the aim to stimulate ongoing research into this critical pathway responsible for the production of key virulence factors for numerous debilitating and lethal pathogens.
Collapse
Affiliation(s)
- Alice Ascari
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Lv X, Chen X, Liu Y, Yuan L, Wu J, Yao J. Efficient Production of 3'-Sialyllactose Using Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27314-27325. [PMID: 39582160 PMCID: PMC11638949 DOI: 10.1021/acs.jafc.4c08703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
3'-Sialyllactose (3'-SL), a key component of human milk oligosaccharides, provides significant health benefits and immune modulation, and is increasingly used in infant formula and dietary supplements. This study presents a novel approach for the efficient biosynthesis of 3'-SL using Escherichia coli BL21star(DE3)ΔlacZ through genomic integration. We first addressed the issue of metabolic competition by deleting crucial genes, nanA, nanK, nanE, and nanT, that are involved in the degradation of N-acetylneuraminic acid. This strategic gene knockout minimized the flux through competing pathways. The engineered Escherichia coli strain was subsequently transformed with the exogenous genes neuBCA and nST, enabling the de novo synthesis of 3'-SL. A modular metabolic engineering strategy was utilized to optimize the expression of key enzymes within the MSU module, enhancing and balancing the carbon flux distribution. Additionally, a cofactor regeneration strategy was implemented to increase CTP availability, which improved cofactor recycling and fine-tuned the metabolic pathway for maximal 3'-SL production. Transport protein screening was incorporated to further increase the extracellular concentration of 3'-SL, resulting in an unprecedented yield of 56.8 g/L in a 5L bioreactor fermentation, setting a new benchmark in the field.
Collapse
Affiliation(s)
- Xinyang Lv
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| | - Xiangsong Chen
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yifan Liu
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| | - Lixia Yuan
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinyong Wu
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianming Yao
- Institute
of Plasma Physics, Hefei Institutes of Physical
Science, Chinese Academy of Sciences, Hefei 230031, China
- University
of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Laekas-Hameder M, Daigle F. Only time will tell: lipopolysaccharide glycoform and biofilm-formation kinetics in Salmonella species and Escherichia coli. J Bacteriol 2024; 206:e0031824. [PMID: 39315775 PMCID: PMC11500611 DOI: 10.1128/jb.00318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
In Gram-negative bacteria, LPS (lipopolysaccharide) has been thoroughly characterized and has been shown to play a major role in pathogenesis and bacterial defense. In Salmonella and Escherichia coli, LPS also influences biofilm development. However, the overall role of LPS glycoform in biofilm formation has not been conclusively settled, as there is a lack of consensus on the topic. Some studies show that LPS mutants produce less biofilm biomass than the wild-type strains, while others show that they produce more. This review summarizes current knowledge of LPS biosynthesis and explores the impact of defective steps on biofilm-related characteristics, such as motility, adhesion, auto-aggregation, and biomass production in Salmonella and E. coli. Overall, motility tends to decrease, while adhesion and auto-aggregation phenotypes tend to increase in most LPS-mutant strains. Interestingly, biofilm biomass of various LPS mutants revealed a clear pattern dependent on biofilm maturation time. Incubation times of less than 24 h resulted in a biofilm-defective phenotype compared to the wild-type, while incubation exceeding 24 h led to significantly higher levels of biofilm production. This explains conflicting results found in reports describing the same LPS mutations. It is therefore critical to consider the effect of biofilm maturation time to ascertain the effects of LPS glycoform on biofilm phenotype. Underlying reasons for such changes in biofilm kinetics may include changes in signalling systems affecting biofilm maturation and composition, and dynamic LPS modifications. A better understanding of the role of LPS in the evolution and modification of biofilms is crucial for developing strategies to disperse biofilms.
Collapse
Affiliation(s)
- Magdalena Laekas-Hameder
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - France Daigle
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
6
|
Hu B, Wang J, Li L, Wang Q, Qin J, Chi Y, Yan J, Sun W, Cao B, Guo X. Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles. J Microbiol Biotechnol 2024; 34:1599-1608. [PMID: 39081257 PMCID: PMC11380512 DOI: 10.4014/jmb.2402.02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Qin Wang
- Disease Prevention and Control Center of Ganzhou District, 27 Xianfu Street, Ganzhou District, Zhangye City, Gansu Province, P.R. China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Yingxin Chi
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Wenkui Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| |
Collapse
|
7
|
Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119507. [PMID: 37268022 DOI: 10.1016/j.bbamcr.2023.119507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Hong Y, Qin J, Forga XB, Totsika M. Extensive Diversity in Escherichia coli Group 3 Capsules Is Driven by Recombination and Plasmid Transfer from Multiple Species. Microbiol Spectr 2023; 11:e0143223. [PMID: 37358457 PMCID: PMC10433991 DOI: 10.1128/spectrum.01432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/04/2023] [Indexed: 06/27/2023] Open
Abstract
Bacterial capsules provide protection against environmental challenges and host immunity. Historically, Escherichia coli K serotyping scheme, which relies on the hypervariable capsules, has identified around 80 K forms that fall into four distinct groups. Based on recent work by us and others, we predicted that E. coli capsular diversity is grossly underestimated. We exploited group 3 capsule gene clusters, the best genetically defined capsule group in E. coli, to analyze publicly available E. coli sequences for overlooked capsular diversity within the species. We report the discovery of seven novel group 3 clusters that fall into two distinct subgroups (3A and 3B). The majority of the 3B capsule clusters were found on plasmids, contrary to the defining feature of group 3 capsule genes localizing at the serA locus on the E. coli chromosome. Other new group 3 capsule clusters were derived from ancestral sequences through recombination events between shared genes found within the serotype variable central region 2. Intriguingly, flanking regions 1 and 3, known to be conserved areas among capsule clusters, showed considerable intra-subgroup variation in clusters from the 3B subgroup, containing genes of shared ancestry with other Enterobacteriaceae species. Variation of group 3 kps clusters within dominant E. coli lineages, including multidrug-resistant pathogenic lineages, further supports that E. coli capsules are undergoing rigorous change. Given the pivotal role of capsular polysaccharides in phage predation, our findings raise attention to the need of monitoring kps evolutionary dynamics in pathogenic E. coli in supporting phage therapy. IMPORTANCE Capsular polysaccharides protect pathogenic bacteria against environmental challenges, host immunity, and phage predations. The historical Escherichia coli K typing scheme, which relies on the hypervariable capsular polysaccharide, has identified around 80 different K forms that fall into four distinct groups. Taking advantage of the supposedly compact and genetically well-defined group 3 gene clusters, we analyzed published E. coli sequences to identify seven new gene clusters and revealed an unexpected capsular diversity. Genetic analysis revealed that group 3 gene clusters shared closely related serotype-specific region 2 and were diversified through recombination events and plasmid transfer between multiple Enterobacteriaceae species. Overall, capsular polysaccharides in E. coli are undergoing rigorous change. Given the pivotal role capsules play in phage interactions, this work highlighted the need to monitor the evolutionary dynamics of capsules in pathogenic E. coli for effective phage therapy.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Xavier Bertran Forga
