1
|
Liu Y, Wang M, Zhang C. Anti-inflammatory and antioxidant effects of haematococcus carbon dots in ulcerative colitis: A nanoparticle-based approach. J Biomater Appl 2025:8853282251333240. [PMID: 40221894 DOI: 10.1177/08853282251333240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum, classified as a type of inflammatory bowel disease (IBD). This study aimed to evaluate the therapeutic effects of Haematococcus carbon dots (HP-CDs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. HP-CDs were synthesized from Haematococcus pluvialis (HP) using a hydrothermal method involving Rhodococcus amphitrite. The effects of HP-CDs on DSS-induced ulcerative colitis in mice were evaluated through histological and pathological analyses. Results demonstrated that HP-CDs significantly alleviated colitis, reducing body weight loss, Disease Activity Index (DAI) scores, and colonic atrophy. Moreover, HP-CDs suppressed MPO activity and decreased the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in colonic tissues. These findings indicate that HP-CDs have potential as a novel therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuting Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mengqing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chaoyan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Bharti A, Hooda V, Jain U, Chauhan N. Astaxanthin: a nature's versatile compound utilized for diverse applications and its therapeutic effects. 3 Biotech 2025; 15:88. [PMID: 40092449 PMCID: PMC11909355 DOI: 10.1007/s13205-025-04241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Astaxanthin (ASTX), red-colored xanthophyll, also known as the "king of carotenoids" exhibits a strong antioxidant property that can be naturally found in green algae Haematococcus pluvialis, red yeast Phaffia rhodozyma, and various aquatic species including salmon, krill, trout, and fish eggs. Due to their strong antioxidant qualities, ASTX nanoparticles may be crucial in fighting against phytotoxicity caused by heavy metal ions. Similarly, it may also reduce the uptake of heavy metal, i.e. cadmium, and translocation by improving the morpho-physiological profiles of plants. Furthermore, it can also have the ability to scavenge free radicals, therefore, it can protect plants from reactive oxygen species (ROS). Implementing ASTX nanoparticles on crops can also help to achieve higher food production while minimizing toxic effects. Additionally, it can also possess several therapeutic activities including anti-cancerous, anti-diabetic, antioxidant, anti-aging, anti-inflammation, hepatoprotective, and cardiovascular, etc. that can be beneficial to treat various types of diseases in humans and animals. Recently, it has gained more interest in food, agriculture, aquaculture, neutraceuticals, and pharmaceutical industries due to its wide range of applications including food-coloring agents, food supplements, and strong antioxidant property that helps in skin protection, and boosts immune function. However, ASTX possesses poor water solubility and chemical stability so the implementation of ASTX on human health is facing various issues. Therefore, nanoencapsulation of ASTX is very crucial to improve its chemical stability and solubility, ultimately leading to its bioavailability and bioaccessibility. Recently, ASTX has been commercially available with specific dosages in the market mainly in the form of tablets, gels, powders, creams, syrups, etc. The current review mainly highlights the present state of ASTX nanoparticle applications in various fields explaining its natural and synthetic sources, extraction methods, chemical structure, stability, nanoformulations, nano encapsulation, and various commercial aspects.
Collapse
Affiliation(s)
- Anjali Bharti
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Utkarsh Jain
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| | - Nidhi Chauhan
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
3
|
Tian F, Sun S, Ge Z, Ge Y, Ge X, Shi Z, Qian X. Understanding the Anticancer Effects of Phytochemicals: From Molecular Docking to Anticarcinogenic Signaling. J Nutr 2025; 155:431-444. [PMID: 39581266 DOI: 10.1016/j.tjnut.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
As nontraditional nutrients, the biological activity of phytochemicals have been extensively studied for their antioxidant, anti-inflammatory, and apoptosis-promoting effects in various diseases. The general anticancer benefits of phytochemicals have been demonstrated in both basic researches and clinical trials. However, researchers understanding of how phytochemicals target cancer-related signaling pathways is still in its infancy. Molecular docking simulation analyses have yielded a large amount of cellular target molecules of phytochemicals. Herein, we review the potential signaling pathways that may be involved in the phytochemical-driven cancer benefits. We expect these findings to help in the design of potential cancer treatments designed by manipulating the binding modes and sites of these plant chemicals.
Collapse
Affiliation(s)
- Fuwei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
5
|
Zhang H, Wang M, Zhou Y, Bao S, Wang F, Li C. Protective Effects of Astaxanthin against Oxidative Stress: Attenuation of TNF-α-Induced Oxidative Damage in SW480 Cells and Azoxymethane/Dextran Sulfate Sodium-Induced Colitis-Associated Cancer in C57BL/6 Mice. Mar Drugs 2024; 22:469. [PMID: 39452878 PMCID: PMC11509176 DOI: 10.3390/md22100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, we investigated the protective effects of astaxanthin (AST) against oxidative stress induced by the combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) in colitis-associated cancer (CAC) and TNF-α-induced human colorectal cancer cells (SW480), as well as the underlying mechanism. In vitro experiments revealed that astaxanthin reduced reactive oxygen species (ROS) generation and inhibited the expression of Phosphorylated JNK (P-JNK), Phosphorylated ERK (P-ERK), Phosphorylated p65 (P-p65), and the NF-κB downstream protein cyclooxygenase-2 (COX-2). In vivo experiments showed that astaxanthin ameliorated AOM/DSS-induced weight loss, shortened the colon length, and caused histomorphological changes. In addition, astaxanthin suppressed cellular inflammation by modulating the MAPK and NF-κB pathways and inhibiting the expression of the proinflammatory cytokines IL-6, IL-1β, and TNF-α. In conclusion, astaxanthin attenuates cellular inflammation and CAC through its antioxidant effects.
