1
|
Huang ZD, Zhang SX, Wang Y, Song ZW, Wang WY, Yin CP, Zhang YL. Biosynthesis of Physcion and Identification of an O-Methyltransferase with C6-OH Selectivity in Aspergillus chevalieri BYST01. ACS Chem Biol 2025; 20:1048-1058. [PMID: 40257371 DOI: 10.1021/acschembio.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Physcion, a polyketide natural product derived from plants and microorganisms, has been commercially approved as an agricultural fungicide for the prevention and treatment of powdery mildew. However, the long planting period and complex extraction process from plants limit the yield of physcion. Here, the Phy biosynthetic gene cluster responsible for physcion biosynthesis was identified from the genome of high-yield physcion strain Aspergillus chevalieri BYST01. We reconstructed the biosynthesis of physcion via heterologous expression of PhyFGL in Aspergillus oryzae NSAR1. Of note, the PT domain of PhyG catalyzes the selective ring closure to form two distinct polyketide scaffolds (1 and 7) and for the first time to report the biosynthetic pathway of compound pannorin C (1). In addition, in vitro and in vivo enzymatic assays demonstrated that PhyL had the capability to catalyze the stereoselective methylation of C6-OH. The physiological biosynthetic pathway was further rationally engineered by improving the catalytic efficiency of O-methyltransferase (OMT)-PhyL by 2.64-fold through site-directed mutagenesis. Subsequently, the titer of physcion reached 152.81 mg/L in shake-flask fermentation through optimizing the cultivation conditions and alkaline treatment of the fermentation broth. Furthermore, the novel CYP-PhyE could with regioselectivity catalyze symmetrically oxidative phenol coupling (OPC) of monomeric polyketone to form 10,10'-dimers. Finally, differential expression analysis of transcriptome between AO-PhyGF and AO-PhyGFL revealed that the expression of the PhyL gene led to extensive alterations in the secondary metabolism of A. oryzae NSAR1 and upregulating the expression level of ABC transporters, promoting the translocation of host metabolites. Thus, our study provides a foundation for further improving the production of physcion via a highly efficient route.
Collapse
Affiliation(s)
- Zhong-di Huang
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Shu-Xiang Zhang
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Ye Wang
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Zhi-Wen Song
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Wei-Yu Wang
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Cai-Ping Yin
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Ying-Lao Zhang
- School of Life Sciences, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Jyotshna, Shanker K. An Insight Review on Phytochemistry, Pharmacological Evidences, and Biosynthesis of Key Metabolites of Indian Himalayan Cherry (Prunus cerasoides Don.) with Emphasis on its Safety and Use in Tradtional Phytomedicine. Chem Biodivers 2025; 22:e202401814. [PMID: 39552266 DOI: 10.1002/cbdv.202401814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Padmaka (Prunus cerasoides Don.), or wild Himalayan cherry, is a deciduous tree from the Rosaceaae family. The Prunus genus has 400-430 species, including shrubs and trees. It is widely distributed across the Himalayan region of India, China, Myanmar, Nepal, and Thailand. It is used in many classical formulations of various Asian traditional medicinal systems viz., Ayurveda, TCM (traditional Chineese Medicines) and TTM (Traditional Thai Medicines) for treating burning sensations, Blisters, blood disorders, dizziness, bleeding disorders, herps, and skin disorders. The present review covers the research updates on P. cerasoides from 1982 to 2023, accessible on scholars' platforms and databases. More than 200 phytomolecules have been investigated for their biological potential and the discovery of pharmacophores-inspired drugs. Padmaka instigated over fifty diverse phytochemicals, viz. flavones, isoflavones, chalcones, terpenoids, glycosides, and sterols. The phytochemical flux of P. cerasoides is dominant with phenylpropanoids, anthocyanins, carotenoids, and terpenoids. Several experimental shreds of evidence emphasized the biological significance of P. cerasoides extracts and their derived phytochemicals. Medicinal significance and its safety in clinical validation have been discussed efficiently. Moreover, the barrier in validated therapeutics is a lack of information on the bioavailability of specialized bioactive, standardization, safety, and toxicokinetic. This review also provides insight into discussions on the key specialized secondary metabolism in P. cerasoides responsible for pharmacological/therapeutic action.
Collapse
Affiliation(s)
- Jyotshna
- Analytical Chemistry, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Karuna Shanker
- Analytical Chemistry, Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| |
Collapse
|
3
|
Feng D, Pu D, Ren J, Liu M, Sun X, Zhang Z, Li J. Mechanistic exploration of Traditional Chinese Medicine regulation on tumor immune microenvironment in the treatment of triple-negative breast cancer: based on CiteSpace and bioinformatics analysis. Front Immunol 2025; 15:1443648. [PMID: 39867914 PMCID: PMC11757242 DOI: 10.3389/fimmu.2024.1443648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis. Methods We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment. Results CiteSpace analysis highlighted key TCM formulations, including Sanhuang Decoction. Network pharmacology identified major bioactive components such as Mutatochrome, Physcion diglucoside, Procyanidin B-5,3'-O-gallate, gallic acid-3-O-(6'-O-galloyl)-glucoside, and isomucronulatol-7,2'-di-O-glucosiole, with core targets including Mitogen-Activated Protein Kinase 1 (MAPK1), Janus Kinase 2 (JAK2), and Lymphocyte-specific protein tyrosine kinase (LCK). These targets were found to be involved in immune regulation, particularly the modulation of CD8+ and CD4+ T cells. Additionally, core targets were associated with improved recurrence-free survival (RFS) and overall survival (OS) in TNBC patients. Conclusion The therapeutic effects of TCM in TNBC primarily involve immune modulation within the tumor microenvironment, particularly through the regulation of CD8+ and CD4+ T cells.
Collapse
Affiliation(s)
- Dandan Feng
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlu Ren
- Pharmaceutical college of Shandong Xiandai University, Jinan, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sun
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Khatoon M, Dubey A, Janhvi K. Unveiling Anthraquinones: Diverse Health Benefits of an Essential Secondary Metabolite. Recent Pat Biotechnol 2025; 19:179-197. [PMID: 38967073 DOI: 10.2174/0118722083301761240628083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Since ancient times, plants have been used as a remedy for numerous diseases. The pharmacological properties of plants are due to the presence of secondary metabolites like terpenoids, flavonoids, alkaloids, etc. Anthraquinones represent a group of naturally occurring quinones found generously across various plant species. Anthraquinones attract a significant amount of attention due to their reported efficacy in treating a wide range of diseases. Their complex chemical structures, combined with inherent medicinal properties, underscore their potential as agents for therapy. They demonstrate several therapeutic properties such as laxative, antitumor, antimalarial, antibacterial, antifungal, antioxidant, etc. Anthraquinones are found in different forms (derivatives) in plants, and they exhibit various medicinal properties due to their structure and chemical nature. The precursors for the biosynthesis of anthraquinones in higher plants are provided by different pathways such as plastidic hemiterpenoid 2-C-methyl-D-erthriol4-phosphate (MEP), mevalonate (MVA), isochorismate synthase and polyketide. Anthraquinones possess several medicinal properties and a complex biosynthetic pathway, making them good candidates for patenting new products, synthesis methods, and biotechnological production advancements. By conducting a thorough analysis of scientific literature, this review provides insights into the intricate interplay between anthraquinone biosynthesis and its broad-ranging contributions to human health.
