1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Reverte-López M, Kanwa N, Qutbuddin Y, Belousova V, Jasnin M, Schwille P. Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division. Nat Commun 2024; 15:10415. [PMID: 39614082 PMCID: PMC11607352 DOI: 10.1038/s41467-024-54807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nishu Kanwa
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viktoriia Belousova
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Kerivan EM, Tobin L, Basil M, Reinemann DN. Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance. Cytoskeleton (Hoboken) 2023; 80:100-111. [PMID: 36891731 PMCID: PMC10272097 DOI: 10.1002/cm.21752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
A quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram-level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM-D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real-time recording of frequency and dissipation changes and single protein-level precision, the QCM-D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components. However, few studies focus on the application of this instrument to cytoskeletal systems, whose dynamic parts create interesting emergent mechanics as ensembles that drive essential tasks, such as division and motility. Here, we review the ability of the QCM-D to characterize key kinetic and mechanical features of the cytoskeleton through in vitro reconstitution and cellular assays and outline how QCM-D studies can yield insightful mechanical data alone and in tandem with other biophysical characterization techniques.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| | - Mihir Basil
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
5
|
Rivas G. Biophysical Reviews' "Meet the Editors Series"-a profile of Germán Rivas. Biophys Rev 2023; 15:151-156. [PMID: 37124917 PMCID: PMC10133429 DOI: 10.1007/s12551-023-01061-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
German Rivas is an executive editor of the IUPAB Biophysical Reviews journal based in Spain. As the head of the Department of Structural and Chemical Biology at the Center for Biological Research (CIB) Margarita Salas (one of the largest research institutes devoted to life sciences of the Spanish National Research Council (CSIC)), he leads a research program aimed at understanding the structure function relationship of large macromolecular complexes (involved in bacterial cell division) when placed in physiologically complex and "crowded" media toward their reconstitution from the bottom up in cell-like compartments. In this "Meet the Editors'" piece, he briefly describes his research interests and history.
Collapse
Affiliation(s)
- Germán Rivas
- Systems Biochemistry Lab, Department of Structural and Chemical Biology, CIB Margarita Salas – CSIC, 28040 Madrid, Spain
| |
Collapse
|
6
|
Sharma AK, Poddar SM, Chakraborty J, Nayak BS, Kalathil S, Mitra N, Gayathri P, Srinivasan R. A mechanism of salt bridge-mediated resistance to FtsZ inhibitor PC190723 revealed by a cell-based screen. Mol Biol Cell 2023; 34:ar16. [PMID: 36652338 PMCID: PMC10011733 DOI: 10.1091/mbc.e22-12-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacterial cell division proteins, especially the tubulin homologue FtsZ, have emerged as strong targets for developing new antibiotics. Here, we have utilized the fission yeast heterologous expression system to develop a cell-based assay to screen for small molecules that directly and specifically target the bacterial cell division protein FtsZ. The strategy also allows for simultaneous assessment of the toxicity of the drugs to eukaryotic yeast cells. As a proof-of-concept of the utility of this assay, we demonstrate the effect of the inhibitors sanguinarine, berberine, and PC190723 on FtsZ. Though sanguinarine and berberine affect FtsZ polymerization, they exert a toxic effect on the cells. Further, using this assay system, we show that PC190723 affects Helicobacter pylori FtsZ function and gain new insights into the molecular determinants of resistance to PC190723. On the basis of sequence and structural analysis and site-specific mutations, we demonstrate that the presence of salt bridge interactions between the central H7 helix and β-strands S9 and S10 mediates resistance to PC190723 in FtsZ. The single-step in vivo cell-based assay using fission yeast enabled us to dissect the contribution of sequence-specific features of FtsZ and cell permeability effects associated with bacterial cell envelopes. Thus, our assay serves as a potent tool to rapidly identify novel compounds targeting polymeric bacterial cytoskeletal proteins like FtsZ to understand how they alter polymerization dynamics and address resistance determinants in targets.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Joyeeta Chakraborty