Collapse
Affiliation(s)
- Haifeng Zhang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Department of Culinary Science, Ministry of Culture & Tourism, Yangzhou 225127, China
| | - Min Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.Z.); (S.B.)
| | - Shaojie Bao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.Z.); (S.B.)
| | - Feng Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
| | - Chunmei Li
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Department of Culinary Science, Ministry of Culture & Tourism, Yangzhou 225127, China
| |
Collapse
|
6
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Kim K, Cho HR, Son Y. Astaxanthin Induces Apoptosis in MCF-7 Cells through a p53-Dependent Pathway. Int J Mol Sci 2024; 25:7111. [PMID: 39000216 PMCID: PMC11241156 DOI: 10.3390/ijms25137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione; AXT) is a xanthophyll β-carotenoid found in microalgae, seafood, fungi, complex plants, flamingos, and quail. It is well known that AXT plays a role as a drug with antioxidant and antitumor properties. Furthermore, several studies have reported that the reagent shows anti-inflammatory and neuroprotective effects. Recently, it was found that AXT acts as a peroxisome proliferator-activated receptor γ (PPARγ) modulator. To investigate the effect of AXT on MCF-7 cells (a human breast cancer cell line), the cells were treated with various concentrations of AXT. The treatment induced the decrease in cell number in a dose-dependent manner. Additionally, the Annexin V-positive cells were increased by the AXT treatment. These results indicated that apoptosis was induced in the tumor cells through the treatment of AXT. To elucidate the connection between apoptosis and p53, the levels of p53 and p21 proteins were assessed. Consequently, it was observed that the expression of p53 and p21 increased proportionally to the concentration of the AXT treatment. These findings suggest that the apoptosis of MCF-7 cells induced by AXT operates through a p53-dependent pathway, implying that AXT could potentially have a beneficial role in future breast cancer treatments. Thus, our results will provide a direction for future cancer challenges.
Collapse
Affiliation(s)
- Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Busan 43241, Republic of Korea
| |
Collapse
|
8
|
Liu Y, Robinson AM, Su XQ, Nurgali K. Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules 2024; 14:447. [PMID: 38672464 PMCID: PMC11048140 DOI: 10.3390/biom14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- School of Rural Health, La Trobe University, Melbourne, VIC 3010, Australia
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xiao Qun Su
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (Y.L.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
9
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
10
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
11
|
Li C, Zhou Y, Yuan M, Yang Y, Song R, Xu G, Chen G. Astaxanthin-loaded polylactic acid-glycolic acid nanoparticles ameliorate ulcerative colitis through antioxidant effects. Front Nutr 2023; 10:1267274. [PMID: 38024351 PMCID: PMC10665485 DOI: 10.3389/fnut.2023.1267274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Astaxanthin (AST) is a type of carotenoid with strong antioxidant effects. However, the development and use of AST are limited by its water insolubility and low bioavailability. This study aims to investigate whether AST@PLGA can inhibit UC and reveal its possible mechanism. Methods We tested the particle size, polydispersity index, and zeta potential of AST@PLGA. Then, the in vitro release and antioxidant capacity of AST@PLGA were tested. Finally, the mouse model of colitis was established and SOD, MDA, TNF-α, IL-1β, IL-6 and P38 as well as ERK were detected from mice. Results Particle size, polydispersity index and zeta potential of AST @PLGA were 66.78 ± 0.64 nm, 0.247 and -9.8 ± 0.53 mV, respectively, and were stable within 14 days. Then, it was observed that the AST@PLGA nanoparticles not only maintained the effect of AST but also had a sustained release effect. Experiments in mice showed that AST@PLGA effectively reduced MDA, TNF-α, IL-1β and IL-6 levels and increased SOD levels. AST@PLGA also downregulated the protein expression of P38 and ERK. The results showed the positive protective effect of AST@PLGA in inhibiting acute colitis. Discussion AST@PLGA nanoparticles have good stability and alleviating effect in colitis, which could be functional foods in the future.
Collapse
Affiliation(s)
- Chunmei Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Meng Yuan
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, China
| | - Yawen Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Burn and Plastic Surgery, Northern Jiangsu People’s Hospital/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
12
|
Luo M, Yuan Q, Liu M, Song X, Xu Y, Zhang T, Zeng X, Wu Z, Pan D, Guo Y. Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier. Food Funct 2023; 14:9567-9579. [PMID: 37800998 DOI: 10.1039/d3fo03331g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM-GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM-GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM-GA-astaxanthin on oxidative stress. Moreover, MFGM-GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
Collapse
Affiliation(s)
- Mengfan Luo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Qiaoyue Yuan
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Mingzhen Liu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Xingye Song
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Yingjie Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, PR China.
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
13
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
14
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
15
|
Islam MR, Akash S, Rahman MM, Nowrin FT, Akter T, Shohag S, Rauf A, Aljohani AS, Simal-Gandara J. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chem Biol Interact 2022; 368:110170. [DOI: 10.1016/j.cbi.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
|
16
|
Ghelani H, Adrian TE, Ho SB, Akhras J, Azar AJ, Jan RK. Study protocol for a pilot randomized, double-blind, placebo-controlled trial to investigate the anti-inflammatory effects of Frondanol in adults with inflammatory bowel disease. Contemp Clin Trials Commun 2022; 31:101046. [PMID: 36544548 PMCID: PMC9760652 DOI: 10.1016/j.conctc.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis, is a debilitating condition with a rising incidence globally over recent years. Frondanol, a widely available nutraceutical extract of the edible sea cucumber Cucumaria frondosa has been reported to possess potent anti-inflammatory effects, likely mediated by the inhibition of 5-lipoxygenase and 12-lipoxygenase pathways, whilst showing no signs of toxicity. The potent anti-inflammatory effects of Frondanol in a mouse model of IBD provide encouragement for investigating its effects in human IBD patients. Here we describe the study protocol of a pilot randomized, double-blinded, placebo-controlled trial of Frondanol in patients with mild to moderate IBD who are on standard therapy. Material and methods One hundred patients will be randomized (1:1) to receive Frondanol or placebo as an adjunct to their standard therapy for the period of six months. Blood and stool samples will be obtained during routine visits at baseline, and after three months and six months of treatment, and tissue samples from colon biopsies will be obtained during clinically indicated colonoscopies at baseline and after six months of treatment. The levels of inflammatory markers will be compared in serum and tissue samples between patients treated with Frondanol and those treated with placebo, and findings will be correlated with clinical and histological parameters. Discussion If proven beneficial, treatment with Frondanol may increase the likelihood of patients remaining in remission and potentially provide an effective, natural and safe addition/alternative for treatment-naive patients in the future.(Clinical trial registration number: NCT05194007).