Collapse
Affiliation(s)
- Mushfa Khatoon
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Amita Dubey
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Km Janhvi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
5
|
Okoń E, Kukula-Koch W, Jarząb A, Gaweł-Bęben K, Bator E, Michalak-Tomczyk M, Jachuła J, Antosiewicz-Klimczak B, Odrzywolski A, Koch W, Wawruszak A. The Activity of 1,8-Dihydroanthraquinone Derivatives in Nervous System Cancers. Molecules 2024; 29:5989. [PMID: 39770078 PMCID: PMC11677425 DOI: 10.3390/molecules29245989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers. Anthraquinone derivatives, a class of tricyclic secondary metabolites, are found in several botanical families, such as Fabaceae, Polygonaceae, Rhamnaceae, and Rubiaceae. In a comprehensive review, recent advancements in the anticancer properties of 1,8-dihydroanthraquinone derivatives-such as emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion-were analyzed. These compounds have been studied extensively, both used individually and in combination with other chemotherapeutic agents, using in vitro and in vivo models of nervous system tumors. It was demonstrated that 1,8-dihydroanthraquinone derivatives induce apoptosis and necrosis in cancerous cells, intercalate into DNA, disrupting transcription and replication in rapidly dividing cells, and alter ROS levels, leading to oxidative stress that damages tumor cells. Additionally, they can influence signaling pathways involved in oncogenesis, such as MAPK, PI3K/Akt, or others crucial for the survival and the proliferation of NSC cells. The exploration of 1,8-dihydroanthraquinone derivatives aims to develop novel therapies that could overcome resistance and improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Ewelina Bator
- Interdisciplinary Center for Preclinical and Clinical Research, Rzeszow University, 2a Werynia, 36-100 Kolbuszowa, Poland;
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Beata Antosiewicz-Klimczak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| |
Collapse
|
6
|
Yu L, Qin J, Zhang M, Gao Y, Zhao Y. Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone. Drug Des Devel Ther 2024; 18:6089-6113. [PMID: 39717199 PMCID: PMC11664478 DOI: 10.2147/dddt.s489377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Ethnopharmacological Relevance Rhubarb has the effect of breaking blood stasis and abnormal mass, and was often used to treat various tumor diseases including liver cancer in ancient China. Recipes containing rhubarb have anti-liver cancer properties and are still used today. However, the main components and mechanism of action of rhubarb against liver cancer are still unclear. Aim of the Review To conduct a review of the anti-liver cancer effects and toxicity of rhubarb anthraquinones (AQs). Materials and Methods This article reviewed the effects of rhubarb AQs in the treatment of liver cancer and the signaling pathways involved, and discussed the toxicity and pharmacokinetics of rhubarb AQs by searching the Web of Science, PubMed and CNKI databases. Results Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine that has been existed for thousands of years and is used as an anti-cancer drug. Modern pharmacological research shows that rhubarb AQs, as the main component of rhubarb, contains emodin, rhein, chrysophanol, physcione and aloe-emodin, which has anti-liver cancer effects and can be considered as a potential therapeutic drug for liver cancer. However, many modern studies have shown that rhubarb AQs have certain toxicity, which hinders in-depth research on rhubarb AQs. Conclusion Rhubarb AQs can be used as a potential anti-liver cancer drug, but its research still has many limitations. Strengthening research on related experiments and finding a balance between toxicity and efficacy are all directions worth studying in the future.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Jinxing Qin
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Mei Zhang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, 550000, People’s Republic of China
| | - Yawen Gao
- Department of Anesthesia, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongli Zhao
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
| |
Collapse
|
7
|
Qu J, Gong Q, He S, Peng J, Chen L, Wang L, Chen P. Analgesic effect of Dahuang Fuzi Decoction in neuropathic pain through inhibiting TNF-α and PI3K-AKT signaling. Front Neurosci 2024; 18:1464477. [PMID: 39723427 PMCID: PMC11668693 DOI: 10.3389/fnins.2024.1464477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background Neuropathic pain (NeP) presents considerable challenges in terms of effective management and significantly impacts the quality of life for affected patients. The current treatment options for NeP are limited, highlighting the need for alternative therapeutic approaches. Dahuang Fuzi Decoction (DF), a formula from traditional Chinese medicine, has shown potential in relieving pain symptoms associated with various types of NeP. However, the mechanisms through which DF exerts its effects remain largely unknown. Methods In this study, we employed ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) to analyze the chemical composition of DF. A chronic sciatic nerve compression injury (CCI) rat mode was used to assess the analgesic efficacy of DF for NeP. Network pharmacology analysis was performed to identify the potential signaling pathways affected by DF. Results DF treatment significantly increased the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in CCI rats, indicating its analgesic effect. Network pharmacology analysis suggested that DF potentially modulated TNF-α and PI3K-AKT signaling pathways. Furthermore, DF treatment decreased the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in spinal cord tissues of CCI rats, suggesting an anti-inflammatory effect. Western blot analysis revealed that DF treatment reduced the expression of TNF-α, TNFR1, and phosphorylated forms of PI3K, AKT, IKKα/β, IKBα, and NF-κB in the spinal cord of CCI rats. Immunofluorescence analysis confirmed significant reductions in TNF-α and TNFR1 expression, as well as in AKT and NF-κB phosphorylation within astrocytes following DF administration. Conclusion Our findings characterize the chemical constituents of DF and elucidate its underlying mechanism for relieving NeP. The analgesic effect of DF involves the inhibition of TNF-α and PI3K-AKT signaling pathways, providing a potential therapeutic approach for NeP management.
Collapse
Affiliation(s)
- Jinglian Qu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Siyu He
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiuyan Peng
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lingyan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Xiong Y, Yong Z, Zhao Q, Hua A, Wang X, Chen X, Yang X, Li Z. Hydroxyethyl starch-based self-reinforced nanomedicine inhibits both glutathione and thioredoxin antioxidant pathways to boost reactive oxygen species-powered immunotherapy. Biomaterials 2024; 311:122673. [PMID: 38897030 DOI: 10.1016/j.biomaterials.2024.122673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The adaptive antioxidant systems of tumor cells, predominantly glutathione (GSH) and thioredoxin (TRX) networks, severely impair photodynamic therapy (PDT) potency and anti-tumor immune responses. Here, a multistage redox homeostasis nanodisruptor (Phy@HES-IR), integrated by hydroxyethyl starch (HES)-new indocyanine green (IR820) conjugates with physcion (Phy), an inhibitor of the pentose phosphate pathway (PPP), is rationally designed to achieve PDT primed cancer immunotherapy. In this nanodisruptor, Phy effectively depletes intracellular GSH of tumor cells by inhibiting 6-phosphogluconate dehydrogenase (6PGD) activity. Concurrently, it is observed for the first time that the modified IR820-NH2 molecule not only exerts PDT action but also interferes with TRX antioxidant pathway by inhibiting thioredoxin oxidase (TRXR) activity. The simultaneous weakening of two major antioxidant pathways of tumor cells is favorable to maximize the PDT efficacy induced by HES-IR conjugates. By virtue of the excellent protecting ability of the plasma expander HES, Phy@HES-IR can remain stable in the blood circulation and efficiently enrich in the tumor region. Consequently, PDT and metabolic modulation synergistically induced immunogenic cell death, which not only suppressed primary tumors but also stimulated potent anti-tumor immunity to inhibit the growth of distant tumors in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingfu Zhao
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
9
|
Liu L, Sun S, Li X. Physcion inhibition of CYP2C9, 2D6 and 3A4 in human liver microsomes. PHARMACEUTICAL BIOLOGY 2024; 62:207-213. [PMID: 38353248 PMCID: PMC10868446 DOI: 10.1080/13880209.2024.2314089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 μM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 μM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 μM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 μM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 μM-1 and 0.049 min-1, respectively. CONCLUSIONS The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, PR China
| | - Xiaohua Li
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
10
|