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bhagyashri Soumya Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Srilakshmi Kalathil
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Nivedita Mitra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India.,Homi Bhabha National Institutes, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Guan M, Ji W, Xu Y, Yan L, Chen D, Li S, Zhang X. Molecular fingerprints of polar narcotic chemicals based on heterozygous essential gene knockout library in Saccharomyces cerevisiae. CHEMOSPHERE 2022; 308:136343. [PMID: 36087727 DOI: 10.1016/j.chemosphere.2022.136343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity of non-polar narcotic chemicals can be predicted by quantitative structure activity relationship (QSAR) models, but the polar narcotic chemicals' actual cytotoxicity exceeds the predicted values by their chemical structures. This discrepancy indicates that the molecular mechanism by which polar narcotic chemicals exert their toxicity is unclear. Taking advantage of Saccharomyces cerevisiae (yeast) functional genome-wide heterozygous essential gene knockout mutants, we here have identified the specific molecular fingerprints of two main chemical structure groups (phenols and anilines) of polar narcotic chemicals (dichlorophen (DCP), 4-chlorophenol (4-CP), 2, 4, 6-trichlorophenol (TCP), 3, 4-dichloroaniline (DCA) and N-methylaniline (NMA)) and one non-polar narcotic chemical 2, 2, 2-trichloroethanol (TCE). Especially, we identify 33, 57, 54, 46, 59 and 53 responsive strains through exposure to TCE, DCP, 4-CP, TCP, DCA and NMA with three test concentrations, respectively, revealing that these polar narcotic chemicals have more responsive strains than the non-polar narcotic chemical. Remarkably, we find that the molecular fingerprints of polar narcotic chemicals in different chemical structure groups are obviously varied, particularly phenols and anilines have their own specific molecular fingerprints. Interestingly, our results demonstrate that the molecular toxicity mechanisms of anilines are associated with DNA replication, but phenols are related with pathway of RNA degradation. Additionally, we find that the two knockout strains (SME1 and DIS3) and the three knockout strains (TSC11, RSP5 and HSF1) can specifically respond to exposure to phenols and anilines, respectively. Thus, they may be served as potential biomarkers to distinguish phenols from anilines. Collectively, our works demonstrate that the functional genomic platform of yeast essential gene mutants can not only act as an effective tool to identify key specific molecular fingerprints for polar narcotic chemicals, but also help to understand the molecular mechanisms of polar narcotic chemicals.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Wenya Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Dong Chen
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu, 210036, China
| | - Shengjie Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China; School of Food Science, Nanjing Xiaozhuang University, Jiangsu, Nanjing, 211171, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
8
|
In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat Commun 2022; 13:6098. [PMID: 36243816 PMCID: PMC9569390 DOI: 10.1038/s41467-022-33679-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Constructing a minimal machinery for autonomous self-division of synthetic cells is a major goal of bottom-up synthetic biology. One paradigm has been the E. coli divisome, with the MinCDE protein system guiding assembly and positioning of a presumably contractile ring based on FtsZ and its membrane adaptor FtsA. Here, we demonstrate the full in vitro reconstitution of this machinery consisting of five proteins within lipid vesicles, allowing to observe the following sequence of events in real time: 1) Assembly of an isotropic filamentous FtsZ network, 2) its condensation into a ring-like structure, along with pole-to-pole mode selection of Min oscillations resulting in equatorial positioning, and 3) onset of ring constriction, deforming the vesicles from spherical shape. Besides demonstrating these essential features, we highlight the importance of decisive experimental factors, such as macromolecular crowding. Our results provide an exceptional showcase of the emergence of cell division in a minimal system, and may represent a step towards developing a synthetic cell.