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Samuel B. Ho
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gastroenterology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Jamil Akhras
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gastroenterology Department, Mediclinic City Hospital, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Aida J. Azar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Corresponding author. College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, P.O Box, 505055, Dubai, United Arab Emirates.
| |
Collapse
|
17
|
Akduman H, Tayman C, Korkmaz V, Akduman F, Fettah ND, Gürsoy BK, Turkmenoglu TT, Çağlayan M. Astaxanthin Reduces the Severity of Intestinal Damage in a Neonatal Rat Model of Necrotizing Enterocolitis. Am J Perinatol 2022; 39:1820-1827. [PMID: 33853144 DOI: 10.1055/s-0041-1727156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study aimed to ascertain the effects of astaxanthin (ASX) in an experimental necrotizing enterocolitis (NEC) model using rat pups. STUDY DESIGN Forty-two pups born from five Wistar albino rats were randomly divided into three groups as the control group, NEC + placebo (saline), and NEC + ASX. Pups in the NEC + ASX group were given 100 mg/kg/day oral ASX from day 1 to day 4 of the study. Saline of 2 mL/kg was given to the NEC + placebo group. Histopathological, immunohistochemical (caspase-3), and biochemical evaluations including the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), lipid hydroperoxide (LPO), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nuclear factor erythroid 2-related factor 2 (Nfr-2) activities were all performed. RESULTS A better survival rate and weight gain were demonstrated in the NEC + ASX group (p < 0.05). In the histopathological evaluation, the severity of intestinal damage was significantly reduced in the NEC + ASX group, as well as decreased apoptosis (enzyme-linked immunosorbent assay [ELISA] for caspase-3; p = 0.001). The biochemical analyses of intestinal tissue TOS, oxidative stress index (OSI; TOS/TAS), IL-1β, LPO, 8-OHdG, AOPP, caspase-3 (p < 0.001 for all), and TNF-α and MPO (p = 0.001 for both parameters) levels were lower in the NEC + ASX group than in the NEC + placebo group. Nrf-2, TAS, GSH, and SOD levels were higher in the NEC + ASX group than in the NEC + placebo group (p = 0.001, 0.001, <0.001, and 0.01, respectively). CONCLUSION ASX treatment has been shown to effectively reduce the severity of intestinal damage in NEC due to its antioxidant, anti-inflammatory, and antiapoptotic properties. KEY POINTS · NEC causes extremely high morbidity and mortality, as well as many complications.. · We investigated the effectiveness of ASX in the experimental NEC model created in rat pups.. · First study examining the effect of ASX on the experimental NEC rat model..
Collapse
Affiliation(s)
- Hasan Akduman
- Division of Neonatology, Department of Pediatrics, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Cuneyt Tayman
- Department of Neonatology, Ankara City Hospital, Cankaya, Ankara, Turkey
| | - Veli Korkmaz
- Department of Pediatrics, Lokman Hekim University, Ankara, Turkey
| | - Filiz Akduman
- Department of Pediatrics, Beypazarı State Hospital, Ankara, Turkey
| | - Nurdan D Fettah
- Department of Neonatology, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Başak K Gürsoy
- Department of Neonatology, SBU Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Tugba T Turkmenoglu
- Department of Pathology, Ankara Diskapi Yildirim Beyzat Training and Research Hospital, Ankara, Turkey
| | - Murat Çağlayan
- Department of Medicinal Biochemistry, University of Health Sciences Gülhane Health Sciences Institute, Ankara, Turkey
| |
Collapse
|
18
|
Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed Pharmacother 2022; 153:113383. [PMID: 35820316 DOI: 10.1016/j.biopha.2022.113383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Development and identification of molecular compounds capable of killing or inhibiting transformed cells promoting carcinogenesis without inducing toxic effects to the normal cells are of utmost significance. A systematic review was conducted in screening for important literature was extensively performed by searching the Web of Science, Ovid, BMC Springer, Elsevier, Embase, and MEDLINE databases for optimum selectivity. Google Scholar was also used to supplement information. Pharmacotherapeutic biomolecules active against colon cancer carcinogenesis in Musa acuminata and Musa balbisiana (bananas), Punica granatum L (pomegranate), Glycine max (Soybean), Brassica oleracea L var. italica Plenck (Broccoli), and Hibiscus rosa-sinesis and Hibiscus sabdariffa (hibiscus) were evaluated. Signaling pathways like phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), and nuclear factor-kappa B (NFκB) correlate the mediation of COX-2 expression. Increased levels of COX-2 are correlated with the occurrence and progression of colon cancer. Natural antioxidants in herbal plants including polyphenols and carotenoids inhibit the oxidation of lipids, proteins, and nucleic acids and thereby preventing the initiation of oxidizing chain reactions. These bioactive compounds should be considered an important dietary supplement.
Collapse
|
19
|
Wang S, Qi X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front Pharmacol 2022; 13:916653. [PMID: 35814201 PMCID: PMC9263351 DOI: 10.3389/fphar.2022.916653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a protective mechanism against insults from exogenous pathogens and endogenous cellular debris and is essential for reestablishing homeostasis in the brain. However, excessive prolonged neuroinflammation inevitably leads to lesions and disease. The use of natural compounds targeting pathways involved in neuroinflammation remains a promising strategy for treating different neurological and neurodegenerative diseases. Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in modulating neuroinflammation have not been systematically summarized. Hence, this review summarizes recent progress in this field and provides an update on the medical value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative stress, reducing the production of neuroinflammatory factors, inhibiting peripheral inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically, astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential for modulating neuroinflammation, although some outstanding issues still require further investigation.
