1
|
Liu Y, Zhang R, Velkov T, Shen J, Tang S, Dai C. Corynoxeine Supplementation Ameliorates Colistin-Induced Kidney Oxidative Stress and Inflammation in Mice. Antioxidants (Basel) 2025; 14:593. [PMID: 40427475 PMCID: PMC12108663 DOI: 10.3390/antiox14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated the protective effects of corynoxeine, a natural alkaline compound, on colistin-caused nephrotoxicity using a murine model. Forty mice were divided randomly into control, corynoxeine-only (20 mg/kg/day, intraperitoneal injection), colistin-only (20 mg/kg/day, intraperitoneal injection), and colistin (20 mg/kg/day) + corynoxeine (5 and 20 mg/kg/day) groups (8 mice in each group). All treatments were maintained for seven consecutive days. Results showed that colistin treatment at 20 mg/kg/day for seven days significantly increased serum urea nitrogen and creatinine levels and induced the loss and degeneration of renal tubular epithelial cells, which were markedly ameliorated by corynoxeine co-treatment at 5 or 20 mg/kg/day. Corynoxeine supplementation also markedly attenuated colistin-induced increases in malondialdehyde levels and decreases in reduced glutathione levels and superoxide dismutase and catalase activities in the kidneys. Furthermore, corynoxeine supplementation significantly decreased the expression of transforming growth factor β (TGF-β) and nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) proteins and nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-α mRNAs, while it significantly increased the expression of erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins in the kidneys. In conclusion, these results reveal that corynoxeine can protect against colistin-induced nephrotoxicity in mice by inhibiting oxidative stress and inflammation, which may partly be attributed to its ability on the activation of the Nrf2/HO-1 pathway and the inhibition of the TGF-β/NOX4 and NF-κB pathways.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ruichen Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Parkville, VIC 3052, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Naraki K, Ghasemzadeh Rahbardar M, Razavi BM, Aminifar T, Khajavi Rad A, Amoueian S, Hosseinzadeh H. The power of trans-sodium crocetinate: exploring its renoprotective effects in a rat model of colistin-induced nephrotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:10155-10174. [PMID: 38995374 DOI: 10.1007/s00210-024-03259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Colistin, a multidrug-resistant gram-negative bacterial infection medication, has been associated with renal impairment and failure. Trans-sodium crocetinate (TSC), a saffron-derived chemical recognized for its antioxidant and nephroprotective properties, was studied in this study to determine its potential to alleviate the nephrotoxic effects of colistin. Forty-two male Wistar rats were randomly classified into seven groups (n = 6): (1) control (normal saline, 12 days, i.p.), (2) colistin (22 mg/kg, 7 days, i.p.), (3-5) colistin + TSC (25, 50, and 100 mg/kg, 12 days, i.p., starting from 5 days before colistin), (6) TSC (100 mg/kg, 12 days, i.p.), (7) colistin + vitamin E (100 IU/kg, 12 days, i.p). On day 13, the rats were euthanized and the serum content of creatinine, BUN, Na+, and K+, as well as oxidative stress (GSH, MDA, SOD, CAT), inflammatory (IL-1β), apoptotic (Bax, Bcl-2, caspase-3, 8, 9), and autophagy (Beclin-1, LC3) markers, NGAL, and histopathological changes in the kidney were measured. Colistin significantly increased serum creatinine, BUN, MDA, IL-1β, caspase-3,8,9, Bax, Beclin-1, LC3, and NGAL levels in kidney tissue. It also caused inflammation, focal necrosis of tubular epithelial cells, protein cast, and acute tubular necrosis. Furthermore, colistin decreased SOD, CAT, GSH, and Bcl-2 levels. TSC and vitamin E administration along with colistin restored most of the alterations induced by colistin. Overall, it could be concluded that colistin induces oxidative stress, inflammation, autophagy, and apoptosis, which can cause kidney injury. However, TSC can also be used as a therapeutic agent to reduce injuries caused by colistin.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Aminifar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakineh Amoueian
- Pathology Department, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Li B, Piao J, Piao X, Geng Z, Cheng Z, Zou X, Jiang H. Effect of Kruppel-like factor 4 on PTZ-induced acute seizure mice. J Cell Mol Med 2024; 28:e18578. [PMID: 39234952 PMCID: PMC11375452 DOI: 10.1111/jcmm.18578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
Kruppel-like factor 4 (Klf4) is a transcription factor that is involved in neuronal regeneration and the development of glutamatergic systems. However, it is unknown whether Klf4 is involved in acute seizure. To investigate the potential role of Klf4 in pentylenetetrazol (PTZ)-induced seizure, western blotting, immunofluorescence, behaviour test and electrophysiology were conducted in this study. We found that Klf4 protein and mRNA expression were increased in both the hippocampus (HP) and prefrontal cortex (PFC) after PTZ-induced seizure in mice. HP-specific knockout (KO) of Klf4 in mice decreased protein expression of Klf4 and the down-stream Klf4 target tumour protein 53 (TP53/P53). These molecular changes are accompanied by increased seizure latency, reduced immobility time in the forced swimming test and tail suspension test. Reduced hippocampal protein levels for synaptic proteins, including glutamate receptor 1 (GRIA1/GLUA1) and postsynaptic density protein 95 (DLG4/PSD95), were also observed after Klf4-KO, while increased mRNA levels of complement proteins were observed for complement component 1q subcomponent A (C1qa), complement component 1q subcomponent B (C1qb), complement component 1q subcomponent C (C1qc), complement component 3 (C3), complement component 4A (C4a) and complement component 4B (C4b). Moreover, c-Fos expression induced by PTZ was reduced by hippocampal conditional KO of Klf4. Electrophysiology showed that PTZ-induced action potential frequency was decreased by overexpression of Klf4. In conclusion, these findings suggest that Klf4 plays an important role in regulating PTZ-induced seizures and therefore constitutes a new molecular target that should be explored for the development of antiepileptic drugs.
Collapse
Affiliation(s)
- Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xinmiao Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Zihui Geng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, People's Republic of China
- Department of Medical Research Centar, Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Huiyi Jiang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
4
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
5
|
Xie B, Liu Y, Chen C, Velkov T, Tang S, Shen J, Dai C. Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells. Antioxidants (Basel) 2024; 13:827. [PMID: 39061896 PMCID: PMC11273690 DOI: 10.3390/antiox13070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.
Collapse
Affiliation(s)
- Baofu Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University Clayton, Melbourne, VIC 3800, Australia
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Hassan NF, Ragab D, Ibrahim SG, Abd El-Galil MM, Hassan Abd-El-Hamid A, Hamed DM, Magdy William M, Salem MA. The potential role of Tirzepatide as adjuvant therapy in countering colistin-induced nephro and neurotoxicity in rats via modulation of PI3K/p-Akt/GSK3-β/NF-kB p65 hub, shielding against oxidative and endoplasmic reticulum stress, and activation of p-CREB/BDNF/TrkB cascade. Int Immunopharmacol 2024; 135:112308. [PMID: 38788447 DOI: 10.1016/j.intimp.2024.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-β hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Diaa Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Shaimaa G Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dalia M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mira Magdy William
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Maha A Salem
- Department of Pharmacology and Toxicology, pharmacy program, Saint Petersburg University in Cairo, Cairo, Egypt
| |
Collapse
|
7
|
Yang Y, Lv Z, An Q, Xu D, Sun L, Wang Y, Chen X, Shao X, Huo T, Yang S, Liu J, Luo H, Quan Q. Tricholoma matsutake polysaccharides suppress excessive melanogenesis via JNK-mediated pathway: Investigation in 8- methoxypsoralen induced B16-F10 melanoma cells and clinical study. Heliyon 2024; 10:e29363. [PMID: 38644864 PMCID: PMC11033116 DOI: 10.1016/j.heliyon.2024.e29363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Skin hyperpigmentation is a worldwide condition associated with augmented melanogenesis. However, conventional therapies often entail various adverse effects. Here, we explore the safety range and depigmentary effects of polysaccharides extract of Tricholoma matsutake (PETM) in an in vitro model and further evaluated its efficacy at the clinical level. An induced-melanogenesis model was established by treating B16-F10 melanoma cells with 8-methoxypsoralen (8-MOP). Effects of PETM on cell viability and melanin content were examined and compared to a commonly used depigmentary agent, α-arbutin. Expressions of key melanogenic factors and upstream signaling pathway were analysed by quantitative PCR and western blot. Moreover, a placebo-controlled clinical study involving Chinese females with skin hyperpigmentation was conducted to measure the efficacy of PETM on improving facial pigmented spots, melanin index, and individual typology angle (ITA°). Results demonstrated that PETM (up to 0.5 mg/mL) had little effect on the viability and motility of B16-F10 cells. Notably, it significantly suppressed the melanin content and expressions of key melanogenic factors induced by 8-MOP in B16-F10 melanoma cells. Western blotting results revealed that PETM inhibited melanogenesis by inactivating c-Jun N-terminal kinase (JNK), and this inhibitory role could be rescued by JNK agonist treatment. Clinical findings showed that PETM treatment resulted in a significant reduction of facial hyperpigmented spot, decreased melanin index, and improved ITA° value compared to the placebo-control group. In conclusion, these in vitro and clinical evidence demonstrated the safety and depigmentary efficacy of PETM, a novel polysaccharide agent. The distinct mechanism of action of PETM on melanogenic signaling pathway positions it as a promising agent for developing alternative therapies.