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
9
|
Sundaresan S, Rathinavelan T. SSP: An In Silico Tool for Salmonella Species Serotyping Using the Sequences of O-Antigen Biosynthesis Proteins and H-Antigen Filament Proteins. J Mol Biol 2023; 435:168046. [PMID: 37356912 DOI: 10.1016/j.jmb.2023.168046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2023]
Abstract
Over 2500 Salmonella species (alternatively, serovars) encompassing different combinations of O-, H1- and H2-antigens are present in nature and cause millions of deaths worldwide every year. Since conventional serotyping is time-consuming, a user-friendly Salmonellaspecies serotyping (SSP) web tool (https://project.iith.ac.in/SSP/) is developed here to predict the serotypes using Salmonella protein(s) or whole proteome sequences. Prior to SSP implementation, a detailed analysis of protein sequences involved in O-antigen biosynthesis and H-antigen formation is carried out to assess their serotype specificity. Intriguingly, the results indicate that the initializing transferases WbaP, WecA and GNE can efficiently distinguish the O-antigens, which have Gal, GlcNAc and GalNAc as initial sugars respectively. Rigorous analysis shows that Wzx and Wzy are sufficient to distinguish the O-types. Exceptionally, some situations warrant additional proteins. Thus, 150 additional transferases, RfbE for O2, O9 and O9,46 types, Orf17.4 for O3,10 and O1,3,19 types, WecB, WbbE and WbbF for O54 and, Wzm and Wzt for O67 are utilized in serotyping. An in-depth analysis of 302 reference datasets representing 56 H1- and 20 H2-types leads to the identification and utilization of 61 unique sequence patterns of FliC and FljB in H-typing. A test dataset of 2136 whole proteome sequences covering 740 Salmonella serovars, including 13 new species are successfully predicted with 99.72% accuracy. Prior to this, all the O-, H1- and H2-antigens are predicted accurately when tested independently. Indeed, SSP also identifies wrongly annotated Salmonella species; hence, it can easily identify new species that emerge with any combination of O-, H1- and H2-antigens. Thus, SSP can act as a valuable tool in the surveillance of Salmonella species.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502284, India. https://twitter.com/Sruthi__Sundar
| | | |
Collapse
|
10
|
Li S, Huang J, Wang K, Liu Y, Guo Y, Li X, Wu J, Sun P, Wang Y, Zhu L, Wang H. A bioconjugate vaccine against Brucella abortus produced by engineered Escherichia coli. Front Bioeng Biotechnol 2023; 11:1121074. [PMID: 36911199 PMCID: PMC9995886 DOI: 10.3389/fbioe.2023.1121074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Brucellosis, mainly caused by Brucella, is a widespread zoonotic disease worldwide, with no available effective vaccine for human use. Recently, bioconjugate vaccines against Brucella have been prepared in Yersinia enterocolitica O:9 (YeO9), whose O-antigen structure is similar to that of Brucella abortus. However, the pathogenicity of YeO9 still hinders the large-scale production of these bioconjugate vaccines. Here, an attractive system for the preparation of bioconjugate vaccines against Brucella was established in engineered E. coli. Briefly, the OPS gene cluster of YeO9 was modularized into five individual fragments and reassembled using synthetic biological methods through standardized interfaces, then introduced into E. coli. After confirming the synthesis of targeted antigenic polysaccharides, the exogenous protein glycosylation system (PglL system) was used to prepare the bioconjugate vaccines. A series of experiments were conducted to demonstrate that the bioconjugate vaccine could effectively evoke humoral immune responses and induce the production of specific antibodies against B. abortus A19 lipopolysaccharide. Furthermore, the bioconjugate vaccines provide protective roles in both lethal and non-lethal challenge of B. abortus A19 strain. Using the engineered E. coli as a safer chassis to prepare bioconjugate vaccines against B. abortus paves the way for future industrial applications.
Collapse
Affiliation(s)
- Shulei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.,The Third Medical Center, PLA General Hospital, Beijing, China.,Department of Clinical Laboratory, The Third Medical Centre of Chinese PLA General Hospital, The Training Site for Postgraduate of Jin Zhou Medical University, Beijing, China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.,Beijing Minhai Biotechnology Co., Ltd., Beijing, China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yufei Wang
- The Third Medical Center, PLA General Hospital, Beijing, China.,Department of Clinical Laboratory, The Third Medical Centre of Chinese PLA General Hospital, The Training Site for Postgraduate of Jin Zhou Medical University, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
11
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
12
|
Abstract
Kingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity. The K. kingae exopolysaccharide is a galactofuranose homopolymer called galactan and is encoded by the pamABC genes in the pamABCDE locus. In this study, we sought to define the mechanism by which galactan is tethered on the bacterial surface, a prerequisite for mediating evasion of host immune mechanisms. We found that the pamD and pamE genes encode glycosyltransferases and are required for synthesis of an atypical lipopolysaccharide (LPS) O-antigen. The LPS O-antigen in turn is required for anchoring of galactan, a novel mechanism for association of an exopolysaccharide with the bacterial surface.
Collapse
|
13
|
The Molecular Epidemiology of Prevalent Klebsiella pneumoniae Strains and Humoral Antibody Responses against Carbapenem-Resistant K. pneumoniae Infections among Pediatric Patients in Shanghai. mSphere 2022; 7:e0027122. [PMID: 36069436 PMCID: PMC9599505 DOI: 10.1128/msphere.00271-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has caused wide dissemination among pediatric patients globally and thus has aroused public concern. Here, we investigated the clinical epidemiological characteristics of 140 nonreplicate clinical K. pneumoniae strains isolated from pediatric patients between January and December 2021. Of all isolates, 16.43% (23 of 140) were CRKP strains, which predominantly contained KPC carbapenemase. wzi sequencing demonstrated that KL47 (65.22%, 15 of 23) was the most frequent capsular type, followed by KL64 (17.39%, 4 of 23). A total of 23 CRKP strains were classified into three different O-genotypes, including OL101 (65.22%, 15 of 23), O1 (26.09%, 6 of 23), and O3 (8.7%, 2 of 23). Interestingly, KL47 strains were strongly associated with OL101, while KL64 strains were all linked with O1. Some capsule-deficient strains were identified by serological typing, phage-typing, depolymerase-typing, and uronic acid assay. In this study, compared with healthy children, higher titers of anti-capsular polysaccharides (CPS) IgG were first detected in the sera of K47 and K64 K. pneumoniae-infected children, which had the effective bactericidal activity against corresponding serotype K. pneumoniae strains. These findings will facilitate the development of novel therapeutic and vaccine strategies against K. pneumoniae infection in children. IMPORTANCE The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains resistant to numerous antibiotics and the limited therapeutic options available have become an urgent health threat to the immunocompromised pediatric population. Vaccines and antibodies, especially those targeting capsular polysaccharides, may be novel and effective prevention and treatment options. Thus, it is important to understand the spread of CRKP in pediatric populations. This research presents OL101:KL47 and O1:KL64 as the predominant combinations among CRKP strains in children in Shanghai, China. The primary carbapenemase gene is KPC in CRKP strains. Additionally, this study found elevated levels of anti-CPS IgG against K47 and K64 K. pneumoniae strains in pediatric patients for the first time. The significant bactericidal activity of these anti-CPS IgGs was confirmed.
