1
|
Webb S, Coulon F, Temple T. A critical review of liquid, low toxicity chemical warfare agent simulants: Enhancing accuracy, safety, and methodological approaches for sampling. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138021. [PMID: 40154129 DOI: 10.1016/j.jhazmat.2025.138021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
The use of simulants is a crucial aspect of studying the behaviour and effects of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) without the inherent dangers associated with handling and utilising the actual hazardous substances. This review assesses the selection and application of simulants for different classes of CWAs, including nerve agents such as soman, V agents and blister agents such as sulphur and nitrogen mustards. Several simulants were examined, including diethyl malonate, malathion, methyl salicylate, and di (propylene glycol) monomethyl ether, to ascertain their structural and physiochemical properties, yet present minimal toxicity risks. A key insight from this review is the importance of aligning simulant physicochemical properties, such as hydrophobicity, volatility and solubility to those of CWAs. This ensures data relevancy in sampling accuracy and method validation. Our findings demonstrate the efficacy of utilising multiple simulants to model complex interactions within different environmental and forensic matrices, thereby enhancing the precision and reliability of detection and verification procedures. By concentrating on liquid-based simulants and excluding gaseous and solid agents, this review offers a focused assessment of existing sampling methodologies for liquid CWAs in field conditions. It concludes by proposing a unified approach to sampling standards that mitigates the risk with the objective of enhancing the practicality and reliability of detection methods while ensuring personnel safety. Furthermore, this review provides crucial insights for developing robust, field-deployable CWA sampling strategies that strike a balance between accuracy, accessibility and low toxicity.
Collapse
Affiliation(s)
- Sally Webb
- Centre for Defence Chemistry, Cranfield University, Shrivenham SN6 8LA, UK
| | - Frederic Coulon
- Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK
| | - Tracey Temple
- Centre for Defence Chemistry, Cranfield University, Shrivenham SN6 8LA, UK.
| |
Collapse
|
2
|
Cheng J, Yu W, Zhou W. Acute exposure to nitrogen mustard induces rapid nuclear component regulation and delayed stress to exogenous stimuli. Int Immunopharmacol 2025; 147:113976. [PMID: 39787759 DOI: 10.1016/j.intimp.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Nitrogen mustard (NM) is a vesicant agent with potent toxic effects on various tissues. Numerous theories have been proposed to explain its toxic mechanisms, yet research on the interconnections among these theories is lacking. This study focuses on analyzing the characteristics of genes involved in NM-induced bronchial injury within the Comparative Toxicogenomics Database (CTD). Subsequently, based on the CTD, we compared and analyzed the acute exposure and delayed changes following exposure in 16HBE cells. The injury processes caused by NM to bronchial and skin tissues are similar, primarily involving metabolism and regulation of nuclear constituents and inflammatory responses within the cellular matrix. During the acute exposure phase, NM rapidly induces nuclear stress, with the JUN family at the core of regulating metabolic and nucleic acid activities, and various nuclear binding proteins exhibit abnormalities. Delayed reactions following acute exposure are primarily centered in the cytoplasmic region, with diverse reaction types, including oxidative stress and responses to exogenous stimuli. Abnormalities in the activity of multiple cellular matrix enzymes are observed, with a relatively even involvement of various stress responses. Communication between the nucleus and cytoplasm is extreme active during the injury, and the content of the communication changes over time. These results suggest a temporal sequence in which NM causes chromatin damage and mediates cytoplasmic stress responses. In prevention and first aid, rapid DNA repair should be the primary focus, while subsequent treatment after acute exposure should focus more on delayed inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Public Health and Emergency Management, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University (Army Medical University),Chongqing, China
| | - Wenzheng Zhou
- Clinical and Public Health Research Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Health Center for Women and Children, Chongqing, China; Chongqing Research Center for Prevention & Control of Matermal and Child Disease and Public Health, Chongqing, China.
| |
Collapse
|
3
|
Kaiser J, Gertzen CGW, Bernauer T, Nitsche V, Höfner G, Niessen KV, Seeger T, Paintner FF, Wanner KT, Steinritz D, Worek F, Gohlke H. Identification of ligands binding to MB327-PAM-1, a binding pocket relevant for resensitization of nAChRs. Toxicol Lett 2024; 398:91-104. [PMID: 38768836 DOI: 10.1016/j.toxlet.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.
Collapse
Affiliation(s)
- Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tamara Bernauer
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Valentin Nitsche
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz F Paintner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
4
|
Schmitt C, Koller M, Köhler A, Worek F. Determination of tissue distribution of VX and its metabolites EMPA and EA-2192 in various rat tissues by LC-ESI-MS/MS after phosphotriesterase treatment. Toxicol Lett 2024; 398:13-18. [PMID: 38857853 DOI: 10.1016/j.toxlet.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Phosphotriesterases (PTE) are a new and promising approach for the treatment of organophosphate poisoning, since the current therapy of such intoxications shows some limitations. A previous rat in vivo study confirmed the therapeutic effect of PTE, which were specifically designed for VX breakdown, and demonstrated rapid degradation of VX in whole blood samples. The present study now focuses on the degradation of VX and its distribution in organ tissues of the animals used in the aforementioned study. In order to gain a broader overview, we have extended the investigations to the VX metabolites EA-2192 and EMPA by using methods developed for an LC-ESI-MS/MS system. Applying these methods, we were able to verify the effectiveness of the PTE treatment and gained an overview of VX tissue distribution in poisoned but untreated rats.
Collapse
Affiliation(s)
- Christian Schmitt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany.
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, Munich 80937, Germany
| |
Collapse
|
5
|
Schaefers C, Schmeißer W, John H, Worek F, Rein T, Rothmiller S, Schmidt A. Effects of the nerve agent VX on hiPSC-derived motor neurons. Arch Toxicol 2024; 98:1859-1875. [PMID: 38555327 PMCID: PMC11106096 DOI: 10.1007/s00204-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.
Collapse
Affiliation(s)
- Catherine Schaefers
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany.
| | - Wolfgang Schmeißer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Theo Rein
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Annette Schmidt
- Institute of Sport Science, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
| |
Collapse
|
6
|
Li K, Liu Y, Liu Y, Li Q, Guo L, Xie J. The reactivation kinetic analysis, molecular docking, and dynamics of oximes against three V-type nerve agents inhibited four human cholinesterases. Chem Biol Interact 2024; 396:111061. [PMID: 38763347 DOI: 10.1016/j.cbi.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yulong Liu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yanqin Liu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
7
|
Zhao Q, Zhu J, Chen Y, Dong H, Zhou S, Yin Y, Cai Q, Chen S, Chen C, Wang L. Trapping and reversing neuromuscular blocking agent by anionic pillar[5]arenes: Understanding the structure-affinity-reversal effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133875. [PMID: 38457970 DOI: 10.1016/j.jhazmat.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Selective relaxant binding agents (SRBA) have great potential in clinical surgeries for the precise reversal of neuromuscular blockades. Understanding the relationship between the structure-affinity-reversal effects of SRBA and neuromuscular blockade is crucial for the design of new SRBAs, which has rarely been explored. Seven anionic pillar[5]arenes (AP5As) with different aliphatic chains and anionic groups at both edges were designed. Their binding affinities to the neuromuscular blocking agent decamonium bromide (DMBr) were investigated using 1H NMR, isothermal titration calorimetry (ITC), and theoretical calculations. The results indicate that the capture of DMBr by AP5As is primarily driven by electrostatic interactions, ion-dipole interactions and C-H‧‧‧π interactions. The optimal size matching between the carboxylate AP5As and DMBr was ∼0.80. The binding affinity increased with an increase in the charge quantity of AP5As. Further animal experiments indicated that the reversal efficiency increased with increasing binding affinity for carboxylate or phosphonate AP5As. However, phosphonate AP5As exhibited lower reversal efficiencies than carboxylate AP5As, despite having stronger affinities with DMBr. By understanding the structure-affinity-reversal relationships, this study provides valuable insights into the design of innovative SRBAs for reversing neuromuscular blockade.
Collapse
Affiliation(s)
- Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yongfei Yin
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China.