Collapse
Affiliation(s)
- Yang Yang
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Zheng Lv
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Detian Xu
- Shanghai Skin Disease Hospital, Tongji University Medical School, Shanghai, 200050, China
- The Ice Dermalab, Shanghai, 200050, China
| | - Longjie Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiming Wang
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Xuexue Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Shao
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Tong Huo
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| | - Shuangrui Yang
- Kunming Hospital of Traditional Chinese Medicine, Kunming, 650011, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haoshu Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650504, China
- East Asia Skin Health Research Center, Beijing, 100037, China
| |
Collapse
|
8
|
Mao Q, Lin B, Zhang W, Zhang Y, Zhang Y, Cao Q, Xu M. Understanding the role of ursodeoxycholic acid and gut microbiome in non-alcoholic fatty liver disease: current evidence and perspectives. Front Pharmacol 2024; 15:1371574. [PMID: 38576492 PMCID: PMC10991717 DOI: 10.3389/fphar.2024.1371574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, resulting in a huge medical burden worldwide. Accumulating evidence suggests that the gut microbiome and bile acids play pivotal roles during the development of NAFLD. Patients with NAFLD exhibit unique signatures of the intestinal microbiome marked by the priority of Gram-negative bacteria, decreased ratio of Firmicutes/Bacteroidetes (F/B), and increased Prevotella and Lachnospiraceae. The intestinal microbiota is involved in the metabolism of bile acids. Ursodeoxycholic acid (UDCA) is a key determinant in maintaining the dynamic communication between the host and gut microbiota. It generally shows surprising therapeutic potential in NAFLD with several mechanisms, such as improving cellular autophagy, apoptosis, and mitochondrial functions. This action is based on its direct or indirect effect, targeting the farnesoid X receptor (FXR) and various other nuclear receptors. This review aims to discuss the current studies on the involvement of the microbiome-UDCA interface in NAFLD therapy and provide prospective insights into future preventative and therapeutic approaches for NAFLD.
Collapse
Affiliation(s)
- Qingyi Mao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenluo Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Han X, Yu S, Cui Y, Li J, Fan J, Wang L, Wang M, Pan Y, Xu G. MiR-23a promotes autophagy of yak cumulus cells to alleviate apoptosis via the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway. Theriogenology 2023; 212:50-63. [PMID: 37690377 DOI: 10.1016/j.theriogenology.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
The ultimate fate of Graafian follicles is ovulation or atresia which relies on the highly coordinated processes of apoptosis and autophagy in ovarian cells. Long non-coding RNA maternally expressed gene 3 (LncRNA MEG3), miR-23a, and apoptosis signal-regulating kinase 1 (ASK1) are factors associated with autophagy. However, whether these factors can regulate autophagy in cumulus cells (CCs) of yak is unclear. Here, miR-23a overexpression upregulated the LC3-II/LC3-I ratio and Beclin1 abundance while reducing p62 accumulation (p < 0.05). The monodansylcadaverine assay exhibited a marked increase in punctate green fluorescence, and the GFP-LC3B displayed increased yellow fluorescence (p < 0.05). The opposite effect was observed for miR-23a inhibitors. Furthermore, miR-23a overexpression downregulated the abundance of ASK1 mRNA and total ASK1 protein (t-ASK1), whereas miR-23a inhibitors up-regulated them (p < 0.05). The effects of miR-23a overexpression on ASK1 phosphorylated protein at serine 845 (P-845), total JNK (c-Jun N-terminal kinase) (t-JNK) and the JNK phosphorylated protein (p-JNK) were similar to those of t-ASK1 but elicited the opposite effect on ASK1 phosphorylated protein at serine 967 (P-967) (p < 0.05). We further demonstrated that ASK1 expression can be silenced by small-interfering RNA (siRNA), which had no significant effect on t-JNK abundance (p > 0.05) but significantly suppressed the p-JNK expression (p < 0.05). Silencing ASK1 significantly improved Beclin1 abundance and the LC3-II/LC3-I ratio, but decreased p62 abundance (p < 0.05). An increase in yellow GFP-LC3B puncta and green MDC staining puncta were observed (p < 0.05). Overexpression of LncRNA MEG3 significantly increased the expression of t-ASK1, P-845, and JNK and decreased the abundance of P-967 and miR-23a (p < 0.05). In addition, miR-23a upregulation reduced the number of the TUNEL-positive cells, and the addition of 8 mM 3-methyladenine (3-MA) reversed this downregulation (p < 0.05). Similar trends were observed for the Bax/Bcl2 ratio and cleaved-caspase3 abundance. In summary, miR-23a promotes autophagy by inhibiting ASK1 abundance, which reduces apoptosis of yak CCs. This effect can be inhibited by LncRNA MEG3, which has implications for decreasing abnormal Graafian follicular atresia and maintaining development.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjing Li
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Gengquan Xu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
10
|
Xia M, Wu Z, Wang J, Buist-Homan M, Moshage H. The Coumarin-Derivative Esculetin Protects against Lipotoxicity in Primary Rat Hepatocytes via Attenuating JNK-Mediated Oxidative Stress and Attenuates Free Fatty Acid-Induced Lipid Accumulation. Antioxidants (Basel) 2023; 12:1922. [PMID: 38001774 PMCID: PMC10669015 DOI: 10.3390/antiox12111922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Coumarin derivates have been proposed as a potential treatment for metabolic-dysfunction-associated fatty liver disease (MAFLD). However, the mechanisms underlying their beneficial effects remain unclear. In the present study, we explored the potential of the coumarin derivate esculetin in MAFLD, focusing on hepatocyte lipotoxicity and lipid accumulation. Primary cultures of rat hepatocytes were exposed to palmitic acid (PA) and palmitic acid plus oleic acid (OA/PA) as models of lipotoxicity and lipid accumulation, respectively. Esculetin significantly reduced oxidative stress in PA-treated hepatocytes, as shown by decreased total reactive oxygen species (ROS) and mitochondrial superoxide production and elevated expression of antioxidant genes, including Nrf2 and Gpx1. In addition, esculetin protects against PA-induced necrosis. Esculetin also improved lipid metabolism in primary hepatocytes exposed to nonlipotoxic OA/PA by decreasing the expression of the lipogenesis-related gene Srebp1c and increasing the expression of the fatty acid β-oxidation-related gene Ppar-α. Moreover, esculetin attenuated lipid accumulation in OA/PA-treated hepatocytes. The protective effects of esculetin against lipotoxicity and lipid accumulation were shown to be dependent on the inhibition of JNK and the activation of AMPK, respectively. We conclude that esculetin is a promising compound to target lipotoxicity and lipid accumulation in the treatment of MAFLD.
Collapse
Affiliation(s)
- Mengmeng Xia
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Zongmei Wu
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Junyu Wang
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.X.); (Z.W.); (J.W.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Han X, Pan Y, Fan J, Wang M, Wang L, Wang J, Afedo SY, Zhao L, Wang Y, Zhao T, Zhang T, Zhang R, Cui Y, Yu S. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles. Cell Signal 2023; 107:110680. [PMID: 37086956 DOI: 10.1016/j.cellsig.2023.110680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Apoptosis and autophagy in granulosa cells (GCs) are highly related to follicular development and atresia. It has also been reported that they are related to LncRNA MEG3, miR-23a and apoptosis signal-regulating kinase 1 (ASK-1). However, their relationship to follicular development and the extent to which follicle stimulating hormone (FSH) or luteinizing hormone (LH) can regulate this process remain unknown. Here, we found that ASK1 and JNK were expressed in the GCs of gonadotropin-dependent follicles, and those levels were significantly higher (p < 0.05) in yak Tertiary follicles compared to that of Secondary follicles and Graafian follicles. Then, the effect of LncRNA MEG3 / miR-23a on apoptosis and autophagy via ASK1/JNK (c-Jun N-terminal kinase) in yak GCs was studied. Overexpressing LncRNA MEG3 reduced miR-23a levels and p-967 protein expression, but enhanced ASK1 and JNK mRNA levels as well as t-ASK1, p-845, t-JNK, and p-JNK proteins levels. And Up-regulation of LncRNA MEG3 promoted apoptosis while attenuating autophagy. The targeting relationship between miR-23a and the binding sites of LncRNA MEG3 and ASK1 was also confirmed with the dual luciferase reporter assay. And, the relationship between LncRNA MEG3 and miR-23a was observed as a negative feedback regulation, and changes in LncRNA MEG3 and miR-23a levels can alter the expression of ASK1/JNK axis in yaks GCs. In addition, FSH (10 μg/mL) or LH (100 μg/mL) ability to reverse the effects of LncRNA MEG3 on miR-23a levels and ASK1/JNK axis-mediated apoptosis and autophagy was verified in yak GCs. This is significantly beneficial for decreasing abnormal follicular atresia for yaks tertiary follicles.
Collapse
Affiliation(s)
- Xiaohong Han
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangfeng Fan
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinglei Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Seth Yaw Afedo
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaying Wang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tian Zhao
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tongxiang Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Sak M, Williams BJ, Zumbar CT, Teer L, Al-Kawaaz MNG, Kakar A, Hey AJ, Wilson MJ, Schier LM, Chen J, Lehman NL. The CNS-penetrating taxane drug TPI 287 potentiates antiglioma activity of the AURKA inhibitor alisertib in vivo. Cancer Chemother Pharmacol 2023; 91:191-201. [PMID: 36694044 DOI: 10.1007/s00280-023-04503-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) has a very poor prognosis despite current treatment. We previously found cytotoxic synergy between the AURKA inhibitor alisertib and the CNS-penetrating taxane TPI 287 against GBM tumor cells in vitro. METHODS We used an orthotopic human GBM xenograft mouse model to test if TPI 287 potentiates alisertib in vivo. Western blotting, immunohistochemistry, siRNA knockdown, annexin V binding, and 3-dimensional Matrigel invasion assays were used to investigate potential mechanisms of alisertib and TPI 287 treatment interactions. RESULTS Alisertib + TPI 287 combination therapy significantly prolonged animal survival compared to vehicle (p = 0.011), but only marginally compared to alisertib alone. Alisertib, TPI 287, and combined alisertib + TPI 287 reduced animal tumor volume compared to vehicle-treated controls. This was statistically significant for the combination therapy at 4 weeks (p < 0.0001). Alisertib + TPI 287 treatment decreased anti-apoptotic Bcl-2 protein levels in vivo and in vitro. Expression of the pro-apoptotic protein Bak was significantly increased by combination treatment (p < 0.0001). Pro-apoptotic Bim and Bak knockdown by siRNA decreased apoptosis by alisertib + TPI 287 in GB9, GB30, and U87 cells (p = 0.0005 to 0.0381). Although alisertib and TPI 287 significantly reduced GBM cell invasion (p < 0.0001), their combination was no more effective than TPI 287 alone. CONCLUSIONS Results suggest that apoptosis is the dominant mechanism of potentiation of GBM growth inhibition by alisertib + TPI 287, in part through effects on Bcl-2 family proteins, providing a rationale for further laboratory testing of an AURKA inhibitor plus TPI 287 as a potential therapy against GBM.