Collapse
|
14
|
Molecular basis for polysaccharide recognition and modulated ATP hydrolysis by the O antigen ABC transporter. Nat Commun 2022; 13:5226. [PMID: 36064941 PMCID: PMC9445017 DOI: 10.1038/s41467-022-32597-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
O antigens are ubiquitous protective extensions of lipopolysaccharides in the extracellular leaflet of the Gram-negative outer membrane. Following biosynthesis in the cytosol, the lipid-linked polysaccharide is transported to the periplasm by the WzmWzt ABC transporter. Often, O antigen secretion requires the chemical modification of its elongating terminus, which the transporter recognizes via a carbohydrate-binding domain (CBD). Here, using components from A. aeolicus, we identify the O antigen structure with methylated mannose or rhamnose as its cap. Crystal and cryo electron microscopy structures reveal how WzmWzt recognizes this cap between its carbohydrate and nucleotide-binding domains in a nucleotide-free state. ATP binding induces drastic conformational changes of its CBD, terminating interactions with the O antigen. ATPase assays and site directed mutagenesis reveal reduced hydrolytic activity upon O antigen binding, likely to facilitate polymer loading into the ABC transporter. Our results elucidate critical steps in the recognition and translocation of polysaccharides by ABC transporters.
Collapse
|
15
|
Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 2022; 291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
16
|
Zhang Z, Wang H, Guo Y, Liu Z, Chang Z. Metagenome Analysis of the Bacterial Characteristics in Invasive Klebsiella Pneumoniae Liver Abscesses. Front Cell Infect Microbiol 2022; 12:812542. [PMID: 35909970 PMCID: PMC9334793 DOI: 10.3389/fcimb.2022.812542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background Klebsiella pneumoniae liver abscess (KPLA) combined with extrahepatic migratory infection (EMI) is defined as invasive KPLA (IKPLA) and is associated with a poor prognosis. The mechanism of IKPLA formation is yet to be elucidated. In this study, metagenomic sequencing was used to compare the bacterial characteristics between IKPLA and KPLA to explore the underlying mechanism of invasiveness. Methods Clinical details, imaging, and microbial features were retrospectively evaluated by medical record review. Metagenomic sequencing was performed on the pus samples of liver abscesses whose culture results were indicative of monomicrobial Klebsiella pneumoniae (K. pneumoniae). Bacterial diversity and composition in IKPLA and KPLA were comparatively analyzed, and the key pathways and genes that may affect invasiveness were further explored. Results Sixteen patients were included in this study. Five patients with EMI were included in the IKPLA group, and the other eleven patients without EMI were assigned to the KPLA group. There was no statistical difference in the hypermucoviscous phenotype and serotype of K. pneumoniae between the two groups. The bacterial diversity of IKPLA was lower than that of KPLA. The abundant taxa in the IKPLA group were primarily species of unclassified Enterobacteriaceae and K. pneumoniae. The KPLA group had a high abundance of the genera Tetrasphaera and Leuconostoc. Metabolic pathway genes represented most of the enriched genes in IKPLA. Fourteen pathogenic genes with significant differences in abundance were identified between the two groups, including ybtS, fepC, phoQ, acrB, fimK, magA, entC, arnT, iucA, fepG, oqxB, entA, tonB, and entF (p < 0.001). Conclusion The diversity and bacterial composition of IKPLA were significantly different from those of KPLA. Microbiological changes in the abscess, activation of the related metabolic pathways, and the pathogenic gene expression may constitute a novel mechanism that regulates the invasiveness of KPLA.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hairui Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yawen Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhihui Chang,
| |
Collapse
|
17
|
Zhu Y, Han Y, Liu G, Bian Z, Yan X, Li Y, Long H, Yu G, Wang Y. Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. THE ISME JOURNAL 2022; 16:1717-1729. [PMID: 35319020 PMCID: PMC9213462 DOI: 10.1038/s41396-022-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Interspecific and intraspecific communication systems of microorganisms are involved in the regulation of various stress responses in microbial communities. Although the significance of signaling molecules in the ubiquitous family Xanthomonadaceae has been reported, the role bacterial communications play and their internal mechanisms are largely unknown. Here, we use Lysobacter enzymogenes, a member of Xanthomonadaceae, to identify a novel potassium ion import system, LeKdpXFABC. This import system participates in the indole-mediated interspecies signaling pathway and matters in environmental adaptation. Compared with the previously reported kdpFABC of Escherichia coli, LekdpXFABC contains a novel indispensable gene LekdpX and is directly regulated by the indole-related two-component system QseC/B. QseC autophosphorylation is involved in this process. The operon LekdpXFABC widely exists in Xanthomonadaceae. Moreover, indole promotes antimicrobial product production at the early exponential phase. Further analyses show that indole enhances potassium ion adsorption on the cell surface by upregulating the production of O-antigenic polysaccharides. Finally, we confirm that LeKdpXFABC mediation by indole is subject to the intraspecific signaling molecules DSFs, of which the biosynthesis genes always exist together with LekdpXFABC. Therefore, as a new idea, the signal collaborative strategy of indole and DSFs might ensure the persistent fitness advantage of Xanthomonadaceae in variable environments.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Guanglei Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zeran Bian
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiayi Yan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hongan Long
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guanshuo Yu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
18
|
Whole genome sequencing of Klebsiella pneumoniae clinical isolates sequence type 627 isolated from Egyptian patients. PLoS One 2022; 17:e0265884. [PMID: 35320327 PMCID: PMC8942217 DOI: 10.1371/journal.pone.0265884] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is considered a threat to public health especially due to multidrug resistance emergence. It is largely oligoclonal based on multi-locus sequence typing (MLST); in Egypt, ST 627 was recently detected. Despites the global dissemination of this ST, there is still paucity of information about it. Herein, we used 4 K. pneumoniae ST627 for whole genome sequencing utilizing an Illumina MiSeq platform. Genome sequences were examined for resistance and virulence determinants, capsular types, plasmids, insertion sequences, phage regions, and Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions using bioinformatic analysis. The molecular characterization revealed 15 and 65 antimicrobial resistance and virulence genes, respectively. Resistance genes such as tet(D), aph(3’’)-Ib, aph(6)-Id, blaTEM-234, fosA, and fosA6; were mainly responsible for tetracycline, aminoglycoside, and fosfomycin resistance; respectively. The capsular typing revealed that the four strains are KL-24 and O1v1. One plasmid was found in all samples known as pC17KP0052-1 and another plasmid with accession no. NZ_CP032191.1 was found only in K90. IncFIB(K) and IncFII(K) are two replicons found in all samples, while ColRNAI replicon was found only in K90. Entero P88, Salmon SEN5, and Klebsi phiKO2 intact phage regions were identified. All samples harbored CRISPR arrays including CRISPR1 and CRISPR2. Our results shed light on critical tasks of mobile genetic elements in ST 627 in antibiotic resistance spreading.