Yan H, Hu Y, Liang J, He K, Kuang X, Liu Q, Zhao L, Yang S. Yinchenhao Decoction mitigates intestinal impairment induced by high carbohydrate diet in largemouth bass (Micropterus salmoides): insights from inflammation, apoptosis, oxidative stress, tight junctions, and microbiota homeostasis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2207-2223. [PMID: 39066864 DOI: 10.1007/s10695-024-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As a major source of energy, carbohydrates have a protein-saving effect. However, excessive consumption of carbohydrates can lead to the disruption of the intestinal barrier in fish, especially for carnivorous fish. Therefore, traditional Chinese medicine component Yinchenhao Decoction (YD), was used to detect the effect on intestinal barriers and microbial community equilibrium for largemouth bass in current research. In this research, a series of NC (normal carbohydrate diet) and HC (high carbohydrate diet) with graded YD treatments during 10 weeks feeding trial. Results suggested that 2% and 4% YD treatments significantly reduced gut inflammation and mucosal loss caused by HC. Compared with NC, HC significantly decreased the relative expression of intestinal tight junction-related genes (zo1, claudin1, claudin7, and occludin). However, with the application of YD, the expression of tight junction-related genes (zo1, claudin1, and claudin7) increased significantly (p < 0.05). Likewise, administration of YD significantly reduced elevated plasma diamine oxidase (DAO) activity caused by HC (p < 0.05). Additionally, YD significantly downregulated the mRNA expression of endoplasmic reticulum stress (ERS)-related genes (grp78, atf6, chopα, ire1, xbp1, and eifα) and pro-apoptosis genes (casp3, casp8, and bax) (p < 0.05), while upregulating the anti-apoptosis gene bcl2 (p < 0.05). Moreover, YD significantly increased the mRNA expression of antioxidant genes and the enzyme activities of CAT and GPX, while decreased MDA concentration significantly (p < 0.05). Whereas, YD markedly decreased the expression of pro-inflammatory genes (il1β, tnfα, il8, and nf-κB) and the immune enzymes activity (ACP and AKP) (p < 0.05) by up-regulating the expression of anti-inflammatory genes (ikb and il10). Notably, YD modulated the largemouth bass intestinal microbial community, enhanced the diversity and increased the abundance of probiotic microorganisms in the intestinal microbiota. In summary, YD supplementation in HC alleviated inflammation, apoptosis, oxidative stress, tight-junction injury, and microbiota disequilibrium in the intestine, which suggested that YD could be a valuable functional additive in aquaculture.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xu Kuang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Arabestani MR, Saadat M, Taherkhani A. Antibiotic resistance challenge: evaluating anthraquinones as rifampicin monooxygenase inhibitors through integrated bioinformatics analysis. Genomics Inform 2024; 22:13. [PMID: 39232833 PMCID: PMC11375879 DOI: 10.1186/s44342-024-00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE Antibiotic resistance poses a pressing and crucial global public health challenge, leading to significant clinical and health-related consequences. Substantial evidence highlights the pivotal involvement of rifampicin monooxygenase (RIFMO) in the context of antibiotic resistance. Hence, inhibiting RIFMO could offer potential in the treatment of various infections. Anthraquinones, a group of organic compounds, have shown promise in addressing tuberculosis. This study employed integrated bioinformatics approaches to evaluate the potential inhibitory effects of a selection of anthraquinones on RIFMO. The findings were subsequently compared with those of rifampicin (RIF), serving as a positive control inhibitor. METHODS The AutoDock 4.0 tool assessed the binding free energy between 21 anthraquinones and the RIFMO catalytic cleft. The ligands were ranked based on the most favorable scores derived from ΔGbinding. The docking analyses for the highest-ranked anthraquinone and RIF underwent a cross-validation process. This validation procedure utilized the SwissDock server and the Schrödinger Maestro docking software. Molecular dynamics simulations were conducted to scrutinize the stability of the backbone atoms in free RIFMO, RIFMO-RIF, and RIFMO complexed with the top-ranked anthraquinone throughout a 100-ns computer simulation. The Discovery Studio Visualizer tool visualized interactions between RIFMO residues and ligands. An evaluation of the pharmacokinetics and toxicity profiles of the tested compounds was also conducted. RESULTS Five anthraquinones were indicated with ΔGbinding scores less than - 10 kcal/mol. Hypericin emerged as the most potent RIFMO inhibitor, boasting a ΔGbinding score and inhibition constant value of - 12.11 kcal/mol and 798.99 pM, respectively. The agreement across AutoDock 4.0, SwissDock, and Schrödinger Maestro results highlighted hypericin's notable binding affinity to the RIFMO catalytic cleft. The RIFMO-hypericin complex achieved stability after a 70-ns computer simulation, exhibiting a root-mean-square deviation of 0.55 nm. Oral bioavailability analysis revealed that all anthraquinones except hypericin, sennidin A, and sennidin B may be suitable for oral administration. Furthermore, the carcinogenicity prediction analysis indicated a favorable safety profile for all examined anthraquinones. CONCLUSION Inhibiting RIFMO, particularly with anthraquinones such as hypericin, holds promise as a potential therapeutic strategy for infectious diseases.
Collapse
Affiliation(s)
- Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Saadat
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Daminova AG, Leksin IY, Khabibrakhmanova VR, Gurjanov OP, Galeeva EI, Trifonova TV, Khamatgalimov AR, Beckett RP, Minibayeva FV. The Roles of the Anthraquinone Parietin in the Tolerance to Desiccation of the Lichen Xanthoria parietina: Physiology and Anatomy of the Pale and Bright-Orange Thalli. Int J Mol Sci 2024; 25:7067. [PMID: 39000176 PMCID: PMC11240919 DOI: 10.3390/ijms25137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Lichens are symbiotic organisms that effectively survive in harsh environments, including arid regions. Maintaining viability with an almost complete loss of water and the rapid restoration of metabolism during rehydration distinguishes lichens from most eukaryotic organisms. The lichen Xanthoria parietina is known to have high stress tolerance, possessing diverse defense mechanisms, including the presence of the bright-orange pigment parietin. While several studies have demonstrated the photoprotective and antioxidant properties of this anthraquinone, the role of parietin in the tolerance of lichens to desiccation is not clear yet. Thalli, which are exposed to solar radiation and become bright orange, may require enhanced desiccation tolerance. Here, we showed differences in the anatomy of naturally pale and bright-orange thalli of X. parietina and visualized parietin crystals on the surface of the upper cortex. Parietin was extracted from bright-orange thalli by acetone rinsing and quantified using HPLC. Although acetone rinsing did not affect PSII activity, thalli without parietin had higher levels of lipid peroxidation and a lower membrane stability index in response to desiccation. Furthermore, highly pigmented thalli possess thicker cell walls and, according to thermogravimetric analysis, higher water-holding capacities than pale thalli. Thus, parietin may play a role in desiccation tolerance by stabilizing mycobiont membranes, providing an antioxidative defense, and changing the morphology of the upper cortex of X. parietina.
Collapse
Affiliation(s)
- Amina G. Daminova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ilya Y. Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Venera R. Khabibrakhmanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Oleg P. Gurjanov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ekaterina I. Galeeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Tatyana V. Trifonova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| | - Ayrat R. Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia;
| | - Richard P. Beckett
- School of Life Sciences, University of KwaZulu-Natal, PBag X01, Scottsville 3209, South Africa;
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Farida V. Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.G.D.); (I.Y.L.); (V.R.K.); (O.P.G.); (E.I.G.); (T.V.T.)
| |
Collapse
|
13
|
El Amir D, Sayed AM, El-Hawary SS, Elsakhawy OM, Attia EZ, Abdelmohsen UR, Mohammed R. Metabolomic profiling of Medicago sativa-derived fungal endophytes and evaluation of their biological activities. RSC Adv 2024; 14:14296-14302. [PMID: 38690109 PMCID: PMC11059938 DOI: 10.1039/d4ra00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
This study aimed to discover the potential of Medicago sativa-derived fungal endophytes as a prospective source of bioactive metabolites. In the present study, three different strains of fungal endophyte Aspergillus terreus were isolated from leaves L, roots T and stems St of Medicago sativa to explore their biological and chemical diversity. These isolated fungi were exposed to different fermentation conditions by adding various chemical elicitors to their solid fermentation media. According to LC-HRESIMS-based metabolomics and multivariate analysis, each chemical treatment had a different effect on the chemical profiles of the fungi. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) proposed several compounds with anticancer action against MCF-7 (a human breast cancer cell line) and MDA-MB-231 (a human epithelial breast cancer cell line).
