1
|
Oppedal F, Barrett LT, Fraser TWK, Vågseth T, Zhang G, Andersen OG, Jacson L, Dieng MA, Vindas MA. The Behavioral and Neurobiological Response to Sound Stress in Salmon. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:11-28. [PMID: 38754387 DOI: 10.1159/000539329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Noise associated with human activities in aquatic environments can affect the physiology and behavior of aquatic species which may have consequences at the population and ecosystem levels. Low-frequency sound is particularly stressful for fish since it is an important factor in predator-prey interactions. Even though behavioral and physiological studies have been conducted to assess the effects of sound on fish species, neurobiological studies are still lacking. METHODS In this study, we exposed farmed salmon to low-frequency sound for 5 min a day for 30 trials and conducted behavioral observations and tissue sampling before sound exposure (timepoint zero; T0) and after 1 (T1), 10 (T2), 20 (T3), and 30 (T4) exposures, to assess markers of stress. These included plasma cortisol, neuronal activity, monoaminergic signaling, and gene expression in 4 areas of the forebrain. RESULTS We found that sound exposure induced an activation of the stress response by eliciting an initial startle behavioral response, together with increased plasma cortisol levels and a decrease in neuronal activity in the hypothalamic tubercular nuclei (TN). At T3 and T4 salmon showed a degree of habituation in their behavioral and cortisol response. However, at T4, salmon showed signs of chronic stress with increased serotonergic activity levels in the dorsolateral and dorsomedial pallium, the preoptic area, and the TN, as well as an inhibition of growth and reproduction transcripts in the TN. CONCLUSIONS Together, our results suggest that prolonged exposure to sound results in chronic stress that leads to neurological changes which suggest a reduction of life fitness traits.
Collapse
Affiliation(s)
| | - Luke T Barrett
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Queenscliff Marine Science Centre, Deakin University, Geelong, Victoria, Australia
| | | | | | | | - Oliver G Andersen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Lea Jacson
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marie-Aida Dieng
- Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Marco A Vindas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Amoah K, Yan X, Liu H, Pan S, Li T, Suo X, Tan B, Zhang S, Huang W, Xie M, Yang S, Zhang H, Yang Y, Dong X. Substituting fish meal with castor meal in diets of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂): Effects on growth performance, immune response, antioxidant and digestive enzyme activities, gut morphology, and inflammatory-related gene expression. FISH & SHELLFISH IMMUNOLOGY 2022; 131:181-195. [PMID: 36206996 DOI: 10.1016/j.fsi.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The present study was conducted to investigate the effects of replacing fishmeal (FM) with castormeal (CM) on the growth performance, immune response, antioxidant and digestive enzyme activities, intestinal morphology, and expression of inflammatory-related genes in juvenile hybrid grouper (Epinephelus fuscoguttatus♀ ×E. lanceolatus♂). Six iso-nitrogenous (50% crude protein) and iso-lipidic (10% crude lipid) diets were formulated; namely, a reference diet (FM) containing 50% FM and five experimental diets (4% (CM4), 8% (CM8), 12% (CM12), 16% (CM16), and 20% (CM20)) in which FM protein was substituted with CM at varying levels to feed fish (initial weight: 9.12 ± 0.01 g) for 8 weeks. The results showed that the final weight, weight gain rate, and specific growth rate were highest in the FM, CM4, and CM8 groups, whereas the feed conversion ratio, hepatosomatic and viscerosomatic indexes were significantly enhanced in the CM4 group in comparison to the others. The CM4 and CM12 groups were observed to show the highest intestinal length index values compared to the other groups, with the CM20 revealing the worst growth performance. The serum total protein content first increased (P < 0.05) in the CM4 group and decreased (P < 0.05) afterward. Nonetheless, a decreasing significant (P < 0.05) cholesterol and triglyceride contents were witnessed with the increasing replacement of FM with CM. Compared to the control group, a significant increase (P < 0.05) in the activities of serum and liver immunoglobulin-M, superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and complement-3 (except serum activity for CM12 group); liver lysozyme; intestinal amylase, and lipase, was witnessed in the CM groups. However, the serum lysozyme activity was highest (P < 0.05) in the CM4 group and lowest in the CM20 group. While the least serum malondialdehyde contents were observed in the CM4 group, that of the liver malondialdehyde was least witnessed in the FM, CM4, CM8, CM12, and CM16 groups as compared to the CM20. The intestinal histological examination revealed a significantly decreasing trend for villi height and villi width with increasing replacement levels. However, the muscle thickness, crypt depth, and type II mucus cells first increased upto 4% replacement level and later decreased. The increasing of dietary replacement levels significantly up-regulated pro-inflammatory (il-1β, tnf-α, myd88, ifn-γ, tlr-22, and il-12p40) and down-regulated anti-inflammatory (il-10, tgf-β, mhc-iiβ) and anti-bacterial peptide (epinecidin and hepcidin) mRNA levels in the intestine. The mRNA levels of il-6 was up-regulated firstly upto 4 and 8% replacement levels, and later down-regulated with increasing replacement. These results suggested that, although higher dietary CM replacement enhances the immune, antioxidant and digestive enzymes, it aggravates intestinal inflammation. Replacing 4 and 8% of FM with CM could enhance the growth performance of fish.
Collapse
Affiliation(s)
- Kwaku Amoah
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Xiaobo Yan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Hao Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Simiao Pan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Tao Li
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Xiangxiang Suo
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Weibin Huang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Mingsheng Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Shipei Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| |
Collapse
|
3
|
Fermented Soybean Meal (FSBM) in African Catfish ( Clarias gariepinus) Diets: Effects on Growth Performance, Fish Gut Microbiota Analysis, Blood Haematology, and Liver Morphology. Life (Basel) 2022; 12:life12111851. [PMID: 36430986 PMCID: PMC9694454 DOI: 10.3390/life12111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study revealed the potential of fermented soybean meal (FSBM) as a fish meal (FM) replacement in African catfish (Clarias gariepinus) feed formulation. Five isonitrogenous diets (32% crude protein) were prepared with five different levels of FSBM as FM replacement, namely 0% FSBM (T1), 40% FSBM (T2), 50% FSBM (T3), 60% FSBM (T4), and 70% (T5). The experimental fish was given the formulated diet for eight consecutive weeks. At the end of the feeding trial, the fish were subjected to growth performance, blood parameters, blood chemical, liver histology, and gut microbiota assessment. The study findings demonstrated that the experimental fish that received the T2 diet exhibited significantly higher (p < 0.05) growth performance. Experimental fish that received diet T2 had significantly higher (p < 0.05) white blood cell (WBC) and significantly lower (p < 0.05) in terms of cholesterol (CHOL), albumin (ALB), globulin (GLOB), and total protein (TP). The replacement of FSBM to FM significantly affected liver morphology on the sinusoid, vacuole, nucleus, and erythrocytes. Gut microbiota composition analysis showed a significantly high abundance (p < 0.05) of Akkermansia muciniphila in the experimental fish that received the T2 diet. The gut microbiota indicates that the experimental fish is in a healthy condition. In conclusion, replacing 40% FSBM with FM in aquafeed could enhance C. gariepinus growth performance and health conditions.