Collapse
|
19
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
20
|
Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 2022; 230:107970. [PMID: 34454000 DOI: 10.1016/j.pharmthera.2021.107970] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharides (LPS) are the main components of the external leaflet of the Gram-negative outer membrane and consist of three different moieties: lipid A, core oligosaccharide, and O-polysaccharide. The lipid A is a glucosamine disaccharide with different levels of acylation and phosphorylation, beside carrying, in certain cases, additional substituents on the sugar backbone. It is also the main immunostimulatory part of the LPS, as its recognition by the host immune system represents a fundamental event for detection of perilous microorganisms. Moreover, an uncontrolled immune response caused by a large amount of circulating LPS can lead to dramatic outcomes for human health, such as septic shock. The immunostimulant properties of an LPS incredibly vary depending on lipid A chemical structure, and for this reason, natural and synthetic variants of the lipid A are under study to develop new drugs that mimic or antagonise its natural effects. Here, we review past and recent findings on the lipid A as an antibiotic target and immune-therapeutic molecule, with a special attention on the crucial role of the chemical structure and its exploitation for conceiving novel strategies for treatment of several immune-related pathologies.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniele Zucchetta
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
21
|
Liu B, Guo X, Wang J, Wu P, Li S, Feng L, Liu B, Wang L. Development of a Molecular Serotyping Scheme for Morganella morganii. Front Microbiol 2021; 12:791165. [PMID: 34887844 PMCID: PMC8649690 DOI: 10.3389/fmicb.2021.791165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Morganella morganii, which is often regarded as a human commensal organism, can be an opportunistic pathogen, causing a variety of clinical infections with serious morbidity and mortality. An efficient and convenient method for subtyping and identifying M. morganii strains in epidemiological surveillance and control is urgently needed. Serotyping based on bacterial surface polysaccharide antigens (O-antigen or K-antigens) is a standard subtyping method for many gram-negative bacteria. Here, through whole genome sequencing and comparative genomics analysis of 27 strains, we developed a molecular serotyping scheme based on the genetic variation of O-antigen gene clusters (O-AGC) in M. morganii, and 11 distinct O-AGC types were identified. A conventional serotyping scheme was also developed by the production of antisera and agglutination experiments, which was shown to be perfectly consistent with the molecular serotyping scheme, confirming that the variation in M. morganii O-AGC correlated with phenotypic O-antigen diversification. Furthermore, a microsphere-based suspension array (MSA) with high specificity was developed based on the specific genes within each O-AGC type. The sensitivity of MSA was determined to be 0.1 ng of genomic DNA and 103 CFU of pure culture. We further analyzed 104 M. morganii genomes available in GenBank, and an additional six novel O-AGC types were identified, indicating that the extension of this molecular serotyping scheme is convenient. Our work provides an important tool for the detection and epidemiological surveillance of M. morganii, and this method has the potential to be widely utilized, especially for bacterial genera/species without an efficient typing approach.
Collapse
Affiliation(s)
- Bin Liu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xi Guo
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jing Wang
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Pan Wu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Shujie Li
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China
| | - Lu Feng
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Bin Liu
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Lei Wang
- Tianjin Union Medical Center, TEDA Institute of Biological Sciences and Biotechnology, The Institute of Translational Medicine Research, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
22
|
Wang J, Xu Y, Qin C, Hu J, Yin J, Guo X. Structural Determination and Genetic Identification of the O-Antigen from an Escherichia coli Strain, LL004, Representing a Novel Serogroup. Int J Mol Sci 2021; 22:ijms222312746. [PMID: 34884549 PMCID: PMC8657804 DOI: 10.3390/ijms222312746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The O-antigen is the outermost component of the lipopolysaccharide layer in Gram-negative bacteria, and the variation of O-antigen structure provides the basis for bacterial serological diversity. Here, we determined the O-antigen structure of an Escherichia coli strain, LL004, which is totally different from all of the E. coli serogroups. The tetrasaccharide repeating unit was determined as →4)-β-d-Galp-(1→3)-β-d-GlcpNAc6OAc(~70%)-(1→3)-β-d-GalpA-(1→3)-β-d-GalpNAc-(1→ with monosaccharide analysis and NMR spectra. We also characterized the O-antigen gene cluster of LL004, and sequence analysis showed that it correlated well with the O-antigen structure. Deletion and complementation testing further confirmed its role in O-antigen biosynthesis, and indicated that the O-antigen of LL004 is assembled via the Wzx/Wzy dependent pathway. Our findings, in combination, suggest that LL004 should represent a novel serogroup of E. coli.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
| | - Yujuan Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China
- Correspondence: (J.H.); (X.G.)
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Ave. 1800, Wuxi 214122, China; (Y.X.); (C.Q.); (J.Y.)
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China;
- Correspondence: (J.H.); (X.G.)
| |
Collapse
|
23
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
24
|
Wang J, Jiao H, Zhang X, Zhang Y, Sun N, Yang Y, Wei Y, Hu B, Guo X. Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion. J Microbiol Biotechnol 2021; 31:1191-1199. [PMID: 34261855 PMCID: PMC9705854 DOI: 10.4014/jmb.2105.05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are nontypeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAgknockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.
Collapse
Affiliation(s)
- Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - HongBo Jiao
- LanLing Center for Disease Control and Prevention, 1 City Huibao Road, Lanling 276000, Lanling Shandong, P.R. China
| | - XinFeng Zhang
- Taian Center for Disease Control and Prevention, 33 Changcheng Road, Taian 271000, Shandong, P.R. China
| | - YuanQing Zhang
- Jinan KeJia Medical Laboratory, Inc., 800 Minghu West Road, Jinan 250001, Shandong, P.R. China
| | - Na Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China,Corresponding authors B. Hu Phone: +86-0531-82679738 Fax: +86-531-82679750 E-mail:
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China,
X. Guo Phone: +86-22-66229574 Fax: +86-22-66229584 E-mail:
| |
Collapse
|
25
|
Wang L, Lowary TL. Synthesis of structurally-defined polymeric glycosylated phosphoprenols as potential lipopolysaccharide biosynthetic probes. Chem Sci 2021; 12:12192-12200. [PMID: 34667585 PMCID: PMC8457389 DOI: 10.1039/d1sc03852d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The biosynthesis of lipopolysaccharide (LPS), a key immunomodulatory molecule produced by gram-negative bacteria, has been a topic of long-term interest. To date, the chemical probes used as tools to study LPS biosynthetic pathways have consisted primarily of small fragments of the larger structure (e.g., the O-chain repeating unit). While such compounds have helped to provide significant insight into many aspects of LPS assembly, understanding other aspects will require larger, more complex probes. For example, the molecular interactions between polymeric LPS biosynthetic intermediates and the proteins that transfer them across the inner and outer membrane remain largely unknown. We describe the synthesis of two lipid-linked polysaccharides, containing 11 and 27 monosaccharide residues, that are related to LPS O-chain biosynthesis in Escherichia coli O9a. This work has led not only to multi-milligram quantities of two biosynthetic probes, but also provided insights into challenges that must be overcome in the chemical synthesis of structurally-defined polysaccharides. The synthesis of lipid-linked polysaccharides containing 11 and 27 monosaccharides via a ‘frame-shift’ strategy is described. The work provides biosynthetic probes and highlights challenges in synthesizing structurally-defined polymeric glycans.![]()
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta Edmonton AB T6G 2G2 Canada .,Institute of Biological Chemistry, Academia Sinica Academia Road, Section 2, #128, Nangang Taipei 11529 Taiwan.,Institute of Biochemical Sciences, National Taiwan University Section 4, #1, Roosevelt Road. Taipei 10617 Taiwan
| |
Collapse
|
26
|
Development of a multiplex-PCR serotyping assay for characterizing Legionella pneumophila serogroups based on the diversity of LPS biosynthetic loci. J Clin Microbiol 2021; 59:e0015721. [PMID: 34379526 DOI: 10.1128/jcm.00157-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, which is the main cause of Legionnaires' disease, comprises at least 15 serogroups (SGs). We show here the diversity of LPS biosynthetic loci among serogroups and describe the development of a PCR serotyping assay for 15 SGs based on the sequences of LPS biosynthetic loci. Using this multiplex-PCR (M-PCR) system, serogroup(s) were detected using primers that specifically amplify the sequences of SG1, SG2, SG5, SG7, SG8, SG9, SG11, SG13, SG3/15, and SG6/12. When PCR products of the expected sizes were not detected, we used primers that identified SG4/10/14. The PCR serotyping system specifically amplified the sequences corresponding SGs of 238 L. pneumophila strains. This method will be very useful for conducting epidemiological studies and investigating outbreak of Legionnaires' disease.