Collapse
Affiliation(s)
- Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University 61014 Basrah Iraq
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11936 Cairo Egypt
| | - Omnia M Elsakhawy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
14
|
Liu X, Wang Y, Tian Y, Hu J, Liu Z, Ma Y, Xu W, Wang W, Gao J, Wang T. The Water Extract of Rhubarb Prevents Ischemic Stroke by Regulating Gut Bacteria and Metabolic Pathways. Metabolites 2024; 14:216. [PMID: 38668344 PMCID: PMC11052393 DOI: 10.3390/metabo14040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Rhubarb (RR), Chinese name Dahuang, is commonly used in the treatment of ischemic stroke (IS). However, its potential mechanism is not fully elucidated. This study intended to verify the effect of RR on IS and investigate the possible mechanism of RR in preventing IS. IS in male rats was induced by embolic middle cerebral artery occlusion (MCAO) surgery, and drug administration was applied half an hour before surgery. RR dramatically decreased the neurological deficit scores, the cerebral infarct volume, and the cerebral edema rate, and improved the regional cerebral blood flow (rCBF) and histopathological changes in the brain of MCAO rats. The 16S rRNA analysis showed the harmful microbes such as Fournierella and Bilophila were decreased, and the beneficial microbes such as Enterorhabdus, Defluviitaleaceae, Christensenellaceae, and Lachnospira were significantly increased, after RR pretreatment. 1H-nuclear magnetic resonance (1H-NMR) was used to detect serum metabolomics, and RR treatment significantly changed the levels of metabolites such as isoleucine, valine, N6-acetyllysine, methionine, 3-aminoisobutyric acid, N, N-dimethylglycine, propylene glycol, trimethylamine N-oxide, myo-inositol, choline, betaine, lactate, glucose, and lipid, and the enrichment analysis of differential metabolites showed that RR may participate in the regulation of amino acid metabolism and energy metabolism. RR exerts the role of anti-IS via regulating gut bacteria and metabolic pathways.
Collapse
Affiliation(s)
- Xiaoyao Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (X.L.); (J.H.)
| | - Yuxi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.W.); (Y.M.)
| | - Yuan Tian
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
| | - Jiahui Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (X.L.); (J.H.)
| | - Zhen Liu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
| | - Yuncheng Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.W.); (Y.M.)
| | - Wenhui Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weiling Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.T.); (Z.L.); (W.X.)
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
15
|
Feng Y, Jian J, Cheng L, Luo G, Yang W. Two New Compounds Isolated from the Itea omeiensis and Their Anti-oxidant Activities. Chem Biodivers 2024; 21:e202301881. [PMID: 38116852 DOI: 10.1002/cbdv.202301881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Two new compounds (1-2) together with ten known compounds (3-12) were isolated for the first time from the 95 % EtOH extract of aerial parts of Itea omeiensis. Their structures were elucidated based on extensive spectroscopic analyses and comparison with published data. The structure of 1 was further confirmed through single-crystal X-ray diffraction analysis, and circular dichroism (CD) spectrum in combination with acid hydrolysis was employed for the absolute configuration determination of 2. Compound 1 was the first 2-arylbenzo[b]furan with an extra six-membered lactone ring from Itea plants. Anti-oxidant assays indicated that compound 1 possessed significant radical scavenging effects on 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⋅+ ) with IC50 values of 0.14 and 0.06 mg/mL, respectively, which were comparable to the positive control of ascorbic acid. However, no obvious anti-hepatocellular carcinoma activity was observed for compounds 1 and 2.
Collapse
Affiliation(s)
- Yunqian Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, 4th Dongqing Road, 550025, Guiyang, China
| | - Jinzhen Jian
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, 4th Dongqing Road, 550025, Guiyang, China
| | - Longdie Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, 4th Dongqing Road, 550025, Guiyang, China
| | - Guoyong Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, 4th Dongqing Road, 550025, Guiyang, China
| | - Wude Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, 4th Dongqing Road, 550025, Guiyang, China
| |
Collapse
|
16
|
Wang Y, Ding T, Jiang X. Network Pharmacology Study on Herb Pair Bletilla striata-Galla chinensis in the Treatment of Chronic Skin Ulcers. Curr Pharm Des 2024; 30:1354-1376. [PMID: 38571354 DOI: 10.2174/0113816128288490240322055201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs). OBJECTIVE The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs. METHODS The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking. RESULTS A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets. CONCLUSION This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.
Collapse
Affiliation(s)
- Yue Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tengteng Ding
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Jiang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Schulze J, Schöne L, Ayoub AM, Librizzi D, Amin MU, Engelhardt K, Yousefi BH, Bender L, Schaefer J, Preis E, Schulz-Siegmund M, Wölk C, Bakowsky U. Modern Photodynamic Glioblastoma Therapy Using Curcumin- or Parietin-Loaded Lipid Nanoparticles in a CAM Model Study. ACS APPLIED BIO MATERIALS 2023; 6:5502-5514. [PMID: 38016693 PMCID: PMC10732153 DOI: 10.1021/acsabm.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.
Collapse
Affiliation(s)
- Jan Schulze
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Lisa Schöne
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Abdallah M. Ayoub
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Damiano Librizzi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Muhammad Umair Amin
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Konrad Engelhardt
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Behrooz H. Yousefi
- Center
for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging,
Department of Nuclear Medicine, University
of Marburg, Hans-Meerwein-Strasse 3, Marburg 35043, Germany
| | - Lena Bender
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Jens Schaefer
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Eduard Preis
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Michaela Schulz-Siegmund
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Christian Wölk
- Institute
of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, Leipzig University, Eilenburger Strasse 15a, Leipzig 04317, Germany
| | - Udo Bakowsky
- Department
of Pharmaceutics and Biopharmaceutics, University
of Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
18
|
Li Y, Wang Z, Zhu M, Niu Z, Li M, Zheng Z, Hu H, Lu Z, Zhang J, Wan D, Chen Q, Yang Y. A chromosome-scale Rhubarb (Rheum tanguticum) genome assembly provides insights into the evolution of anthraquinone biosynthesis. Commun Biol 2023; 6:867. [PMID: 37612424 PMCID: PMC10447539 DOI: 10.1038/s42003-023-05248-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Pan XP, Jiya BR, Wang F, Lan Z. Physcion increases the sensitivity of hepatocellular carcinoma to sorafenib through miRNA-370/PIM1 axis-regulated glycolysis. World J Gastrointest Oncol 2023; 15:1400-1411. [PMID: 37663938 PMCID: PMC10473927 DOI: 10.4251/wjgo.v15.i8.1400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Resistance to sorafenib has become a challenge in clinical treatment of hepatocellular carcinoma (HCC). Physcion is a common bioactive anthraquinone that has potential as an anticancer agent. AIM To study the effect of physcion on sensitizing HCC cells to sorafenib. METHODS Sorafenib-resistant HCC cells were established and treated with sorafenib and/or physcion. The cell viability, proliferation and apoptosis were measured by cell counting kit-8, colony formation, flow cytometry, and in vivo xenograft model. Glucose uptake, lactate acid production, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR) were measured to analyze glycolysis. Expression of glycolysis-related regulators was assessed by western blotting. RESULTS The addition of physcion significantly enhanced the antitumor effects of sorafenib on sorafenib-resistant HCC cells, manifested by enhanced apoptosis and suppressed cell growth. The glucose uptake, lactate acid production, and ECAR were elevated, and OCR was suppressed by physcion treatment. The level of PIM1 was elevated and miR-370 was suppressed in sorafenib-resistant HCC cells compared with the parental cells, which was suppressed by physcion treatment. Inhibition of miR-370 notably reversed the effects of physcion on sorafenib-resistant HCC cells. CONCLUSION Our data indicated that physcion enhanced the sensitivity of HCC cells to sorafenib by enhancing miR-370 to suppress PIM1-promoted glycolysis.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Bu-Ren Jiya
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Feng Wang
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Zhu Lan
- Graduate School, Inner Mongolia Medical University, Hohhot 016000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
20
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Liudvytska O, Ponczek MB, Krzyżanowska-Kowalczyk J, Kowalczyk M, Balcerczyk A, Kolodziejczyk-Czepas J. Effects of Rheum rhaponticum and Rheum rhabarbarum extracts on haemostatic activity of blood plasma components and endothelial cells in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023:116562. [PMID: 37201663 DOI: 10.1016/j.jep.2023.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicine recommends the use of Rheum rhaponticum L. and R. rhabarbarum L. to treat over thirty complaints, including disorders related to the cardiovascular system such as heartache, pains in the pericardium, epistaxis and other types of haemorrhage, blood purification as well as disorders of venous circulation. AIM OF THE STUDY This work was dedicated to examining for the first time the effects of extracts from petioles and roots of R. rhaponticum and R. rhabarbarum, as well as two stilbene compounds (rhapontigenin and rhaponticin) on the haemostatic activity of endothelial cells and functionality of blood plasma components of the haemostatic system. MATERIALS AND METHODS The study was based on three main experimental modules, including the activity of proteins of the human blood plasma coagulation cascade and the fibrinolytic system as well as analyses of the haemostatic activity of human vascular endothelial cells. Additionally, interactions of the main components of the rhubarb extracts with crucial serine proteases of the coagulation cascade and fibrinolysis (i.e. thrombin, the coagulation factor Xa and plasmin) were analyzed in silico. RESULTS The examined extracts displayed anticoagulant properties and significantly reduced the tissue factor-induced clotting of human blood plasma (by about 40%). Inhibitory effects of the tested extracts on thrombin and the coagulation factor Xa (FXa) were found as well. For the extracts, the IC50 was ranging from 20.26 to 48.11 μg/ml. Modulatory effects on the haemostatic response of endothelial cells, including the release of von Willebrand factor, tissue-type plasminogen activator and the plasminogen activator inhibitor-1, have been also found. CONCLUSIONS Our results indicated for the first time that the examined Rheum extracts influenced the haemostatic properties of blood plasma proteins and endothelial cells, with the prevalence of the anticoagulant action. The anticoagulant effect of the investigated extracts may be partly attributed to the inhibition of the FXa and thrombin activities, the key serine proteases of the blood coagulation cascade.