Collapse
|
20
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Ahmad A, Riaz S, Shahzaib Nadeem M, Mubeen U, Maham K. Role of Carotenoids in Cardiovascular Disease. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.102750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carotenes are fat-soluble pigments found in a variety of foods, the majority of which are fruits and vegetables. They may have antioxidant biological properties due to their chemical makeup and relationship to cellular membranes. And over 700 carotenoids have been found, with—carotene, lutein, lycopene, and zeaxanthin is the most significant antioxidant food pigments. Their capacity to absorb lipid peroxides, reactive oxygen species (ROS) and nitrous oxide is likely linked to their anti-oxidative properties (NO). The daily requirements for carotenoids are also discussed in this chapter. Heart disease is still a prominent source of sickness and mortality in modern societies. Natural antioxidants contained in fruits and vegetables, such as lycopene, a-carotene, and B-carotene, may help prevent CVD by reducing oxidative stress, which is a major factor in the disease’s progression. Numerous epidemiological studies have backed up the idea that antioxidants might be utilized to prevent and perhaps treat cardiovascular illnesses at a low cost. Supplements containing carotenoids are also available, and their effectiveness has been proven. This article provides an overview of carotenoids’ chemistry, including uptake, transport, availability, metabolism, and antioxidant activity, including its involvement with disease prevention, notably cardiovascular disease.
Collapse
|
22
|
Zhang C, Xu Y, Wu S, Zheng W, Song S, Ai C. Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2022; 205:396-409. [PMID: 35176325 DOI: 10.1016/j.ijbiomac.2022.02.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023]
Abstract
Astaxanthin (Ax) with a strong antioxidant activity is beneficial to human health, but its application is limited by its highly unsaturated structure and poor water-solubility. Ax-enriched colon targeted alginate particles (Ax-Alg) was prepared by high-pressure spraying and ionic gelation, and most of particles was in the range of 0.5-3.2 μm in a diameter. The in vitro models showed that Ax-Alg can maintain the structural integrity in the different conditions (pH, heat and ion). In addition, Ax-Alg can well tolerate the conditions in the mouth, stomach and small intestine and reach the colon where Ax was released due to fermentation of gut microbiota. Mice experiment showed that Ax-Alg reduced dextran sulfate sodium-induced colitis, involving weight loss, disease activity index, colonic mucosal integrity and inflammation, and oxidative damage. On the other hand, Ax-Alg regulated the gut microbiota composition and reduced the abundances of Bacteroidetes members that had positive correlation with ulcerative colitis. Ax-Alg had better effect on the treatment of ulcerative colitis than oil-in-water emulsion, which can be attributed to the synergistic effect of Ax and alginate. This study can be helpful for the application of colon-targeted delivery system in the foods and treatment of colon diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuxin Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
23
|
Starska-Kowarska K. Dietary Carotenoids in Head and Neck Cancer-Molecular and Clinical Implications. Nutrients 2022; 14:nu14030531. [PMID: 35276890 PMCID: PMC8838110 DOI: 10.3390/nu14030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers in the world according to GLOBCAN. In 2018, it was reported that HNC accounts for approximately 3% of all human cancers (51,540 new cases) and is the cause of nearly 1.5% of all cancer deaths (10,030 deaths). Despite great advances in treatment, HNC is indicated as a leading cause of death worldwide. In addition to having a positive impact on general health, a diet rich in carotenoids can regulate stages in the course of carcinogenesis; indeed, strong epidemiological associations exist between dietary carotenoids and HNS, and it is presumed that diets with carotenoids can even reduce cancer risk. They have also been proposed as potential chemotherapeutic agents and substances used in chemoprevention of HNC. The present review discusses the links between dietary carotenoids and HNC. It examines the prospective anticancer effect of dietary carotenoids against intracellular cell signalling and mechanisms, oxidative stress regulation, as well as their impact on apoptosis, cell cycle progression, cell proliferation, angiogenesis, metastasis, and chemoprevention; it also provides an overview of the limited preclinical and clinical research published in this arena. Recent epidemiological, key opinion-forming systematic reviews, cross-sectional, longitudinal, prospective, and interventional studies based on in vitro and animal models of HNC also indicate that high carotenoid content obtained from daily supplementation has positive effects on the initiation, promotion, and progression of HNC. This article presents these results according to their increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
24
|
SOD2, a Potential Transcriptional Target Underpinning CD44-Promoted Breast Cancer Progression. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030811. [PMID: 35164076 PMCID: PMC8839817 DOI: 10.3390/molecules27030811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
CD44, a cell-adhesion molecule has a dual role in tumor growth and progression; it acts as a tumor suppressor as well as a tumor promoter. In our previous work, we developed a tetracycline-off regulated expression of CD44's gene in the breast cancer (BC) cell line MCF-7 (B5 clone). Using cDNA oligo gene expression microarray, we identified SOD2 (superoxide dismutase 2) as a potential CD44-downstream transcriptional target involved in BC metastasis. SOD2 gene belongs to the family of iron/manganese superoxide dismutase family and encodes a mitochondrial protein. SOD2 plays a role in cell proliferation and cell invasion via activation of different signaling pathways regulating angiogenic abilities of breast tumor cells. This review will focus on the findings supporting the underlying mechanisms associated with the oncogenic potential of SOD2 in the onset and progression of cancer, especially in BC and the potential clinical relevance of its various inhibitors.