Collapse
Affiliation(s)
- Müge Sak
- Biochemistry and Molecular Genetics, University of Louisville, 505 S Hancock St, KY, 40202, Louisville, USA
| | - Brian J Williams
- Neurological Surgery, University of Louisville, Louisville, KY, 40202, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Cory T Zumbar
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Landon Teer
- Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Mustafa N G Al-Kawaaz
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aastha Kakar
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Andrew J Hey
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Megan J Wilson
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Leslie M Schier
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Joseph Chen
- Bioengineering, University of Louisville, Louisville, KY, 40202, USA
| | - Norman L Lehman
- Biochemistry and Molecular Genetics, University of Louisville, 505 S Hancock St, KY, 40202, Louisville, USA.
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA.
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
13
|
Li H, He W, Yue D, Wang M, Yuan X, Huang K. Low doses of fumonisin B1 exacerbate ochratoxin A-induced renal injury in mice and the protective roles of heat shock protein 70. Chem Biol Interact 2023; 369:110240. [PMID: 36397609 DOI: 10.1016/j.cbi.2022.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Fumonisin B1 (FB1) and ochratoxin A (OTA) possess nephrotoxicity to animals and widely co-exist in food and feedstuffs. FB1 rarely, while OTA often, causes toxicosis in animals. Heat shock protein 70 (Hsp70) resists lung injury induced by pneumolysin, but whether Hsp70 could remission mycotoxins-induced renal injury is still unknown. The present study aims to explore the impacts of nontoxic doses of FB1 on OTA-induced nephrotoxicity and the protective roles of Hsp70. In the mycotoxins-challenge experiment, ICR mice were co-exposed to nontoxic doses of FB1 (0, 0.2, 0.5, 1.0 mg/kg bw, IP) and toxic dose of OTA (0.4 mg/kg bw, IP) for 16 d. The results showed that the levels of BUN, Cr, MDA in serum, the Cyto C in renal tubes or glomerulus, pro-apoptosis genes and p-JNK protein expression in kidney were significantly increased. Histopathological results revealed the glomerular swelling. The above all indexes were dose-dependent. In the protection experiment, the mice were pretreated with the eukaryotic plasmid of pEGFP-C3-Hsp70, these increasing parameters in the mycotoxins-challenge experiment were reversed. In vitro, after pK-15 cells were treated with 8 μM FB1 and 5 μM OTA for 48 h, the mitochondrial membrane potential was significantly reduced, mitochondrial ROS was remarkably increased, more Cyto C was leaked from mitochondria into cytoplasm, and pro-apoptosis genes were significantly up-regulated. After the Hsp70 level was up-regulated by pEGFP-C3-Hsp70 or ML346 in pK-15 cells, these above indexes were reversed. However, activation of JNK by anisomycin significantly suppressed the protective effects of Hsp70. Our results demonstrate that the nontoxic doses of FB1 exacerbate the toxic dose of OTA-induced renal injury, while Hsp70 alleviates renal injury by inhibiting the JNK/MAPK signaling pathway. Hsp70 up-regulation may be an efficient strategy for protecting against tissue damage and bio-function impairment induced by co-exposure to FB1 and OTA.
Collapse
Affiliation(s)
- Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
14
|
Zhu M, Wang D, Zou K, Wang F, Zhang Z, Song X, Jia C, Wei Z. Insulin-like growth factor-1 regulates follicle selection of hens by promoting proliferation and inhibiting apoptosis of granulosa cells in prehierarchical follicles in vitro. Anim Reprod Sci 2022; 247:107091. [DOI: 10.1016/j.anireprosci.2022.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
|
15
|
Hydroxysafflor Yellow A Exerts Neuroprotective Effects via HIF-1α/BNIP3 Pathway to Activate Neuronal Autophagy after OGD/R. Cells 2022; 11:cells11233726. [PMID: 36496986 PMCID: PMC9736542 DOI: 10.3390/cells11233726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which can both protect neurons. By exploring bioinformatics combined with network pharmacology, we found that HIF1A and CASP3, key factors regulating autophagy and apoptosis, may be important targets of HSYA for neuroprotection in an oxygen glucose deprivation and reperfusion (OGD/R) model. In this study, we explored a possible new mechanism of HSYA neuroprotection in the OGD/R model. The results showed that OGD/R increased the expression of HIF1A and CASP3 in SH-SY5Y cells and induced autophagy and apoptosis, while HSYA intervention further promoted the expression of HIF1A and inhibited the level of CASP3, accompanied by an increase in autophagy and a decrease in apoptosis in SH-SY5Y cells. The inhibition of HIF1A diminished the activation of autophagy induced with HSYA, while the inhibition of autophagy increased cell apoptosis and blocked the neuroprotective effect of HSYA, suggesting that the neuroprotective effect of HSYA should be mediated by activating the HIF1A/BNIP3 signaling pathway to induce autophagy. These results demonstrate that HSYA may be a promising agent for treating IS.
Collapse
|
16
|
Zeng X, Li X, Yue Y, Wang X, Chen H, Gu Y, Jia H, He Y, Yuan Y, Yue T. Ameliorative Effect of Saccharomyces cerevisiae JKSP39 on Fusobacterium nucleatum and Dextran Sulfate Sodium-Induced Colitis Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14179-14192. [PMID: 36260319 DOI: 10.1021/acs.jafc.2c05338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the ability of the Saccharomyces cerevisiae strain with probiotic properties isolated from Tibetan kefir grains to ameliorate Fusobacterium nucleatum (Fn) infection and dextran sulfate sodium (DSS) treatment-induced murine model of colitis. The tolerance to simulated gastrointestinal conditions, hydrophobicity test, autoaggregation assay, and the antioxidant effect of strains was used to screen one strain with colonization and probiotic potential. The murine model of colitis was established by giving 109 cfu Fn 3 weeks by intragastric administration and 3% DSS in water 1 week before sacrifice. The results indicated that S. cerevisiae JKSP39 (SC) possessed optimal probiotic characteristics in vitro. Supplementation with SC increased the body weight and the expression of anti-inflammatory cytokines (IL-4 and IL-10), while decreasing the disease activity index score and expression of proinflammatory cytokines (TNF-α, IL-6, and IL-17F) in mice undergoing experimental colitis as compared with the colitis model group. Additionally, tight junction proteins and the number of goblet cells per crypt were significantly increased in the SC group, which indicated that the gut barrier was well repaired. The mechanism of SC ameliorating Fn-DSS-induced colitis could be related to the decreased levels of reactive oxygen species (myeloperoxidase, total superoxide dismutase, catalase, H2O2, and malondialdehyde) in the colon, the inhibition of endoplasmic reticulum stress, and the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an710065, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuanyuan Gu
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yining He
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agri-Products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710069, China
| |
Collapse
|
17
|
Gao Y, Wang C, Jiang D, An G, Jin F, Zhang J, Han G, Cui C, Jiang P. New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Front Cell Dev Biol 2022; 10:994037. [PMID: 36187470 PMCID: PMC9524158 DOI: 10.3389/fcell.2022.994037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a dynamic process that maintains the normal homeostasis of cells by digesting and degrading aging proteins and damaged organelles. The effect of autophagy on neural tissue is still a matter of debate. Some authors suggest that autophagy has a protective effect on nerve cells, whereas others suggest that autophagy also induces the death of nerve cells and aggravates nerve injury. In mammals, oxidative stress, autophagy and endoplasmic reticulum stress (ERS) constitute important defense mechanisms to help cells adapt to and survive the stress conditions caused by physiological and pathological stimuli. Under many pathophysiological conditions, oxidative stress, autophagy and ERS are integrated and amplified in cells to promote the progress of diseases. Over the past few decades, oxidative stress, autophagy and ERS and their interactions have been a hot topic in biomedical research. In this review, we summarize recent advances in understanding the interactions between oxidative stress, autophagy and ERS in neuronal cell death and survival.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| | - Pei Jiang
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| |
Collapse
|
18
|
Jian Z, Han Y, Zhang W, Li C, Guo W, Feng X, Li B, Li H. Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer. Cell Biosci 2022; 12:135. [PMID: 35989326 PMCID: PMC9394063 DOI: 10.1186/s13578-022-00855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background PI3K-Akt pathway activation and the expression of histone deacetylases (HDACs) are highly increased in esophageal cancer, suggesting that inhibition of such targets may be a viable therapeutic strategy. Herein, we aimed to evaluate the anti-tumor effect of CUDC-907, a dual PI3K-HDAC inhibitor, in esophageal squamous cell carcinoma (ESCC). Methods The anti-tumor effects of CUDC-907 in ESCC were evaluated using cell counting kit-8, flow cytometry, and western blot. mRNA-sequencing was used to explore the mechanism underlying CUDC-907 anti-tumor effects. The relations of reactive oxygen species (ROS), lipocalin 2 (LCN2), and CUDC-907 were determined by flow cytometry, rescue experiments, and western blot. The activation of the IRE1α-JNK-CHOP signal cascade was confirmed by western blot. The in vivo inhibitory effects of CUDC-907 were examined by a subcutaneous xenograft model in nude mice. Results CUDC-907 displayed effective inhibition in the proliferation, migration, and invasion of ESCC cells. Through an mRNA-sequencing and functional enrichment analysis, autophagy was found to be associated with cancer cells death. CUDC-907 not only inhibited the PI3K-Akt-mTOR pathways to result in autophagy, but also induced ROS accumulation to activate IRE1α-JNK-CHOP-mediated cytotoxic autophagy by downregulating LCN2 expression. Consistently, the in vivo anti-tumor effects of CUDC-907 accompanied by the downregulated expression of p-mTOR and LCN2 and upregulated expression of p-IRE1α and LC3B-II were evaluated in a xenograft mouse model. Conclusion Our findings suggested the clinical development and administration of CUDC-907 might act as a novel treatment strategy for ESCC. A more in-depth understanding of the anti-tumor effect of CUDC-907 in ESCC will benefit the clinically targeted treatment of ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00855-x.