Collapse
Affiliation(s)
- Oleksandra Liudvytska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Michał B Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland.
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland.
| | - Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
22
|
Liu X, Hu H, Liu J, Chen J, Chu J, Cheng H. Physcion, a novel anthraquinone derivative against Chlamydia psittaci infection. Vet Microbiol 2023; 279:109664. [PMID: 36716634 DOI: 10.1016/j.vetmic.2023.109664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Physcion, a natural anthraquinone derivative, has been reported to exert remarkable antibacterial activities against Staphylococcus aureus,Staphylococcus epidermidis and Pseudomonas aeruginosa. However, it is not fully illustrated as anti-Chlamydia substance. In the present study, minimum inhibitory concentration(MIC)values for physcion against Chlamydia psittaci(C.psittaci) 6BC, C.psittaci SBL and C.psittaci HJ were 128 μg/mL,256 μg/mL and 128 μg/mL while minimum bactericidal concentration (MBC) values were 256 μg/mL,512 μg/mL and 256 μg/mL,respectively. Moreover, Chlamydial adhesion to Hela 229 cells was blocked in a dose-dependent manner and RB-to-EB differentiation was inhibited by physcion from 28 to 48 hpi.Post treatment,upregulation of LC3-II was in a dose-dependent manner, indicating physcion activated autophagy and bacterial clearance.To validate clinical efficacy,49 SPF chickens aged 21days were divided into 5 groups and infected intra-laryngeally with 0.2 mL of 1 × 107 IFU/mL C.psittaci 6 BCE.Three days later, birds received orally with serial doses of physcion (4 mg/kg to 9 mg/kg), or 3 mg/kg of doxycycline for 6 days.Chickens with difficulty in breathing were alleviated significantly with increasing concentrations of physicon.Postmortem,lesions of air sacs were reduced significantly in a dose-dependent manner.More importantly,birds with 9 mg/kg of physcion could alleviate lesions of air sacs and lungs, and reduce bacterial loads in spleens, which was comparable to doxycycline treatment. Based on above evidences, physcion is a promising cost-effective natural drug by blocking Chlamydial adhesions to host cells, RB-to-EB differentiation and activating bacterial autophagy and it will be a good alternative to doxycycline combating virulent C.psittaci infection, contributing to eradication of Chlamydial transmission from animals to human beings.
Collapse
Affiliation(s)
- Xinyi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huilong Hu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaqi Chen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Chu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - He Cheng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Mining an O-methyltransferase for de novo biosynthesis of physcion in Aspergillus nidulans. Appl Microbiol Biotechnol 2023; 107:1177-1188. [PMID: 36648527 DOI: 10.1007/s00253-023-12373-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Physcion is one of natural anthraquinones, registered as a novel plant-derived fungicide due to its excellent prevention of plant disease. However, the current production of physcion via plant extraction limits its yield promotion and application. Here, a pair of polyketide synthases (PKS) in emodin biosynthesis were used as probes to mining the potential O-methyltransferase (OMT) responsible for physcion biosynthesis. Further refinement using the phylogenetic analysis of the mined OMTs revealed a distinct OMT (AcOMT) with the ability of transferring a methyl group to C-6 hydroxyl of emodin to form physcion. Through introducing AcOMT, we successfully obtained the de novo production of physcion in Aspergillus nidulans. The physcion biosynthetic pathway was further rationally engineered by expressing the decarboxylase genes from different fungi. Finally, the titer of physcion reached to 64.6 mg/L in shake-flask fermentation through enhancing S-adenosylmethionine supply. Our work provides a native O-methyltransferase for physcion biosynthesis and lays the foundation for further improving the production of physcion via a sustainable route. KEY POINTS: • Genome mining of the native O-methyltransferase responsible for physcion biosynthesis • De novo biosynthesis of physcion in the engineered Aspergillus nidulans • Providing an alternative way to produce plant-derived fungicide physcion.
Collapse
|
24
|
Salvatore MM, Andolfi A, Nicoletti R. Mycotoxin Contamination in Hazelnut: Current Status, Analytical Strategies, and Future Prospects. Toxins (Basel) 2023; 15:99. [PMID: 36828414 PMCID: PMC9965003 DOI: 10.3390/toxins15020099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Hazelnuts represent a potential source of mycotoxins that pose a public health issue due to their increasing consumption as food ingredients worldwide. Hazelnuts contamination by mycotoxins may derive from fungal infections occurring during fruit development, or in postharvest. The present review considers the available data on mycotoxins detected in hazelnuts, on fungal species reported as infecting hazelnut fruit, and general analytical approaches adopted for mycotoxin investigation. Prompted by the European safety regulation concerning hazelnuts, many analytical methods have focused on the determination of levels of aflatoxin B1 (AFB1) and total aflatoxins. An overview of the available data shows that a multiplicity of fungal species and further mycotoxins have been detected in hazelnuts, including anthraquinones, cyclodepsipeptides, ochratoxins, sterigmatocystins, trichothecenes, and more. Hence, the importance is highlighted in developing suitable methods for the concurrent detection of a broad spectrum of these mycotoxins. Moreover, control strategies to be employed before and after harvest in the aim of controlling the fungal contamination, and in reducing or inactivating mycotoxins in hazelnuts, are discussed.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit, and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
25
|
Zhuang Z, Zhong X, Li Q, Liu T, Yang Q, Lin GQ, He QL, Zhao Q, Liu W. Production of the antifungal biopesticide physcion through the combination of microbial fermentation and chemical post-treatment. BIORESOUR BIOPROCESS 2023; 10:2. [PMID: 38647644 PMCID: PMC10991666 DOI: 10.1186/s40643-023-00625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Physcion is an anthraquinone compound observed dominantly in medicinal herbs. This anthraquinone possesses a variety of pharmaceutically important activities and has been developed to be a widely used antifungal biopesticide. Herein, we report on the effective preparation of 3R-torosachrysone (4), a tetrahydroanthracene precursor of physcion, in Aspergillus oryzae NSAR1 by heterologous expression of related genes mined from the phlegmacins-producing ascomycete Talaromyces sp. F08Z-0631. Conditions for converting 4 into physcion were studied and optimized, leading to the development of a concise approach for extracting high-purity physcion from the alkali-treated fermentation broth of the 4-producing A. oryzae strain.