Collapse
|
4
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Zhang W, Tan B, Deng J, Haitao Z. Multiomics analysis of soybean meal induced marine fish enteritis in juvenile pearl gentian grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Sci Rep 2021; 11:23319. [PMID: 34857775 PMCID: PMC8640039 DOI: 10.1038/s41598-021-02278-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an important protein source, soybean products can cause intestinal inflammation and injury in many animals including human beings, particularly infants and juvenile individuals. Research in this field has been performed for terrestrial animals and fish, but still lacks integrity and systematicness. In this study, the main biological processes in the intestinal tract of marine fish juvenile pearl gentian grouper in the state of soybean meal-induced enteritis (SBMIE) were analyzed. A total of 720 groupers with an approximate initial weight of 12.5 g were randomly divided into three groups: the fish meal (FM) control group, the 20% SBM group (SBM20), and the SBM40 group (n = 4). Three iso-nitrogenous and iso-lipidic diets were prepared and fed to fish for 10 weeks. Each barrel contained a water volume of about 1 m3 in and was exposed to natural light and temperature. Results indicated that the growth and physiology of groupers fed with SBM were significantly negatively affected, with the gene expressions of intestinal structural protein abnormal. 16SrDNA high-throughput sequencing showed that the intestinal microflora played an important role in the pathogenesis of pearl gentian grouper SBMIE, which may activate a variety of pathogen pattern recognition receptors, such as toll-like receptors (TLRs), RIG-I-like receptors, and nod-like receptors. Transcriptome analysis revealed that changes of the SBMIE signaling pathway in pearl gentian groupers were conservative to some extent than that of terrestrial animals and freshwater fish. Moreover, the TLRs-nuclear factor kappa-B signaling pathway becomes activated, which played an important role in SBMIE. Meanwhile, the signal pathways related to nutrient absorption and metabolism were generally inhibited. Metabolomics analysis showed that isoflavones and saponins accounted for a large proportion in the potential biomarkers of pearl gentian grouper SBMIE, and most of the biomarkers had significantly positive or negative correlations with each other; 56 metabolites were exchanged between intestinal tissues and contents, which may play an important role in the development of enteritis, including unsaturated fatty acids, organic acids, amino acids, vitamins, small peptides, and nucleotides, etc. These results provide a basic theoretical reference for solving the intestinal issues of fish SBMIE and research of inflammatory bowel disease in mammals.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Zhang Haitao
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Khieokhajonkhet A, Muichanta S, Aeksiri N, Ruttarattanamongkol K, Rojtinnakorn J, Kaneko G. Evaluation of sacha inchi meal as a novel alternative plant protein ingredient for red hybrid tilapia (Oreochromis niloticus×O. mossambicus): Growth performance, feed utilization, blood biochemistry, and histological changes. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Toledo-Solís FJ, Hilerio-Ruiz AG, Delgadin T, Sirkin DP, Di Yorio MP, Vissio PG, Peña-Marín ES, Martínez-García R, Maytorena-Verdugo CI, Álvarez-González CA, de Rodrigáñez MAS. Changes in digestive enzyme activities during the early ontogeny of the South American cichlid (Cichlasoma dimerus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1211-1227. [PMID: 34173183 DOI: 10.1007/s10695-021-00976-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cichlasoma dimerus is a neotropical cichlid that has been used as a biological model for neuroendocrinology studies. However, its culture is problematic in terms of larval feeding to allow having enough fry quantity and quality. Larviculture requires full knowledge about the digestive system and nutrition; therefore, this study was intended to assess the digestive enzymes' changes at different ages during the early ontogeny. Acid protease activity was detectable from the first day after hatching (dah), increasing to its maximum peaks on 9 dah. In contrast, alkaline proteases had low activity in the first days of life but reached their maximum activity on 17 dah. Chymotrypsin, L-aminopeptidase, and carboxypeptidase A activities increased at 6 dah, while trypsin activity was first detected on 13 dah and reached its maximum activity on 17 dah. Lipase and α-amylase activity were detectable at low levels in the first days of life, but the activity fluctuated and reaching its maximum activity at 21 dah. Alkaline phosphatase continued to oscillate and had two maximum activity peaks, the first at 6 dah and the second at 19 dah. Zymograms of alkaline proteases on day 6 dah six revealed four activity bands with molecular weights from 16.1 to 77.7 kDa. On 13 dah, two more activity bands of 24.4 and 121.9 kDa were detected, having a total of six proteases. The enzymatic activity analyzes indicate the digestive system shows the low activity of some enzymes in the first days after hatching, registering significant increases on 6 dah and the maximum peaks of activities around at 17 dah. Therefore, we recommend replacing live food with dry feed and only providing dry feed after day 17 dah.
Collapse
Affiliation(s)
- Francisco Javier Toledo-Solís
- Departamento de Biología y Geología, Universidad de Almería, 04120, Almería, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940, Ciudad de México, Mexico
| | - Andrea Guadalupe Hilerio-Ruiz
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Tomás Delgadin
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Pérez Sirkin
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Di Yorio
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gabriela Vissio
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emyr Saul Peña-Marín
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
- Cátedra CONACYT, Ciudad de México, Mexico
| | - Rafael Martínez-García
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Claudia Ivette Maytorena-Verdugo
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Carlos Alfonso Álvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico.