Collapse
|
19
|
Ala M, Mohammad Jafari R, Ala M, Hejazi SM, Tavangar SM, Mahdavi SR, Dehpour AR. Sildenafil improves radiation-induced oral mucositis by attenuating oxidative stress, NF-κB, ERK and JNK signalling pathways. J Cell Mol Med 2022; 26:4556-4565. [PMID: 35810384 PMCID: PMC9357636 DOI: 10.1111/jcmm.17480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced oral mucositis is a common and dose-limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti-inflammatory and anti-cancer effects. In this study, we investigated the effect of sildenafil on radiation-induced mucositis in rats. Two doses of radiation (8 and 26 Gy X-ray) were used to induce low-grade and high-grade oral mucositis, separately. A control group and three groups of sildenafil citrate-treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF-κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF-α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF-κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high-dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high-dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation-induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahan Ala
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sedigheh Marjaneh Hejazi
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Advanced Medical Technologies and Equipment Institute Research Center for Molecular and Cellular in Imaging, Bio-optical Imaging Group, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Science Institute, Tehran University of Medical Sciences, Iran
| | - Seied Rabi Mahdavi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Fujimura M, Usuki F. Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. Int J Mol Sci 2022; 23:ijms23137218. [PMID: 35806222 PMCID: PMC9266708 DOI: 10.3390/ijms23137218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Methylmercury (MeHg) is a widely known environmental pollutant that causes severe neurotoxicity. MeHg-induced neurotoxicity depends on various cellular conditions, including differences in the characteristics of tissues and cells, exposure age (fetal, childhood, or adulthood), and exposure levels. Research has highlighted the importance of oxidative stress in the pathogenesis of MeHg-induced toxicity and the site- and cell-specific nature of MeHg-induced neurotoxicity. The cerebellar granule cells and deeper layer cerebrocortical neurons are vulnerable to MeHg. In contrast, the hippocampal neurons are resistant to MeHg, even at high mercury accumulation levels. This review summarizes the mechanisms underlying MeHg-mediated intracellular events that lead to site-specific neurotoxicity. Specifically, we discuss the mechanisms associated with the redox ability, neural outgrowth and synapse formation, cellular signaling pathways, epigenetics, and the inflammatory conditions of microglia.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
- Correspondence: ; Tel.: +81-966-63-3111; Fax: +81-966-61-1145
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| |
Collapse
|
21
|
Effects of acute heat stress on liver damage, apoptosis and inflammation of pikeperch (Sander lucioperca). J Therm Biol 2022; 106:103251. [DOI: 10.1016/j.jtherbio.2022.103251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
|
22
|
Dai C, Li M, Sun T, Zhang Y, Wang Y, Shen Z, Velkov T, Tang S, Shen J. Colistin-induced pulmonary toxicity involves the activation of NOX4/TGF-β/mtROS pathway and the inhibition of Akt/mTOR pathway. Food Chem Toxicol 2022; 163:112966. [PMID: 35378205 DOI: 10.1016/j.fct.2022.112966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Colistin therapy can cause pulmonary toxicity, however, our understanding of the underlying molecular mechanism remains incomplete. This study aimed to investigate the molecular mechanism of colistin-induced pulmonary toxicity in vitro and in vivo. Our results showed that intraperitoneal colistin treatment significantly increased the expression of TGF-β and NOX4 protein and mRNA, then triggers oxidative stress, mitochondrial dysfunction, and apoptosis in the lung tissue of mice and A549 cells. Moreover, colistin treatment significantly increased levels of mitochondrial ROS (mtROS) and autophagy flux in A549 cells. Inhibition of NOX4 protected A549 cells against colistin-induced mtROS and apoptosis. Colistin treatment also down-regulated the expression of p-Akt and p-mTOR proteins (all P < 0.05 or 0.01) in lung tissues of mice or A549 cells. Inhibition of autophagy or Akt pathways by chloroquine (CQ), 3-Methyladenine (3-MA) or LY294002 promoted colistin-induced mitochondrial damage, and caspase-dependent cellular apoptosis. Whereas, activation of autophagy by rapamycin pretreatment of A549 cells partly abolished colistin-induced cytotoxicity, mitochondrial dysfunction, and apoptosis. This is first study to show that colistin-induced pulmonary toxicity involves the activation of TGF-β/NOX4/mtROS pathway and the inhibition of Akt/mTOR pathway in lung tissues of mice and highlights the key protective role of autophagy activation.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China.
| | - Meng Li
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Tun Sun
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, 100193, PR China; Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Hu W, Cai C, Li Y, Kang F, Chu T, Dong S. Farnesoid X receptor agonist attenuates subchondral bone osteoclast fusion and osteochondral pathologies of osteoarthritis via suppressing JNK1/2/NFATc1 pathway. FASEB J 2022; 36:e22243. [PMID: 35224782 DOI: 10.1096/fj.202101717r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease of the joint, featured by articular cartilage destruction and subchondral bone marrow lesions. Articular cartilage and subchondral bone constitute an osteochondral unit that guarantees joint homeostasis. During OA initiation, activated osteoclasts in subchondral bone ultimately result in impaired capacities of the subchondral bone in response to mechanical stress, followed by the degradation of overlying articular cartilage. Thus, targeting osteoclasts could be a potential therapeutic option for treating OA. Here, we observed that farnesoid X receptor (FXR) expression and osteoclast fusion and activity in subchondral bone were concomitantly changed during early-stage OA in the OA mouse model established by anterior cruciate ligament transection (ACLT). Then, we explored the therapeutic effects of FXR agonist GW4064 on the osteochondral pathologies in ACLT mice. We showed that GW4064 obviously ameliorated subchondral bone deterioration, associated with reduction in tartrate-resistant acid phosphatase (TRAP) positive multinuclear osteoclast number, as well as articular cartilage degradation, which were blocked by the treatment with FXR antagonist Guggulsterone. Mechanistically, GW4064 impeded osteoclastogenesis through inhibiting subchondral bone osteoclast fusion via suppressing c-Jun N-terminal kinase (JNK) 1/2/nuclear factor of activated T-cells 1 (NFATc1) pathway. Taken together, our results present evidence for the protective effects of GW4064 against OA by blunting osteoclast-mediated aberrant subchondral bone loss and subsequent cartilage deterioration. Therefore, GW4064 demonstrates the potential as an alternative therapeutic option against OA for further drug development.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuheng Li
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, College of Biomedical Engineering, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
24
|
Dong SJ, Gao XY, Pei MX, Luo T, Fan D, Chen YL, Jin JF, Zhao XD. Effects and Mechanism of Salvianolic Acid B on the Injury of Human Renal Tubular Epithelial Cells Induced by Iopromide. Front Pharmacol 2022; 12:761908. [PMID: 35035354 PMCID: PMC8758562 DOI: 10.3389/fphar.2021.761908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
With the increasing application of medical imaging contrast materials, contrast-induced nephropathy (CIN) has become the third major cause of iatrogenic renal insufficiency. CIN is defined as an absolute increase in serum creatinine levels of at least 0.50 mg/dl or an increase >25% of serum creatinine from baseline after exposure to contrast. In this study, the protective effects of salvianolic acid B (Sal B) were detected in human renal tubular epithelial cells (HK-2) exposed to iopromide. The results showed that different concentrations of Sal B counteract the loss of cell viability induced by iopromide, and reduce cell apoptosis, the reactive oxygen species (ROS) levels, and the levels of endoplasmic reticulum stress (ERS)–related and apoptosis-related proteins such as p-IRE-1α, p-eIF-2α/eIF-2α, p-JNK, CHOP, Bax/Bcl-2, and cleaved caspase-3. In addition, Sal B at a concentration of 100 μmol/L inhibited ERS and reduced cell damage to a similar extent as the ERS inhibitor 4-PBA. Importantly, treatment with Sal B could abolish the injury induced by ERS agonist tunicamycin, increasing cell viability and the mitochondrial membrane potential, as well as significantly reducing ROS levels and the expression of Bax/Bcl-2, cleaved-caspase-3, GRP78, p-eIF2α, p-JNK, and CHOP. These results suggested that the protective effect of Sal B against HK-2 cell injury induced by iopromide may be related to the inhibition of ERS.