Collapse
|
27
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
28
|
Pérez-Burgos M, Søgaard-Andersen L. Biosynthesis and function of cell-surface polysaccharides in the social bacterium Myxococcus xanthus. Biol Chem 2021; 401:1375-1387. [PMID: 32769218 DOI: 10.1515/hsz-2020-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| |
Collapse
|
29
|
Recent advances on the one-pot synthesis to assemble size-controlled glycans and glycoconjugates and polysaccharides. Carbohydr Polym 2021; 258:117672. [DOI: 10.1016/j.carbpol.2021.117672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
|
30
|
Elder JR, Fratamico PM, Liu Y, Needleman DS, Bagi L, Tebbs R, Allred A, Siddavatam P, Suren H, Gujjula KR, DebRoy C, Dudley EG, Yan X. A Targeted Sequencing Assay for Serotyping Escherichia coli Using AgriSeq Technology. Front Microbiol 2021; 11:627997. [PMID: 33519788 PMCID: PMC7844058 DOI: 10.3389/fmicb.2020.627997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
The gold standard method for serotyping Escherichia coli has relied on antisera-based typing of the O- and H-antigens, which is labor intensive and often unreliable. In the post-genomic era, sequence-based assays are potentially faster to provide results, could combine O-serogrouping and H-typing in a single test, and could simultaneously screen for the presence of other genetic markers of interest such as virulence factors. Whole genome sequencing is one approach; however, this method has limited multiplexing capabilities, and only a small fraction of the sequence is informative for subtyping or identifying virulence potential. A targeted, sequence-based assay and accompanying software for data analysis would be a great improvement over the currently available methods for serotyping. The purpose of this study was to develop a high-throughput, molecular method for serotyping E. coli by sequencing the genes that are required for production of O- and H-antigens, as well as to develop software for data analysis and serotype identification. To expand the utility of the assay, targets for the virulence factors, Shiga toxins (stx1, and stx2) and intimin (eae) were included. To validate the assay, genomic DNA was extracted from O-serogroup and H-type standard strains and from Shiga toxin-producing E. coli, the targeted regions were amplified, and then sequencing libraries were prepared from the amplified products followed by sequencing of the libraries on the Ion S5™ sequencer. The resulting sequence files were analyzed via the SeroType Caller™ software for identification of O-serogroup, H-type, and presence of stx1, stx2, and eae. We successfully identified 169 O-serogroups and 41 H-types. The assay also routinely detected the presence of stx1a,c,d (3 of 3 strains), stx2c−e,g (8 of 8 strains), stx2f (1 strain), and eae (6 of 6 strains). Taken together, the high-throughput, sequence-based method presented here is a reliable alternative to antisera-based serotyping methods for E. coli.
Collapse
Affiliation(s)
- Jacob R Elder
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Pina M Fratamico
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Yanhong Liu
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - David S Needleman
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Lori Bagi
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| | - Robert Tebbs
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | | | - Prasad Siddavatam
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | - Haktan Suren
- Thermo Fisher Scientific, Genetic Sciences Division, Austin, TX, United States
| | | | - Chitrita DebRoy
- E. coli Reference Center, The Pennsylvania State University, University Park, PA, United States
| | - Edward G Dudley
- E. coli Reference Center, The Pennsylvania State University, University Park, PA, United States
| | - Xianghe Yan
- U. S. Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, United States
| |
Collapse
|
31
|
Identification of the Pseudomonas aeruginosa O17 and O15 O-Specific Antigen Biosynthesis Loci Reveals an ABC Transporter-Dependent Synthesis Pathway and Mechanisms of Genetic Diversity. J Bacteriol 2020; 202:JB.00347-20. [PMID: 32690555 DOI: 10.1128/jb.00347-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCE P. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Collapse
|
32
|
Justen AM, Hodges HL, Kim LM, Sadecki PW, Porfirio S, Ultee E, Black I, Chung GS, Briegel A, Azadi P, Kiessling LL. Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility. SCIENCE ADVANCES 2020; 6:eaba4015. [PMID: 32938674 PMCID: PMC7494350 DOI: 10.1126/sciadv.aba4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 05/04/2023]
Abstract
Bacteria control the length of their polysaccharides, which can control cell viability, physiology, virulence, and immune evasion. Polysaccharide chain length affects immunomodulation, but its impact on bacterial physiology and antibiotic susceptibility was unclear. We probed the consequences of truncating the mycobacterial galactan, an essential linear polysaccharide of about 30 residues. Galactan covalently bridges cell envelope layers, with the outermost cell wall linkage point occurring at residue 12. Reducing galactan chain length by approximately half compromises fitness, alters cell morphology, and increases the potency of hydrophobic antibiotics. Systematic variation of the galactan chain length revealed that it determines periplasm size. Thus, glycan chain length can directly affect cellular physiology and antibiotic activity, and mycobacterial glycans, not proteins, regulate periplasm size.
Collapse
Affiliation(s)
- Alexander M Justen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Heather L Hodges
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Lili M Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Patric W Sadecki
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Sara Porfirio
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Eveline Ultee
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Ian Black
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Grace S Chung
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Ariane Briegel
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
33
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
34
|
Mann E, Kimber MS, Whitfield C. Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters. Glycobiology 2020; 29:822-838. [PMID: 31504498 DOI: 10.1093/glycob/cwz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The structures of bacterial cell surface glycans are remarkably diverse. In spite of this diversity, the general strategies used for their assembly are limited. In one of the major processes, found in both Gram-positive and Gram-negative bacteria, the glycan is polymerized in the cytoplasm on a polyprenol lipid carrier and exported from the cytoplasm by an ATP-binding cassette (ABC) transporter. The ABC transporter actively participates in determining the chain length of the glycan substrate, which impacts functional properties of the glycoconjugate products. A subset of these systems employs an additional elaborate glycan capping strategy that dictates the size distribution of the products. The hallmarks of prototypical capped glycan systems are a chain-terminating enzyme possessing a coiled-coil molecular ruler and an ABC transporter possessing a carbohydrate-binding module, which recognizes the glycan cap. To date, detailed investigations are limited to a small number of prototypes, and here, we used our current understanding of these processes for a bioinformatics census of other examples in available genome sequences. This study not only revealed additional instances of existing terminators but also predicted new chemistries as well as systems that diverge from the established prototypes. These analyses enable some new functional hypotheses and offer a roadmap for future research.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
35
|
Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 2020; 61:836-854. [PMID: 32267169 DOI: 10.1080/10408398.2020.1747046] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Luciana Pellegrini Pisani
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|
36
|