| | - Miguel Angel Sáenz de Rodrigáñez
- Departamento de Fisiología, Facultad de Ciencias de La Salud, Universidad de Granada, Campus de Melilla, Calle Santander, 1, C.P. 52005, Melilla, Spain
| |
Collapse
|
8
|
Zhang W, Tan B, Deng J, Dong X, Yang Q, Chi S, Liu H, Zhang S, Xie S, Zhang H. Mechanisms by Which Fermented Soybean Meal and Soybean Meal Induced Enteritis in Marine Fish Juvenile Pearl Gentian Grouper. Front Physiol 2021; 12:646853. [PMID: 33967821 PMCID: PMC8100241 DOI: 10.3389/fphys.2021.646853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
Soy meals can cause intestinal inflammation and even injury in animals, especially infants and juvenile individuals. This study investigated the effects of fermented soybean meal (FSBM) on the growth and intestinal homeostasis of juvenile pearl gentian grouper and examined the mechanisms by which FSBM and soybean meal (SBM) induced enteritis in fish, using "3+2" full-length transcriptome sequencing. We randomly assigned 720 female juvenile groupers into three treatment groups: FM control group, 20% FSBM group (FSBM20), and FSBM40 group (n = 4). Three iso-nitrogenous (50% protein) and iso-lipidic (10% lipid) diets were prepared and fed to fish for 10 weeks. The water volume in each barrel was about 1 m3, using natural light and temperature. Results showed that dietary FSBM, at experimental level, significantly affected fish growth and intestinal structure negatively and significantly increased enteritis indices. The degree of intestinal injury and inflammation was determined by the enzyme activities of trypsin and lysozyme, and the contents of IgM, C3, C4, and malondialdehyde, and the expressions of pro-inflammatory genes (IL1β, IL8, IL17, and TNFα) and anti-inflammatory genes (IL4, IL10, and TGFβ1). Full-length transcriptome analysis identified 2,305 and 3,462 differentially expressed genes (DEGs) in SBM40 and FSBM40 groups, respectively. However, only 18.98% (920/5,445) of DEGs had similar expression patterns, indicating that high levels of SBM40 and FSBM40 have different metabolic strategies. KEGG enrichment analysis indicated that among the significant pathways, ~45% were related to immune diseases/systems, infectious diseases, and signal transduction in both SBM and FSBM groups. Based on PacBio SMRT sequencing, nine toll-like receptor (TLR) members, including TLR1, TLR2, TLR3, TLR5, TLR8, TLR9, TLR13, TLR21, and TLR22, were detected in intestinal tissues of pearl gentian grouper. TLR-MyD88-NF-κB signaling pathway played an important role in the development of FSBM- and SBM-induced enteritis in pearl gentian grouper; however, TLR receptors used in SBM and FSBM groups were different. TLR1, TLR8, TLR13, and TLR22 were the main receptors used in FSBM group, while TLR5, TLR8, TLR9, TLR21, and TLR22 were the main receptors used in SBM group. Present study provides valuable theoretical references for further research on soy protein-induced enteritis in fish.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
9
|
Bjørgen H, Li Y, Kortner TM, Krogdahl Å, Koppang EO. Anatomy, immunology, digestive physiology and microbiota of the salmonid intestine: Knowns and unknowns under the impact of an expanding industrialized production. FISH & SHELLFISH IMMUNOLOGY 2020; 107:172-186. [PMID: 32979510 DOI: 10.1016/j.fsi.2020.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Increased industrialized production of salmonids challenges aspects concerning available feed resources and animal welfare. The immune system plays a key component in this respect. Novel feed ingredients may trigger unwarranted immune responses again affecting the well-being of the fish. Here we review our current knowledge concerning salmon intestinal anatomy, immunity, digestive physiology and microbiota in the context of industrialized feeding regimes. We point out knowledge gaps and indicate promising novel technologies to improve salmonid intestinal health.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Yanxian Li
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M Kortner
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åshild Krogdahl
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
10
|
Jesús-De la Cruz KDM, Ávila-Fernández Á, Peña-Marín ES, Jiménez-Martínez LD, Tovar-Ramírez D, Martínez-García R, Guerrero-Zárate R, Asencio-Alcudia GG, Alvarez-González CA. Trypsin gene expression in adults and larvae of tropical gar Atractosteus tropicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:145-155. [PMID: 31707568 DOI: 10.1007/s10695-019-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Trypsin gene (try) expression levels were quantified in different organs of wild and captive tropical gar (Atractosteus tropicus) adults, and changes in expression during initial ontogeny of the species were determined. RNA was extracted from the pancreas, and cDNA was synthesized and later amplified by endpoint PCR using oligonucleotides designed from different try sequences of fish registered in GenBank. Subsequently, specific oligonucleotides were designed from the partial sequences. Gene expression was measured after RNA extraction and synthesis of the cDNA of 11 organs (liver, pancreas, stomach, esophagus, intestine, pyloric caeca, brain, muscle, gills, gonad, and kidney) of captive and wild adults. Likewise, samples of A. tropicus larvae were taken on days 0 (embryo), 5, 10, 15, 20, 25, and 30 days after hatching (DAH), the RNA was extracted, and the synthesis of cDNA was carried out to measure real-time gene expression (qPCR). The results showed that the highest relative try expression occurred mainly in the esophagus, liver, stomach, and pancreas of both wild and captive adult fish; however, captive organisms had a higher try expression level than wild fish. Although try expression during initial ontogeny was high in embryos (0 DAH), it did not reach the maximum value until 15 DAH. It was concluded that try expression levels in captive adults are due to the high protein content in the balanced feed (trout diet). The highest try expression level during larviculture was detected at 15 DAH, which indicates that A. tropicus larvae have a mature digestive system and can efficiently hydrolyze proteins from feed at this developmental stage.
Collapse
Affiliation(s)
- Kristal de M Jesús-De la Cruz
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Ángela Ávila-Fernández
- Laboratorio de Biología Molecular y Biotecnología, DACS-UJAT, Avenida Gregorio Méndez 2838-A Col. Tamulté, C.P. 86100, Villahermosa, Tabasco, Mexico
| | - Emyr Saúl Peña-Marín
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Luis Daniel Jiménez-Martínez
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Dariel Tovar-Ramírez
- Laboratorio de Fisiología Comparada y Genómica Funcional, Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, C.P. 23096, La Paz, B.C.S, Mexico
| | - Rafael Martínez-García
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Rocio Guerrero-Zárate
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Gloria Gertrudys Asencio-Alcudia
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Acuicultura Tropical, DACBiol-UJAT, Carretera Villahermosa-Cárdenas Km 0.5, C.P. 86139, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
11
|
Jang WJ, Lee JM, Hasan MT, Lee BJ, Lim SG, Kong IS. Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:719-727. [PMID: 31271838 DOI: 10.1016/j.fsi.2019.06.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the effects of intestinal microbial manipulation by dietary probiotic supplementation on digestive enzyme activity, immune-related gene transcription, intestinal structure alteration, and viability against pathogenic challenge in olive flounder. Similar-sized flounders (14.92 ± 0.21 g) were divided into three groups and supplemented with a control (without probiotic) or 1 × 108 CFU/g diet of each of Bacillus sp. SJ-10 (ProB) and Lactobacillus plantarum (ProL) for eight weeks. At the end of the feeding trial, the estimated intestinal microbial richness (Chao1) and diversity (Shannon) demonstrated a significant (P < 0.05) abundance in the ProB group (484.80 ± 88.75, 5.08 ± 0.17) compared to the ProL (285.32 ± 17.78, 4.54 ± 0.09) and control groups (263.23 ± 20.20, 4.30 ± 0.20). A similar alteration phenomenon was also found at the phylum level, with a higher abundance of Proteobacteria, Actinobacteria, and Acidobacteria. Trypsin and lipase activities were elevated in both the ProB and ProL groups compared to the control, but amylase was only higher in the ProB group. The expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were significantly higher in the ProB group than in the other two groups. There was a significant increase in transcription of IL-10 in both the ProB and ProL groups compared to the control. The length of villi and microvilli of probiotic-fed olive flounder was increased but was not significantly different from the control group. In an in vivo challenge experiment with Streptococcus iniae (1 × 108 CFU/mL), the survival rates of the ProB and ProL groups were 29.17% and 12.50%, respectively, when control mortality reached 100%. Therefore, intestinal microbiota manipulation by probiotic supplementation increased the richness of the bacterial population, digestive enzyme activity, intestinal immune gene transcription, and infectious disease protection in olive flounder.