Collapse
Affiliation(s)
- Shu-Jun Dong
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xin-Yue Gao
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ming-Xin Pei
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ting Luo
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yan-Ling Chen
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Jun-Feng Jin
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiao-Duo Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Miao Z, Miao Z, Wang S, Wu H, Xu S. Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 120:674-685. [PMID: 34954370 DOI: 10.1016/j.fsi.2021.12.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Imidacloprid (IMI) is a neonicotinoid compound widely used in agriculture production, causing surface water pollution and threatening non-target organisms. The aim of this study was to analyze the effects of IMI on grass carp (Ctenopharyngodon idellus) liver cell (L8824) injury. The L8824 cells were exposed to different doses of IMI (65 mg/L, 130 mg/L and 260 mg/L) for 24 h. Our results demonstrated that exposure IMI significantly suppressed the activity of anti-oxidant enzymes (SOD, CAT and T-AOC) and accumulated oxidase (MDA) levels, and promoting reactive oxygen species (ROS) generation in L8824 cells. Additionally, mitochondrial membrane potential (ΔΨ m), mitochondria-derived ROS and ATP content and the MitoTracker Green indicated that IMI aggravated mitochondrial dysfunction, thereby inducing inflammation and enhancing pro-inflammatory genes (NF-kappaB, TNFα, IL-1β and IL-6) expressions. However, the addition of 2 mM N-acetyl-l-cysteine (NAC) can reverse these adverse effects of high-dose IMI- induced. Hence, ROS is the main factor of IMI-induced mitochondrial dysfunction and inflammation. We further found that exposure to IMI induced apoptosis, which is characterized by promoting release of cytochrome c (Cyt-C), and increasing the expression of Bcl-2-Associated X (BAX), cysteinyl aspartate specific proteinases (Caspase 9 and 3), decreasing Bcl-2 level. Immunofluorescent staining, qRT-PCR and Western Blot results indicated that IMI exposure also activated mitophagy, which was demonstrated by the expression of mitophagy-related genes (BNIP3, LC3B and P62). Conversely, scavenging JNK by SP600125(10 μM) alleviated the expression of mitochondrial apoptosis and mitophagy-related gene induced by high-dose IMI. Therefore, these results of study demonstrated that IMI-induced oxidative stress to regulate mitochondrial dysfunction, thus causing inflammation, mitochondrial apoptosis and mitophagy in grass carp hepatocytes through NF-kappaB/JNK pathway.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Fang X, Wu H, Wei J, Miao R, Zhang Y, Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front Endocrinol (Lausanne) 2022; 13:982145. [PMID: 36034426 PMCID: PMC9410360 DOI: 10.3389/fendo.2022.982145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Berberine is a natural active ingredient extracted from the rhizome of Rhizoma Coptidis, which interacts with multiple intracellular targets and exhibits a wide range of pharmacological activities. Previous studies have preliminarily confirmed that the regulation of mitochondrial activity is related to various pharmacological actions of berberine, such as regulating blood sugar and lipid and inhibiting tumor progression. However, the mechanism of berberine's regulation of mitochondrial activity remains to be further studied. This paper summarizes the molecular mechanism of the mitochondrial quality control system and briefly reviews the targets of berberine in regulating mitochondrial activity. It is proposed that berberine mainly regulates glycolipid metabolism by regulating mitochondrial respiratory chain function, promotes tumor cell apoptosis by regulating mitochondrial apoptosis pathway, and protects cardiac function by promoting mitophagy to alleviate mitochondrial dysfunction. It reveals the mechanism of berberine's pharmacological effects from the perspective of mitochondria and provides a scientific basis for the application of berberine in the clinical treatment of diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
27
|
Lv JJ, Yuan KK, Lu MY, He ZB, Li HY, Yang WD. Responses of JNK signaling pathway to the toxic dinoflagellate Prorocentrum lima in the mussel Perna viridis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112905. [PMID: 34673413 DOI: 10.1016/j.ecoenv.2021.112905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning (DSP) toxins are widely distributed over the world, causing diarrhea, vomiting, and even tumor in human. However, bivalves, the main carrier of the DSP toxins, have some tolerant mechanisms to DSP toxins, though it remains unclear. In this study, we scrutinized the role of Jun N-terminal kinases (JNK) in tolerance of DSP toxins and the relationship between JNK, apoptosis and nuclear factor E2-related factor/antioxidant response element (Nrf2/ARE) pathways. We found that the phosphorylated level of JNK protein was significantly increased both in hemocytes (6 h) and gills (3 h) of the mussel Perna viridis after short-term exposure to DSP toxins-producing dinoflagellate Prorocentrum lima. Exposure of P. lima induced oxidative stress in mussels. Hemocytes and gills displayed different sensitivities to the cytotoxicity of DSP toxins. Exposure of P. lima activated caspase-3 and induced apoptosis in gills but did not induce caspase-3 and apoptosis in hemocytes. The short-term exposure of P. lima could activate Nrf2/ARE signaling pathway in hemocytes (6 h), while longer-term exposure could induce glutathione reductase (GR) expression in hemocytes (96 h) and glutathione-S-transferases (GST) in gills (96 h). Based on the phylogenetic tree of Nrf2, Nrf2 in P. viridis was closely related to that in other mussels, especially Mytilus coruscus, but far from that in Mus musculus. The most likely phosphorylated site of Nrf2 in the mussels P. viridis is threonine 504 for JNK, which is different from that in M. musculus. Taken all together, the tolerant mechanism of P. viridis to DSP toxins might be involved in JNK and Nrf2/ARE signaling pathways, and JNK play a key role in the mechanism. Our findings provide a new clue to further understand tolerant mechanisms of bivalves to DSP toxins.
Collapse
Affiliation(s)
- Jin-Jin Lv
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Kuan-Kuan Yuan
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Mi-Yu Lu
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Zheng-Bing He
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
28
|
Liu SQ, Ren C, Yao RQ, Wu Y, Luan YY, Dong N, Yao YM. TNF-α-induced protein 8-like 2 negatively regulates the immune function of dendritic cells by suppressing autophagy via the TAK1/JNK pathway in septic mice. Cell Death Dis 2021; 12:1032. [PMID: 34718337 PMCID: PMC8557212 DOI: 10.1038/s41419-021-04327-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-α-induced protein 8-like 2 (TIPE2) is a newly discovered negative immunoregulatory protein that is involved in various cellular immune responses to infections. However, the underlying mechanism by which TIPE2 affects the immune function of dendritic cells (DCs) is not yet understood. This study aimed to determine the correlations among DCs TIPE2 expression, autophagic activity and immune function in the context of sepsis. In addition, the signaling pathway by which TIPE2 regulates autophagy in DCs was investigated. We reported for the first time that TIPE2 overexpression (knock-in, KI) exerted an inhibitory effect on autophagy in DCs and markedly suppressed the immune function of DCs upon septic challenge both in vitro and in vivo. In addition, TIPE2 knockout (KO) in DCs significantly enhanced autophagy and improved the immune response of DCs in sepsis. Of note, we found that the transforming growth factor-β (TGF-β)-activated kinase-1 (TAK1)/c-Jun N-terminal kinase (JNK) pathway was inhibited by TIPE2 in DCs, resulting in downregulated autophagic activity. Collectively, these results suggest that TIPE2 can suppress the autophagic activity of DCs by inhibiting the TAK1/JNK signaling pathway and further negatively regulate the immune function of DCs in the development of septic complications.
Collapse
Affiliation(s)
- Shuang-Qing Liu
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, 200433, Shanghai, People's Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ying-Yi Luan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 100048, Beijing, People's Republic of China.
| |
Collapse
|
29
|
Chen Y, Li Y, Guo H, Zhang Z, Zhang J, Dong X, Liu Y, Zhuang Y, Zhao Y. The Effects of Adoptively Transferred IL-23/IL-18-Polarized Neutrophils on Tumor and Collagen-Induced Arthritis in Mice. J Inflamm Res 2021; 14:4669-4686. [PMID: 34557012 PMCID: PMC8453247 DOI: 10.2147/jir.s329528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Neutrophils present great diverse phenotypes in various microenvironments and play different immune regulatory functions. Neutrophils generally classified into inflammatory phenotype N1 and anti-informatory phenotype N2. Our recent studies showed that IL-23 alone stimulated neutrophils to express IL-17A, IL-17F and IL-22 and displayed a gene transcriptional profile similar to Th17 cells. In the present study, we tried to identify potential cytokines to promote IL-23-induced neutrophil polarization. Methods Mouse bone marrow-derived neutrophils and human peripheral blood neutrophils were treated with IL-23 (10 ng/mL) plus IL-18 (25 ng/mL) to induce Th17-like subset in vitro and detected by real-time PCR, flow cytometry, ELISA, immunofluorescence and RNA-seq assays. In vivo, collagen-induced arthritis (CIA) mouse model and EL4 tumor-bearing mouse model were used to characterize the potential roles of N(IL-23+IL-18) in inflammation and tumor. Results Real-time PCR, ELISA and flow cytometry assays showed that IL-18 could significantly enhance IL-23-induced IL-17A, IL-17F and IL-22 expressions in mouse and human neutrophils in a synergistic way, although IL-18 alone failed to induce these cytokines expression. RNA-seq and molecular studies showed that the polarization of N(IL-23+IL-18) is mainly mediated by the JNK/p38-STAT3-BATF signaling pathway. Adoptive transfer of the induced N(IL-23+IL-18) neutrophils significantly accelerated the tumor growth in EL4 tumor-bearing mice and enhanced disease progression in the CIA mouse model. IL-17A-deficient N(IL-23+IL-18) neutrophils failed to enhance the CIA pathogenesis in this model, suggesting that IL-17A may be involved in the N(IL-23+IL-18) neutrophils-promoted arthritis in mice. Conclusion The Th17-type subpopulation N(IL-23+IL-18) has pro-tumor and pro-inflammatory properties. Recognizing the different functional polarization of neutrophils would significantly help us to understand the distinctive protective/pathological roles of neutrophils in physiological and different pathological situations.
Collapse
Affiliation(s)
- Yifang Chen
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Li
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Han Guo
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhaoqi Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiayu Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Dong
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Liu
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong Zhao
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, People's Republic of China
| |
Collapse
|
30
|
Ni L, Wei Y, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The effects of mTOR or Vps34-mediated autophagy on methylmercury-induced neuronal apoptosis in rat cerebral cortex. Food Chem Toxicol 2021; 155:112386. [PMID: 34242720 DOI: 10.1016/j.fct.2021.112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023]
Abstract
Methylmercury (MeHg) is a environmental contaminant, which can induce neurotoxic effects. So far, the exact molecular mechanisms of autophagy and its effect on apoptosis in MeHg-induced neurotoxicity have not been elucidated. Here, rats were exposed to MeHg (4, 8, or 12 μmol/kg) for 4 weeks to evaluate the dose-effect relationship between MeHg and apoptosis, or autophagy in cerebral cortex. On this basis, rapamycin (Rapa) or 3-methyladenine (3-MA) was administrated to further explore the regulatory mechanisms of autophagy on MeHg-induced neuronal apoptosis. The pathological changes, autophagy or apoptosis levels, expression of autophagic or apoptotic-associated factors such as mTOR, S6K1, 4EBP1, Vps34, Beclin1, p62, LC3, Bcl-2/Bax, caspase, or MAPKs were investigated. Results showed that MeHg dose-dependently induced pathological changes in cerebral cortex, and the levels of autophagy and apoptosis were increased. Furthermore, Rapa pretreatment antagonized MeHg-induced apoptosis, whereas 3-MA further aggravated apoptosis, which were supported by findings that Rapa activated mTOR-mediated autophagy while 3-MA inhibited Vps34-related autophagy, further affect neuronal apoptosis through regulation of apoptotic factors mentioned above. In conclusion, the findings indicated that MeHg dose-dependently induced autophagy or apoptosis, and mTOR or Vps34 may play important roles in mediating autophagy, which further regulated apoptosis through MAPKs or mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
31
|
Zhou L, Zhang C, Qiang Y, Huang M, Ren X, Li Y, Shao J, Xu L. Anthocyanin from purple sweet potato attenuates lead-induced reproductive toxicity mediated by JNK signaling pathway in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112683. [PMID: 34438266 DOI: 10.1016/j.ecoenv.2021.112683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The present work aimed to explore the protective effect of APSP on Pb-induced reproductive toxicity and possible mechanism. APSP (100 mg/kg) was administered to Pb-intoxicated (0.2% lead acetate) male Kunming mice once daily by oral gavage for 6 weeks. Our results showed that APSP exerted male reproductive protection effects as showed by attenuated Pb-induced testicular injury, improved sperm count and motility, and reduced sperm abnormality rate. APSP also restored Pb-induced decrease in both enzymatic and non-enzymatic antioxidants, and GSH/GSSG ratio, but inhibited lipid peroxidation in serum and testes. Moreover, APSP downregulated Pb-induced Bax mRNA and protein expressions, suppressed activation of caspase-3, upregulated Bcl-2 protein expression, and prevented Pb-induced DNA damage. APSP treatment also interfered with Pb-induced testicular JNK signaling through inhibition of JNK mRNA expression and phosphorylation, resulting in inhibition of c-Jun expression. These effects of APSP were abolished by Pb. In conclusion, APSP represents a potential therapeutic agent for preventing Pb-caused reproductive toxicity, which is attributed to its antioxidant and anti-apoptotic properties, as well as, modulation of JNK signaling pathway.