Identification of Genes Required for Glucan Exopolysaccharide Production in Lactobacillus johnsonii Suggests a Novel Biosynthesis Mechanism. Appl Environ Microbiol 2020; 86:AEM.02808-19. [PMID: 32060027 PMCID: PMC7117936 DOI: 10.1128/aem.02808-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Exopolysaccharides are key components of the surfaces of their bacterial producers, contributing to protection, microbial and host interactions, and even virulence. They also have significant applications in industry, and understanding their biosynthetic mechanisms may allow improved production of novel and valuable polymers. Four categories of bacterial exopolysaccharide biosynthesis have been described in detail, but novel enzymes and glycosylation mechanisms are still being described. Our findings that a putative bactoprenol glycosyltransferase and flippase are essential to homopolysaccharide biosynthesis in Lactobacillus johnsonii FI9785 indicate that there may be an alternative mechanism of glucan biosynthesis to the glucansucrase pathway. Disturbance of this synthesis leads to a slow-growth phenotype. Further elucidation of this biosynthesis may give insight into exopolysaccharide production and its impact on the bacterial cell. Lactobacillus johnsonii FI9785 makes two capsular exopolysaccharides—a heteropolysaccharide (EPS2) encoded by the eps operon and a branched glucan homopolysaccharide (EPS1). The homopolysaccharide is synthesized in the absence of sucrose, and there are no typical glucansucrase genes in the genome. Quantitative proteomics was used to compare the wild type to a mutant where EPS production was reduced to attempt to identify proteins associated with EPS1 biosynthesis. A putative bactoprenol glycosyltransferase, FI9785_242 (242), was less abundant in the Δeps_cluster mutant strain than in the wild type. Nuclear magnetic resonance (NMR) analysis of isolated EPS showed that deletion of the FI9785_242 gene (242) prevented the accumulation of EPS1, without affecting EPS2 synthesis, while plasmid complementation restored EPS1 production. The deletion of 242 also produced a slow-growth phenotype, which could be rescued by complementation. 242 shows amino acid homology to bactoprenol glycosyltransferase GtrB, involved in O-antigen glycosylation, while in silico analysis of the neighboring gene 241 suggested that it encodes a putative flippase with homology to the GtrA superfamily. Deletion of 241 also prevented production of EPS1 and again caused a slow-growth phenotype, while plasmid complementation reinstated EPS1 synthesis. Both genes are highly conserved in L. johnsonii strains isolated from different environments. These results suggest that there may be a novel mechanism for homopolysaccharide synthesis in the Gram-positive L. johnsonii. IMPORTANCE Exopolysaccharides are key components of the surfaces of their bacterial producers, contributing to protection, microbial and host interactions, and even virulence. They also have significant applications in industry, and understanding their biosynthetic mechanisms may allow improved production of novel and valuable polymers. Four categories of bacterial exopolysaccharide biosynthesis have been described in detail, but novel enzymes and glycosylation mechanisms are still being described. Our findings that a putative bactoprenol glycosyltransferase and flippase are essential to homopolysaccharide biosynthesis in Lactobacillus johnsonii FI9785 indicate that there may be an alternative mechanism of glucan biosynthesis to the glucansucrase pathway. Disturbance of this synthesis leads to a slow-growth phenotype. Further elucidation of this biosynthesis may give insight into exopolysaccharide production and its impact on the bacterial cell.
Collapse
|
37
|
Analysis of the Topology and Active-Site Residues of WbbF, a Putative O-Polysaccharide Synthase from Salmonella enterica Serovar Borreze. J Bacteriol 2020; 202:JB.00625-19. [PMID: 31792013 DOI: 10.1128/jb.00625-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Bacterial lipopolysaccharides are major components and contributors to the integrity of Gram-negative outer membranes. The more conserved lipid A-core part of this complex glycolipid is synthesized separately from the hypervariable O-antigenic polysaccharide (OPS) part, and they are joined in the periplasm prior to translocation to the outer membrane. Three different biosynthesis strategies are recognized for OPS biosynthesis, and one, the synthase-dependent pathway, is currently confined to a single example: the O:54 antigen from Salmonella enterica serovar Borreze. Synthases are complex enzymes that have the capacity to both polymerize and export bacterial polysaccharides. Although synthases like cellulose synthase are widespread, they typically polymerize a glycan without employing a lipid-linked intermediate, unlike the O:54 synthase (WbbF), which produces an undecaprenol diphosphate-linked product. This raises questions about the overall similarity between WbbF and conventional synthases. In this study, we examine the topology of WbbF, revealing four membrane-spanning helices, compared to the eight in cellulose synthase. Molecular modeling of the glycosyltransferase domain of WbbF indicates a similar architecture, and site-directed mutagenesis confirmed that residues important for catalysis and processivity in cellulose synthase are conserved in WbbF and required for its activity. These findings indicate that the glycosyltransferase mechanism of WbbF and classic synthases are likely conserved despite the use of a lipid acceptor for chain extension by WbbF.IMPORTANCE Glycosyltransferases play a critical role in the synthesis of a wide variety of bacterial polysaccharides. These include O-antigenic polysaccharides, which form the distal component of lipopolysaccharides and provide a protective barrier important for survival and host-pathogen interactions. Synthases are a subset of glycosyltransferases capable of coupled synthesis and export of glycans. Currently, the O:54 antigen of Salmonella enterica serovar Borreze involves the only example of an O-polysaccharide synthase, and its generation of a lipid-linked product differentiates it from classical synthases. Here, we explore features conserved in the O:54 enzyme and classical synthases to shed light on the structure and function of the unusual O:54 enzyme.
Collapse
|
38
|
Bose T, Venkatesh KV, Mande SS. Investigating host-bacterial interactions among enteric pathogens. BMC Genomics 2019; 20:1022. [PMID: 31881845 PMCID: PMC6935094 DOI: 10.1186/s12864-019-6398-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In 2017, World Health Organization (WHO) published a catalogue of 12 families of antibiotic-resistant “priority pathogens” that are posing the greatest threats to human health. Six of these dreaded pathogens are known to infect the human gastrointestinal system. In addition to causing gastrointestinal and systemic infections, these pathogens can also affect the composition of other microbes constituting the healthy gut microbiome. Such aberrations in gut microbiome can significantly affect human physiology and immunity. Identifying the virulence mechanisms of these enteric pathogens are likely to help in developing newer therapeutic strategies to counter them. Results Using our previously published in silico approach, we have evaluated (and compared) Host-Pathogen Protein-Protein Interaction (HPI) profiles of four groups of enteric pathogens, namely, different species of Escherichia, Shigella, Salmonella and Vibrio. Results indicate that in spite of genus/ species specific variations, most enteric pathogens possess a common repertoire of HPIs. This core set of HPIs are probably responsible for the survival of these pathogen in the harsh nutrient-limiting environment within the gut. Certain genus/ species specific HPIs were also observed. Conslusions The identified bacterial proteins involved in the core set of HPIs are expected to be helpful in understanding the pathogenesis of these dreaded gut pathogens in greater detail. Possible role of genus/ species specific variations in the HPI profiles in the virulence of these pathogens are also discussed. The obtained results are likely to provide an opportunity for development of novel therapeutic strategies against the most dreaded gut pathogens.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.,Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune, India.
| |
Collapse
|
39
|
Bi Y, Zimmer J. Structure and Ligand-Binding Properties of the O Antigen ABC Transporter Carbohydrate-Binding Domain. Structure 2019; 28:252-258.e2. [PMID: 31879128 DOI: 10.1016/j.str.2019.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
A hallmark of Gram-negative bacteria is an asymmetric outer membrane containing lipopolysaccharides (LPSs) in the extracellular leaflet. LPS molecules consist of lipid A, which is connected to the inner and outer core oligosaccharides. This LPS core structure is extended in the periplasm by the O antigen, a variable and serotype-defining polysaccharide. In the ABC transporter-dependent LPS biosynthesis pathway, the WzmWzt transporter secretes the complete O antigen across the inner membrane for ligation to the LPS core. In some O antigen transporters, the nucleotide-binding domain of Wzt is fused C-terminally to a carbohydrate-binding domain (CBD) that interacts with the O antigen chain. Here, we present the crystal structure of the Aquifex aeolicus CBD that reveals a conserved flat and a variable twisted jelly-roll surface. The CBD dimer is stabilized by mutual β strand exchange. Microbial glycan array binding studies with the isolated CBD provide insights into its interaction with complex carbohydrates.