Collapse
Affiliation(s)
- Won Je Jang
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jong Min Lee
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Md Tawheed Hasan
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Bong-Joo Lee
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - Sang Gu Lim
- Aquafeed Research Center, NIFS, Pohang, 791-923, Republic of Korea
| | - In-Soo Kong
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
12
|
Han F, Wang X, Guo J, Qi C, Xu C, Luo Y, Li E, Qin JG, Chen L. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:269-279. [PMID: 30300740 DOI: 10.1016/j.fsi.2018.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the effects of two soybean antigens (glycinin and β-conglycinin) as an antinutritional substance in the diet on the growth, digestive ability, intestinal health and microbiota of juvenile Chinese mitten crabs (Eriocheir sinensis). The isonitrogenous and isolipidic diets contained two soybean antigens at two levels each (70 and 140 g/kg β-conglycinin, 80 and 160 g/kg glycinin) and a control diet without β-conglycinin or glycinin supplementation, and were used respectively to feed juvenile E. sinensis for seven weeks. Dietary inclusion of either glycinin or β-conglycinin significantly reduced crab survival and weight gain. The crabs fed diets containing soybean antigens had higher malondialdehyde concentrations and lower catalase activities in the intestine than those in the control. The activities of trypsin and amylase in the intestine were suppressed by dietary β-conglycinin and glycinin. Dietary glycinin or β-conglycinin impaired the immunity and morphological structure of intestine, especially the peritrophic membrane. The mRNA expression of constitutive and inducible immune responsive genes (lipopolysaccharide-induced TNF-α factor and interleukin-2 enhancer-binding factor 2) increased while the mRNA expression of the main genes related to the structural integrity peritrophic membrane (peritrophin-like gene and peritrophic 2) significantly decreased in the groups with soybean antigen addition. Soybean antigen could also change the intestinal microbial community. The abundance of pathogenic bacteria (Ochrobactrum, Burkholderia and Pseudomonas) increased significantly in both soybean antigen groups. Although pathogenic bacteria Vibrio were up-regulated in the glycinin group, the abundance of Dysgonomonas that degraded lignocellulose and ameliorated the gut environment decreased in the glycinin group. This study indicates that existence of soybean antigens (glycinin or β-conglycinin) could induce gut inflammation, reshape the community of gut microbiota, and cause digestive dysfunction, ultimately leading to impaired growth in crabs.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jianlin Guo
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
13
|
Yasuike M, Iwasaki Y, Nishiki I, Nakamura Y, Matsuura A, Yoshida K, Noda T, Andoh T, Fujiwara A. The yellowtail (Seriola quinqueradiata) genome and transcriptome atlas of the digestive tract. DNA Res 2018; 25:547-560. [PMID: 30329019 PMCID: PMC6191305 DOI: 10.1093/dnares/dsy024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Seriola quinqueradiata (yellowtail) is the most widely farmed and economically important fish in aquaculture in Japan. In this study, we used the genome of haploid yellowtail fish larvae for de novo assembly of whole-genome sequences, and built a high-quality draft genome for the yellowtail. The total length of the assembled sequences was 627.3 Mb, consisting of 1,394 scaffold sequences (>2 kb) with an N50 length of 1.43 Mb. A total of 27,693 protein-coding genes were predicted for the draft genome, and among these, 25,832 predicted genes (93.3%) were functionally annotated. Given our lack of knowledge of the yellowtail digestive system, and using the annotated draft genome as a reference, we conducted an RNA-Seq analysis of its three digestive organs (stomach, intestine and rectum). The RNA-Seq results highlighted the importance of certain genes in encoding proteolytic enzymes necessary for digestion and absorption in the yellowtail gastrointestinal tract, and this finding will accelerate development of formulated feeds for this species. Since this study offers comprehensive annotation of predicted protein-coding genes, it has potential broad application to our understanding of yellowtail biology and aquaculture.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yuki Iwasaki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Aiko Matsuura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Kazunori Yoshida
- Goto Laboratory, Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute Japan Fisheries Research and Education Agency, Tamanoura-cho, Goto, Nagasaki, Japan
| | - Tsutomu Noda
- Goto Laboratory, Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute Japan Fisheries Research and Education Agency, Tamanoura-cho, Goto, Nagasaki, Japan
| | - Tadashi Andoh
- Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Yang Y, Han T, Xiao J, Li X, Wang J. Transcriptome analysis reveals carbohydrate-mediated liver immune responses in Epinephelus akaara. Sci Rep 2018; 8:639. [PMID: 29330509 PMCID: PMC5766613 DOI: 10.1038/s41598-017-18990-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022] Open
Abstract
As the cheapest energy source, carbohydrates are used in fish feeds to improve physical quality and reduce catabolism of proteins and lipids. The liver is the primary organ for metabolism and is also an important site of immune regulation. Here, we investigated the effect of different dietary carbohydrate levels on growth and health by evaluating the liver transcriptome of Epinephelus akaara. In this study, E. akaara juveniles were fed diets containing few (0% corn starch), moderate (18% corn starch), and high (30% corn starch) levels of dietary carbohydrate. After an 8-week feeding trial, E. akaara fed 30% dietary carbohydrates exhibited poor growth performance compared with those fed 0% and 18% dietary carbohydrates (P > 0.05). Genes related to the immune system, including IL8, TLR9, CXCR4, CCL4, and NFκB inhibitor alpha, were over-expressed in E. akaara fed the highest level of carbohydrate (30%). This general over-expression could indicate activation of inflammatory processes in the liver. The liver transcriptome data of E. akaara reported here indicate that high carbohydrate level of diet can lead to poor growth and inflammatory immune response in E. akaara.
Collapse
Affiliation(s)
- Yunxia Yang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Jia Xiao
- Department of Immunobiology, Jinan University, Guangzhou, China
| | - Xinyu Li
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
15
|
Abernathy J, Brezas A, Snekvik KR, Hardy RW, Overturf K. Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis. PLoS One 2017; 12:e0180972. [PMID: 28723948 PMCID: PMC5517010 DOI: 10.1371/journal.pone.0180972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/24/2017] [Indexed: 12/13/2022] Open
Abstract
Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model.
Collapse
Affiliation(s)
- Jason Abernathy
- Hagerman Fish Culture Experiment Station, USDA-ARS, Hagerman, Idaho, United States of America
| | - Andreas Brezas
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, United States of America
| | - Kevin R. Snekvik
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Ronald W. Hardy
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, United States of America
| | - Ken Overturf
- Hagerman Fish Culture Experiment Station, USDA-ARS, Hagerman, Idaho, United States of America
| |
Collapse
|
16
|
Perera E, Yúfera M. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:563-578. [PMID: 27807713 DOI: 10.1007/s10695-016-0310-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.
Collapse
Affiliation(s)
- Erick Perera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain.