Collapse
|
9
|
Gao N, Li M, Tian L, Patil AJ, Pavan Kumar BVVS, Mann S. Chemical-mediated translocation in protocell-based microactuators. Nat Chem 2021; 13:868-879. [PMID: 34168327 DOI: 10.1038/s41557-021-00728-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Artificial cell-like communities participate in diverse modes of chemical interaction but exhibit minimal interfacing with their local environment. Here we develop an interactive microsystem based on the immobilization of a population of enzyme-active semipermeable proteinosomes within a helical hydrogel filament to implement signal-induced movement. We attach large single-polynucleotide/peptide microcapsules at one or both ends of the helical protocell filament to produce free-standing soft microactuators that sense and process chemical signals to perform mechanical work. Different modes of translocation are achieved by synergistic or antagonistic enzyme reactions located within the helical connector or inside the attached microcapsule loads. Mounting the microactuators on a ratchet-like surface produces a directional push-pull movement. Our methodology opens up a route to protocell-based chemical systems capable of utilizing mechanical work and provides a step towards the engineering of soft microscale objects with increased levels of operational autonomy.
Collapse
Affiliation(s)
- Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK. .,School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - B V V S Pavan Kumar
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.,Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK. .,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK. .,School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
10
|
Piao J, Yuan W, Dong Y. Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromol Biosci 2021; 21:e2000440. [PMID: 33759366 DOI: 10.1002/mabi.202000440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Employing DNA nanostructures mimicking membrane proteins on artificial amphiphilic membranes have been widely developed to understand the structures and functions of the natural membrane systems. In this review, the recent developments in artificial systems constructed by amphiphilic membranes and DNA nanostructures are summarized. First, the preparations and properties of the amphipathic bilayer models are introduced. Second, the interactions are discussed between the membrane and the DNA nanostructures, as well as their coassembly behaviors. Next, the alternative systems related to membrane protein-mediated signal transmission, selective distribution, transmembrane channels, and membrane fusion are also introduced. Moreover, the constructions of membrane skeleton protein-mimicking DNA nanostructures are also highlighted.
Collapse
Affiliation(s)
- Jiafang Piao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| | - Wei Yuan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Institute of Chemistry, Beijing, 100190, China
| |
Collapse
|
11
|
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10030254. [PMID: 33806332 PMCID: PMC7999717 DOI: 10.3390/antibiotics10030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
FtsZ is an essential and central protein for cell division in most bacteria. Because of its ability to organize into dynamic polymers at the cell membrane and recruit other protein partners to form a “divisome”, FtsZ is a leading target in the quest for new antibacterial compounds. Strategies to potentially arrest the essential and tightly regulated cell division process include perturbing FtsZ’s ability to interact with itself and other divisome proteins. Here, we discuss the available methodologies to screen for and characterize those interactions. In addition to assays that measure protein-ligand interactions in solution, we also discuss the use of minimal membrane systems and cell-like compartments to better approximate the native bacterial cell environment and hence provide a more accurate assessment of a candidate compound’s potential in vivo effect. We particularly focus on ways to measure and inhibit under-explored interactions between FtsZ and partner proteins. Finally, we discuss recent evidence that FtsZ forms biomolecular condensates in vitro, and the potential implications of these assemblies in bacterial resistance to antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
- Correspondence: (S.Z.); (B.M.); Tel.: +34-91-837-3112 (S.Z. & B.M.)
| | - Miguel-Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA;
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (M.-Á.R.-R.); (G.R.)
| |
Collapse
|
12
|
Vibhute MA, Schaap MH, Maas RJM, Nelissen FHT, Spruijt E, Heus HA, Hansen MMK, Huck WTS. Transcription and Translation in Cytomimetic Protocells Perform Most Efficiently at Distinct Macromolecular Crowding Conditions. ACS Synth Biol 2020; 9:2797-2807. [PMID: 32976714 PMCID: PMC7573978 DOI: 10.1021/acssynbio.0c00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The formation of
cytomimetic protocells that capture the physicochemical
aspects of living cells is an important goal in bottom-up synthetic
biology. Here, we recreated the crowded cytoplasm in liposome-based
protocells and studied the kinetics of cell-free gene expression in
these crowded containers. We found that diffusion of key components
is affected not only by macromolecular crowding but also by enzymatic
activity in the protocell. Surprisingly, size-dependent diffusion
in crowded conditions yielded two distinct maxima for protein synthesis,
reflecting the differential impact of crowding on transcription and
translation. Our experimental data show, for the first time, that
macromolecular crowding induces a switch from reaction to diffusion
control and that this switch depends on the sizes of the macromolecules
involved. These results highlight the need to control the physical
environment in the design of synthetic cells.