Collapse
|
25
|
Kohandel Z, Farkhondeh T, Aschner M, Pourbagher-Shahri AM, Samarghandian S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed Pharmacother 2022; 145:112179. [PMID: 34736076 DOI: 10.1016/j.biopha.2021.112179] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (AST) is a red pigmented carotenoid with significant antioxidant, anti-inflammatory, anti-proliferative, and anti-apoptotic properties. In this study, we summarize the available literature on the anti-inflammatory efficacy of AST in various chronic and acute disorders, such as neurodegenerative, renal-, hepato-, skin- and eye-related diseases, as well as gastrointestinal disorders. In addition, we elaborated on therapeutic efficacy of AST and the role of several pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3 in mediating its effects. However, additional experimental and clinical studies should be performed to corroborate the anti-inflammatory effects and protective effects of AST against inflammatory diseases in humans. Nevertheless, this review suggests that AST with its demonstrated anti-inflammatory property may be a suitable candidate for drug design with novel technology.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Manochkumar J, Doss CGP, Efferth T, Ramamoorthy S. Tumor preventive properties of selected marine pigments against colon and breast cancer. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Mohammadi S, Fakhri S, Mohammadi-Farani A, Farzaei MH, Abbaszadeh F. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav Pharmacol 2021; 32:607-614. [PMID: 34561366 DOI: 10.1097/fbp.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the main functions of the sensory system in our body is to maintain somatosensory homeostasis. Recent reports have led to a significant advance in our understanding of pain signaling mechanisms; however, the exact mechanisms of pain transmission have remained unclear. There is an urgent need to reveal the precise signaling mediators of pain to provide alternative therapeutic agents with more efficacy and fewer side effects. Accordingly, although the anti-inflammatory, antioxidative and anti-neuropathic effects of astaxanthin (AST) have been previously highlighted, its peripheral antinociceptive mechanisms are not fully understood. In this line, considering the engagement of l-arginine/nitric oxide (NO)/cyclic GMP (cGMP)/potassium channel (KATP) signaling pathway in the antinociceptive responses, the present study evaluated its associated role in the antinociceptive activity of AST. Male mice were intraperitoneally (i.p.) injected with l-arginine (100 mg/kg), SNAP (1 mg/kg), L-NAME (30 mg/kg), sildenafil (5 mg/kg), and glibenclamide (10 mg/kg) alone and prior to the most effective dose of AST. Following AST administration, intraplantarly (i.pl) injection of formalin was done, and pain responses were evaluated in mice during the primary (acute) and secondary (inflammatory) phases of formalin test. The results highlighted that 10 mg/kg i.p. dose of AST showed the greatest antinociceptive effect. Besides, while L-NAME and glibenclamide reduced the antinociceptive effect of AST, it was significantly increased by l-arginine, SNAP and sildenafil during both the primary and secondary phases of formalin test. These data suggest that the antinociceptive activity of AST is passing through the l-arginine/NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
29
|
Ge Y, Huang K, Xie W, Xu C, Yao Q, Liu Y. Effects of Rhodotorula mucilaginosa on the Immune Function and Gut Microbiota of Mice. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:705696. [PMID: 37744147 PMCID: PMC10512290 DOI: 10.3389/ffunb.2021.705696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 09/26/2023]
Abstract
As a dominant species among marine yeasts, Rhodotorula benthica accounts for ~50% of all marine yeasts. Rhodotorula is rich in a variety of bioactive substances and commonly used in the production of carotenoids by microbial fermentation and is worth developing. Therefore, the present study used a strain of Rhodotorula mucilaginosa isolated from the coastal waters of the South China Sea as the target yeast to investigate its impact on the immune function and gut microbiota of mice. A total of 200 mice were randomly divided into gavage groups and control group and garaged for 30 consecutive days at different concentration. Samples were collected on day 15 and day 30 of gavage administration. The results showed that R. mucilaginosa ZTHY2 could increase the thymus and spleen indices of mice, and its effect on the thymus index was more significant after long-term gavage administration. Short-term (15 days) gavage administration of R. mucilaginosa suspension enhanced delayed hypersensitivity in mice, increased serum IgG, IgA, and IL-2. Long-term (30 days) gavage administration of R. mucilaginosa suspension significantly enhanced the phagocytosis of macrophages in mice and significantly increased serum TNF-α and INF-γ. R. mucilaginosa ZTHY2 altered the structure of the gut microbiota of mice at the phylum and genus levels, leading to an increased relative abundance of Firmicutes and Lactobacillus and a decreased relative abundance of Bacteroidetes. This strain increased the beneficial intestinal bacteria and reduced the harmful intestinal bacteria in mice. This study provides experimental evidence and lays the foundation for the future development and application of this strain as a microecological source of carotenoids.
Collapse
Affiliation(s)
- Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Kaisen Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Weitian Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Chunhou Xu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
30
|
Astaxanthin for the Food Industry. Molecules 2021; 26:molecules26092666. [PMID: 34063189 PMCID: PMC8125449 DOI: 10.3390/molecules26092666] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Xanthophyll astaxanthin, which is commonly used in aquaculture, is one of the most expensive and important industrial pigments. It is responsible for the pink and red color of salmonid meat and shrimp. Due to having the strongest anti-oxidative properties among carotenoids and other health benefits, natural astaxanthin is used in nutraceuticals and cosmetics, and in some countries, occasionally, to fortify foods and beverages. Its use in food technology is limited due to the unknown effects of long-term consumption of synthetic astaxanthin on human health as well as few sources and the high cost of natural astaxanthin. The article characterizes the structure, health-promoting properties, commercial sources and industrial use of astaxanthin. It presents the possibilities and limitations of the use of astaxanthin in food technology, considering its costs and food safety. It also presents the possibilities of stabilizing astaxanthin and improving its bioavailability by means of micro- and nanoencapsulation.