Collapse
Affiliation(s)
- Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yu Qiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Min Huang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Chen Y, Li P, Peng Y, Xie X, Zhang Y, Jiang Y, Li T, Qin X, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Protective autophagy attenuates soft substrate-induced apoptosis through ROS/JNK signaling pathway in breast cancer cells. Free Radic Biol Med 2021; 172:590-603. [PMID: 34242793 DOI: 10.1016/j.freeradbiomed.2021.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
Tumor microenvironments are characterized not only in terms of chemical composition, but also by physical properties such as stiffness, which influences morphology, proliferation, and fate of tumor cells. However, the underlying mechanisms between matrix stiffness and the apoptosis-autophagy balance remain largely unexplored. In this study, we cultured human breast cancer MDA-MB-231 cells on rigid (57 kPa), stiff (38 kPa) or soft (10 kPa) substrates and demonstrated that increasing autophagy levels and autophagic flux in the cells cultured on soft substrates partly attenuated soft substrate-induced apoptosis. Mechanistically, this protective autophagy is regulated by intracellular reactive oxygen species (ROS) accumulation, which triggers the downstream signals of JNK, Bcl-2 and Beclin-1. More importantly, soft substrate-induced activation of ROS/JNK signaling promotes cell apoptosis through the mitochondrial pathway, whereas it increases protective autophagy by suppressing the interaction of Bcl-2 and Beclin-1. Taken together, our data suggest that JNK is the mediator of soft substrate-induced breast cancer cell apoptosis and autophagy which is likely to be the mechanism that partly attenuates mitochondrial apoptosis. This study provides new insights into the molecular mechanism by which autophagy plays a protective role against soft substrate-induced apoptosis in human breast cancer cells.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
33
|
Ishtiaq A, Ali T, Bakhtiar A, Bibi R, Bibi K, Mushtaq I, Li S, Khan W, Khan U, Anis RA, Anees M, Sultan A, Murtaza I. Melatonin abated Bisphenol A-induced neurotoxicity via p53/PUMA/Drp-1 signaling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17789-17801. [PMID: 33398767 DOI: 10.1007/s11356-020-12129-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is widely used in the manufacture of different daily life products. Accumulating evidence supports the association between the increasing incidence of neurodegenerative diseases and the BPA level in the environment. In the present study, we aimed to evaluate the neuroprotective role of melatonin against BPA-induced mitochondrial dysfunction-mediated apoptosis in the brain. Herein, adult Sprague Dawley rats were administrated (subcutaneously) with BPA (100 μg/kg BW, 1 mg/kg BW, and 10 mg/kg BW) and melatonin (4 mg/kg BW) for 16 days. Our results showed BPA exposure significantly increased the oxidative stress as demonstrated by increased free radicals (ROS), TBARs level, disrupted cellular architecture, and decreased antioxidant enzymes including SOD, CAT, APX, POD, and GSH levels. Additionally, BPA treatment increased the expression of PUMA, p53, and Drp-1 resulting in apoptosis in the brain tissue of rats. However, melatonin treatment significantly attenuated BPA-induced toxic effects by scavenging ROS, boosting antioxidant enzyme activities, and interestingly enervated brain apoptosis by normalizing p53, PUMA, and Drp-1 expressions at both transcriptional and translational level. Moreover, the brain tissue histology also revealed the therapeutic potential of melatonin by normalizing the cellular architecture. Conclusively, our finding suggests that melatonin could alleviate oxidative stress and mitochondrial dysfunction-linked apoptosis, rendering its neuroprotective potential against BPA-induced toxicity.
Collapse
Affiliation(s)
- Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tahir Ali
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Attia Bakhtiar
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Robina Bibi
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kinza Bibi
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wajiha Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Uzma Khan
- Faculty of Biological Sciences, Hazara University, Mansehra, KPK, Pakistan
| | - Riffat Aysha Anis
- Institute of Diet and Nutritional Sciences, The University of Lahore, Islamabad Campus, Islamabad, Pakistan
| | - Mariam Anees
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aneesa Sultan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
34
|
Exopolysaccharides isolated from Rhizopus nigricans induced colon cancer cell apoptosis in vitro and in vivo via activating the AMPK pathway. Biosci Rep 2021; 40:221749. [PMID: 31894839 PMCID: PMC6960068 DOI: 10.1042/bsr20192774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related human deaths. The exopolysaccharide (EPS1-1), isolated from Rhizopus nigricans, has been described as exhibiting anti-tumor and pro-apoptotic activity against CRC, although the underlying mechanism is poorly understood. Herein, we investigate how EPS1-1 induces apoptosis of CRC cells in vitro and in vivo. Our results show that, in vitro, EPS1-1 suppressed cell growth and facilitated apoptosis in a dose- and time-dependent manner by activating the AMP-activated protein kinase (AMPK) pathway in mouse colon cancer CT26 cells. However, treatment with small interfering RNAs (siRNAs) targeting AMPKα or with compound C, an AMPK inhibitor, interfered with the pro-apoptosis effects of EPS1-1. We also show that EPS1-1 initiated the release of reactive oxygen species (ROS) and liver kinase B1 (LKB1), both of which are necessary signals for AMPK activation. Furthermore, EPS1-1-mediated apoptosis is regulated by inactivation of mammalian target of rapamycin complex 1 (mTORC1) and activation of the jun-NH2 kinase (JNK)-p53 signaling axis dependent on AMPK activation. In vivo, azoxymethane/dextran sulfate sodium (AOM/DSS)-treated CRC mice, when administered EPS1-1, exhibited activation of the AMPK pathway, inhibition of mTORC1, and accumulation of p53 in tumor tissues. Collectively, these findings suggest that EPS1-1-induced apoptosis relies on the activation of the AMPK pathway. The present study provides evidence suggesting that EPS1-1 may be an effective target for development of novel CRC therapeutic agents.
Collapse
|
35
|
Yang Y, Feng Y, Huang H, Cui L, Li F. PM2.5 exposure induces reproductive injury through IRE1/JNK/autophagy signaling in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111924. [PMID: 33486381 DOI: 10.1016/j.ecoenv.2021.111924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) constitutes the most significant air pollutant that causes health risks. However, the mechanism(s) underlying PM2.5-induced male reproductive injury has not been clarified. In the present study we explored whether PM2.5 activated the inositol-requiring enzyme 1 (IRE1)/c-Jun NH 2-terminal kinase (JNK)/autophagy-signaling pathway, and whether this pathway mediated reproductive injury in male rats. We established a male Sprague-Dawley rat model of PM2.5 (1.5 mg/kg) exposure-induced reproductive injury, and observed the intervention effects of STF083010 (an IRE1 inhibitor, 1 mg/kg). After 4 weeks of exposure, reproductive injury-related indicators and IRE1-cascade protein expression were analyzed. Our results showed that sperm quality and serum testosterone level significantly decreased and apoptotic index increased after exposure to PM2.5. After STF083010 intervention, sperm quality and serum testosterone level were significantly improved, while the apoptotic index was reduced. Under light microscopy, we observed that the structure of spermatogenic cells in the PM2.5 group was loose, and that the numbers of spermatogenic cells and mature spermatozoa were reduced. After STF083010 intervention, the structural damage to spermatogenic cells was improved, and the number of cells shed was reduced. Western blotting analysis showed that the expression of IRE1, phosphorylated JNK (p-JNK), beclin-1, and microtubule-associated protein 1 light chain 3(LC3)II/LC3I proteins was significantly upregulated, and that the expression of p62 protein was significantly downregulated in the PM2.5 group. The concomitant administration of STF083010 significantly antagonized the aforementioned adverse effects. STF083010 exerted specific protective effects on reproductive injury-related effects in male rats exposed to PM2.5, with effects mediated via IRE1/JNK/autophagy signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yajing Feng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fuqin Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
36
|
Mao J, Gao W, Xue L, Wang J, Zhao L. The lncRNA SLCO4A1-AS1/miR-876-3p/RBBP6 axis regulates cell proliferation and apoptosis in acute lymphocytic leukemia via the JNK signaling pathway. Int J Lab Hematol 2021; 43:1050-1061. [PMID: 33683013 DOI: 10.1111/ijlh.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acute lymphocytic leukemia (ALL) is a hematologic malignancy caused by the clonal proliferation of immature lymphocytes. Long noncoding RNAs (lncRNAs) have been reported as critical regulators in several cancers, including ALL. LncRNA SLCO4A1 antisense RNA 1 (SLCO4A1-AS1) has been revealed to be implicated in tumorigenesis of several cancers. Our study focused on the role of SLCO4A1-AS1 in ALL. METHODS RT-qPCR, Western blot analysis, CCK-8, EdU, and Flow cytometry analysis were used to explore the biological function of SLCO4A1-AS1 in ALL cellular processes. Luciferase reporter and RNA pull-down assays were applied to explore the mechanism of SLCO4A1-AS1 in ALL cells. RESULTS SLCO4A1-AS1 was upregulated in ALL tissues and cell lines. We found that suppression of SLCO4A1-AS1 suppressed ALL cell proliferation and facilitated cell apoptosis. Our result confirmed that SLCO4A1-AS1 acted as a ceRNA by sponging microRNA 876-3p (miR-876-3p) to upregulate retinoblastoma binding protein 6 (RBBP6) expression in ALL cells. Moreover, SLCO4A1-AS1 activated the JNK signaling pathway by upregulating RBBP6. Rescue assays revealed that the activation of the JNK signaling or overexpression of RBBP6 revered the suppressive effect of SLCO4A1-AS1 knockdown on growth of ALL cells. CONCLUSION SLCO4A1-AS1 promoted cell growth of ALL by the miR-876-3p/RBBP6 axis to activate the JNK signaling pathway.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Wenliang Gao
- Department of Internal Medicine, The Second Children & Women's Healthcare of Jinan City, Jinan, China
| | - Lianguo Xue
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
37
|
Xue D, Zhou X, Qiu J. Cytotoxicity mechanisms of plumbagin in drug-resistant tongue squamous cell carcinoma. J Pharm Pharmacol 2021; 73:98-109. [PMID: 33791802 DOI: 10.1093/jpp/rgaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To evaluate the inhibitory effect and mechanism of plumbagin (PLB) against drug-resistant tongue squamous cell carcinoma (TSCC), and whether its antitumour effect is not affected by tumour drug resistance. METHODS TSCC sensitive CAL27 cells and drug-resistant CAL27/RE cells were used to study the cytotoxicity and mechanism of PLB in vitro, including CCK-8 analysis, colony formation, DAPI staining, flow cytometry assay, transmission electron microscopy, western blotting assay, autophagy, apoptosis and ROS fluorescent probes. BALB/c nude mice xenograft models were used to study the growth inhibitory effect of PLB in vivo. KEY FINDINGS The results showed that the cell viability and proliferation inhibition and apoptosis induction abilities of PLB on drug-resistant cells were more obvious than that on sensitive cells. And PLB induced protective autophagy in TSCC cells. Mechanistically, PLB induced apoptosis and autophagy by generating reactive oxygen species to mediate JNK and AKT/mTOR pathways. Finally, the growth inhibitory effect of PLB against drug-resistant TSCC was also confirmed in vivo. CONCLUSIONS PLB will be a promising anticancer agent to overcome drug-resistant TSCC without being affected by its drug resistance properties.