Collapse
Affiliation(s)
- Zheng Zhuang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Xueqing Zhong
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qinghua Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing-Li He
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qunfei Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
26
|
Qi Y, Liu Y, Zhang B, Wang M, Cao L, Song L, Jin N, Zhang H. Comparative antibacterial analysis of the anthraquinone compounds based on the AIM theory, molecular docking, and dynamics simulation analysis. J Mol Model 2022; 29:16. [PMID: 36547745 DOI: 10.1007/s00894-022-05406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hydroxyanthraquinones and anthraquinone glucoside derivatives are always considered as the active antibacterial components. METHODS Comparison of structure characteristics and antibacterial effect of these compounds was performed by applying quantum chemical calculations, atoms in molecules theory, molecular docking, and dynamics simulation procedure. Density functional theory calculation with B3LYP using 6-31G (d, p) basis set has been used to determine ground state molecular geometries. RESULTS The molecular geometric stability, electrostatic potential, frontier orbital energies, and topological properties were analyzed at the active site. Once glucose ring is introduced into the hydroxyanthraquinone rings, almost all of the positive molecular potentials are distributed among the hydroxyl hydrogen atoms of the glucose rings. In addition, low electron density ρ (r) and positive Laplacian value of the O-H bond of the anthraquinone glucoside are the evidences of the highly polarized and covalently decreased bonding interactions. The anthraquinone glucoside compounds have generally higher intermolecular binding energies than the corresponding aglycones due to the strong interaction between the glucose rings and the surrounding amino acids. Molecular dynamics simulations further explored the stability and dynamic behavior of the anthraquinone compound and protein complexes through RMSD, RMSF, SASA, and Rg. CONCLUSION The type of carboxyl, hydroxyl, and hydroxymethyl groups on phenyl ring and the substituent glucose rings is important to the interactions with the topoisomerase type II enzyme DNA gyrase B.
Collapse
Affiliation(s)
- Yanjiao Qi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Yue Liu
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Bo Zhang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Mingyang Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China
| | - Long Cao
- Department of Chemical Engineering, Northwest Minzu University, 730124, Lanzhou, People's Republic of China
| | - Li Song
- Gansu Hualing Dairy Co. LTD., Lanzhou, People's Republic of China
| | - Nengzhi Jin
- Gansu Province Computing Center, 730000, Lanzhou, People's Republic of China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China.
| |
Collapse
|
27
|
Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J. Hepatotoxicity of the Major Anthraquinones Derived From Polygoni Multiflori Radix Based on Bile Acid Homeostasis. Front Pharmacol 2022; 13:878817. [PMID: 35662717 PMCID: PMC9157432 DOI: 10.3389/fphar.2022.878817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Polygoni Multiflori Radix (PMR), the dried root of Polygonum Multiflorum Thunb., has been widely used as traditional Chinese medicines in clinical practice for centuries. However, the frequently reported hepatotoxic adverse effects hindered its safe use in clinical practice. This study aims to explore the hepatotoxic effect of PMR extract and the major PMR derived anthraquinones including emodin, chrysophanol, and physcion in mice and the underlying mechanisms based on bile acid homeostasis. After consecutively treating the ICR mice with PMR extract or individual anthraquinones for 14 or 28 days, the liver function was evaluated by measuring serum enzymes levels and liver histological examination. The compositions of bile acids (BAs) in the bile, liver, and plasma were measured by LC-MS/MS, followed by Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). Additionally, gene and protein expressions of BA efflux transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), were examined to investigate the underlying mechanisms. After 14-day administration, mild inflammatory cell infiltration in the liver was observed in the physcion- and PMR-treated groups, while it was found in all the treated groups after 28-day treatment. Physcion and PMR extract induced hepatic BA accumulation after 14-day treatment, but such accumulation was attenuated after 28-day treatment. Based on the PLS-DA results, physcion- and PMR-treated groups were partially overlapping and both groups showed a clear separation with the control group in the mouse liver. The expression of Bsep and Mrp2 in the physcion- and PMR-treated mouse liver was decreased after 14-day treatment, while the downregulation was abrogated after 28-day treatment. Our study, for the first time, demonstrated that both PMR extract and tested anthraquinones could alter the disposition of either the total or individual BAs in the mouse bile, liver, and plasma via regulating the BA efflux transporters and induce liver injury, which provide a theoretical basis for the quality control and safe use of PMR in practice.
Collapse
Affiliation(s)
- Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan, China
| | - Dan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Xin Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- College of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Minhong Pan
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Yixin Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jiangeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Ma Q, Wang CZ, Sawadogo WR, Bian ZX, Yuan CS. Herbal Medicines for Constipation and Phytochemical Comparison of Active Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:723-732. [PMID: 35331086 DOI: 10.1142/s0192415x2250029x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constipation is a very common medical condition worldwide, negatively affecting patients' quality of life and healthcare system. Rhubarb, senna leaf, and aloe are three frequently used herbal medications for achieving regular bowel movement. Rhubarb is also a key ingredient in MaZiRenWan, a Chinese medicine formula used every so often for constipation in oriental countries. We reviewed and summarized the major chemical components from these three botanicals, including dianthrones, anthraquinone glycosides, free anthraquinones, and other polyphenols. The purgative actions of these constituents have been compared. Anthraquinone, especially its dianthrone compounds such as sennoside A and sennoside B, as natural stimulant laxatives, possesses significant effects to promote gastrointestinal motility and relieve functional constipation. Furthermore, the safety, reported side effects, and other benefits of anthraquinone compounds are presented. To date, many anti-constipation natural products are being used but their research is relatively limited, and thus, more investigations in this field are indeed needed.
Collapse
Affiliation(s)
- Qinge Ma
- Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, P. R. China.,Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Wamtinga R Sawadogo
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
29
|
Jiang H, Tang W, Song Y, Jin W, Du Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:806175. [PMID: 35308206 PMCID: PMC8924367 DOI: 10.3389/fphar.2022.806175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuyinuo Tang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Tan L, Yuan G, Wang P, Feng S, Tong Y, Wang C. pH-responsive Ag-Phy@ZIF-8 nanoparticles modified by hyaluronate for efficient synergistic bacteria disinfection. Int J Biol Macromol 2022; 206:605-613. [PMID: 35202636 DOI: 10.1016/j.ijbiomac.2022.02.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is a type of Metal-organic frameworks (MOFs), which shows promising application in the field of bacterial infection, owing to its excellent biocompatibility. Here, we report the encapsulation of silver nanoparticles (Ag NPs) in ZIF-8, accompanied with embedding of physcion (Phy) to obtain Ag-Phy@ZIF-8 with efficient and intelligent synergistic antimicrobial capabilities. Due to the micro-acidic environment around the bacteria, the release of silver and Phy shows a controlled released. Further, the Ag-Phy@ZIF-8 is modified by hyaluronate (HA), denoted as Ag-Phy@ZIF-8@HA, which has a strong inhibitory effect on the growth of both E. coli (99.1%) and S. aureus (99.5%), with no impacting on cell growth, showing good biocompatibility. Thus, these pH-responsive biocomposites have the potential application on smart wound excipients for bacterial infections.