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | - Manuel Yúfera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
17
|
Kortner TM, Penn MH, Bjӧrkhem I, Måsøval K, Krogdahl Å. Bile components and lecithin supplemented to plant based diets do not diminish diet related intestinal inflammation in Atlantic salmon. BMC Vet Res 2016; 12:190. [PMID: 27604133 PMCID: PMC5015236 DOI: 10.1186/s12917-016-0819-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/01/2016] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND The present study was undertaken to gain knowledge on the role of bile components and lecithin on development of aberrations in digestive functions which seemingly have increased in Atlantic salmon in parallel with the increased use of plant ingredients in fish feed. Post smolt Atlantic salmon were fed for 77 days one of three basal diets: a high fish meal diet (HFM), a low fishmeal diet (LFM), or a diet with high protein soybean meal (HPS). Five additional diets were made from the LFM diet by supplementing with: purified taurocholate (1.8 %), bovine bile salt (1.8 %), taurine (0.4 %), lecithin (1.5 %), or a mix of supplements (suppl mix) containing taurocholate (1.8 %), cholesterol (1.5 %) and lecithin (0.4 %). Two additional diets were made from the HPS diet by supplementing with: bovine bile salt (1.8 %) or the suppl mix. Body and intestinal weights were recorded, and blood, bile, intestinal tissues and digesta were sampled for evaluation of growth, nutrient metabolism and intestinal structure and function. RESULTS In comparison with fish fed the HFM diet fish fed the LFM and HPS diets grew less and showed reduced plasma bile salt and cholesterol levels. Histological examination of the distal intestine showed signs of enteritis in both LFM and HPS diet groups, though more pronounced in the HPS diet group. The HPS diet reduced digesta dry matter and capacity of leucine amino peptidase in the distal intestine. None of the dietary supplements improved endpoints regarding fish performance, gut function or inflammation in the distal intestine. Some endpoints rather indicated negative effects. CONCLUSIONS Dietary supplementation with bile components or lecithin in general did not improve endpoints regarding performance or gut health in Atlantic salmon, in clear contrast to what has been previously reported for rainbow trout. Follow-up studies are needed to clarify if lower levels of bile salts and cholesterol may give different and beneficial effects, or if other supplements, and other combinations of supplements might prevent or ameliorate inflammation in the distal intestine.
Collapse
Affiliation(s)
- Trond M Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.
| | - Michael H Penn
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Present Address: US Fish & Wildlife Service, Lamar, PA, 16848, USA
| | - Ingemar Bjӧrkhem
- Department of Laboratory Medicine, Division for Clinical Chemistry, Karolinska University Hospital, Huddinge, Sweden
| | | | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
Perera E, Yúfera M. Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish 2016; 13:61-9. [PMID: 26716770 DOI: 10.1089/zeb.2015.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is now strong evidence that early nutrition plays an important role in shaping later physiology. We assessed here whether soy protein concentrate (SPC) or soybean meal (SBM) in early diet would modify zebrafish responses to these products in later life. We fed zebrafish larvae with SPC-, SBM-, or a control-diet for the first 3 days of feeding and then grew all larvae on the control diet up to juveniles. Finally, we assessed the expression in juveniles of genes involved in inflammation/immunity, the breakdown of extracellular matrix, luminal digestion, and intestinal nutrient absorption/trafficking. First feeding SBM had wider, stronger, and more persistent effects on gene expression with respect to SPC. Juveniles fed with SPC at first feeding were more prone to inflammation after refeeding with SPC than fish that never experienced SPC before. Conversely, zebrafish that faced SBM at first feeding were later less responsive to refeeding with SBM through inflammation and had higher expression of markers of peptide absorption and fatty acid transport. Results indicate that some features of inflammation/remodeling, presumably at the intestine, and nutrient absorption/transport in fish can be programmed by early nutrition. These findings sustain the rationale of using zebrafish for depicting molecular mechanisms involved in nutritional programming.
Collapse
Affiliation(s)
- Erick Perera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) , Cádiz, Spain
| |
Collapse
|
19
|
Vasanth G, Kiron V, Kulkarni A, Dahle D, Lokesh J, Kitani Y. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon. Front Immunol 2015; 6:409. [PMID: 26347738 PMCID: PMC4541333 DOI: 10.3389/fimmu.2015.00409] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon.
Collapse
Affiliation(s)
- Ghana Vasanth
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Amod Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| |
Collapse
|
20
|
Sahlmann C, Gu J, Kortner TM, Lein I, Krogdahl Å, Bakke AM. Ontogeny of the Digestive System of Atlantic Salmon (Salmo salar L.) and Effects of Soybean Meal from Start-Feeding. PLoS One 2015; 10:e0124179. [PMID: 25923375 PMCID: PMC4414279 DOI: 10.1371/journal.pone.0124179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/26/2015] [Indexed: 01/27/2023] Open
Abstract
Despite a long history of rearing Atlantic salmon in hatcheries in Norway, knowledge of molecular and physiological aspects of juvenile development is still limited. To facilitate introduction of alternative feed ingredients and feed additives during early phases, increased knowledge regarding the ontogeny of the digestive apparatus in salmon is needed. In this study, we characterized the development of the gastrointestinal tract and accessory digestive organs for five months following hatch by using histological, biochemical and molecular methods. Furthermore, the effects of a diet containing 16.7% soybean meal (SBM) introduced at start-feeding were investigated, as compared to a fishmeal based control diet. Salmon yolk sac alevins and fry were sampled at 18 time points from hatch until 144 days post hatch (dph). Histomorphological development was investigated at 7, 27, 46, 54 and 144 dph. Ontogenetic expression patterns of genes encoding key digestive enzymes, nutrient transporters, gastrointestinal peptide hormones and T-cell markers were analyzed from 13 time points by qPCR. At 7 dph, the digestive system of Atlantic salmon alevins was morphologically distinct with an early stomach, liver, pancreas, anterior and posterior intestine. About one week before the yolk sac was internalized and exogenous feeding was started, gastric glands and developing pyloric caeca were observed, which coincided with an increase in gene expression of gastric and pancreatic enzymes and nutrient transporters. Thus, the observed organs seemed ready to digest external feed well before the yolk sac was absorbed into the abdominal cavity. In contrast to post-smolt Atlantic salmon, inclusion of SBM did not induce intestinal inflammation in the juveniles. This indicates that SBM can be used in compound feeds for salmon fry from start-feeding to at least 144 dph and/or 4-5 g body weight.
Collapse
Affiliation(s)
- Christian Sahlmann
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M. Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
21
|
Krogdahl Å, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM. Soya Saponins Induce Enteritis in Atlantic Salmon (Salmo salar L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3887-902. [PMID: 25798699 DOI: 10.1021/jf506242t] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Soybean meal-induced enteritis (SBMIE) is a well-described condition in the distal intestine of salmonids, and saponins have been implicated as the causal agent. However, the question remains whether saponins alone cause SBMIE. Moreover, the dose-response relationship has not been described. In a 10 week feeding trial with Atlantic salmon, a highly purified (95%) soya saponin preparation was supplemented (0, 2, 4, 6, or 10 g/kg) to two basal diets, one containing fishmeal as the major protein source (FM) and the other 25% lupin meal (LP). Saponins caused dose-dependent increases in the severity of inflammation independent of the basal diet, with concomitant alterations in digestive functions and immunological marker expression. Thus, saponins induced inflammation whether the diet contained other legume components or not. However, responses were often the same or stronger in fish fed the corresponding saponin-supplemented LP diets despite lower saponin exposure, suggesting potentiation by other legume component(s).