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
8
|
Park SY, Sharma R, Lee HI. Thin colorimetric film array for rapid and selective detection of v-type nerve agent mimic in potentially contaminated areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133064. [PMID: 38011824 DOI: 10.1016/j.jhazmat.2023.133064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The expeditious detection and quantification of V-series nerve agents (VX) on potentially contaminated surfaces are crucial for the prevention of regional conflict incidents, acts of terrorism, or illicit activities. However, the low volatility and high toxicity of VX make these tasks challenging. Herein, we designed two novel colorimetric thin polymeric films to rapidly and sensitively detect demeton-S, a VX mimic, in contaminated areas. The polymeric films were specifically engineered to include a coordination site for Au (III) ions. Initially, these films were coordinated with Au (III), causing a discernible alteration in color due to enhancement in intramolecular charge transfer process. In the presence of demeton-S, the Au (III) ligands in the films are displaced with demeton-S, resulting in the restoration of the original color of the film, as the enhanced intramolecular charge transfer process is inhibited and thereby serving as an indicator of the presence of demeton-S. The polymeric films exhibit remarkable selectivity toward demeton-S compared to G-type nerve agents and other interference. The reusability of the polymeric films for demeton-S detection was achieved owing to the reversibility of the films during the alternative exposure of Au (III) and demeton-S. The polymeric films demonstrated their applicability for demeton-S detection and quantification in several contaminated areas, including different water, soil, and skin, rendering them highly suitable for on-site measurements.
Collapse
Affiliation(s)
- So-Young Park
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-Il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
9
|
Sezigen S, Kaya SI, Bakirhan NK, Ozkan SA. Development of a molecularly imprinted polymer-based electrochemical sensor for the selective detection of nerve agent VX metabolite ethyl methylphosphonic acid in human plasma and urine samples. Anal Bioanal Chem 2024; 416:1505-1515. [PMID: 38267586 PMCID: PMC10861733 DOI: 10.1007/s00216-024-05155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
This study focuses on the detection of ethyl methyl phosphonic acid (EMPA), a metabolite of the banned organophosphorus nerve agent VX. We developed an electrochemical sensor utilizing the molecularly imprinted polymer (MIP) based on 4-aminobenzoic acid (4-ABA) and tetraethyl orthosilicate for the selective detection of EMPA in human plasma and urine samples. The 4-ABA@EMPA/MIP/GCE sensor was constructed by a thermal polymerization process on a glassy carbon electrode and sensor characterization was performed by cyclic voltammetry and electrochemical impedance spectroscopy. The 4-ABA@EMPA/MIP/GCE sensor demonstrated impressive linear ranges 1.0 × 10-10 M-2.5 × 10-9 M for the standard solution, 1.0 × 10-10 M-2.5 × 10-9 M for the urine sample, and 1.0 × 10-10 M-1 × 10-9 M of EMPA for the plasma sample with outstanding detection limits of 2.75 × 10-11 M (standard solution), 2.11 × 10-11 M (urine), and 2.36 × 10-11 M (plasma). The sensor exhibited excellent recovery percentages ranging from 99.86 to 101.30% in urine samples and 100.62 to 101.08% in plasma samples. These findings underscore the effectiveness of the 4-ABA@EMPA/MIP/GCE as a straightforward, highly sensitive, and selective interface capable of detecting the target analyte EMPA in human plasma and urine samples.
Collapse
Affiliation(s)
- Sermet Sezigen
- Department of Medical CBRN Defense, University of Health Sciences, Ankara, Türkiye.
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| |
Collapse
|
10
|
Amend N, Koller M, Schmitt C, Worek F, Wille T. The suitability of a polydimethylsiloxane-based (PDMS) microfluidic two compartment system for the toxicokinetic analysis of organophosphorus compounds. Toxicol Lett 2023; 388:24-29. [PMID: 37827339 DOI: 10.1016/j.toxlet.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Organ-on-a-chip platforms are an emerging technology in experimental and regulatory toxicology (species-specific differences, ethical considerations). They address gaps between in vivo and in vitro models. However, there are still certain limitations considering material, setup and applicability. The current study examined the suitability of a commercially available polydimethylsiloxane-based (PDMS) organ-chip for the toxicokinetic characterization of the highly toxic nerve agent VX and the organophosphate pesticide parathion. The respective concentrations of 1000 µmol/L and 100 µmol/L VX and parathion were chosen deliberately high in order to study concentrations even if high compound absorption by PDMS might occur. Neuronal and liver spheroids, totaling 2 × 106 cells were used to study concentration changes of VX and parathion. In addition, VX enantiomers were quantified. The current study suggests a significant absorption of VX, respectively parathion by PDMS. This might require future investigation of alternative materials or coatings to limit absorption for organophosphorus compounds in toxicokinetic studies.
Collapse
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Christian Schmitt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany; Department F, Medical CBRN Defence, Bundeswehr Medical Academy, Ingolstädter Str 240, Munich 80939, Germany
| |
Collapse
|
11
|
Xu R, Wu T, Jiao X, Chen D, Li C. Self-Assembled MOF-on-MOF Nanofabrics for Synergistic Detoxification of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311009 DOI: 10.1021/acsami.3c06032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of protective fabrics that are capable of capturing and detoxifying a wide range of lethal chemical warfare agents (CWAs) in an efficient way is of great importance for individual protection gears/clothing. In this work, unique metal-organic framework (MOF)-on-MOF nanofabrics were fabricated through facile self-assembly of UiO-66-NH2 and MIL-101(Cr) crystals on electrospun polyacrylonitrile (PAN) nanofabrics and exhibited intriguing synergistic effects between the MOF composites on the detoxification of both nerve agent and blistering agent simulants. MIL-101(Cr), although not catalytic, facilitates the enrichment of CWA simulants from solution or air, thereby delivering a high concentration of reactants to catalytic UiO-66-NH2 coated on its surface and providing an enlarged contact area for CWA simulants with the Zr6 nodes and aminocarboxylate linkers compared to solid substrates. Consequently, the as-prepared MOF-on-MOF nanofabrics showed a fast hydrolysis rate (t1/2 = 2.8 min) for dimethyl 4-nitrophenylphosphate (DMNP) in alkaline solutions and a high removal rate (90% within 4 h) of 2-(ethylthio)-chloroethane (CEES) under environmental conditions, considerably surpassing their single-MOF counterparts and the mixture of two MOF nanofabrics. This work demonstrates synergistic detoxification of CWA simulants using MOF-on-MOF composites for the first time and has the potential to be extended to other MOF/MOF pairs, which provides new ideas for the development of highly efficient toxic gas-protective materials.
Collapse
Affiliation(s)
- Ran Xu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Ting Wu
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xiuling Jiao
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Dairong Chen
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Cheng Li
- National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| |
Collapse
|
12
|
Caffin F, Boccara D, Piérard C. The Use of Hydrogel Dressings in Sulfur Mustard-Induced Skin and Ocular Wound Management. Biomedicines 2023; 11:1626. [PMID: 37371720 DOI: 10.3390/biomedicines11061626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Over one century after its first military use on the battlefield, sulfur mustard (SM) remains a threatening agent. Due to the absence of an antidote and specific treatment, the management of SM-induced lesions, particularly on the skin and eyes, still represents a challenge. Current therapeutic management is mainly limited to symptomatic and supportive care, pain relief, and prevention of infectious complications. New strategies are needed to accelerate healing and optimize the repair of the function and appearance of damaged tissues. Hydrogels have been shown to be suitable for healing severe burn wounds. Because the same gravity of lesions is observed in SM victims, hydrogels could be relevant dressings to improve wound healing of SM-induced skin and ocular injuries. In this article, we review how hydrogel dressings may be beneficial for improving the wound healing of SM-induced injuries, with special emphasis placed on their suitability as drug delivery devices on SM-induced skin and ocular lesions.