Collapse
|
31
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
32
|
Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar Drugs 2021; 19:md19040188. [PMID: 33801636 PMCID: PMC8067268 DOI: 10.3390/md19040188] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and β-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll’s bioavailability.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Anxo Carreira-Casais
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Nicolas Collazo
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Amira Jaboui
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Correspondence: (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (A.G.P.); (P.O.); (J.E.); (A.C.-C.); (F.C.); (N.C.); (A.J.); (C.L.-L.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (J.S.-G.); (M.A.P.)
| |
Collapse
|
33
|
Cytotoxicity of Seaweed Compounds, Alone or Combined to Reference Drugs, against Breast Cell Lines Cultured in 2D and 3D. TOXICS 2021; 9:toxics9020024. [PMID: 33572635 PMCID: PMC7912033 DOI: 10.3390/toxics9020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Seaweed bioactive compounds have shown anticancer activities in in vitro and in vivo studies. However, tests remain limited, with conflicting results, and effects in combination with anticancer drugs are even scarcer. Here, the cytotoxic effects of five seaweed compounds (astaxanthin, fucoidan, fucosterol, laminarin, and phloroglucinol) were tested alone and in combination with anticancer drugs (cisplatin-Cis; and doxorubicin-Dox), in breast cell lines (three breast cancer (BC) subtypes and one non-tumoral). The combinations revealed situations where seaweed compounds presented potentiation or inhibition of the drugs' cytotoxicity, without a specific pattern, varying according to the cell line, concentration used for the combination, and drug. Fucosterol was the most promising compound, since: (i) it alone had the highest cytotoxicity at low concentrations against the BC lines without affecting the non-tumoral line; and (ii) in combination (at non-cytotoxic concentration), it potentiated Dox cytotoxicity in the triple-negative BC cell line. Using a comparative approach, monolayer versus 3D cultures, further investigation assessed effects on cell viability and proliferation, morphology, and immunocytochemistry targets. The cytotoxic and antiproliferative effects in monolayer were not observed in 3D, corroborating that cells in 3D culture are more resistant to treatments, and reinforcing the use of more complex models for drug screening and a multi-approach that should include histological and ICC analysis.
Collapse
|
34
|
Satoh T, Gupta RC. Astaxanthin: health benefits and toxicity. NUTRACEUTICALS 2021:881-889. [DOI: 10.1016/b978-0-12-821038-3.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
36
|
Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020; 25:molecules25225342. [PMID: 33207669 PMCID: PMC7696511 DOI: 10.3390/molecules25225342] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a natural lipid-soluble and red-orange carotenoid. Due to its strong antioxidant property, anti-inflammatory, anti-apoptotic, and immune modulation, astaxanthin has gained growing interest as a multi-target pharmacological agent against various diseases. In the current review, the anti-inflammation mechanisms of astaxanthin involved in targeting for inflammatory biomarkers and multiple signaling pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3, have been described. Furthermore, the applications of anti-inflammatory effects of astaxanthin in neurological diseases, diabetes, gastrointestinal diseases, hepatic and renal diseases, eye and skin disorders, are highlighted. In addition to the protective effects of astaxanthin in various chronic and acute diseases, we also summarize recent advances for the inconsistent roles of astaxanthin in infectious diseases, and give our view that the exact function of astaxanthin in response to different pathogen infection and the potential protective effects of astaxanthin in viral infectious diseases should be important research directions in the future.
Collapse
|
37
|
Cheng J, Eroglu A. The Promising Effects of Astaxanthin on Lung Diseases. Adv Nutr 2020; 12:850-864. [PMID: 33179051 PMCID: PMC8166543 DOI: 10.1093/advances/nmaa143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | |
Collapse
|
38
|
Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020; 145:111714. [DOI: 10.1016/j.fct.2020.111714] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
|
39
|
Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100789] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astaxanthin shows many biological activities. It has acquired a high economic potential and its current market is dominated by its synthetic form. However, due to the increase of the health and environmental concerns from consumers, natural forms are now preferred for human consumption. Haematococcus pluvialis is artificially cultured at an industrial scale to produce astaxanthin used as a dietary supplement. However, due to the high cost of its cultivation and its relatively low biomass and pigment productivities, the astaxanthin extracted from this microalga remains expensive and this has probably the consequence of slowing down its economic development in the lower added-value market such as food ingredient. In this review, we first aim to provide an overview of the chemical and biochemical properties of astaxanthin, as well as of its natural sources. We discuss its bioavailability, metabolism, and biological activities. We present a state-of-the-art of the biology and physiology of H. pluvialis, and highlight novel insights into the biotechnological processes which allow optimizing the biomass and astaxanthin productivities. We are trying to identify some lines of research that would improve the industrial sustainability and economic viability of this bio-production and to broaden the commercial potential of astaxanthin produced from H. pluvialis.