Collapse
Affiliation(s)
- Åshild Krogdahl
- †Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), N-0033 Oslo, Norway
| | - Karina Gajardo
- †Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), N-0033 Oslo, Norway
| | - Trond M Kortner
- †Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), N-0033 Oslo, Norway
| | - Michael Penn
- ‡U.S. Fish and Wildlife Service, Lamar, Pennsylvania 16848, United States
| | - Min Gu
- §Marine College, Shandong University, Weihai 264209, People's Republic of China
| | - Gerd Marit Berge
- ∥Sunndalsøra Aquaculture Research Station, Nofima, N-6600 Sunndalsøra, Norway
| | - Anne Marie Bakke
- †Department of Basic Sciences and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), N-0033 Oslo, Norway
| |
Collapse
|
22
|
Hartviksen M, Bakke AM, Vecino JG, Ringø E, Krogdahl Å. Evaluation of the effect of commercially available plant and animal protein sources in diets for Atlantic salmon (Salmo salar L.): digestive and metabolic investigations. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1621-37. [PMID: 24962539 DOI: 10.1007/s10695-014-9953-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The present study investigated the effect of various alternative diet ingredients partially replacing fishmeal (FM) on digestive and metabolic parameters in Atlantic salmon (Salmo salar L.) post-smolts (initial body mass 305 ± 69 g) following 12 weeks of feeding. Experimental diets containing 20 % extracted sunflower (ESF), pea protein concentrate (PPC), soy protein concentrate (SPC), feather meal (FeM) and poultry by-product (PBY) were compared to a reference diet containing FM as the main protein source. For the different intestinal compartments trypsin, lipase, bile salts, dry matter and chyme-associated leucine aminopeptidase (LAP) were measured from the content and LAP was measured in the tissue. Selected metabolites were measured in plasma samples. In general, use of plant proteins resulted in low C-LAP activity, low plasma cholesterol and high plasma magnesium. The plasma levels of cholesterol and Mg reflecting were most likely reflections of the composition of the diet, while the LAP activity in chyme may indicate lower epithelial cell turnover. Other responses varied depending on the plant protein source. Results from the animal protein substitution also varied both between diets and compartments; however, both materials increased lipase activity in DI. FeM resulted in a significant increase in both total and specific LAP activities suggesting an attempt to increase the digestive capacity in response to low digestibility of the diet while PBY showed very little difference from the FM-fed control fish. The present trial indicates that 20 % PPC, SPC and PBY can partially replace FM in diets for Atlantic salmon. The qualities of ESF and FeM used in this trial show little promise as FM replacement at 20 % inclusion level.
Collapse
|
23
|
Gu J, Bakke AM, Valen EC, Lein I, Krogdahl Å. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses. PLoS One 2014; 9:e99932. [PMID: 24923786 PMCID: PMC4055707 DOI: 10.1371/journal.pone.0099932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health.
Collapse
Affiliation(s)
- Jinni Gu
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Elin C. Valen
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, NMBU School of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
24
|
Bile enhances glucose uptake, reduces permeability, and modulates effects of lectins, trypsin inhibitors and saponins on intestinal tissue. Comp Biochem Physiol A Mol Integr Physiol 2014; 168:96-109. [DOI: 10.1016/j.cbpa.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/14/2013] [Accepted: 11/22/2013] [Indexed: 12/24/2022]
|
25
|
Ulloa PE, Peña AA, Lizama CD, Araneda C, Iturra P, Neira R, Medrano JF. Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets. Zebrafish 2013; 10:99-109. [PMID: 23590402 DOI: 10.1089/zeb.2012.0823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Departamento de Ciencias Químicas, Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Ingeniería y Administración, Universidad de La Frontera, Temuco, Chile.
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu CH, Chen YH, Shiu YL. Molecular characterization of two trypsinogens in the orange-spotted grouper, Epinephelus coioides, and their expression in tissues during early development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:201-214. [PMID: 22801996 DOI: 10.1007/s10695-012-9691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 07/05/2012] [Indexed: 06/01/2023]
Abstract
In this study, we cloned two trypsinogens of the orange-spotted grouper, Epinephelus coioides, and analyzed their structure, expression, and activity. Full-length trypsinogen complementary (c)DNAs, named T1 and T2, were 900 and 875 nucleotides, and translated 242 and 244 deduced amino acid peptides, respectively. Both trypsinogens contained highly conserved residues essential for serine protease catalytic and conformational maintenance. Results from isoelectric and phylogenetic analyses suggested that both trypsinogens were grouped into trypsinogen group I. Both trypsinogens had similar expression patterns of negative relationship with body weight; expression was first detected at 1 day post-hatching (DPH) and exhibited steady-state expression during early development at 1-25 DPH. Both expression and activity levels significantly increased after 30 DPH due to metamorphosis. Grouper larval development is very slow with insignificant changes in total length and body weight before 8 DPH. The contribution of live food to an increase in the trypsin activity profile may explain their importance in food digestion and survival of larvae during early larval development.
Collapse
Affiliation(s)
- Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan, ROC.
| | | | | |
Collapse
|
27
|
Romarheim OH, Hetland DL, Skrede A, Øverland M, Mydland LT, Landsverk T. Prevention of soya-induced enteritis in Atlantic salmon (Salmo salar) by bacteria grown on natural gas is dose dependent and related to epithelial MHC II reactivity and CD8α+ intraepithelial lymphocytes. Br J Nutr 2013; 109:1062-70. [PMID: 22813713 DOI: 10.1017/s0007114512002899] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An experiment was carried out to study the preventive effect of bacterial meal (BM) produced from natural gas against plant-induced enteropathy in Atlantic salmon (Salmo salar). Salmon were fed a diet based on fish meal (FM) or seven diets with 200 g/kg solvent-extracted soyabean meal (SBM) to induce enteritis in combination with increasing levels of BM from 0 to 300 g/kg. Salmon fed a SBM-containing diet without BM developed typical SBM-induced enteritis. The enteritis gradually disappeared with increasing inclusion of BM. By morphometry, no significant (P>0.05) differences in the size of stretches stained for proliferating cell nuclear antigen were found with 150 g/kg BM compared with the FM diet. Increasing BM inclusion caused a gradual decline in the number of cluster of differentiation 8 α positive (CD8α+) intraepithelial lymphocytes, and fish fed BM at 200 g/kg or higher revealed no significant difference from the FM diet. Histological sections stained with antibody for MHC class II (MHC II) showed that fish with intestinal inflammation had more MHC II-reactive cells in the lamina propria and submucosa, but less in the epithelium and brush border, compared with fish without inflammation. There were no significant (P>0.05) differences in growth among the diets, but the highest levels of BM slightly reduced protein digestibility and increased the weight of the distal intestine. In conclusion, the prevention of SBM-induced enteritis by BM is dose dependent and related to intestinal levels of MHC II- and CD8α-reactive cells.