Collapse
Affiliation(s)
- Fanny Caffin
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - David Boccara
- Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées, 1 Place du Général Valérie André, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
13
|
Seo HS, Koh YJ, Nam H, Kim JS. Development of a Rapid and Accurate Vapor Generation System for Real-Time Monitoring of a Chemical Warfare Agent (CWA) by Coupling Fourier Transform Infrared (FT-IR) Spectroscopy. ACS OMEGA 2023; 8:18058-18063. [PMID: 37251177 PMCID: PMC10210166 DOI: 10.1021/acsomega.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Developing an accurate chemical warfare agent (CWA) vapor generator is critical for homeland security because it enables real-time monitoring of target agent concentration for testing and evaluation. We designed and built an elaborate CWA vapor generator that offers reliable long-term stability and real-time monitoring capabilities by coupling it with Fourier transform infrared (FT-IR) spectroscopy. We evaluated the reliability and stability of the vapor generator using a gas chromatography-flame ion detector (GC-FID) and conducted a comparison between the experimental and theoretical results of sulfur mustard (HD, bis-2-chloroethylsulfide), a real CWA, at concentrations ranging from 1 to 5 ppm. Our FT-IR-coupled vapor generation system showed real-time monitoring ability, which enables rapid and accurate evaluation of chemical detectors. The vapor generation system was able to generate CWA vapor continuously for over 8 h, demonstrating its long-term vapor generation capability. In addition, we vaporized another representative CWA, viz., GB (Sarin, propan-2-yl ethylphosphonofluoridate), and conducted real-time monitoring of GB vapor concentration with high accuracy. This versatile vapor generator approach can enable the rapid and accurate evaluation of CWAs for homeland security against chemical threats and can be used in constructing a versatile real-time monitoring vapor generation system for CWAs.
Collapse
|
14
|
Zhou S, Chen Y, Xu J, Yin Y, Yu J, Liu W, Chen S, Wang L. Supramolecular detoxification of nitrogen mustard via host-guest encapsulation by carboxylatopillar[5]arene. J Mater Chem B 2023; 11:2706-2713. [PMID: 36876404 DOI: 10.1039/d2tb02211g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nitrogen mustard (NM), a kind of alkylating agent similar to sulfur mustard, remains a threat to public health. However, there is nearly no satisfactory antidote for nitrogen mustard. Herein, we developed a supramolecular antidote to nitrogen mustard through efficient complexation of NM by carboxylatopillar[5]arene potassium salts (CP[5]AK). The cavity of methoxy pillar[5]arene (P5A) is sufficient to encapsulate NM with an association constant of 1.27 × 102 M-1, which was investigated by 1H NMR titration, density functional theory studies and independent gradient model studies. NM degrades to the reactive aziridinium salt (2) in the aqueous phase which irreversibly alkylates DNA and proteins, causing severe tissue damage. Considering the size/charge matching with toxic intermediate 2, water-soluble CP[5]AK was selected to encapsulate the toxic aziridinium salt (2), resulting in a high association constant of 4.10 × 104 M-1. The results of protection experiments of guanosine 5'-monophosphate (GMP) by CP[5]AK indicated that the formation of a complex could effectively inhibit the alkylation of DNA. Besides, in vitro and in vivo experiments also indicated that the toxicity of the aziridinium salt (2) is inhibited with the formation of a stable host-guest complex, and CP[5]AK has a good therapeutic effect on the damage caused by NM. This study provides a new mechanism and strategy for the treatment of NM exposure-induced skin injuries.
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Yi Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jie Xu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Yongfei Yin
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jianqing Yu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China.
| | - Shigui Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Lu Wang
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
15
|
Benzyl trichloroacetimidates as derivatizing agents for phosphonic acids related to nerve agents by EI-GC-MS during OPCW proficiency test scenarios. Sci Rep 2022; 12:21299. [PMID: 36494565 PMCID: PMC9734645 DOI: 10.1038/s41598-022-25710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The use of benzyl trichloroacetimidates for the benzylation of phosphonic acid nerve agent markers under neutral, basic, and slightly acidic conditions is presented. The benzyl-derived phosphonic acids were detected and analyzed by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS). The phosphonic acids used in this work included ethyl-, cyclohexyl- and pinacolyl methylphosphonic acid, first pass hydrolysis products from the nerve agents ethyl N-2-diisopropylaminoethyl methylphosphonothiolate (VX), cyclosarin (GF) and soman (GD) respectively. Optimization of reaction parameters for the benzylation included reaction time and solvent, temperature and the effect of the absence or presence of catalytic acid. The optimized conditions for the derivatization of the phosphonic acids specifically for their benzylation, included neutral as well as catalytic acid (< 5 mol%) and benzyl 2,2,2-trichloroacetimidate in excess coupled to heating the mixture to 60 °C in acetonitrile for 4 h. While the neutral conditions for the method proved to be efficient for the preparation of the p-methoxybenzyl esters of the phosphonic acids, the acid-catalyzed process appeared to provide much lower yields of the products relative to its benzyl counterpart. The method's efficiency was tested in the successful derivatization and identification of pinacolyl methylphosphonic acid (PMPA) as its benzyl ester when present at a concentration of ~ 5 μg/g in a soil matrix featured in the Organisation for the Prohibition of Chemical Weapons (OPCW) 44th proficiency test (PT). Additionally, the protocol was used in the detection and identification of PMPA when spiked at ~ 10 μg/mL concentration in a fatty acid-rich liquid matrix featured during the 38th OPCW-PT. The benzyl derivative of PMPA was partially corroborated with the instrument's internal NIST spectral library and the OPCW central analytical database (OCAD v.21_2019) but unambiguously identified through comparison with a synthesized authentic standard. The method's MDL (LOD) values for the benzyl and the p-methoxybenzyl pinacolyl methylphosphonic acids were determined to be 35 and 63 ng/mL respectively, while the method's Limit of Quantitation (LOQ) was determined to be 104 and 189 ng/mL respectively in the OPCW-PT soil matrix evaluated.
Collapse
|
16
|
Kaiser J, Gertzen CG, Bernauer T, Höfner G, Niessen KV, Seeger T, Paintner FF, Wanner KT, Worek F, Thiermann H, Gohlke H. A novel binding site in the nicotinic acetylcholine receptor for MB327 can explain its allosteric modulation relevant for organophosphorus-poisoning treatment. Toxicol Lett 2022; 373:160-171. [DOI: 10.1016/j.toxlet.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
|
17
|
Rouvière N, Brach JP, Honnecker T, Christoforidis KC, Robert D, Keller V. UiO-66/TiO2 nanostructures as adsorbent/photocatalytic composites for air treatment towards dry dimethyl methylphosphonate-laden air flow as a Chemical Warfare Agent analog. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Wigenstam E, Artursson E, Bucht A, Thors L. Supplemental treatment to atropine improves the efficacy to reverse nerve agent induced bronchoconstriction. Chem Biol Interact 2022; 364:110061. [PMID: 35872047 DOI: 10.1016/j.cbi.2022.110061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
Exposure to highly toxic organophosphorus compounds causes inhibition of the enzyme acetylcholinesterase resulting in a cholinergic toxidrome and innervation of receptors in the neuromuscular junction may cause life-threatening respiratory effects. The involvement of several receptor systems was therefore examined for their impact on bronchoconstriction using an ex vivo rat precision-cut lung slice (PCLS) model. The ability to recover airways with therapeutics following nerve agent exposure was determined by quantitative analyses of muscle contraction. PCLS exposed to nicotine resulted in a dose-dependent bronchoconstriction. The neuromuscular nicotinic antagonist tubocurarine counteracted the nicotine-induced bronchoconstriction but not the ganglion blocker mecamylamine or the common muscarinic antagonist atropine. Correspondingly, atropine demonstrated a significant airway relaxation following ACh-exposure while tubocurarine did not. Atropine, the M3 muscarinic receptor antagonist 4-DAMP, tubocurarine, the β2-adrenergic receptor agonist formoterol, the Na+-channel blocker tetrodotoxin and the KATP-channel opener cromakalim all significantly decreased airway contractions induced by electric field stimulation. Following VX-exposure, treatment with atropine and the Ca2+-channel blocker magnesium sulfate resulted in significant airway relaxation. Formoterol, cromakalim and magnesium sulfate administered in combinations with atropine demonstrated an additive effect. In conclusion, the present study demonstrated improved airway function following nerve agent exposure by adjunct treatment to the standard therapy of atropine.
Collapse
Affiliation(s)
| | - Elisabet Artursson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Lina Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
20
|
Socher M, Zilker T, Fromme H, Wildner M. [Preparedness on Assaults with Highly Toxic Substances in Public Space]. DAS GESUNDHEITSWESEN 2022; 84:647-650. [PMID: 35835097 PMCID: PMC11248044 DOI: 10.1055/a-1871-2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of chemical substances in terrorist scenarios is to be feared everywhere, especially in the western world, after the events that have become known in recent years. In order to protect civilian populations in an emergency, it is essential that the poisoning pattern (toxidrome) is recognized as quickly and reliably as possible through further training of the relevant agents and the provision of necessary rescue equipment (antidotes) in prepared facilities. In the event of a chemical attack with terrorist motivation, doctors from the Public Health Service (PHS) will foreseeably play a key role in communicating with decision-makers and the public a spart of a competency network.