Collapse
Affiliation(s)
- Lichuan Tan
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Guangsong Yuan
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Peng Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Siwen Feng
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Yan Tong
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Cuijuan Wang
- Department of Chemistry and Chemical Engineering, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
31
|
Kim G, Xu YJ, Farha AK, Sui ZQ, Corke H. Bactericidal and antibiofilm properties of Rumex japonicus Houtt. on multidrug-resistant Staphylococcus aureus isolated from milk. J Dairy Sci 2021; 105:2011-2024. [PMID: 34955261 DOI: 10.3168/jds.2021-21221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus and its biofilm formation have been challenging to control in milk and dairy industries. Biofilms formed by Staph. aureus may result in the failure of antibacterial agents and disinfectants to penetrate the biofilm in an attempt to control contamination. Novel natural antibacterial agents are required to combat MDR bacteria and biofilms. In this study, we evaluated the bactericidal, antibiofilm, and antimotility effects of Rumex japonicus Houtt. (RJH) extract on MDR Staph. aureus isolated from milk. The RJH extract exhibited good antibacterial activity against MDR strains with minimum inhibitory concentrations (MIC) ranging from 0.78 to 6.25 mg/mL and minimum bactericidal concentrations ranging from 3.125 to 12.5 mg/mL. The extract showed strong inhibition of biofilm formation (81.9%) at sub-MIC value and eradication of biofilm at higher concentrations. The motility of Staph. aureus was effectively blocked by the extract. Major compounds emodin, chrysophanol, and physcion were identified in RJH extract using HPLC-linear trap quadrupole (LTQ)/Orbitrap-mass spectrometry. The extract was nontoxic to human epithelial cell lines such as Caco-2 and HT-29 cell lines at concentrations ranging from 0.1 to 0.5 mg/mL, and from 0.1 to 0.75 mg/mL, respectively. These findings suggest that RJH extract could be an alternative to synthetic preservatives in milk and dairy products.
Collapse
Affiliation(s)
- G Kim
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Y J Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - A K Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Z Q Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - H Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
32
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
33
|
Lu Y, Zhou C, Yan R, Lian J, Cai H, Yu J, Chen D, Su X, Qian J, Yang Y, Li L. Dynamic metabolic profiles for HBeAg seroconversion in chronic hepatitis B (CHB) patients by gas chromatography-mass spectrometry (GC-MS). J Pharm Biomed Anal 2021; 206:114349. [PMID: 34597840 DOI: 10.1016/j.jpba.2021.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem globally. HBeAg seroconversion is a vital hallmark for the improvement of CHB. The plasma metabolic profile has not been clear in CHB patients and searching metabolic candidates to represent HBeAg seroconversion is also difficult currently. In this study, CHB patients were recruited, followed and divided into the HBeAg-positive (HBeAg-pos.) group (n = 29) and the HBeAg-negative (HBeAg-neg.) group (n = 29) based on HBeAg seroconversion or not. The plasma metabolic profiles were measured by gas chromatography-mass spectrometry (GC-MS) at 0 week (0w), 24 weeks (24w) and 48 weeks (48w) after administration. The acquired data was analyzed using orthogonal partial least squares discriminate analysis (OPLS-DA) and the differential metabolites were further assessed by self and group comparison. No differences of age, gender and serological characteristics were observed between two groups at 0w and 48w separately. The OPLS-DA score plots depending on administration time displayed robust metabolic differences no matter HBeAg turned to be negative or not. According to VIP> 1.0, a total of 15 differential metabolites were same in the two groups, 7 differential metabolites (glycolic acid, D-talose, L-proline, L-(-)-arabitol, ethyl-alpha-D-glucopyranoside, L-leucine and dihydroxybutanoic acid) were derived from one group alone and considered as metabolic candidates. At 0w versus (vs.) 24w, only 3 of 7 candidates (L-proline, L-(-)-arabitol, dihydroxybutanoic acid) showed nonuniform in the two groups, while at 0w vs. 48w, all of them varied inconsistently. Conclusively the dynamic metabolic profiles assayed by GC-MS were different between CHB patients with and without HBeAg seroconversion. The 7 metabolic candidates probably had the ability to reflect the CHB progression for HBeAg seroconversion and 3 of them showed strong relationship with HbeAg seroconversion early.
Collapse
Affiliation(s)
- Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyan Zhou
- Department of Prenatal Diagnosis, The Affiliated Women and Children Hospital, Jiaxing University School of Medicine, Jiaxing, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangshan Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Deyin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Gillis JL, Hinneh JA, Ryan NK, Irani S, Moldovan M, Quek LE, Shrestha RK, Hanson AR, Xie J, Hoy AJ, Holst J, Centenera MM, Mills IG, Lynn DJ, Selth LA, Butler LM. A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. eLife 2021; 10:62592. [PMID: 34382934 PMCID: PMC8416027 DOI: 10.7554/elife.62592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Alterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase (6PGD) as an androgen-regulated gene that is upregulated in prostate cancer. AR increased the expression of 6PGD indirectly via activation of sterol regulatory element binding protein 1 (SREBP1). Accordingly, loss of 6PGD, AR or SREBP1 resulted in suppression of PPP activity as revealed by 1,2-13C2 glucose metabolic flux analysis. Knockdown of 6PGD also impaired growth and elicited death of prostate cancer cells, at least in part due to increased oxidative stress. We investigated the therapeutic potential of targeting 6PGD using two specific inhibitors, physcion and S3, and observed substantial anti-cancer activity in multiple models of prostate cancer, including aggressive, therapy-resistant models of castration-resistant disease as well as prospectively collected patient-derived tumour explants. Targeting of 6PGD was associated with two important tumour-suppressive mechanisms: first, increased activity of the AMP-activated protein kinase (AMPK), which repressed anabolic growth-promoting pathways regulated by acetyl-CoA carboxylase 1 (ACC1) and mammalian target of rapamycin complex 1 (mTORC1); and second, enhanced AR ubiquitylation, associated with a reduction in AR protein levels and activity. Supporting the biological relevance of positive feedback between AR and 6PGD, pharmacological co-targeting of both factors was more effective in suppressing the growth of prostate cancer cells than single-agent therapies. Collectively, this work provides new insight into the dysregulated metabolism of prostate cancer and provides impetus for further investigation of co-targeting AR and the PPP as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Joanna L Gillis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Josephine A Hinneh
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natalie K Ryan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Swati Irani
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Max Moldovan
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lake-Ee Quek
- School of Mathematics and Statistics, Charles Perkins Centre, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Raj K Shrestha
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia.,Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Adrienne R Hanson
- Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Jeff Holst
- School of Medical Sciences and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Margaret M Centenera
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Ian G Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - David J Lynn
- South Australian Health and Medical Research Institute, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia
| | - Luke A Selth
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Flinders Health and Medical Research Institute, Flinders University, College of Medicine and Public Health, Bedford Park, Australia.,Dame Roma Mitchell Cancer Research Laboratories, University of Adelaide, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia.,Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia
| |
Collapse
|
35
|
Pichler G, Candotto Carniel F, Muggia L, Holzinger A, Tretiach M, Kranner I. Enhanced culturing techniques for the mycobiont isolated from the lichen Xanthoria parietina. Mycol Prog 2021; 20:797-808. [PMID: 34720793 PMCID: PMC8550697 DOI: 10.1007/s11557-021-01707-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Lichens and their isolated symbionts are potentially valuable resources for biotechnological approaches. Especially mycobiont cultures that produce secondary lichen products are receiving increasing attention, but lichen mycobionts are notoriously slow-growing organisms. Sufficient biomass production often represents a limiting factor for scientific and biotechnological investigations, requiring improvement of existing culturing techniques as well as methods for non-invasive assessment of growth. Here, the effects of pH and the supplement of growth media with either D-glucose or three different sugar alcohols that commonly occur in lichens, D-arabitol, D-mannitol and ribitol, on the growth of the axenically cultured mycobiont isolated from the lichen Xanthoria parietina were tested. Either D-glucose or different sugar alcohols were offered to the fungus at different concentrations, and cumulative growth and growth rates were assessed using two-dimensional image analysis over a period of 8 weeks. The mycobiont grew at a pH range from 4.0 to 7.0, whereas no growth was observed at higher pH values. Varying the carbon source in Lilly-Barnett medium (LBM) by replacing 1% D-glucose used in the originally described LBM by either 1%, 2% or 3% of D-mannitol, or 3% of D-glucose increased fungal biomass production by up to 26%, with an exponential growth phase between 2 and 6 weeks after inoculation. In summary, we present protocols for enhanced culture conditions and non-invasive assessment of growth of axenically cultured lichen mycobionts using image analysis, which may be useful for scientific and biotechnological approaches requiring cultured lichen mycobionts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11557-021-01707-7.