Collapse
Affiliation(s)
- Odd H Romarheim
- Department of Animal and Aquacultural Sciences, Aquaculture Protein Centre, CoE, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl A, Bakke AM. Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. FISH & SHELLFISH IMMUNOLOGY 2013; 34:599-609. [PMID: 23246810 DOI: 10.1016/j.fsi.2012.11.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 05/23/2023]
Abstract
Plant products in general and soybeans in particular can challenge the function and health of the intestinal tract. Salmonids develop an intestinal inflammation when fed diets containing soybean meal (SBM) and certain other legume ingredients. In the present study a 44K oligonucleotide salmonid microarray, qPCR and histology were used to investigate early response mechanisms in the distal intestine of Atlantic salmon (Salmo salar L.) during the first week of oral exposure to a diet containing 20% extracted SBM. The distal intestine transcriptome was profiled on days 1, 2, 3, 5 and 7 and compared to a control group fed fishmeal as the sole protein source. Histological evaluation of the distal intestine revealed the first signs of inflammation on day 5. The most prominent gene expression changes were seen on days 3 and 5. Up-regulation in immune-related genes was observed during the first 5 days, including GTPase IMAP family members, NF-kB-related genes and regulators of T cell and B cell function. Many functional genes involved in lipid metabolism, proteolysis, transport, metabolism and detoxification were initially up-regulated on days 1-3, possibly as an attempt by the tissue to compensate for the initiating immune response. Cell repair and extracellular matrix remodeling genes were up-regulated (heparanase, collagenase) on days 3 and 5. Down regulation of genes related to endocytosis, exocytosis, detoxification, transporters and metabolic processes from day 5 indicated initiation of dysfunction of digestive and metabolic functions that may occur as a result of inflammation or as a response to the introduction of soybean meal in the diet. This is the first study conducting transcriptomic profiling to characterize early responses during the development of SBMIE. Switching Atlantic salmon from a fishmeal to a 20% SBM diet resulted in rapid changes to the intestinal transcriptome, indicating an immune reaction with subsequent impaired epithelial barrier function and other vital intestinal functions.
Collapse
Affiliation(s)
- Christian Sahlmann
- Aquaculture Protein Centre (a Centre of Excellence), Department of Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
29
|
Venold FF, Penn MH, Thorsen J, Gu J, Kortner TM, Krogdahl A, Bakke AM. Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo salar): Localization and alteration of expression during development of diet induced enteritis. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:229-40. [PMID: 23000355 DOI: 10.1016/j.cbpa.2012.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/28/2023]
Abstract
In the present study full-length cDNAs corresponding to three isoforms of intestinal fatty acid binding protein (fabp2) in Atlantic salmon were cloned and characterized. Gene expression of fabp2 was observed in all tissues investigated, although differences were observed between isoforms. The highest fabp2a1, fabp2a2, and fabp2b expression was in the intestine. A 15kDa protein, corresponding to putative Fabp2 protein, was identified by immunoblotting using anti-human Fabp2 antibody. Immunoblotting and immunohistochemistry confirmed that Fabp2 protein was present in most Atlantic salmon tissues. Similar to gene expression, intestinal tissues had the highest Fabp2 protein levels, decreasing gradually from proximal to distal intestine. During development of distal intestinal inflammation caused by dietary soybean meal from 0 to 21days, Fabp2 decreased significantly on both transcriptional and protein levels. The reduction in Fabp2 was preceded by a down regulation of peroxisome proliferator activated receptor (ppar) alpha and gamma, fabp2's presumed regulatory proteins, and followed by a progressive increase in proliferating cell nuclear antigen (Pcna) staining. Results illustrate that the early decline of distal intestinal fabp2 was likely caused by a down regulation of their regulatory proteins, but at later time points reduced Fabp2 may largely be due to a less mature enterocyte population resulting from rapid cell turnover.
Collapse
Affiliation(s)
- Fredrik F Venold
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep, NO-0033 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
30
|
Marjara IS, Chikwati EM, Valen EC, Krogdahl A, Bakke AM. Transcriptional regulation of IL-17A and other inflammatory markers during the development of soybean meal-induced enteropathy in the distal intestine of Atlantic salmon (Salmo salar L.). Cytokine 2012; 60:186-96. [PMID: 22795954 DOI: 10.1016/j.cyto.2012.05.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/18/2012] [Accepted: 05/26/2012] [Indexed: 02/06/2023]
Abstract
Progression of soybean meal (SBM)-induced enteropathy in Atlantic salmon (Salmo salar L.) distal intestine (DI) was studied to investigate pathophysiological mechanisms and immune responses. Seawater-adapted salmon were fed an extracted SBM-containing diet (200 g kg(-1)) from day 1-21 and compared with fish fed a fishmeal-based diet (day 0). Histological evaluation of the DI revealed signs of inflammation from day 5, which progressively increased in severity and affected more fish with increasing SBM exposure time. The expression profiles of 16 genes were analyzed by quantitative PCR. The pro-inflammatory cytokines interleukin 17A (IL-17A), IL-1β, interferon α (IFNα) and IFNγ, as well as IL-17A receptor, T-cell receptor γ (TCRγ), cluster of differentiation 4α (CD4α), CD8β, transforming growth factor β (TGFβ), trypsin, protease-activated receptor 2 (PAR2) and myeloid differentiation primary response gene 88 (MyD88) were significantly up-regulated during early and/or late inflammation stages, whereas interferon-γ-inducible lysosomal thiol reductase (GILT) was downregulated. Up-regulation of TCRγ from day seven suggests proliferation of intraepithelial γδ T cells. IL-17A, up-regulated by 218-fold during early inflammation, indicates involvement of T helper 17 cells in the pathogenesis of the SBM-induced inflammatory response.
Collapse
Affiliation(s)
- Inderjit S Marjara
- Aquaculture Protein Centre (a Centre of Excellence), Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|
31
|
Liu CH, Shiu YL, Hsu JL. Purification and characterization of trypsin from the pyloric ceca of orange-spotted grouper, Epinephelus coioides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:837-848. [PMID: 22068456 DOI: 10.1007/s10695-011-9571-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Trypsin from the pyloric ceca of orange-spotted grouper, Epinephelus coioides, was purified by fractionation with ammonium sulfate, ionic exchange, and affinity chromatography. The protein was purified 161.85-fold with a yield of 4%. Purified trypsin had an apparent molecular weight of 24 kDa according to an SDS-PAGE analysis. Optimal profiles of temperature and pH of the enzyme were 50°C and 8-10, respectively, using Nα-benzoyl-L: -arginine ethyl ester as the substrate. The results of thermal and pH stability assays showed that the enzyme was stable at temperatures of up to 50°C and in the pH range of 6-8. Trypsin activity decreased with an increasing NaCl concentration (0-0.6 M). The activity of purified trypsin was effectively inhibited by a soybean trypsin inhibitor and N-p-tosyl-L: -lysine chloromethyl ketone, and was slightly inhibited by iodoacetic acid, ethylenediaminetetraacetic acid, 1-(L: -trans-epoxysuccinyl-leucylamino)-4-guanidinobutane, and pepstatin A. Protein identification of the purified protease showed that the sequences of two peptides, LGEHNI and NLDNDIML, were highly homologous to other fish trypsins. The measurement of trypsin activity in different tissues showed that the highest activity was detected in pyloric ceca, followed by anterior intestine, middle intestine, hind intestine and spleen, but very low activities were found in other tissues. An inverse relationship between the trypsin activity in four tissues of pyloric ceca, anterior intestine, middle intestine and hind intestine and fish body weight as a result of increased pepsin in stomach indicated grouper growth status was increased.