Collapse
Affiliation(s)
- Martin Socher
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, München
| | | | - Hermann Fromme
- Bayerisches Staatsministerium für Gesundheit und Pflege, München
- Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, München
| | - Manfred Wildner
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, München
- Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, München
| |
Collapse
|
21
|
Wu G, Zhang D, Xu W, Zhang H, Chen L, Zheng Y, Xin Y, Li H, Cui Y. Highly Cross-linked Epoxy Coating for Barring Organophosphate Chemical Warfare Agent Permeation. ACS OMEGA 2022; 7:12354-12364. [PMID: 35449950 PMCID: PMC9016877 DOI: 10.1021/acsomega.2c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Chemical warfare agents (CWAs) can be absorbed in polymeric coatings through absorption and permeation, thus presenting a lethal touch and vapor hazards to people. Developing a highly impermeable polymer coating against CWAs, especially against organophosphate CWAs (OPs), is challenging and desirable. Herein, fluorinated epoxy (F-EP) and epoxy (EP) coatings with different cross-link densities were prepared to resist OPs. The effects of the polymer coating structure, including cross-link density, chemical composition and free volume, on the chemical resistance to dimethyl methylphosphonate (DMMP, Soman simulant) were investigated in detail. Meanwhile, the chemical resistance to Soman and VX was examined. The results reveal that the cross-link density is a critical factor in determining the chemical resistance of the coatings. Highly cross-linked EP and F-EP coatings with dense and solid cross-linked networks can fully bar DMMP and OPs permeation during the test time. At low or medium cross-link densities, the EP coating with a lower retention of DMMP exhibited a higher resistance than the F-EP coating due to the lower interaction with DMMP and smaller free-volume holes and lower relative fractional free volume. These results suggest that increasing the cross-link density is a reasonable approach to control the chemical resistance of polymer networks against OPs.
Collapse
Affiliation(s)
- Guoqing Wu
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Key Lab of Electrical Insulation
and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| | - Dongjiu Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Key Lab of Electrical Insulation
and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| | - Wei Xu
- State
Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjun Zhang
- State
Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Likun Chen
- State
Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Research
Institute of Chemical Defense, Beijing 102205, P. R.
China
| | - Yongchao Zheng
- State
Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Research
Institute of Chemical Defense, Beijing 102205, P. R.
China
| | - Yi Xin
- State
Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Research
Institute of Chemical Defense, Beijing 102205, P. R.
China
| | - Hong Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Key Lab of Electrical Insulation
and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, P. R. China
| | - Yan Cui
- State
Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
- Research
Institute of Chemical Defense, Beijing 102205, P. R.
China
| |
Collapse
|
22
|
Thiermann H, Worek F. Oximes should be used routinely in organophosphate poisoning. Br J Clin Pharmacol 2022; 88:5064-5069. [PMID: 35023196 DOI: 10.1111/bcp.15215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In poisoning with organophosphorus compounds, patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic AChE activity at the earliest is essential for timely termination of the cholinergic crisis. Only a drug induced reactivation allows to achieve fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP inhibited AChE activity in poisoned patients thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and BChE activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.
Collapse
Affiliation(s)
- Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
23
|
Stigler L, Köhler A, Koller M, Job L, Escher B, Potschka H, Thiermann H, Skerra A, Worek F, Wille T. Post-VX exposure treatment of rats with engineered phosphotriesterases. Arch Toxicol 2021; 96:571-583. [PMID: 34962578 PMCID: PMC8837561 DOI: 10.1007/s00204-021-03199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022]
Abstract
The biologically stable and highly toxic organophosphorus nerve agent (OP) VX poses a major health threat. Standard medical therapy, consisting of reactivators and competitive muscarinic receptor antagonists, is insufficient. Recently, two engineered mutants of the Brevundimonas diminuta phosphotriesterase (PTE) with enhanced catalytic efficiency (kcat/KM = 21 to 38 × 106 M−1 min−1) towards VX and a preferential hydrolysis of the more toxic P(−) enantiomer were described: PTE-C23(R152E)-PAS(100)-10-2-C3(I106A/C59V/C227V/E71K)-PAS(200) (PTE-2), a single-chain bispecific enzyme with a PAS linker and tag having enlarged substrate spectrum, and 10-2-C3(C59V/C227V)-PAS(200) (PTE-3), a stabilized homodimeric enzyme with a double PASylation tag (PAS-tag) to reduce plasma clearance. To assess in vivo efficacy, these engineered enzymes were tested in an anesthetized rat model post-VX exposure (~ 2LD50) in comparison with the recombinant wild-type PTE (PTE-1), dosed at 1.0 mg kg−1 i.v.: PTE-2 dosed at 1.3 mg kg−1 i.v. (PTE-2.1) and 2.6 mg kg−1 i.v. (PTE-2.2) and PTE-3 at 1.4 mg kg−1 i.v. Injection of the mutants PTE-2.2 and PTE-3, 5 min after s.c. VX exposure, ensured survival and prevented severe signs of a cholinergic crisis. Inhibition of erythrocyte acetylcholinesterase (AChE) could not be prevented. However, medulla oblongata and diaphragm AChE activity was partially preserved. All animals treated with the wild-type enzyme, PTE-1, showed severe cholinergic signs and died during the observation period of 180 min. PTE-2.1 resulted in the survival of all animals, yet accompanied by severe signs of OP poisoning. This study demonstrates for the first time efficient detoxification in vivo achieved with low doses of heterodimeric PTE-2 as well as PTE-3 and indicates the suitability of these engineered enzymes for the development of highly effective catalytic scavengers directed against VX.
Collapse
Affiliation(s)
- Lisa Stigler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Anja Köhler
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Laura Job
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Benjamin Escher
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, Königinstraße 16, 80539, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.
| |
Collapse
|
24
|
Zhou S, Li W, Zhao Q, Dong H, Wang Y, Lu F, Zhao J, Liu S, Chen H, Wang L, Liu W, Zhang M, Chen S. Detoxification of the Toxic Sulfur Mustard Simulant by a Supramolecular Antidote in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58291-58300. [PMID: 34846119 DOI: 10.1021/acsami.1c15890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although great potential hazards and threats still occur from sulfur mustard, there are no specific medicine or therapy for the intoxication of sulfur mustard. Herein, we have demonstrated a supramolecular approach for the detoxification of the sulfur mustard simulant CEES (4) in vitro and in vivo by carboxylatopillar[5]arene potassium salts (CP[5]AK 1) efficiently based on host-guest interactions. The encapsulation of CEES (4) by the cavity of the pillar[5]arene 2 is driven by C-H···π interactions between CEES (4) and the electron-rich cavity of pillar[5]arene 2, which was investigated by 1H NMR titration, density functional theory studies, and the independent gradient model studies. CEES (4) is degradated to the reactive sulfonium salts quickly in aqueous media, resulting in the alkylation of DNA and proteins. The sulfonium salts can be encapsulated by CP[5]AK 1 efficiently, which accelerates the degradation of the sulfonium salts about 14 times. The cell and animal experiments indicated that the bioactivities of the sulfonium salts are inhibited with the formation of stable host-guest complexes, and CP[5]AK 1 has a good therapeutic effect on the damages caused by CEES (4) at either pre- or post-treatments. Due to the low cytotoxicity and good therapeutic effect, the anionic pillar[5]arenes are expected to be developed as specific antidotes against sulfur mustard (HD).