Collapse
Affiliation(s)
- Mahesh A. Vibhute
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mark H. Schaap
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roel J. M. Maas
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Frank H. T. Nelissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maike M. K. Hansen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Monterroso B, Robles-Ramos MÁ, Zorrilla S, Rivas G. Reconstituting bacterial cell division assemblies in crowded, phase-separated media. Methods Enzymol 2020; 646:19-49. [PMID: 33453926 DOI: 10.1016/bs.mie.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we have summarized several strategies to reconstruct complexes containing the FtsZ protein, a central element of the cell division machinery in most bacteria, and to test their functional organization in minimal membrane systems and cell-like containers, as vesicles and droplets produced by microfluidics. These synthetic systems have been devised to mimic elements of the intracellular complexity, as excluded volume effects due to natural crowding, and macromolecular condensation resulting from biologically regulated liquid-liquid phase separation, in media of known and controllable composition. This integrative approach has allowed to demonstrate that macromolecular phase separation and crowding may also help to dynamically organize FtsZ in the intracellular space thus modulating its functional reactivity in cell division.
Collapse
Affiliation(s)
- Begoña Monterroso
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Miguel Ángel Robles-Ramos
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
14
|
Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ability of living organisms to perform structure, energy, and information-related processes for molecular self-assembly through compartmentalization and chemical transformation can possibly be mimicked via artificial cell models. Recent progress in the development of various types of functional microcompartmentalized ensembles that can imitate rudimentary aspects of living cells has refocused attention on the important question of how inanimate systems can transition into living matter. Hence, herein, the most recent advances in the construction of protein-bounded microcompartments (proteinosomes), which have been exploited as a versatile synthetic chassis for integrating a wide range of functional components and biochemical machineries, are critically summarized. The techniques developed for fabricating various types of proteinosomes are discussed, focusing on the significance of how chemical information, substance transportation, enzymatic-reaction-based metabolism, and self-organization can be integrated and recursively exploited in constructed ensembles. Therefore, proteinosomes capable of exhibiting gene-directed protein synthesis, modulated membrane permeability, spatially confined membrane-gated catalytic reaction, internalized cytoskeletal-like matrix assembly, on-demand compartmentalization, and predatory-like chemical communication in artificial cell communities are specially highlighted. These developments are expected to bridge the gap between materials science and life science, and offer a theoretical foundation for developing life-inspired assembled materials toward various applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
15
|
Uddin SMN, Laokroekkiat S, Rashed MA, Mizuno S, Ono K, Ishizaki M, Kanaizuka K, Kurihara M, Nagao Y, Hamada T. Ion transportation by Prussian blue nanoparticles embedded in a giant liposome. Chem Commun (Camb) 2020; 56:1046-1049. [PMID: 31868183 DOI: 10.1039/c9cc06153c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of artificial giant liposome incorporating ion transport channels and using nanoparticles of metal organic frameworks was demonstrated. The micropores of Prussian blue nanoparticles served as ion transport channels between the outer and inner phases of liposomes.
Collapse
Affiliation(s)
- S M Nizam Uddin
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Martin N. Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation. Chembiochem 2019; 20:2553-2568. [PMID: 31039282 DOI: 10.1002/cbic.201900183] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Living cells have long been a source of inspiration for chemists. Their capacity of performing complex tasks relies on the spatiotemporal coordination of matter and energy fluxes. Recent years have witnessed growing interest in the bottom-up construction of cell-like models capable of reproducing aspects of such dynamic organisation. Liquid-liquid phase-separation (LLPS) processes in water are increasingly recognised as representing a viable compartmentalisation strategy through which to produce dynamic synthetic cells. Herein, we highlight examples of the dynamic properties of LLPS used to assemble synthetic cells, including their biocatalytic activity, reversible condensation and dissolution, growth and division, and recent directions towards the design of higher-order structures and behaviour.