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Zhang W, Sun C, Zhou S, Zhao W, Wang L, Sheng L, Yi J, Liu T, Yan J, Ma X, Fang B. Recent advances in chemistry and bioactivity of Sargentodoxa cuneata. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113840. [PMID: 33460761 DOI: 10.1016/j.jep.2021.113840] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Sargentodoxa comprises only one species, Sargentodoxa cuneata (Oliv.) Rehd et al., widely distributed in the subtropical zone of China. The plant is extensively used in traditional medicine for treating arthritis, joint pains, amenorrhea, acute appendicitis and inflammatory intestinal obstruction. Pharmacological studies show anti-inflammatory, antioxidant, antitumor, antimicrobial, and anti-sepsis activities. AIM OF THE REVIEW This review aims to summarize the information about distribution, traditional uses, chemical constituents and pharmacological activities of S. cuneata, as an attempt to provide a scientific basis for its traditional uses and to support its application and development for new drug development. METHODOLOGY Scientific information of S. cuneata was retrieved from the online bibliographic databases, including Web of Science, Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, Baidu Scholar, China national knowledge infrastructure (CNKI) and WANFANG DATA (up to March 2020). We also search doctoral dissertations, master dissertations conference papers and published books. The keywords were used: "Sargentodoxa", "Da Xue Teng", "Hong Teng", "Xue Teng", "secondary metabolites", "chemical components", "biological activity", "pharmacology", "traditional uses". OBSERVATIONS AND RESULTS S. cuneata is utilized as valuable herbal medicines to treat various diseases in China. Over 110 chemical constituents have been isolated and identified from the stem of S. cuneata, including phenolic acids, phenolic glycosides, lignans, flavones, triterpenoids and other compounds. The extract and compounds of S. cuneata have a wide spectrum of pharmacological activities, including antitumor, anti-inflammatory, antioxidant, antimicrobial, anti-sepsis and anti-arthritis effects, as well as protective activity against cerebrovascular diseases. CONCLUSION S. cuneata has a rich legacy for the treatment of many diseases, especially arthritis and sepsis, which is reinforced by current investigations. However, the present studies about bioactive chemical constituents and detail pharmacological mechanisms of S. cuneata were insufficient. Further studies should focus on these aspects in relation to its clinical applications. This review has systematically summarized the traditional uses, phytochemical constituents and pharmacological effects of S. cuneata, providing references for the therapeutic potential of new drug development.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chengpeng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenyu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Lin Wang
- Department of Traditional Chinese Medicine Shanghai Pudong New Area People's Hospital Pudong, Shanghai, 201200, China
| | - Lingli Sheng
- Nephrology, Pudong Branch of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Tiantian Liu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Juanjuan Yan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
37
|
Tian B, Hua Z, Wang Z, Wang J. RETRACTED ARTICLE: Physcion 8-O-β-glucopyranoside mediates the NLRP3-associated pyroptosis and cell metastasis in the human osteosarcoma cells via ER stress activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:555. [PMID: 32072190 DOI: 10.1007/s00210-020-01836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Baogang Tian
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhijiong Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China.
| |
Collapse
|
38
|
Revealing mechanism of Caulis Sargentodoxae for the treatment of ulcerative colitis based on network pharmacology approach. Biosci Rep 2021; 41:227559. [PMID: 33432986 PMCID: PMC7846960 DOI: 10.1042/bsr20204005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: The traditional Chinese medicine Caulis Sargentodoxae is widely used in the treatment of ulcerative colitis (UC), but the mechanism remains unknown. The present study aims to reveal its effective components, targets and pathways through network pharmacology and bioinformatics approaches. Materials and methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to identify effective components. The ligand-based targets prediction was achieved through SwissTargetPrediction and TargetNet. UC-related targets were identified using Gene Expression Omnibus (GEO) data and DisGeNET. The common targets of disease and components were constructed and analyzed by PPI network. Lastly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses are used to explain the functions of these common targets. Components-Targets-Pathways network was visualized and analyzed to further reveal the connection between the components and targets. Results: Eight active components and 102 key targets were identified to play an important role in UC. These targets were related to regulation of protein serine/threonine kinase activity, positive regulation of cell motility, response to molecule of bacterial origin, response to toxic substance, ERK1 and ERK2 cascade, peptidyl-tyrosine modification, inositol lipid-mediated signaling, cellular response to drug, regulation of inflammatory response and leukocyte migration. Moreover, HIF-1 signaling pathway and PI3K-Akt signaling pathway were the key targets involved in UC-related signaling pathways. Conclusion: The eight active components of Caulis Sargentodoxae mainly play a therapeutic role for UC through synergistic regulation of HIF-1 signaling pathway and PI3K-Akt signaling pathway.
Collapse
|
39
|
Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 2020; 203:112627. [PMID: 32702586 DOI: 10.1016/j.ejmech.2020.112627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Ginseng has been used as a well-known traditional Chinese medicine since ancient times. Ginsenosides as its main active constituents possess a broad scope of pharmacological properties including stimulating immune function, enhancing cardiovascular health, increasing resistance to stress, improving memory and learning, developing social functioning and mental health in normal persons, and chemotherapy. Ginsenoside Rh2 (Rh2) is one of the major bioactive ginsenosides from Panax ginseng. When applied to cancer treatment, Rh2 not only exhibits the anti-proliferation, anti-invasion, anti-metastasis, induction of cell cycle arrest, promotion of differentiation, and reversal of multi-drug resistance activities against multiple tumor cells, but also alleviates the side effects after chemotherapy or radiotherapy. In the past decades, nearly 200 studies on Rh2 in the treatment of cancer have been published, however no specific reviews have been conducted by now. So the purpose of this review is to provide a systematic summary and analysis of the anticancer effects and the potential mechanisms of Rh2 extracted from Ginseng then give a future prospects about it. In the end of this paper the metabolism and derivatives of Rh2 also have been documented.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Shifeng Chu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Meiyu Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Xin Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yani Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
| |
Collapse
|
40
|
Zhang C, Shao H, Li D, Xiao N, Tan Z. Role of tryptophan-metabolizing microbiota in mice diarrhea caused by Folium sennae extracts. BMC Microbiol 2020; 20:185. [PMID: 32600333 PMCID: PMC7325056 DOI: 10.1186/s12866-020-01864-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although reports have provided evidence that diarrhea caused by Folium sennae can result in intestinal microbiota diversity disorder, the intestinal bacterial characteristic and specific mechanism are still unknown. The objective of our study was to investigate the mechanism of diarrhea caused by Folium sennae, which was associated with intestinal bacterial characteristic reshaping and metabolic abnormality. RESULTS For the intervention of Folium sennae extracts, Chao1 index and Shannon index were statistical decreased. The Beta diversity clusters of mice interfered by Folium sennae extracts were distinctly separated from control group. Combining PPI network analysis, cytochrome P450 enzymes metabolism was the main signaling pathway of diarrhea caused by Folium sennae. Moreover, 10 bacterial flora communities had statistical significant difference with Folium sennae intervention: the abundance of Paraprevotella, Streptococcus, Epulopiscium, Sutterella and Mycoplasma increased significantly; and the abundance of Adlercreutzia, Lactobacillus, Dehalobacterium, Dorea and Oscillospira reduced significantly. Seven of the 10 intestinal microbiota communities were related to the synthesis of tryptophan derivatives, which affected the transformation of aminotryptophan into L-tryptophan, leading to abnormal tryptophan metabolism in the host. CONCLUSIONS Folium sennae targeted cytochrome P450 3A4 to alter intestinal bacterial characteristic and intervene the tryptophan metabolism of intestinal microbiota, such as Streptococcus, Sutterella and Dorea, which could be the intestinal microecological mechanism of diarrhea caused by Folium sennae extracts.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Haoqing Shao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China
| | - Dandan Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Zhoujin Tan
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Changsha, Hunan, China.
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
41
|
Niu Y, Zhang J, Tong Y, Li J, Liu B. Physcion 8-O-β-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer. Life Sci 2019; 237:116893. [DOI: 10.1016/j.lfs.2019.116893] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
|