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Wangzi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yueqi Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feihong Lu
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jiahao Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shanshan Liu
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hong Chen
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
25
|
Ruan X, Yang Y, Liu W, Ma X, Zhang C, Meng Q, Wang Z, Cui F, Feng J, Cai F, Yuan Y, Zhu G. Mechanical Bond Approach to Introducing Self-Adaptive Active Sites in Covalent Organic Frameworks for Zinc-Catalyzed Organophosphorus Degradation. ACS CENTRAL SCIENCE 2021; 7:1698-1706. [PMID: 34729413 PMCID: PMC8554822 DOI: 10.1021/acscentsci.1c00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Mechanically interlocked molecules (MIMs) with discrete molecular components linked through a mechanical bond in space can be harnessed for the operation of molecular switches and machines, which shows huge potential to imitate the dynamic response of natural enzymes. In this work, rotaxane compounds were adopted as building monomers for the synthesis of a crown-ether ring mechanically intercalated covalence organic framework (COF). This incorporation of MIMs into open architecture implemented large amplitude motions, whose wheel slid along the axle in response to external stimulation. After impregnation with Zn2+ ions, the relative locations of two zinc active sites (crown-ether coordinated Zn(II) and bipyridine coordinated Zn(II)) are endowed with great flexibility to fit the conformational transformation of an organophosphorus agent during the hydrolytic process. Notably, the resulting self-adaptive binuclear zinc center in a crown-ether-threaded COF network is endowed with a record catalytic ability, with a rate over 85.5 μM min-1 for organophosphorus degradation. The strategy of synthesis for porous artificial enzymes through the introduction of mechanically bound crown ether will enable significant breakthroughs and new synthetic concepts for the development of advanced biomimetic catalysts.
Collapse
|
26
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Curty C, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Alwan WS, Suri V, Hotchkiss PJ, Ghanei M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021; 463:152967. [PMID: 34619302 DOI: 10.1016/j.tox.2021.152967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Blister agents damage the skin, eyes, mucous membranes and subcutaneous tissues. Other toxic effects may occur after absorption. The response of the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) to a request from the OPCW Director-General in 2013 on the status of medical countermeasures and treatments to blister agents is updated through the incorporation of the latest information. The physical and toxicological properties of sulfur mustard and clinical effects and treatments are summarised. The information should assist medics and emergency responders who may be unfamiliar with the toxidrome of sulfur mustard and its treatment.
Collapse
Affiliation(s)
- Christopher M Timperley
- Chair of the OPCW SAB from 2015-2018, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, United Kingdom.
| | - Jonathan E Forman
- Science Policy Adviser and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands, from 2015-2018
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Augustin Baulig
- Secrétariat Général de la Défense et de la Sécurité Nationale (SGDSN), Paris, France
| | - Djafer Benachour
- LMPMP, Faculty of Technology, Ferhat Abbas University, Setif-1, Algeria
| | - Veronica Borrett
- La Trobe Institute for Agriculture and Food, La Trobe University, Victoria, 3086, Australia
| | | | | | | | - David Gonzalez
- Facultad De Química, Universidad de la República, Montevideo, Uruguay
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | - Syed K Raza
- Chairperson Accreditation Committee, National Accreditation Board for Testing and Calibration Laboratories (NABL), India
| | - Valentin Rubaylo
- State Scientific Research Institute of Organic Chemistry and Technology (GosNIIOKhT), Moscow, Russian Federation
| | - Alejandra Graciela Suárez
- Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Koji Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Cheng Tang
- Office for the Disposal of Japanese Abandoned Chemical Weapons, Ministry of National Defence, Beijing, China
| | - Ferruccio Trifirò
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | - Paula S Vanninen
- VERIFIN, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Stian Holen
- Head of Strategy and Policy at the OPCW from 2009 to 2015
| | - Wesam S Alwan
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Vivek Suri
- Intern in the OPCW Office of Strategy and Policy, Summer 2018
| | - Peter J Hotchkiss
- Senior Science Policy Officer and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
27
|
Lee HM, Andrys R, Jonczyk J, Kim K, Vishakantegowda AG, Malinak D, Skarka A, Schmidt M, Vaskova M, Latka K, Bajda M, Jung YS, Malawska B, Musilek K. Pyridinium-2-carbaldoximes with quinolinium carboxamide moiety are simultaneous reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by nerve agent surrogates. J Enzyme Inhib Med Chem 2021; 36:437-449. [PMID: 33467931 PMCID: PMC7822067 DOI: 10.1080/14756366.2020.1869954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.
Collapse
Affiliation(s)
- Hyun Myung Lee
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Daejeon, Republic of Korea
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jakub Jonczyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kyuneun Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Daejeon, Republic of Korea
| | - Avinash G Vishakantegowda
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Daejeon, Republic of Korea
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michaela Vaskova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Latka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Young-Sik Jung
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Daejeon, Republic of Korea
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
28
|
Wigenstam E, Forsberg E, Bucht A, Thors L. Efficacy of atropine and scopolamine on airway contractions following exposure to the nerve agent VX. Toxicol Appl Pharmacol 2021; 419:115512. [PMID: 33785355 DOI: 10.1016/j.taap.2021.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Nerve agents are highly toxic organophosphorus compounds that inhibit acetylcholinesterase resulting in rapid accumulation of the neurotransmitter acetylcholine (ACh) causing a cholinergic syndrome including respiratory failure. In the present study, respiratory responses and antimuscarinic treatment efficacy was evaluated ex vivo using rat precision-cut lung slices (PCLS) exposed to the nerve agent VX. The respiratory effects were evaluated either by adding exogenous ACh directly to the culture medium or by applying electric-field stimulation (EFS) to the PCLS to achieve a release of endogenous ACh from neurons in the lung tissue. The airway contraction induced by both methods was enhanced by VX and resulted in lingering airway recovery, in particular when airways were exposed to a high VX-dose. Both contractions induced by EFS and exogenously added ACh were significantly reduced by administration of the antimuscarinic drugs atropine or scopolamine. Two additions of atropine or scopolamine after maximal ACh-induced airway response was demonstrated effective to reverse the contraction. By adding consecutive doubled doses of antimuscarinics, high efficiency to reduce the cholinergic airway response was observed. However, the airways were not completely recovered by atropine or scopolamine, indicating that non-muscarinic mechanisms were involved in the smooth muscle contractions. In conclusion, it was demonstrated that antimuscarinic treatment reversed airway contraction induced by VX but supplemental pharmacological interventions are needed to fully recover the airways. Further studies should therefore clarify the mechanisms of physiological responses in lung tissue following nerve agent exposures to improve the medical management of poisoned individuals.
Collapse
Affiliation(s)
- E Wigenstam
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - E Forsberg
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - A Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - L Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
29
|
Thors L, Wigenstam E, Qvarnström J, Bucht A. Efficient agent degradation within skin is important for decontamination of percutaneously exposed VX. Cutan Ocul Toxicol 2021; 40:95-102. [PMID: 33759679 DOI: 10.1080/15569527.2021.1902342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM OF THE STUDY Following percutaneous exposure to the nerve agent VX, the remaining intact agent within the skin after decontamination is of great concern. Consequently, this leads to prolonged agent release to the blood circulation resulting in sustained intoxication, which may complicate the medical management. The decontamination procedure used should therefore possess the ability for agent removal both on and within the skin. The efficacy of three decontamination procedures was evaluated by measuring VX and the primary degradation product ethyl methyl phosphonic acid (EMPA) penetrated through human skin and the amount remaining within the skin. MATERIALS AND METHODS Decontamination was initiated 5 min post-exposure to VX on human dermatomed skin. Experiments were conducted using an in vitro skin penetration model and the amount remaining within the skin was determined by combining the tape-stripping technique and acetylcholinesterase activity measurements. RESULTS In control experiments without decontamination, higher amounts of VX were recovered in the deeper layers of skin compared to EMPA, which was primarily located in the stratum corneum. Both Reactive Skin Decontamination Lotion (RSDL) and the RSDL training kit (TRSDL) significantly reduced the amount of VX within the skin and decreased the penetration through the skin. However, the degradation ability of RSDL was demonstrated to be beneficial by the reduction of intact agents remaining in the skin compared to TRSDL without agent degradation capability. Soapy water decontamination caused a "wash-in" effect of VX with decreased agent amounts within stratum corneum but increased the amount VX penetrated through the skin. CONCLUSION Efficient skin decontamination of VX requires skin decontaminants reaching deeper layers of the skin, and that both absorption and degradation properties are important. In addition, the "wash-in" effect by using soapy water may enhance VX release to the blood circulation.