Collapse
Affiliation(s)
- Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue du Dr. Albert Schweitzer, 33600, Pessac, France
| |
Collapse
|
18
|
Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun 2019; 10:3321. [PMID: 31346180 PMCID: PMC6658542 DOI: 10.1038/s41467-019-11316-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The design and assembly of artificial protocell consortia displaying dynamical behaviours and systems-based properties are emerging challenges in bottom-up synthetic biology. Cellular processes such as morphogenesis and differentiation rely in part on reaction-diffusion gradients, and the ability to mimic rudimentary aspects of these non-equilibrium processes in communities of artificial cells could provide a step to life-like systems capable of complex spatiotemporal transformations. Here we expose acoustically formed arrays of initially identical coacervate micro-droplets to uni-directional or counter-directional reaction-diffusion gradients of artificial morphogens to induce morphological differentiation and spatial patterning in single populations of model protocells. Dynamic reconfiguration of the droplets in the morphogen gradients produces a diversity of membrane-bounded vesicles that are spontaneously segregated into multimodal populations with differentiated enzyme activities. Our results highlight the opportunities for constructing protocell arrays with graded structure and functionality and provide a step towards the development of artificial cell platforms capable of multiple operations. The ability to mimic aspects of cellular process that rely on reaction-diffusion gradients could provide a step to building life-like systems capable of complex behaviour. Here the authors demonstrate morphological differentiation in coacervate micro-droplets.
Collapse
Affiliation(s)
- Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
19
|
Malik-Garbi M, Ierushalmi N, Jansen S, Abu-Shah E, Goode BL, Mogilner A, Keren K. Scaling behaviour in steady-state contracting actomyosin networks. NATURE PHYSICS 2019; 15:509-516. [PMID: 31754369 PMCID: PMC6871652 DOI: 10.1038/s41567-018-0413-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 05/25/2023]
Abstract
Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodeling of actin architecture tunes stress production and dissipation and regulates large-scale network flows remains poorly understood. Here, we generate contracting actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized 'water-in-oil' droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogeneous, density-independent contraction for a wide range of physiological conditions, implying that the myosin-generated stress driving contraction and the effective network viscosity have similar density dependence. We further find that the contraction rate is roughly proportional to the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry.
Collapse
Affiliation(s)
- Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Jansen
- Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Enas Abu-Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
20
|
Brea RJ, Bhattacharya A, Bhattacharya R, Song JJ, Sinha SK, Devaraj NK. Highly Stable Artificial Cells from Galactopyranose-Derived Single-Chain Amphiphiles. J Am Chem Soc 2018; 140:17356-17360. [PMID: 30495932 DOI: 10.1021/jacs.8b09388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single-chain amphiphiles (SCAs) that self-assemble into large vesicular structures are attractive components of synthetic cells because of the simplicity of bilayer formation and increased membrane permeability. However, SCAs commonly used for vesicle formation suffer from restricted working pH ranges, instability to divalent cations, and the inhibition of biocatalysts. Construction of more robust biocompatible membranes from SCAs would have significant benefits. We describe the formation of highly stable vesicles from alkyl galactopyranose thioesters. The compatibility of these uncharged SCAs with biomolecules makes possible the encapsulation of functional enzymes and nucleic acids during the vesicle generation process, enabling membrane protein reconstitution and compartmentalized nucleic acid amplification, even when charged precursors are supplied externally.