Collapse
Affiliation(s)
- Yunchen Bi
- School of Medicine, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jochen Zimmer
- School of Medicine, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
40
|
New insights into lipopolysaccharide assembly and export. Curr Opin Chem Biol 2019; 53:37-43. [DOI: 10.1016/j.cbpa.2019.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
41
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
42
|
Kutschera A, Schombel U, Wröbel M, Gisch N, Ranf S. Loss of wbpL disrupts O-polysaccharide synthesis and impairs virulence of plant-associated Pseudomonas strains. MOLECULAR PLANT PATHOLOGY 2019; 20:1535-1549. [PMID: 31559681 PMCID: PMC6804347 DOI: 10.1111/mpp.12864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Despite its importance for membrane stability and pathogenicity of mammalian pathogens, functions of the O-polysaccharide (OPS) of lipopolysaccharide (LPS) remain unclear in plant-associated bacteria. Genetic information about OPS biosynthesis in these bacteria is largely missing. Genome analysis of various plant-associated Pseudomonas strains revealed that one of the two known OPS biosynthesis clusters from Pseudomonas aeruginosa PAO1, the common polysaccharide antigen (CPA) gene cluster, is only conserved in some strains of the Pseudomonas fluorescens group. For the O-specific antigen (OSA) biosynthesis cluster, the putative genomic position could be identified, but orthologues of most functional important OSA biosynthesis enzymes could not be detected. Nevertheless, orthologues of the glycosyltransferase WbpL, required for initiation of CPA and OSA synthesis in P. aeruginosa PAO1, could be identified in the analysed Pseudomonas genomes. Knockout mutations of wbpL orthologues in Pseudomonas syringae pv. tomato DC3000 (Pst) and Pseudomonas cichorii ATCC10857/DSM50259 (Pci) resulted in strains lacking the OPS. Infection experiments of Arabidopsis thaliana plants revealed a reduced entry into the leaf apoplast after spray inoculation and a reduced apoplastic amplification of Pst ∆wbpL. Stab and spray inoculation of lettuce (Lactuca sativa) leaves with Pci ∆wbpL causes reduced infection symptoms compared to the wild-type strain. Furthermore, swarming motility was reduced in ∆wbpL mutants of Pst and Pci. This might be a possible reason for reduced bacterial titres after surface inoculation and reduced bacterial amplification in the plant. Our results imply that the presence of lipopolysaccharide OPS is required for efficient host colonization and full virulence of plant-pathogenic Pseudomonas bacteria.
Collapse
Affiliation(s)
- Alexander Kutschera
- Technical University of MunichPhytopathology, TUM School of Life Sciences Weihenstephan85354Freising‐WeihenstephanGermany
| | - Ursula Schombel
- Research Center Borstel, Leibniz Lung CenterDivision of Bioanalytical Chemistry, Priority Area InfectionsParkallee 1‐4023845BorstelGermany
| | - Michelle Wröbel
- Research Center Borstel, Leibniz Lung CenterDivision of Bioanalytical Chemistry, Priority Area InfectionsParkallee 1‐4023845BorstelGermany
| | - Nicolas Gisch
- Research Center Borstel, Leibniz Lung CenterDivision of Bioanalytical Chemistry, Priority Area InfectionsParkallee 1‐4023845BorstelGermany
| | - Stefanie Ranf
- Technical University of MunichPhytopathology, TUM School of Life Sciences Weihenstephan85354Freising‐WeihenstephanGermany
| |
Collapse
|
43
|
Sperandeo P, Polissi A, De Fabiani E. Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| |
Collapse
|
44
|
Mann E, Kelly SD, Al-Abdul-Wahid MS, Clarke BR, Ovchinnikova OG, Liu B, Whitfield C. Substrate recognition by a carbohydrate-binding module in the prototypical ABC transporter for lipopolysaccharide O-antigen from Escherichia coli O9a. J Biol Chem 2019; 294:14978-14990. [PMID: 31416837 DOI: 10.1074/jbc.ra119.010323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/14/2019] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli serotype O9a provides a model for export of lipopolysaccharide (LPS) O-antigen polysaccharide (O-PS) via ABC transporters. In O9a biosynthesis, a chain-terminator enzyme, WbdD, caps the nonreducing end of the glycan with a methylphosphate moiety and thereby establishes chain-length distribution. A carbohydrate-binding module (CBM) in the ABC transporter recognizes terminated glycans, ensuring that only mature O-PS is exported and incorporated into LPS. Here, we addressed two questions arising from this model. Are both residues in the binary terminator necessary for termination and export? And is a terminal methylphosphate moiety sufficient for export of heterologous glycans? To answer the first question, we uncoupled WbdD kinase and methyltransferase activities. WbdD mutants revealed that although the kinase activity is solely responsible for chain-length regulation, both activities are essential for CBM recognition and export. Consistent with this observation, a saturation transfer difference NMR experiment revealed a direct interaction between the CBM and the terminal methyl group. To determine whether methylphosphate is the sole determinant of substrate recognition by the CBM, we exploited Klebsiella pneumoniae O7, whose O-PS repeat-unit structure differs from O9a, but, as shown here, offers the second confirmed example of a terminal methylphosphate serving in substrate recognition. In vitro and in vivo experiments indicated that each CBM can bind the O-PS only with the native repeat unit, revealing that methylphosphate is essential but not sufficient for substrate recognition and export. Our findings provide important new insight into the structural determinants in a prototypical quality control system for glycan assembly and export.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 3 Hongda St. TEDA, Tianjin 300457, China
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
45
|
Composition of the Holdfast Polysaccharide from Caulobacter crescentus. J Bacteriol 2019; 201:JB.00276-19. [PMID: 31209074 DOI: 10.1128/jb.00276-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Surface colonization is central to the lifestyles of many bacteria. Exploiting surface niches requires sophisticated systems for sensing and attaching to solid materials. Caulobacter crescentus synthesizes a polysaccharide-based adhesin known as the holdfast at one of its cell poles, which enables tight attachment to exogenous surfaces. The genes required for holdfast biosynthesis have been analyzed in detail, but difficulties in isolating analytical quantities of the adhesin have limited efforts to characterize its chemical structure. In this report, we describe a method to extract the holdfast from C. crescentus cultures and present a survey of its carbohydrate content. Glucose, 3-O-methylglucose, mannose, N-acetylglucosamine, and xylose were detected in our extracts. Our results provide evidence that the holdfast contains a 1,4-linked backbone of glucose, mannose, N-acetylglucosamine, and xylose that is decorated with branches at the C-6 positions of glucose and mannose. By defining the monosaccharide components in the polysaccharide, our work establishes a framework for characterizing enzymes in the holdfast pathway and provides a broader understanding of how polysaccharide adhesins are built.IMPORTANCE To colonize solid substrates, bacteria often deploy dedicated adhesins that facilitate attachment to surfaces. Caulobacter crescentus initiates surface colonization by secreting a carbohydrate-based adhesin called the holdfast. Because little is known about the chemical makeup of the holdfast, the pathway for its biosynthesis and the physical basis for its unique adhesive properties are poorly understood. This study outlines a method to extract the C. crescentus holdfast and describes the monosaccharide components contained within the adhesive matrix. The composition analysis adds to our understanding of the chemical basis for holdfast attachment and provides missing information needed to characterize enzymes in the biosynthetic pathway.