Collapse
Affiliation(s)
- Lina Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Johanna Qvarnström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| |
Collapse
|
30
|
Dong X, He Y, Ye F, Zhao Y, Cheng J, Xiao J, Yu W, Zhao J, Sai Y, Dan G, Chen M, Zou Z. Vitamin D3 ameliorates nitrogen mustard-induced cutaneous inflammation by inactivating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Clin Transl Med 2021; 11:e312. [PMID: 33634989 PMCID: PMC7882108 DOI: 10.1002/ctm2.312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nitrogen mustard (NM) causes severe skin injury with an obvious inflammatory response, which is lack of effective and targeted therapies. Vitamin D3 (VD3) has excellent anti-inflammatory properties and is considered as a potential candidate for the treatment of NM-induced dermal toxicity; however, the underlying mechanisms are currently unclear. Cyclooxygenase-2 (COX2; a widely used marker of skin inflammation) plays a key role in NM-induced cutaneous inflammation. Herein, we initially confirmed that NM markedly promoted COX2 expression in vitro and in vivo. NM also increased NOD-like receptor family pyrin domain containing 3 (NLRP3) expression, caspase-1 activity, and interleukin-1β (IL-1β) release. Notably, treatment with a caspase-1 inhibitor (zYVAD-fmk), NLRP3 inhibitor (MCC950), and NLRP3 or caspase-1 siRNA attenuated NM-induced NLRP3 inflammasome activation, with subsequent suppression of COX2 expression and IL-1β release in keratinocytes. Meanwhile, NM increased mitochondrial reactive oxygen species (mtROS) and decreased manganese superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) activities. Mito-TEMPO (a mtROS scavenger) ameliorated NM-caused NLRP3 inflammasome activation in keratinocytes. Moreover, VD3 improved SIRT3 and SOD2 activities, decreased mtROS contents, inactivated the NLRP3 inflammasome, and attenuated cutaneous inflammation induced by NM in vitro and in vivo. The beneficial activity of VD3 against NM-triggered cutaneous inflammation was enhanced by the inhibitors of IL-1, mtROS, NLRP3, caspase-1, and NLRP3 or caspase-1 siRNAs, which was abolished in SIRT3 inhibitor or SIRT3 siRNA-treated keratinocytes and skins from SIRT3-/- mice. In conclusion, VD3 ameliorated NM-induced cutaneous inflammation by inactivating the NLRP3 inflammasome, which was partially mediated through the SIRT3-SOD2-mtROS signaling pathway.
Collapse
Affiliation(s)
- Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Ying He
- Department of UltrasoundXinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingsong Xiao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiqing Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Pathology and Southwest Cancer Centre, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
31
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
32
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Kranawetvogl T, Steinritz D, Thiermann H, John H. A novel high‐performance liquid chromatography with diode array detector method for the simultaneous quantification of the enzyme‐reactivating oximes obidoxime, pralidoxime, and HI‐6 in human plasma. Drug Test Anal 2020; 12:938-947. [DOI: 10.1002/dta.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
- Walther‐Straub‐Institut, Ludwig‐Maximilians‐Universität Munich Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
- Walther‐Straub‐Institut, Ludwig‐Maximilians‐Universität Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| |
Collapse
|
34
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
35
|
González EA, Rindy AC, Guignet MA, Calsbeek JJ, Bruun DA, Dhir A, Andrew P, Saito N, Rowland DJ, Harvey DJ, Rogawski MA, Lein PJ. The chemical convulsant diisopropylfluorophosphate (DFP) causes persistent neuropathology in adult male rats independent of seizure activity. Arch Toxicol 2020; 94:2149-2162. [PMID: 32303805 PMCID: PMC7305973 DOI: 10.1007/s00204-020-02747-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
Organophosphate (OP) threat agents can trigger seizures that progress to status epilepticus, resulting in persistent neuropathology and cognitive deficits in humans and preclinical models. However, it remains unclear whether patients who do not show overt seizure behavior develop neurological consequences. Therefore, this study compared two subpopulations of rats with a low versus high seizure response to diisopropylfluorophosphate (DFP) to evaluate whether acute OP intoxication causes persistent neuropathology in non-seizing individuals. Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im), and pralidoxime (25 mg/kg, im) were monitored for seizure activity for 4 h post-exposure. Animals were separated into groups with low versus high seizure response based on behavioral criteria and electroencephalogram (EEG) recordings. Cholinesterase activity was evaluated by Ellman assay, and neuropathology was evaluated at 1, 2, 4, and 60 days post-exposure by Fluoro-Jade C (FJC) staining and micro-CT imaging. DFP significantly inhibited cholinesterase activity in the cortex, hippocampus, and amygdala to the same extent in low and high responders. FJC staining revealed significant neurodegeneration in DFP low responders albeit this response was delayed, less persistent, and decreased in magnitude compared to DFP high responders. Micro-CT scans at 60 days revealed extensive mineralization that was not significantly different between low versus high DFP responders. These findings highlight the importance of considering non-seizing patients for medical care in the event of acute OP intoxication. They also suggest that OP intoxication may induce neurological damage via seizure-independent mechanisms, which if identified, might provide insight into novel therapeutic targets.
Collapse
Affiliation(s)
- Eduardo A González
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Alexa C Rindy
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Michelle A Guignet
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jonas J Calsbeek
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Ashish Dhir
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Peter Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Naomi Saito
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Douglas J Rowland
- Center for Molecular and Genomic Imaging, University of California, Davis, College of Engineering, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, University of California, Davis, School of Medicine, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, School of Medicine, 4860 Y Street, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
36
|
Sezigen S, Esim O, Sarper M, Savaser A. In vitro evaluation of two different types of obidoxime-loaded nanoparticles for cytotoxicity and blood-brain barrier transport. Toxicol Lett 2020; 330:53-58. [PMID: 32380126 DOI: 10.1016/j.toxlet.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Nerve agents (NA) are chemical warfare munitions and their exposure causes a progressive inhibition of acetylcholinesterase (AChE). This inhibition causes NA-induced brain damage in central nervous system (CNS). Oximes reactivate AChE in both the peripheral nervous system and the CNS. Transport of the oxime across the blood-brain barrier (BBB) in the existed therapeutic concentrations at the brain parenchyma determines the effectiveness of antidote therapy on respiratory depression and NA-induced brain damage. However, oximes could not cross the BBB in therapeutic concentrations. The aim of this study was to load AChE reactivator obidoxime chloride to PLGA and PEG-b-PLGA nanoparticles and to improve the BBB transport of the molecule. Brain microvascular endothelial cells were used as the BBB model. 79.3 ± 4.2% of obidoxime was released from PLGA nanoparticles and 88.2 ± 4.4% of obidoxime was released from PEG-b-PLGA nanoparticles within 24 h. It was found that PEG-b-PLGA nanoparticles were ideal drug carrier because of its low tissue toxicity, few side effects, and controllable drug release profile. Transport efficiency of obidoxime across the BBB is a major challenge in the prevention of the CNS, the effectiveness of NA poisoning and new strategies like using obidoxime-loaded PEG-b-PLGA nanoparticles could overcome this challenge for the management of NA-induced brain damage.
Collapse
Affiliation(s)
- Sermet Sezigen
- University of Health Sciences, Department of Medical CBRN Defense, 06010, Ankara, Turkey.
| | - Ozgur Esim
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, 06010, Ankara, Turkey
| | - Meral Sarper
- University of Health Sciences, Gulhane Institute of Health Sciences, 06010, Ankara, Turkey
| | - Ayhan Savaser
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, 06010, Ankara, Turkey
| |
Collapse
|
37
|
Lang X, Hong X, Baker CA, Otto TC, Wheeldon I. Molecular binding scaffolds increase local substrate concentration enhancing the enzymatic hydrolysis of VX nerve agent. Biotechnol Bioeng 2020; 117:1970-1978. [PMID: 32239488 DOI: 10.1002/bit.27346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Kinetic enhancement of organophosphate hydrolysis is a long-standing challenge in catalysis. For prophylactic treatment against organophosphate exposure, enzymatic hydrolysis needs to occur at high rates in the presence of low substrate concentrations and enzymatic activity should persist over days and weeks. Here, the conjugation of small DNA scaffolds was used to introduce substrate binding sites with micromolar affinity to VX, paraoxon, and methyl-parathion in close proximity to the enzyme phosphotriesterase (PTE). The result was a decrease in KM and increase in the rate at low substrate concentrations. An optimized system for paraoxon hydrolysis decreased KM by 11-fold, with a corresponding increase in second-order rate constant. The initial rates of VX and methyl-parathion hydrolysis were also increased by 3.1- and 6.7-fold, respectively. The designed scaffolds not only increased the local substrate concentration, but they also resulted in increased stability and PTE-DNA particle size tuning between 25 and ~150 nm. The scaffold engineering approach taken here is focused on altering the local chemical and physical microenvironment around the enzyme and is therefore compatible with active site engineering via combinatorial and computational approaches.