Collapse
Affiliation(s)
- Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC.
| | | | | |
Collapse
|
32
|
Bucking C, Wood CM. Digestion of a single meal affects gene expression of ion and ammonia transporters and glutamine synthetase activity in the gastrointestinal tract of freshwater rainbow trout. J Comp Physiol B 2011; 182:341-50. [PMID: 21994022 DOI: 10.1007/s00360-011-0622-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 12/25/2022]
Abstract
Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.
Collapse
Affiliation(s)
- Carol Bucking
- McMaster University, 1280 Main Street, West Hamilton, ON, L8S 4K1, Canada.
| | | |
Collapse
|
33
|
Zhong G, Qian X, Hua X, Zhou H. Effects of feeding with corn gluten meal on trypsin activity and mRNA expression in Fugu obscurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:453-460. [PMID: 21063906 DOI: 10.1007/s10695-010-9446-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
The molecular regulation of the trypsin activity and the effects of corn gluten meal (CGM) on the trypsin activity and gene expression in Fugu obscurus were examined. The fish were fed with diets containing 0, 50, 100, 150, and 200 g kg⁻¹ CGM for 60 days. The trypsin activity and mRNA levels in the intestine, stomach, and hepatopancreas were measured before and after the experimental feeding. Enzyme activity was highest in the intestine, and mRNA expression was highest in the hepatopancreas prior to feeding the experimental diets. The effect of dietary CGM on the trypsin activity was dependent on the concentration. Enzyme activity was significantly lower in the hepatopancreas and stomach of the 200 g kg⁻¹ treatment group than in control group. In contrast, activity was enhanced in the stomach of the 100 g kg⁻¹ treatment group. Different amounts of CGM in the diets also resulted in significant changes in the trypsin mRNA levels in all three tissues. The trypsin mRNA expression in stomach, hepatopancreas, and intestine increased with increasing CGM from 0 to 10% and decreased with increasing CGM from 10 to 20%. The trypsin mRNA expression was highest in the 100 g kg⁻¹ treatment group, which was significantly higher than that of in the control. In addition, the changes in the trypsin mRNA expression levels were not reflected by changes in the trypsin activity. Our results suggest that the trypsin activity is regulated not only at the transcription level but also during translation and posttranslational modification.
Collapse
Affiliation(s)
- Guofang Zhong
- College of Fisheries and Life Science, Shanghai Ocean University, 201306, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Savoie A, Le François N, Lamarre S, Blier P, Beaulieu L, Cahu C. Dietary protein hydrolysate and trypsin inhibitor effects on digestive capacities and performances during early-stages of spotted wolffish: Suggested mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:525-30. [DOI: 10.1016/j.cbpa.2010.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 11/16/2022]
|
35
|
Lilleeng E, Penn MH, Haugland O, Xu C, Bakke AM, Krogdahl A, Landsverk T, Frøystad-Saugen MK. Decreased expression of TGF-beta, GILT and T-cell markers in the early stages of soybean enteropathy in Atlantic salmon (Salmo salar L.). FISH & SHELLFISH IMMUNOLOGY 2009; 27:65-72. [PMID: 19427383 DOI: 10.1016/j.fsi.2009.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 05/27/2023]
Abstract
This study investigated the early expression of T-cell markers and genes potentially involved in the induction of soybean meal (SBM) enteropathy in the distal intestine (DI) of Atlantic salmon (Salmo salar L.). Quantitative PCR was used to study the expression of CD3, CD8beta, transforming growth factor beta (TGF-beta), interferon-gamma-inducible lysosomal thiol reductase (GILT) and interleukin-1beta (IL-1beta) in salmon fed SBM for 1, 3 and 7 days using fish fed fishmeal as controls. In the same tissue, the morphological development of SBM enteropathy was evaluated by routine histology and the presence of T cells was mapped by immunohistochemistry. TGF-beta was significantly down-regulated on all days of feeding SBM. GILT was significantly down-regulated on days 3 and 7 compared to day 1. A depression in the expression of T-cell markers was observed on day 3 whereas increased densities of T cells were observed at the base of mucosal folds after 7 days of feeding SBM. Down-regulation of GILT and TGF-beta may lead to sensitization of intraepithelial lymphocytes and failure to maintain normal mucosal integrity in the DI. These responses are implicated in the pathogenesis of SBM enteropathy in Atlantic salmon.
Collapse
Affiliation(s)
- Einar Lilleeng
- Aquaculture Protein Centre, Norwegian Centre of Excellence, As, Norway
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thorsen J, Lilleeng E, Valen EC, Krogdahl Å. Proteinase-activated receptor-2: two potential inflammatory mediators of the gastrointestinal tract in Atlantic salmon. J Inflamm (Lond) 2008; 5:18. [PMID: 18947389 PMCID: PMC2584024 DOI: 10.1186/1476-9255-5-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/23/2008] [Indexed: 01/29/2023] Open
Abstract
Proteinase-activated receptor 2 (PAR-2), activated by trypsin and other serine proteinases, is a key initiator of inflammatory responses in the intestine of mammals. Atlantic salmon fed diets with standard qualities of soybean meal (SBM) show enteritis of the distal intestine as well as increased activity of trypsin in both luminal contents and wall tissue. Luminal trypsin activity may possibly be involved in immune related disorders of the intestine also in Atlantic salmon via activation of PAR 2. In the present study our aim was to investigate if PAR-2 play a role in SBM induced enteritis. We performed multiple alignments based on nucleic acid sequences of PAR-2 from various animals available from public databases, and designed primers for use in cloning of the Atlantic salmon PAR-2 transcript. We further cloned and characterized the full length sequence of Atlantic salmon PAR-2 and investigated the expression in both early and chronic stages of SBM induced enteropathy. Two full length versions of PAR-2 cDNA were identified and termed PAR-2a and PAR-2b. Expression of the two PAR-2 transcripts was detected in all 18 tissues examined, but most extensively in the intestine and gills. A significant up-regulation in the distal intestine was observed for the PAR-2a transcript after 1 day feeding diets containing SBM. After 3 weeks of feeding, PAR-2a was down-regulated compared to the fish fed control diets. These findings may indicate that PAR-2a participates in inflammatory responses in both the early and later stages of the SBM enteropathy. In the chronic stages of the enteropathy, down-regulation of PAR-2a may indicate a possible desensitization of the PAR-2a receptor. Expression of PAR-2b was not altered in the first 7 days of SBM feeding, but a significant up regulation was observed after 3 weeks, suggesting a putative role in chronic stages of SBM induced enteritis. The expression differences of the two PAR-2 transcripts in the feed trials may indicate that they have different roles in the SBM induced enteritis.
Collapse
Affiliation(s)
- Jim Thorsen
- Aquaculture Protein Centre, Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Einar Lilleeng
- Aquaculture Protein Centre, Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Elin Christine Valen
- Aquaculture Protein Centre, Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| | - Åshild Krogdahl
- Aquaculture Protein Centre, Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway
| |
Collapse
|
37
|
Jeukens J, Bittner D, Knudsen R, Bernatchez L. Candidate Genes and Adaptive Radiation: Insights from Transcriptional Adaptation to the Limnetic Niche among Coregonine Fishes (Coregonus spp., Salmonidae). Mol Biol Evol 2008; 26:155-66. [DOI: 10.1093/molbev/msn235] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|