Collapse
|
21
|
Antagonistic chemical coupling in self-reconfigurable host-guest protocells. Nat Commun 2018; 9:3652. [PMID: 30194369 PMCID: PMC6128866 DOI: 10.1038/s41467-018-06087-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022] Open
Abstract
Fabrication of compartmentalised chemical systems with nested architectures and biomimetic properties has important implications for controlling the positional assembly of functional components, spatiotemporal regulation of enzyme cascades and modelling of proto-organelle behaviour in synthetic protocells. Here, we describe the spontaneous capture of glucose oxidase-containing proteinosomes in pH-sensitive fatty acid micelle coacervate droplets as a facile route to multi-compartmentalised host–guest protocells capable of antagonistic chemical and structural coupling. The nested system functions co-operatively at low-substrate turnover, while high levels of glucose give rise to pH-induced disassembly of the droplets, release of the incarcerated proteinosomes and self-reconfiguration into spatially organised enzymatically active vesicle-in-proteinosome protocells. Co-encapsulation of antagonistic enzymes within the proteinosomes produces a sequence of self-induced capture and host–guest reconfiguration. Taken together, our results highlight opportunities for the fabrication of self-reconfigurable host–guest protocells and provide a step towards the development of protocell populations exhibiting both synergistic and antagonistic modes of interaction. Multi-compartmentalised soft micro-systems are used as models of synthetic protocells. Here, the authors developed nested host–guest protocell constructs capable of self-reconfiguration in response to changes in pH generated by antagonistic modes of enzyme-mediated coupling.
Collapse
|
22
|
Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat Biotechnol 2018; 36:530-535. [PMID: 29806849 DOI: 10.1038/nbt.4140] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023]
Abstract
Inside cells, complex metabolic reactions are distributed across the modular compartments of organelles. Reactions in organelles have been recapitulated in vitro by reconstituting functional protein machineries into membrane systems. However, maintaining and controlling these reactions is challenging. Here we designed, built, and tested a switchable, light-harvesting organelle that provides both a sustainable energy source and a means of directing intravesicular reactions. An ATP (ATP) synthase and two photoconverters (plant-derived photosystem II and bacteria-derived proteorhodopsin) enable ATP synthesis. Independent optical activation of the two photoconverters allows dynamic control of ATP synthesis: red light facilitates and green light impedes ATP synthesis. We encapsulated the photosynthetic organelles in a giant vesicle to form a protocellular system and demonstrated optical control of two ATP-dependent reactions, carbon fixation and actin polymerization, with the latter altering outer vesicle morphology. Switchable photosynthetic organelles may enable the development of biomimetic vesicle systems with regulatory networks that exhibit homeostasis and complex cellular behaviors.
Collapse
|
23
|
Ramirez-Diaz DA, García-Soriano DA, Raso A, Mücksch J, Feingold M, Rivas G, Schwille P. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol 2018; 16:e2004845. [PMID: 29775478 PMCID: PMC5979038 DOI: 10.1371/journal.pbio.2004845] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 04/27/2018] [Indexed: 12/05/2022] Open
Abstract
FtsZ, the primary protein of the bacterial Z ring guiding cell division, has been recently shown to engage in intriguing treadmilling dynamics along the circumference of the division plane. When coreconstituted in vitro with FtsA, one of its natural membrane anchors, on flat supported membranes, these proteins assemble into dynamic chiral vortices compatible with treadmilling of curved polar filaments. Replacing FtsA by a membrane-targeting sequence (mts) to FtsZ, we have discovered conditions for the formation of dynamic rings, showing that the phenomenon is intrinsic to FtsZ. Ring formation is only observed for a narrow range of protein concentrations at the bilayer, which is highly modulated by free Mg2+ and depends upon guanosine triphosphate (GTP) hydrolysis. Interestingly, the direction of rotation can be reversed by switching the mts from the C-terminus to the N-terminus of the protein, implying that the filament attachment must have a perpendicular component to both curvature and polarity. Remarkably, this chirality switch concurs with previously shown inward or outward membrane deformations by the respective FtsZ mutants. Our results lead us to suggest an intrinsic helicity of FtsZ filaments with more than one direction of curvature, supporting earlier hypotheses and experimental evidence. FtsZ is a tubulin homologue and the primary protein of the bacterial Z ring that guides cell division. In vivo, but also in reconstituted systems, FtsZ shows an intriguing treadmilling dynamic along circular tracks of approximately 1 micrometer in diameter. In cells, this treadmilling along the circumference of the division site is suggested to dynamically guide peptidoglycan—and thus new cell wall—synthesis. In vitro, when reconstituted along with its membrane adaptor FtsA on flat supported membranes, FtsZ self-organizes into similarly treadmilling vortices as observed in vivo but with a clear chirality. With the aim of thoroughly investigating these dynamics, revealing the origin of chirality, and potentially relating it to a membrane-transforming ability of FtsZ, we reconstituted different membrane-targeted mutants of FtsZ on flat membranes. In this minimized system, we found that dynamic ring formation is an intrinsic feature of FtsZ without the need of any other protein. However, self-organization into dynamic treadmilling only occurs within a specific protein, cation, and guanosine triphosphate (GTP) concentration range. Our work led us to propose that the observed chirality of FtsZ treadmilling may be explained by an inherent helical character of the filaments with more than one direction of curvature.