Collapse
Affiliation(s)
- Xuye Lang
- Chemical and Environmental Engineering Department, University of California, Riverside, California
| | - Xiao Hong
- Biochemistry Department, University of California, Riverside, California
| | - Cetara A Baker
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Tamara C Otto
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Ian Wheeldon
- Chemical and Environmental Engineering Department, University of California, Riverside, California.,Center for Industrial Biotechnology, University of California, Riverside, California
| |
Collapse
|
38
|
Mishra RK, Goud KY, Li Z, Moonla C, Mohamed MA, Tehrani F, Teymourian H, Wang J. Continuous Opioid Monitoring along with Nerve Agents on a Wearable Microneedle Sensor Array. J Am Chem Soc 2020; 142:5991-5995. [DOI: 10.1021/jacs.0c01883] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rupesh K. Mishra
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - K. Yugender Goud
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhanhong Li
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chochanon Moonla
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Mona A. Mohamed
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Farshad Tehrani
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
39
|
Amend N, Niessen KV, Seeger T, Wille T, Worek F, Thiermann H. Diagnostics and treatment of nerve agent poisoning—current status and future developments. Ann N Y Acad Sci 2020; 1479:13-28. [DOI: 10.1111/nyas.14336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Karin V. Niessen
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| |
Collapse
|
40
|
Etemad L, Moshiri M, Balali-Mood M. Advances in treatment of acute sulfur mustard poisoning - a critical review. Crit Rev Toxicol 2020; 49:191-214. [PMID: 31576778 DOI: 10.1080/10408444.2019.1579779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfur mustard (SM) is a blistering chemical warfare agent that was used during the World War I and in the Iraq-Iran conflict. The aim of this paper is to discuss and critically review the published results of experiments on the treatment of SM poisoning based on our clinical and research experience. The victims must remove from the contaminated zone immediately. The best solution for decontamination is large amounts of water, using neutral soap and 0.5% sodium hypochlorite. Severely intoxicated patients should be treated according to advanced life support protocols and intensive care therapy for respiratory disorders and the chemical burn. Sodium thiosulfate infusion (100-500 mg/kg/min) should be started up to 60 min after SM exposure. However, N-acetyle cysteine (NAC) is recommended, none of them acts as specific or effective antidote. The important protective and conservative treatment of SM-induced pulmonary injuries include humidified oxygen, bronchodilators, NAC as muculytic, rehydration, mechanical ventilation, appropriate antibiotics and respiratory physiotherapy as clinically indicated. Treatment of acute SM ocular lesions start with topical antibiotics; preferably sulfacetamide eye drop, continue with lubricants, and artificial tears. Treatment for cutaneous injuries include: moist dressing; preferably with silver sulfadiazine cream, analgesic, anti-pruritic, physically debridement, debridase, Laser debridement, followed by skin autologous split-thickness therapy as clinically indicated. The new suggested medications and therapeutic approaches include: anti-inflammatory agents, Niacinamide, Silibinin, Calmodulin antagonists, Clobetasol, full-thickness skin grafting for skin injuries; Doxycycline; Bevacizumab, and Colchicine for ocular injuries. Recommended compounds based on animal studies include Niacinamide, Aprotinin, des-aspartate-angiotensin-I, Gamma-glutamyltransferase, vitamin E, and vitamin D. In vitro studies revealed that Dimethylthiourea, L-nitroarginine, Methyl-ester, Sodium pyruvate, Butylated hydroxyanisole, ethacrynic acid, and macrolide antibiotics are effective. However, none of them, except macrolide antibiotics have been proved clinically. Avoidance of inappropriate polypharmacy is advisable.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences , Birjand , Iran
| |
Collapse
|
41
|
Recent sulfur mustard attacks in Middle East and experience of health professionals. Toxicol Lett 2020; 320:52-57. [DOI: 10.1016/j.toxlet.2019.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
|
42
|
Plachá D, Kovář P, Vaněk J, Mikeska M, Škrlová K, Dutko O, Řeháčková L, Slabotínský J. Adsorption of nerve agent simulants onto vermiculite structure: Experiments and modelling. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121001. [PMID: 31454610 DOI: 10.1016/j.jhazmat.2019.121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/28/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Chemical warfare agents are still a threat to humanity despite the existence of a ban on their production and use. There are many new materials that have been experimentally verified to be effective in degrading and eliminating various chemical warfare agents; however, clay minerals still remain very effective, environmentally friendly and not expensive. Vermiculites modified with hexadecylpyridinium, hexadecyltrimethylammonium and tetramethylammonium cations were used for static sorption of vapours of two simulants of nerve agents: dimethyl methyl phosphonate and diethyl ethyl phosphonate. The materials before and after sorption were characterized using infrared spectroscopy, X-ray diffraction and carbon phase analysis. The breakthrough time and capture of simulants were measured using dynamic sorption test. Molecular modelling was used to confirm the experimental results and provide a deeper insight into the structure of the materials and sorption processes.
Collapse
Affiliation(s)
- Daniela Plachá
- Nanotechnology Centre, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic; ENET Centre, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic.
| | - Petr Kovář
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague, Czech Republic.
| | - Jakub Vaněk
- National Institute for NBC Protection, Kamenná 71, Milín 262 31, Czech Republic
| | - Marcel Mikeska
- ENET Centre, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic
| | - Kateřina Škrlová
- Nanotechnology Centre, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic
| | - Ondřej Dutko
- Nanotechnology Centre, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic
| | - Lenka Řeháčková
- Department of Physical Chemistry and Theory of Technological Processes, VŠB -Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba CZ-708 33, Czech Republic
| | - Jiří Slabotínský
- National Institute for NBC Protection, Kamenná 71, Milín 262 31, Czech Republic
| |
Collapse
|
43
|
Zhang L, Baker SL, Murata H, Harris N, Ji W, Amitai G, Matyjaszewski K, Russell AJ. Tuning Butyrylcholinesterase Inactivation and Reactivation by Polymer-Based Protein Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901904. [PMID: 31921563 PMCID: PMC6947490 DOI: 10.1002/advs.201901904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Indexed: 05/11/2023]
Abstract
Organophosphate nerve agents rapidly inhibit cholinesterases thereby destroying the ability to sustain life. Strong nucleophiles, such as oximes, have been used as therapeutic reactivators of cholinesterase-organophosphate complexes, but suffer from short half-lives and limited efficacy across the broad spectrum of organophosphate nerve agents. Cholinesterases have been used as long-lived therapeutic bioscavengers for unreacted organophosphates with limited success because they react with organophosphate nerve agents with one-to-one stoichiometries. The chemical power of nucleophilic reactivators is coupled to long-lived bioscavengers by designing and synthesizing cholinesterase-polymer-oxime conjugates using atom transfer radical polymerization and azide-alkyne "click" chemistry. Detailed kinetic studies show that butyrylcholinesterase-polymer-oxime activity is dependent on the electrostatic properties of the polymers and the amount of oxime within the conjugate. The covalent coupling of oxime-containing polymers to the surface of butyrylcholinesterase slows the rate of inactivation of paraoxon, a model nerve agent. Furthermore, when the enzyme is covalently inhibited by paraoxon, the covalently attached oxime induced inter- and intramolecular reactivation. Intramolecular reactivation will open the door to the generation of a new class of nerve agent scavengers that couple the speed and selectivity of biology to the ruggedness and simplicity of synthetic chemicals.