Collapse
|
46
|
Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development. Mol Microbiol 2019; 112:1178-1198. [PMID: 31332863 DOI: 10.1111/mmi.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell-cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O-antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O-antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for priming O-antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O-antigen synthesis, indicating that WbaPMx transfers galactose-1-P to undecaprenyl-phosphate. We also identified WaaLMx (MXAN_2919), as the O-antigen ligase that joins O-antigen to lipid A-core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O-antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O-antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili-dependent motility and required to complete the developmental program leading to the formation of spore-filled fruiting bodies.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jana Jung
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
47
|
Kelly SD, Clarke BR, Ovchinnikova OG, Sweeney RP, Williamson ML, Lowary TL, Whitfield C. Klebsiella pneumoniae O1 and O2ac antigens provide prototypes for an unusual strategy for polysaccharide antigen diversification. J Biol Chem 2019; 294:10863-10876. [PMID: 31138653 DOI: 10.1074/jbc.ra119.008969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
A limited range of different structures is observed in O-antigenic polysaccharides (OPSs) from Klebsiella pneumoniae lipopolysaccharides. Among these, several are based on modifications of a conserved core element of serotype O2a OPS, which has a disaccharide repeat structure [→3)-α-d-Galp-(1→3)-β-d-Galf-(1→]. Here, we describe the enzymatic pathways for a highly unusual modification strategy involving the attachment of a second glycan repeat-unit structure to the nonreducing terminus of O2a. This occurs by the addition of the O1 [→3)-α-d-Galp-(1→3)-β-d-Galp-(1→] or O2c [→3)-β-d-GlcpNAc-(1→5)-β-d-Galf-(1→] antigens. The organization of the enzyme activities performing these modifications differs, with the enzyme WbbY possessing two glycosyltransferase catalytic sites solely responsible for O1 antigen polymerization and forming a complex with the O2a glycosyltransferase WbbM. In contrast, O2c polymerization requires glycosyltransferases WbmV and WbmW, which interact with one another but apparently not with WbbM. Using defined synthetic acceptors and site-directed mutants to assign the activities of the WbbY catalytic sites, we found that the C-terminal WbbY domain is a UDP-Galp-dependent GT-A galactosyltransferase adding β-(1→3)-linked d-Galp, whereas the WbbY N terminus includes a GT-B enzyme adding α-(1→3)-linked d-Galp These activities build the O1 antigen on a terminal Galp in the O2a domain. Using similar approaches, we identified WbmV as the UDP-GlcNAc transferase and noted that WbmW represents a UDP-Galf-dependent enzyme and that both are GT-A members. WbmVW polymerizes the O2c antigen on a terminal Galf. Our results provide mechanistic and conceptual insights into an important strategy for polysaccharide antigen diversification in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Ryan P Sweeney
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Monica L Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and.
| |
Collapse
|
48
|
Xi D, Wang X, Ning K, Liu Q, Jing F, Guo X, Cao B. O-Antigen Gene Clusters of Plesiomonas shigelloides Serogroups and Its Application in Development of a Molecular Serotyping Scheme. Front Microbiol 2019; 10:741. [PMID: 31024508 PMCID: PMC6467956 DOI: 10.3389/fmicb.2019.00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/25/2019] [Indexed: 01/14/2023] Open
Abstract
Plesiomonas shigelloides is a Gram-negative, flagellated, rod-shaped, ubiquitous, and facultative anaerobic bacterium. It has been isolated from various sources, such as freshwater, surface water, and many wild and domestic animals. P. shigelloides is associated with diarrheal diseases of acute secretory gastroenteritis, an invasive shigellosis-like disease, and a cholera-like illness in humans. At present, 102 somatic antigens and 51 flagellar antigens of P. shigelloides have been recognized; however, very little is known about variations of O-antigens among P. shigelloides species. In this study, 12 O-antigen gene clusters of P. shigelloides, O2H1a1c (G5877), O10H41 (G5892), O12H35 (G5890), O23H1a1c (G5263), O25H3 (G5879), O26H1a1c (G5889), O32H37 (G5880), O33H38 (G5881), O34H34 (G5882), O66H3 (G5270), O75H34 (G5885), and O76H39 (G5886), were sequenced and analyzed. The genes that control O-antigen synthesis are present as chromosomal gene clusters that maps between rep and aqpZ, and most of the synthesis and translocation of OPS (O-specific polysaccharide) belongs to Wzx/Wzy pathway with the exception of O12, O25, and O66, which use the ATP-binding cassette (ABC) transporter pathway. Phylogenetic analysis of wzx and wzy show that the wzx and wzy genes are specific to individual O-antigens and can be used as targets in molecular typing. Based on the sequence data, an O-antigen specific suspension array that detects 12 distinct OPS’ has been developed. This is the first report to catalog the genetic features of P. shigelloides O-antigen variations and develop a suspension array for the molecular typing. The method has several advantages over traditional bacteriophage and serum agglutination methods and lays the foundation for easier identification and detection of additional O-antigen in the future.
Collapse
Affiliation(s)
- Daoyi Xi
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Kexin Ning
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Qian Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Fuyi Jing
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Boyang Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| |
Collapse
|
49
|
Abstract
The cell envelope is the first line of defense between a bacterium and the world-at-large. Often, the initial steps that determine the outcome of chemical warfare, bacteriophage infections, and battles with other bacteria or the immune system greatly depend on the structure and composition of the bacterial cell surface. One of the most studied bacterial surface molecules is the glycolipid known as lipopolysaccharide (LPS), which is produced by most Gram-negative bacteria. Much of the initial attention LPS received in the early 1900s was owed to its ability to stimulate the immune system, for which the glycolipid was commonly known as endotoxin. It was later discovered that LPS also creates a permeability barrier at the cell surface and is a main contributor to the innate resistance that Gram-negative bacteria display against many antimicrobials. Not surprisingly, these important properties of LPS have driven a vast and still prolific body of literature for more than a hundred years. LPS research has also led to pioneering studies in bacterial envelope biogenesis and physiology, mostly using Escherichia coli and Salmonella as model systems. In this review, we will focus on the fundamental knowledge we have gained from studies of the complex structure of the LPS molecule and the biochemical pathways for its synthesis, as well as the transport of LPS across the bacterial envelope and its assembly at the cell surface.
Collapse
|
50
|
Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat Commun 2019; 10:824. [PMID: 30778065 PMCID: PMC6379404 DOI: 10.1038/s41467-019-08646-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular glycan biosynthesis is a widespread microbial protection mechanism. In Gram-negative bacteria, the O antigen polysaccharide represents the variable region of outer membrane lipopolysaccharides. Fully assembled lipid-linked O antigens are translocated across the inner membrane by the WzmWzt ABC transporter for ligation to the lipopolysaccharide core, with the transporter forming a continuous transmembrane channel in a nucleotide-free state. Here, we report its structure in an ATP-bound conformation. Large structural changes within the nucleotide-binding and transmembrane regions push conserved hydrophobic residues at the substrate entry site towards the periplasm and provide a model for polysaccharide translocation. With ATP bound, the transporter forms a large transmembrane channel with openings toward the membrane and periplasm. The channel's periplasmic exit is sealed by detergent molecules that block solvent permeation. Molecular dynamics simulation data suggest that, in a biological membrane, lipid molecules occupy this periplasmic exit and prevent water flux in the transporter's resting state.
Collapse
Affiliation(s)
- Christopher A Caffalette
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Jochen Zimmer
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|