Collapse
|
40
|
Kumamoto T, Yamada K, Yoshida S, Aoki K, Hirooka S, Eto K, Yanaga K, Yoshida K. Impairment of DYRK2 by DNMT1‑mediated transcription augments carcinogenesis in human colorectal cancer. Int J Oncol 2020; 56:1529-1539. [PMID: 32236621 DOI: 10.3892/ijo.2020.5020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Dual specificity tyrosine‑phosphorylation‑regulated kinase 2 (DYRK2) is a protein kinase that functions as a novel tumor suppressor. Previous studies have reported that DYRK2 expression is decreased in colorectal cancer compared with adjacent non‑tumor tissues. However, the regulatory mechanisms by which the expression of DYRK2 is diminished remain unknown. The aim of the present study was to determine the regulatory mechanisms of DYRK2 expression. The present study identified the promoter regions of the DYRK2 gene and demonstrated that they contained CpG islands in human cancer cells. In addition, the DYRK2 promoter region exhibited a higher level of methylation in colorectal cancer tissues compared with healthy tissues from clinical samples. DYRK2 expression was increased at the mRNA and protein level in colorectal cancer cell lines by treatment with 5‑Azacytidine, a demethylating agent. The results further demonstrated that knockdown of DNA methyltransferase (DNMT) 1 elevated DYRK2 expression in colorectal cancer cell lines. A colitis‑related mouse carcinogenesis model also exhibited a lower DYRK2 level in colorectal cancer tissues compared with adjacent non‑tumor tissues. In this model, nuclear staining of DNMT1 was detected in colorectal cancer cells, whereas a cytoplastic distribution pattern of DNMT1 staining was exhibited in healthy tissue. Overall, these findings suggested that DYRK2 expression was downregulated via transcriptional regulation by DNMT1 to elevate the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Tomotaka Kumamoto
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Aoki
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Shinichi Hirooka
- Department of Pathology, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105‑8461, Japan
| |
Collapse
|
41
|
Saini RK, Keum YS, Daglia M, Rengasamy KR. Dietary carotenoids in cancer chemoprevention and chemotherapy: A review of emerging evidence. Pharmacol Res 2020; 157:104830. [PMID: 32344050 DOI: 10.1016/j.phrs.2020.104830] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
In recent years, natural products have reemerged as biotherapeutic options, with several dietary carotenoids, viz. astaxanthin, fucoxanthin, siphonaxanthin, β-cryptoxanthin, α-carotene, β-carotene, and lycopene, developing as potential candidates for chemoprevention and chemotherapeutics of breast, colorectal, lung, and prostate cancers. The potent cytotoxic and antiproliferative effects of carotenoids against various cancer cells are mediated by a wide range of molecular mechanisms modulating oxidative stress and redox balance, mitogen-activated protein kinases (MAPK) and other cellular signaling proteins, transcription factors, caspase cascade pathways of apoptosis, cell cycle progression and proliferation, angiogenesis, metastasis, gap junction intercellular communication (GJIC), and multidrug resistance (MDR). This review discusses recent evidence demonstrating the crucial roles of carotenoids in these cellular and molecular events of cancer cell cytotoxicity. In addition, recent case-control and cohort studies are discussed to support the potential role of carotenoids in cancer prevention and therapy.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea; Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Republic of Korea; Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Viale Taramelli 12, Pavia, 27100, Italy
| | - Kannan Rr Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
42
|
Su XZ, Chen R, Wang CB, Ouyang XL, Jiang Y, Zhu MY. Astaxanthin Combine with Human Serum Albumin to Abrogate Cell Proliferation, Migration, and Drug-resistant in Human Ovarian Carcinoma SKOV3 Cells. Anticancer Agents Med Chem 2020; 19:792-801. [PMID: 30799797 DOI: 10.2174/1871520619666190225123003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Astaxanthin (AST) shows a large range of beneficial effects together with anti-cancer and antioxidation properties. Human Serum Albumin (HSA) is the most abundant protein in blood plasma which plays the role of a depot and transport protein for many exogenous compounds. However, whether HSA could enhance AST-induced cytotoxic effects in human ovarian cancer cells has not been examined to date. OBJECTIVE This study aims to explore the anticancer effect and the molecular mechanism of AST combine with HSA induced cytotoxicity in ovarian cancer SKOV3 cells. METHODS The ovarian cancer SKOV3 cells were treated by AST combined with HSA to study the effects of cell proliferation, cell morphology, cell cycle arrest, related protein expression, nuclear transfer, cell migration, and drug-resistant. RESULTS Our data confirmed that AST+HSA treatment enhanced the anticancer effects of AST, arrested G1 phase cell cycle and induced apoptosis in SKOV3 cells. AST+HSA induced apoptosis via mitochondrial apoptotic pathways was related to the increased ratio of Bcl-2/Bax and activation of caspase-3. Besides, exposure of cells to AST+HSA triggered the inactivation of NF-κB and activation p53 and MAPKs signaling pathways. Furthermore, AST+HSA significantly overcome the drug-resistant and inhibited the migration of SKOV3 cells. CONCLUSION AST combined treatment with HSA considerably inhibited NF-κB expression and translocation to nucleus, thereby improving the AST-induced cytotoxic effect on SKOV3 cells. These findings may provide rationale to combine AST with HSA for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiu-Zhen Su
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| | - Ran Chen
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| | - Cai-Bing Wang
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| | - Xi-Lin Ouyang
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| | - Yan Jiang
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| | - Ming-Yi Zhu
- Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, China
| |
Collapse
|
43
|
Astaxanthin Encapsulated in Biodegradable Calcium Alginate Microspheres for the Treatment of Hepatocellular Carcinoma In Vitro. Appl Biochem Biotechnol 2019; 191:511-527. [DOI: 10.1007/s12010-019-03174-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
|
44
|
Lachance JC, Radhakrishnan S, Madiwale G, Guerrier S, Vanamala JKP. Targeting hallmarks of cancer with a food-system-based approach. Nutrition 2019; 69:110563. [PMID: 31622909 DOI: 10.1016/j.nut.2019.110563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022]
Abstract
Although extensive resources are dedicated to the development and study of cancer drugs, the cancer burden is expected to rise by about 70% over the next 2 decade. This highlights a critical need to develop effective, evidence-based strategies for countering the global rise in cancer incidence. Except in high-risk populations, cancer drugs are not generally suitable for use in cancer prevention owing to potential side effects and substantial monetary costs (Sporn, 2011). There is overwhelming epidemiological and experimental evidence that the dietary bioactive compounds found in whole plant-based foods have significant anticancer and chemopreventative properties. These bioactive compounds often exert pleiotropic effects and act synergistically to simultaneously target multiple pathways of cancer. Common bioactive compounds in fruits and vegetables include carotenoids, glucosinolates, and polyphenols. These compounds have been shown to target multiple hallmarks of cancer in vitro and in vivo and potentially to address the diversity and heterogeneity of certain cancers. Although many studies have been conducted over the past 30 y, the scientific community has still not reached a consensus on exactly how the benefit of bioactive compounds in fruits and vegetables can be best harnessed to help reduce the risk for cancer. Different stages of the food processing system, from "farm-to-fork," can affect the retention of bioactive compounds and thus the chemopreventative properties of whole foods, and there are opportunities to improve handling of foods throughout the stages in order to best retain their chemopreventative properties. Potential target stages include, but are not limited to, pre- and postharvest management, storage, processing, and consumer practices. Therefore, there is a need for a comprehensive food-system-based approach that not only taking into account the effects of the food system on anticancer activity of whole foods, but also exploring solutions for consumers, policymakers, processors, and producers. Improved knowledge about this area of the food system can help us adjust farm-to-fork operations in order to consistently and predictably deliver desired bioactive compounds, thus better utilizing them as invaluable chemopreventative tools in the fight to reduce the growing burden of cancer worldwide.