Collapse
Affiliation(s)
- Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Ishfaq M, Zhang W, Liu Y, Wang J, Wu Z, Shah SW, Li R, Miao Y, Chen C, Li J. Baicalin attenuated Mycoplasma gallisepticum-induced immune impairment in chicken bursa of fabricius through modulation of autophagy and inhibited inflammation and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:880-890. [PMID: 32729138 DOI: 10.1002/jsfa.10695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mycoplasma gallisepticum (MG) is the primary etiologic agent of chronic respiratory disease in poultry. However, the mechanism underlying MG-induced immune dysregulation in chicken is still elusive. Baicalin shows excellent anti-bacterial, anti-inflammatory, anti-carcinogenic and anti-viral properties. In the present study, the preventive effects of baicalin against immune impairment in chicken bursa of fabricius (BF) were studied in an MG infection model. RESULTS Histopathological examination showed increased inflammatory cell infiltrations and fragmented nuclei in the model group. Ultrastructural analysis revealed the phenomenon of apoptosis in bursal cells, along with the deformation of mitochondrial membrane and swollen mitochondria in the model group. However, these abnormal morphological changes were partially alleviated by baicalin. Meanwhile, baicalin treatment attenuated the level of proinflammatory cytokines, and suppressed nuclear factor-kappa B expression at both protein and mRNA level. Terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling assay showed extensive apoptosis in BF in the model group. The mRNA and protein expression levels of apoptosis-related genes were upregulated in BF, while baicalin treatment significantly alleviated apoptosis in BF. In addition, alterations in mRNA and protein expression levels of autophagy-related genes and mitochondrial dynamics proteins were significantly alleviated by baicalin. Moreover, baicalin treatment significantly attenuated MG-induced decrease in CD8+ cells and reduced bacterial load in chicken BF compared to the model group. CONCLUSIONS These results suggested that baicalin could effectively inhibit MG-induced immune impairment and alleviate inflammatory responses and apoptosis in chicken BF. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Syed Wa Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yusong Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC, Chiu CC. A Marine Terpenoid, Heteronemin, Induces Both the Apoptosis and Ferroptosis of Hepatocellular Carcinoma Cells and Involves the ROS and MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7689045. [PMID: 33488943 PMCID: PMC7803406 DOI: 10.1155/2021/7689045] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death, resulting in over 700 thousand deaths annually worldwide. Chemotherapy is the primary therapeutic strategy for patients with late-stage HCC. Heteronemin is a marine natural product isolated from Hippospongia sp. that has been found to protect against carcinogenesis in cholangiocarcinoma, prostate cancer, and acute myeloid leukemia. In this study, heteronemin was found to inhibit the proliferation of the HCC cell lines HA22T and HA59T and induce apoptosis via the caspase pathway. Heteronemin treatment also induced the formation of reactive oxygen species (ROS), which are associated with heteronemin-induced cell death, and to trigger ROS removal by mitochondrial SOD2 rather than cytosolic SOD1. The mitogen-activated protein kinase (MAPK) signaling pathway was associated with ROS-induced cell death, and heteronemin downregulated the expression of ERK, a MAPK that is associated with cell proliferation. Inhibitors of JNK and p38, which are MAPKs associated with apoptosis, restored heteronemin-induced cell death. In addition, heteronemin treatment reduced the expression of GPX4, a protein that inhibits ferroptosis, which is a novel form of nonapoptotic programmed cell death. Ferroptosis inhibitor treatment also restored heteronemin-induced cell death. Thus, with appropriate structural modification, heteronemin can act as a potent therapeutic against HCC.
Collapse
Affiliation(s)
- Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Digestive Disease Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Jung Fu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hua Chang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
40
|
Miao Y, Ishfaq M, Liu Y, Wu Z, Wang J, Li R, Qian F, Ding L, Li J. Baicalin attenuates endometritis in a rabbit model induced by infection with Escherichia coli and Staphylococcus aureus via NF-κB and JNK signaling pathways. Domest Anim Endocrinol 2021; 74:106508. [PMID: 32861957 DOI: 10.1016/j.domaniend.2020.106508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
In this study, a rabbit endometritis model was developed to study cow endometritis. In addition, the protective effects of baicalin (a flavonoid) against endometritis were investigated. Clinical symptoms, differential leukocyte counting, uterine secretion smear microscopy and chemical examination, urine testing, and signs of necropsy showed abnormal changes and inflammatory responses in the uterus of rabbits. Histopathological results revealed visible inflammatory exudates and blood spots between intercellular spaces which confirmed that the rabbit endometritis model was successfully developed. Most importantly, these inflammatory signs were partially attenuated with baicalin treatment. The data revealed that the increased body temperature and leukocyte cells, pus, and the detachment of epithelial cells were alleviated with baicalin administration in a dose-dependent manner. Histopathological tissue changes such as inflammatory cells infiltrates, hyperemia, hemorrhages, and shedding of epithelial cells were partially attenuated with baicalin treatment. In addition, the mRNA expression of inflammation-related genes (iNOS, IL-1β, TNF-α, IL-10, IL-4, and IL-6) was significantly altered in RAW264.7 cells after LPS treatment. Further, the phosphorylated protein expression of JNK, p65, and IκBα were significantly reduced with LPS treatment. Intriguingly, baicalin pretreatment reversed the alteration in mRNA expression of inflammation-related genes and significantly reduced the phosphorylation of JNK, p65, and IκBα. In summary, our results suggest that baicalin has protective effects on bacterial-induced endometritis in rabbits that involve the suppression of NF-κB and JNK signaling pathways and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Y Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - M Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Y Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Z Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - J Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - R Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - F Qian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - L Ding
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - J Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
41
|
Aksu EH, Kandemir FM, Küçükler S. The effects of hesperidin on colistin-induced reproductive damage, autophagy, and apoptosis by reducing oxidative stress. Andrologia 2020; 53:e13900. [PMID: 33263200 DOI: 10.1111/and.13900] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study has been conducted to investigate the effect of hesperidin on colistin-induced reproductive damage in male rats. Twenty-four adult male Sprague Dawley rats were used as animal material. They were divided into four groups: control group, received physiological saline for 7 days by oral gavage; hesperidin group, received 300 mg/kg day hesperidin for 7 days; colistin group, received 73 mg/kg (total dose) colistin during 7 days; and colistin + hesperidin group, received 300 mg/kg day hesperidin following the colistin treatment. At the end of the study, routine spermatological parameters and biochemical evaluations were assayed. Also, apoptosis and autophagy biomarkers in testes were evaluated. Colistin increased oxidative stress, apoptosis and autophagy expression levels in testis. Hesperidin supplementation significantly decreased the oxidative stress levels in the testes of the colistin + hesperidin group when compared to the colistin group. The highest apoptosis and autophagy expression levels were detected in the colistin group. These values were statistically lower in the colistin + hesperidin group when compared to the colistin group. Colistin treatment decreased the percentage of sperm motility and increased sperm abnormality. Hesperidin supplementation mitigated significantly mentioned side effects compared to the colistin group. In conclusion, hesperidin supplementation can be a good strategy to mitigate colistin-induced testicular toxicity.
Collapse
Affiliation(s)
- Emrah Hicazi Aksu
- Veterinary Medicine Faculty, Department of Reproduction and Artificial Insemination, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Veterinary Medicine Faculty, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Veterinary Medicine Faculty, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Yuan J, Zhang G, Li X, Ma Q, Cheng W, Wang W, Zhang B, Hu T, Song G. Knocking down USP39 Inhibits the Growth and Metastasis of Non-Small-Cell Lung Cancer Cells through Activating the p53 Pathway. Int J Mol Sci 2020; 21:ijms21238949. [PMID: 33255748 PMCID: PMC7728369 DOI: 10.3390/ijms21238949] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-specific protease 39 (USP39), a member of the deubiquitinating enzyme family, has been reported to participate in cytokinesis and metastasis. Previous studies determined that USP39 functions as an oncogenic factor in various types of cancer. Here, we reported that USP39 is frequently overexpressed in human lung cancer tissues and non-small-cell lung cancer (NSCLC) cell lines. USP39 knockdown inhibited the proliferation and colony formation of A549 and HCC827 cells and decreased tumorigenic potential in nude mice. Specifically, knocking down USP39 resulted in cell cycle arrest at G2/M and subsequent apoptosis through the activation of the p53 pathway, including upregulation of p21, cleaved-cas3, cleaved-cas9 and downregulation of CDC2 and CycinB1. Moreover, USP39 knockdown significantly inhibited migration and invasion of A549 and HCC827 cells, also via activation of the p53 pathway, and downregulation of MMP2 and MMP9. Importantly, we verified these results in metastasis models in vivo. Collectively, these results not only establish that USP39 functions as an oncogene in lung cancer, but reveal that USP39 has an essential role in regulating cell proliferation and metastasis via activation of the p53 pathway.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
- Correspondence:
| |
Collapse
|
43
|
Liu L, Liu C, Fang L. AMPK‑SIRT1 pathway dysfunction contributes to neuron apoptosis and cognitive impairment induced by sevoflurane. Mol Med Rep 2020; 23:56. [PMID: 33200801 PMCID: PMC7706003 DOI: 10.3892/mmr.2020.11694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
The anesthetic sevoflurane (Sev) is widely used because of its low blood-gas partition coefficient and lack of pungency. However, the application of Sevmay lead to cognitive impairment later in life. Previous results have indicated that exposure to Sev-induced neuronal apoptosis and cognitive dysfunction in a rat model, but much work remains to elucidate the mechanism. In the present study, inhibition in the AMP-activated protein kinase/Sirtuin 1 (AMPK/SIRT1) signaling pathway and a decrease in AMPK/SIRT1 activity was found to occur concomitantly in neuronal apoptosis induced by Sev. AICAR, an activator of AMPK, was able to suppress Sev-induced neuronal apoptosis and SIRT1 activity reduction in vitro. Further animal studies also showed that AICAR treatment blocked the deleterious cognition and AMPK/SIRT1 activity reduction in the cognition impairment rats induced by Sev. Taken together, it was concluded that the AMPK/SIRT1 signaling pathway mediates neuronal apoptosis and cognition impairment induced by Sev. The study provides evidence that AMPK activation ameliorates Sev-induced cognitive deficits.