Collapse
Affiliation(s)
- Libin Zhang
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Stefanie L. Baker
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Hironobu Murata
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Nicholas Harris
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biotechnology EngineeringORT Braude Academic CollegeKarmielPOB78Israel
| | - Weihang Ji
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
| | - Gabriel Amitai
- Wohl Drug Discovery InstituteNancy and Stephen Grand Israel National Center for Personalized Medicine (G‐INCPM)Weizmann Institute of ScienceRehovot760001Israel
| | - Krzysztof Matyjaszewski
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| | - Alan J. Russell
- Center for Polymer‐Based Protein EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of Biomedical EngineeringCarnegie Mellon University5000 Forbes AvenuePittsburghPA15213USA
- Department of ChemistryDepartment of Chemical EngineeringCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
| |
Collapse
|
44
|
McGarry KG, Schill KE, Winters TP, Lemmon EE, Sabourin CL, Harvilchuck JA, Moyer RA. Characterization of Cholinesterases From Multiple Large Animal Species for Medical Countermeasure Development Against Chemical Warfare Nerve Agents. Toxicol Sci 2019; 174:124-132. [DOI: 10.1093/toxsci/kfz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a “bioscavenger” that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Collapse
Affiliation(s)
| | | | | | - Erin E Lemmon
- Battelle Memorial Institute, Columbus, OH 43201, Ohio
| | | | | | | |
Collapse
|
45
|
Parvaz S, Taheri-Ledari R, Esmaeili MS, Rabbani M, Maleki A. A brief survey on the advanced brain drug administration by nanoscale carriers: With a particular focus on AChE reactivators. Life Sci 2019; 240:117099. [PMID: 31760098 DOI: 10.1016/j.lfs.2019.117099] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Obviously, delivery of the medications to the brain is more difficult than other tissues due to the existence of a strong obstacle, which is called blood-brain barrier (BBB). Because of the lipophilic nature of this barrier, it would be a complex (and in many cases impossible) process to cross the medications with hydrophilic behavior from BBB and deliver them to the brain. Thus, novel intricate drug-carriers in nano scales have been recently developed and suitably applied for this purpose. One of the most important categories of these hydrophilic medications, are reactivators for acetyl cholinesterase (AChE) enzyme that facilitates the breakdown of acetylcholine (as a neurotransmitter). The AChE function is inhibited by organophosphorus (OP) nerve agents that are extremely used in military conflicts. In this review, the abilities of the nanosized drug delivery systems to perform as suitable vehicles for AChE reactivators are comprehensively discussed.
Collapse
Affiliation(s)
- Sina Parvaz
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Taheri-Ledari
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
46
|
Peripheral blood mononuclear cellular viability and its correlation with long-term pulmonary complications after sulfur mustard exposure. Int Immunopharmacol 2019; 76:105814. [PMID: 31493666 DOI: 10.1016/j.intimp.2019.105814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Sulfur mustard (SM) as a chemical warfare agent has short- and long-term complications on its victims. Complications of exposure to SM depend on the level of contamination. Long-term pulmonary complications are the most serious problems. Recent evidence has shown that absorbed SM can be conducted to other tissues by the bloodstream. In this study, we evaluated the long-term effects of SM on the vital activity of peripheral blood mononuclear cells (PBMCs) in SM-exposed patients with long-term pulmonary complications. MATERIALS AND METHODS Our study samples were 110 patients with long-term pulmonary complications in the SM-exposed group and 109 unexposed individuals in the control group. After clinical examination and pulmonary function tests, the severity of pulmonary complications was classified. Also, the participants' peripheral blood was taken into EDTA-treated Vacutainer tubes. Then, the complete blood count (CBC) was calculated, and PBMCs was purified from whole blood using Ficol-Paque gradient method, finally, the vital activity was assessed by MTT assay. RESULT The vital activity of PBMCs in the SM-exposed group with the mitogen was significantly lower than that in the control group (P = 0.016). Whereas, there was no significant difference in the viability of PBMCs without the mitogen between two groups. Furthermore, hematologic findings indicated that the SM-exposed group had a significant increase in the total count of WBC, neutrophil, MCV, and HCT values but the lymphocyte count and MCHC value were significantly lower than those in the control group. CONCLUSION Exposure to SM even after a long time, can affect hematologic parameters and vital activity of PBMCs.
Collapse
|
47
|
Marquart K, Prokopchuk O, Wilhelm D, Worek F, Thiermann H, Martignoni ME, Wille T. Human small bowel as model for poisoning with organophosphorus compounds. Toxicol In Vitro 2019; 57:76-80. [DOI: 10.1016/j.tiv.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 02/09/2019] [Indexed: 11/26/2022]
|
48
|
Sezigen S, Ivelik K, Ortatatli M, Almacioglu M, Demirkasimoglu M, Eyison R, Kunak Z, Kenar L. Victims of chemical terrorism, a family of four who were exposed to sulfur mustard. Toxicol Lett 2019; 303:9-15. [DOI: 10.1016/j.toxlet.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
|
49
|
Tsoutsoulopoulos A, Siegert M, John H, Zubel T, Mangerich A, Schmidt A, Mückter H, Gudermann T, Thiermann H, Steinritz D, Popp T. A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure. Chem Biol Interact 2019; 298:121-128. [PMID: 30502332 DOI: 10.1016/j.cbi.2018.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Inhalation of the chemical warfare agent sulfur mustard (SM) is associated with severe acute and long-term pulmonary dysfunctions and health effects. The still not completely elucidated molecular toxicology and a missing targeted therapy emphasize the need for further research. However, appropriate human data are extremely rare. In vivo animal experiments are often regarded as gold standard in toxicology but may exhibit significant differences compared to the human pulmonary anatomy and physiology. Thus, alternative in vitro exposure methods, adapted to the human in vivo situation by exposing cells at the air-liquid interface (ALI), are complimentary approaches at a cellular level. So far, it is unclear whether the enhanced experimental complexity of ALI exposure, that is potentially biologically more meaningful, is superior to submerged exposures which are typically performed. Aim of our study was the evaluation of an appropriate in vitro exposure system (CULTEX® Radial Flow System (RFS) equipped with an eFlow® membrane nebulizer) for the exposure of cultivated human lung cells (A549) with SM under ALI conditions. Cellular responses (i.e. cell viability) and formation of SM-specific DNA-adducts were investigated and compared between ALI and submerse SM exposures. Our results proved the safe applicability of our ALI exposure system setup. The aerosol generation and subsequent deposition at the ALI were stable and uniform. The technical CULTEX® RFS setup is based on ALI exposure with excess of aerosol from that only some is deposited on the cell layer. As expected, a lower cytotoxicity and DNA-adduct formation were detected when identical SM concentrations were used compared to experiments under submerged conditions. A distinct advantage of SM-ALI compared to SM-submerse exposures could not be found in our experiments. Though, the CULTEX® RFS was found suitable for SM-ALI exposures.
Collapse
Affiliation(s)
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tabea Zubel
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Universität der Bundeswehr München, Faculty of Human Sciences, Department for Sports Sciences, 85577, Neubiberg, Germany
| | - Harald Mückter
- Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336, Munich, Germany.
| |
Collapse
|
50
|
Jackson C, Ardinger C, Winter KM, McDonough JH, McCarren HS. Validating a model of benzodiazepine refractory nerve agent-induced status epilepticus by evaluating the anticonvulsant and neuroprotective effects of scopolamine, memantine, and phenobarbital. J Pharmacol Toxicol Methods 2019; 97:1-12. [PMID: 30790623 PMCID: PMC6529248 DOI: 10.1016/j.vascn.2019.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Organophosphorus nerve agents (OPNAs) irreversibly block acetylcholinesterase activity, resulting in accumulation of excess acetylcholine at neural synapses, which can lead to a state of prolonged seizures known as status epilepticus (SE). Benzodiazepines, the current standard of care for SE, become less effective as latency to treatment increases. In a mass civilian OPNA exposure, concurrent trauma and limited resources would likely cause a delay in first response time. To address this issue, we have developed a rat model to test novel anticonvulsant/ neuroprotectant adjuncts at delayed time points. METHODS For model development, adult male rats with cortical electroencephalographic (EEG) electrodes were exposed to soman and administered saline along with atropine, 2-PAM, and midazolam 5, 20, or 40 min after SE onset. We validated our model using three drugs: scopolamine, memantine, and phenobarbital. Using the same procedure outlined above, rats were given atropine, 2-PAM, midazolam and test treatment 20 min after SE onset. RESULTS Using gamma power, delta power, and spike rate to quantify EEG activity, we found that scopolamine was effective, memantine was minimally effective, and phenobarbital had a delayed effect on terminating SE. Fluoro-Jade B staining was used to assess neuroprotection in five brain regions. Each treatment provided significant protection compared to saline + midazolam in at least two brain regions. DISCUSSION Because our data agree with previously published studies on the efficacy of these compounds, we conclude that this model is a valid way to test novel anticonvulsants/ neuroprotectants for controlling benzodiazepine-resistant OPNA-induced SE and subsequent neuropathology.
Collapse
Affiliation(s)
| | | | | | | | - Hilary S. McCarren
- Corresponding author at: U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|