Collapse
Affiliation(s)
- James C Lachance
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Sridhar Radhakrishnan
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; Research Diets, Inc., New Brunswick, New Jersey, USA
| | | | - Stéphane Guerrier
- Geneva School of Economics and Management & Faculty of Science, University of Geneva, Switzerland
| | - Jairam K P Vanamala
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; The Pennsylvania State Hershey Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| |
Collapse
|
45
|
Kim HY, Kim YM, Hong S. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a. Sci Rep 2019; 9:9457. [PMID: 31263239 PMCID: PMC6603017 DOI: 10.1038/s41598-019-45924-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, and is associated with a high percentage of cancer-related death globally. Furthermore, the success rate of therapeutic treatment for CRC patients mainly depends on the status of metastasis. Therefore, novel drugs or therapeutic techniques should be discovered for the treatment of metastatic CRC. In this study, we selected Astaxanthin (AXT), one of the most common carotenoids, as a novel metastasis inhibitor through high-throughput drug screening based on invadopodia staining, and confirmed the anti-migratory and anti-invasive activity of AXT. We demonstrated that AXT increases miR-29a-3p and miR-200a expression, and thereby suppresses the expression of MMP2 and ZEB1, respectively. As a result, AXT represses the epithelial-mesenchymal transition (EMT) of CRC cells. Through the mechanistic study, we identified that AXT shows anti-metastatic activity through the transcriptional repression of MYC transcription factor. Finally, we also confirmed that AXT suppresses the in vivo metastatic capacity of colon cancer cell using mouse model. Collectively, we uncovered the novel function of AXT in the inhibition of EMT and invadopodia formation, implicating the novel therapeutic potential for AXT in metastatic CRC patients.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Young-Mi Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
46
|
Yang C, Hassan YI, Liu R, Zhang H, Chen Y, Zhang L, Tsao R. Anti-Inflammatory Effects of Different Astaxanthin Isomers and the Roles of Lipid Transporters in the Cellular Transport of Astaxanthin Isomers in Caco-2 Cell Monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6222-6231. [PMID: 31117505 DOI: 10.1021/acs.jafc.9b02102] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The anti-inflammatory effects and cellular transport mechanisms of all- E-astaxanthin and its 9Z- and 13Z-isomers were investigated in a Caco-2 cell monolayer model. All three astaxanthin isomers at 1.2 μM significantly reduced the TNF-α-induced secretion of IL-8 by 22-27%. Z-Astaxanthins, especially 9 Z-astaxanthin exhibited greater anti-inflammatory effect than all- E-astaxanthin by down-regulating pro-inflammatory cytokines COX-2 and TNF-α gene expression to 0.88 ± 0.01-fold and 0.83 ± 0.17-fold that of the negative control (NC), respectively. The anti-inflammatory effects of astaxanthin isomers were achieved via modulating the NF-κB signaling pathway as they down-regulated TNF-α-induced phosphorylation of IκBα from 5.3 ± 0.19-fold to 3.8 ± 0.33-4.5 ± 0.27-fold of NC. The scavenger receptor class B type I protein (SR-BI) was found to facilitate the cellular uptake of astaxanthin isomers. Its inhibitor (BLT-1) and antibody (Anti-SRBI) significantly reduced cellular uptake efficiency of all- E-astaxanthin (18.9% and 16.7%, respectively) and 13Z-astaxanthin (28.8% and 30.2%, respectively), but not of 9Z-astaxanthin. The molecular docking experiment showed that 13 Z-astaxanthin had significantly higher affinity with SR-BI (atomic contact energy: -420.31) than all- E-astaxanthin and 9 Z-astaxanthin, which at least partially supports the higher bioavailability of 13 Z-astaxanthin observed in vivo by others.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
| | - Yousef I Hassan
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ronghua Liu
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Hua Zhang
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yuhuan Chen
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , P. R. China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , P. R. China
| | - Rong Tsao
- Guelph Research and Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
47
|
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol 2019; 128:240-255. [PMID: 30991130 DOI: 10.1016/j.fct.2019.04.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death across the world. Different environmental and anthropogenic factors initiate mutations in different functional genes of growth factors and their receptors, anti-apoptotic proteins, self-renewal developmental proteins, tumor suppressors, transcription factors, etc. This phenomenon leads to altered protein homeostasis of the cell which in turn induces cancer initiation, development, progression and survival. From ancient times various natural products have been used as traditional medicine against different diseases. Natural products are readily applicable, inexpensive, accessible and acceptable therapeutic approach with minimum cytotoxicity. As most of the target-specific anticancer drugs failed to achieve the expected result so far, new multi-targeted therapies using natural products have become significant. In this review, we have summarized the efficacy of different natural compounds against cancer. They are capable of modulating cancer microenvironment and diverse cell signaling cascades; thus playing a major role in combating cancer. These compounds are found to be effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway and Hedgehog pathway). This review article is expected to be helpful in understanding the recent progress of natural product research for the development of anticancer drug.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
48
|
Park JH, Yeo IJ, Han JH, Suh JW, Lee HP, Hong JT. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp Dermatol 2019; 27:378-385. [PMID: 28887839 DOI: 10.1111/exd.13437] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/25/2022]
Abstract
In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 1 mg/mL and 2 mg/mL of AST (10 μg or 20 μg/cm2 ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1β, IL-6 and IgE. In addition, AST (5, 10 and 20 μM) potently inhibited lipopolysaccharide (LPS) (1 μg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Ju Ho Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,INIST ST CO., LTD., Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji Hye Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong Won Suh
- GDE Ltd., Siheung-si, Gyeonggi-do, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
49
|
Shanmugapriya K, Kim H, Kang HW. In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis. Int J Pharm 2019; 560:334-346. [DOI: 10.1016/j.ijpharm.2019.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
|
50
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [PMID: 30121358 DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|