Collapse
Affiliation(s)
- Liwei Liu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Chao Liu
- Institute of Cardiovascular Diseases, Tianjin Chest Hospital, Tianjin 300457, P.R. China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
44
|
Wang J, Zhang W, Ma B, Zhang H, Fan Z, Li M, Li X. A novel biscoumarin derivative dephosphorylates ERK and alleviates apoptosis induced by mitochondrial oxidative damage in ischemic stroke mice. Life Sci 2020; 264:118499. [PMID: 33141045 DOI: 10.1016/j.lfs.2020.118499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
AIM We previously reported the protective effects of biscoumarin derivatives against oxidative stress, but effects of the derivative on mitochondrial oxidative damage induced apoptosis in ischemic stroke remains unknown. METHODS Primary neurons were subjected to oxygen and glucose deprivation (OGD) for the in vitro simulation of ischemic stroke, and an ischemic stroke model was established in mice by operation of middle cerebral artery occlusion (MCAO). RESULTS The results indicated that the nontoxic concentration range of biscoumarin derivative Comp. B in neurons was from 0 to 30 μg/ml and the optimal protective concentration was 20 μg/ml. Treatment with Comp. B increased the cell survival rate and alleviated mitochondrial oxidative damage and apoptosis in OGD-treated neurons. Comp. B reduced the ratio of Bax/Bcl-2, inhibited the phosphorylation of ERK, and thus alleviated apoptosis in OGD-treated neurons. Further research demonstrated that the dephosphorylation effect on ERK of Comp. B is a key factor in alleviating apoptosis in neurons induced by OGD injury. Furthermore, Comp. B reduced the infarct volume, improved neurobehavioural score, and alleviated morphological changes and brain apoptosis in MCAO mice. CONCLUSION The novel biscoumarin derivative Comp. B alleviates mitochondrial oxidative damage and apoptosis in ischemic stroke mice. These findings might provide new insights that will aid in elucidating the effect of biscoumarin derivative against cerebral ischemic reperfusion injury and support the new development of Comp. B as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jun Wang
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wentong Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Bo Ma
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyang Fan
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
45
|
Gao P, Wang H, Liu J, Wu Y, Hei W, He Z, Cai C, Guo X, Cao G, Li B. miR-128 regulated the proliferation and autophagy in porcine adipose-derived stem cells through targeting the JNK signaling pathway. J Recept Signal Transduct Res 2020; 41:196-201. [PMID: 32772776 DOI: 10.1080/10799893.2020.1805627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE microRNA-128 (miR-128), a brain-enriched microRNA, has been reported to play a crucial role in the treatment of diseases. The c-Jun N-terminal kinase (JNK) signaling pathway exerts various biological functions such as regulation of cell proliferation, differentiation and apoptosis. In this study, we investigated the role of the miRNA-128-JNK signaling pathway in proliferation, apoptosis and autophagy of porcine adipose-derived stem cells (ASCs). METHODS After over-expressing miR-128 in porcine ASCs, cell proliferation was determined by 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) method, cell apoptosis was observed by Flow cytometry (FCM), the expression of miR-128, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) was measured by RNA preparation and reverse transcription polymerase chain reaction (RT-PCR), and protein expression of JNK, phosphorylated JNK (p-JNK) and LC3B was analyzed by Western Blot analysis. RESULTS The over-expression of miR-128 potently promoted cell proliferation and autophagy while suppressed the apoptosis of porcine ASCs. In addition, the down-regulated expression level of p-JNK was detected in miR-128-over-expressed porcine ASCs. However, followed by the block of the JNK signaling pathway using SP600125 inhibitor, the effects of miR-128 on the proliferation, apoptosis and autophagy of porcine ASCs were significantly suppressed. CONCLUSION It is demonstrated that the miR-128-JNK signaling pathway is a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Haizhen Wang
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Juan Liu
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Yiqi Wu
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wei Hei
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang He
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Chunbo Cai
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaohong Guo
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Guoqing Cao
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bugao Li
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
46
|
Seo HW, No H, Cheon HJ, Kim JK. Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells. Chem Biol Interact 2020; 327:109185. [PMID: 32590072 DOI: 10.1016/j.cbi.2020.109185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 06/17/2020] [Indexed: 01/06/2023]
Abstract
The present study examined the apoptotic effects and the underlying mechanism of sappanchalcone, a major bioactive compound isolated from Caesalpinia sappan L. on human colon cancer cells. To achieve this, we used two different colon cancer cell lines, namely HCT116 (as wild-type p53 cells) and SW480 (as p53-mutant cells) cells. Our results illustrated that sappanchalcone treatment decreased the proliferation and further promoted apoptosis in HCT116 cells compared with the findings in SW480 cells. Sappanchalcone triggered phosphorylation of p53, which is involved in the activation of caspases and increased expression of Bax in HCT116 cells. Conversely, sappanchalcone-treated SW480 cells displayed no change in p53 phosphorylation or caspase activation. In addition, sappanchalcone further increased reactive oxygen species (ROS) levels and apoptosis-inducing factor (AIF) release in both HCT116 and SW480 cells. These data suggest that sappanchalcone induces apoptosis through caspase-dependent and caspases-independent mechanisms that were characterized by decreased Bcl-2 expression, mitochondrial targeting, and altered ROS production and AIF translocation to the nuclei.
Collapse
Affiliation(s)
- Hee Won Seo
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Huiwon No
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Hye Jin Cheon
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan-Si, Republic of Korea.
| |
Collapse
|
47
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
48
|
Involvement of JNK/FOXO1 pathway in apoptosis induced by severe hypoxia in porcine granulosa cells. Theriogenology 2020; 154:120-127. [PMID: 32562827 DOI: 10.1016/j.theriogenology.2020.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
In ovaries, follicles undergo a periodic process of degeneration, namely atresia, during each stage of development. Granulosa cell (GC) apoptosis is believed as the hallmark of follicular atresia. The avascular environment within the granulosa compartment is supposed to cause hypoxic conditions. The effects of hypoxia on organs, tissues, cells can be either positive or negative, depending on the severity and context. The present study aimed to explore whether and how severe hypoxia under in vitro conditions functions in apoptosis of porcine GCs. The current results showed that the apoptosis in porcine GCs exposed to severe hypoxia (1% O2) was correlated with enhanced activation of c-Jun N-terminal kinase (JNK), nuclear accumulation of FOXO1, as well as elevated level of cleaved caspase-3 and decreased ratio of BCL-2/BAX. Further investigations revealed that severe hypoxia-mediated JNK activation was required for the apoptotic death of porcine GCs and the nuclear transport of FOXO1. Moreover, inhibition of FOXO1 reduced GCs apoptosis upon severe hypoxia exposure. Together, these findings suggested that severe hypoxia might act through JNK/FOXO1 axis to induce apoptosis in porcine GCs.
Collapse
|
49
|
Zhang W, Liu Y, Zhang Q, Waqas Ali Shah S, Wu Z, Wang J, Ishfaq M, Li J. Mycoplasma gallisepticum Infection Impaired the Structural Integrity and Immune Function of Bursa of Fabricius in Chicken: Implication of Oxidative Stress and Apoptosis. Front Vet Sci 2020; 7:225. [PMID: 32391391 PMCID: PMC7193947 DOI: 10.3389/fvets.2020.00225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Mycoplasma gallisepticum (MG) induces a dysregulated immune response in the lungs and air ways of poultry. However, the mechanism of MG-induced immune dysregulation is still not completely understood. In the present study, the effect of MG-infection on chicken bursa of fabricius (BOF) is investigated. Histopathology, electron microscopy, TUNEL assay, qRT-PCR and western blot were employed to examine the hallmarks of oxidative stress and apoptosis. The data revealed that MG-infection induced oxidative stress and decreased antioxidant responses in BOF tissues compared to control group. Histopathological study showed pathological changes including reduction in lymphocytes and increased inflammatory cell infiltration in MG-infection group. Ultrastructural assessment represents obvious signs of apoptosis such as mitochondrial swelling, shrinkage of nuclear membrane and fragmentation of nucleus. Increased cytokine activities were observed in MG-infection group compared to control group. Meanwhile, the mRNA and protein expression level of apoptosis-related genes were significantly (p < 0.05) upregulated in MG-infection group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay further confirmed that MG induced apoptosis in BOF tissues as TUNEL-stained positive nuclei were remarkably increased in MG-infection group. In addition, MG-infection significantly reduced the number of CD8+ lymphocytes in chicken BOF at day 7. Moreover, bacterial load significantly increased at day 3 and day 7 in MG-infection group compared to control group. These results suggested that MG-infection impaired the structural integrity, induced oxidative stress and apoptosis in chicken BOF tissues, which could be the possible causes of damage to immune function in chicken BOF.
Collapse
Affiliation(s)
- Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaomei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Syed Waqas Ali Shah
- Department of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
50
|
Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L, Wang Z, Su Q, Feng L, Liu Y, Zhou Y. Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules 2020; 25:molecules25071672. [PMID: 32260423 PMCID: PMC7180728 DOI: 10.3390/molecules25071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.
Collapse
|