Collapse
Affiliation(s)
- Diego A. Ramirez-Diaz
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Daniela A. García-Soriano
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany
| | - Ana Raso
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jonas Mücksch
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Mario Feingold
- Department of Physics, Ben Gurion University, Beer Sheva, Israel
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
24
|
Abstract
How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.
Collapse
Affiliation(s)
- Yuval Mulla
- These authors contributed equally to this work
| | | | | |
Collapse
|
25
|
Enomoto T, Brea RJ, Bhattacharya A, Devaraj NK. In Situ Lipid Membrane Formation Triggered by Intramolecular Photoinduced Electron Transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:750-755. [PMID: 28982007 DOI: 10.1021/acs.langmuir.7b02783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major goal of synthetic biology is the development of rational methodologies to construct self-assembling non-natural membranes, which could enable the efficient fabrication of artificial cellular systems from purely synthetic components. However, spatiotemporal control of artificial membrane formation remains both challenging and limited in scope. Here, we describe a new methodology to promote biomimetic phospholipid membrane formation by the photochemical activation of a catalyst-sensitizer dyad via an intramolecular photoinduced electron-transfer process. Our results offer future opportunities to exert spatiotemporal control over artificial cellular constructs.
Collapse
Affiliation(s)
- Takafumi Enomoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science , 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- SOKENDAI [The Graduate University for Advanced Studies] , Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| | - Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California at San Diego , La Jolla, California 92093, United States
| |
Collapse
|
26
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
27
|
Sobrinos-Sanguino M, Zorrilla S, Monterroso B, Minton AP, Rivas G. Nucleotide and receptor density modulate binding of bacterial division FtsZ protein to ZipA containing lipid-coated microbeads. Sci Rep 2017; 7:13707. [PMID: 29057931 PMCID: PMC5651908 DOI: 10.1038/s41598-017-14160-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
ZipA protein from Escherichia coli is one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein. A sedimentation assay was used to measure the equilibrium binding of FtsZ-GDP and FtsZ-GTP to ZipA immobilized at controlled densities on the surface of microbeads coated with a phospholipid mixture resembling the composition of E. coli membrane. We found that for both nucleotide-bound species, the amount of bound FtsZ exceeds the monolayer capacity of the ZipA immobilized beads at high concentrations of free FtsZ. In the case of FtsZ-GDP, equilibrium binding does not appear to be saturable, whereas in the case of FtsZ-GTP equilibrium binding appears to be saturable. The difference between the two modes of binding is attributed to the difference between the composition of oligomers of free FtsZ-GDP and free FtsZ-GTP formed in solution.
Collapse
Affiliation(s)
- Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Begoña Monterroso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain
| | - Allen P Minton
- Section on Physical Biochemistry, Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040, Madrid, Spain.
| |
Collapse
|
28
|
Abstract
Cells produce lipid membranes de novo through a complex sequence of enzymatic reactions that are difficult to reconstitute in a minimal system. We set out to take a different approach and mimic the synthesis of phospholipids using abiotic but highly selective bioconjugation reactions. Here, I outline several of our group's recent advances in exploring chemoselective reactions for stitching together lipid fragments to form membrane-forming lipids from non-membrane-forming precursors. Rapid chemical reactions can be harnessed to achieve facile de novo synthesis of lipid membranes, and spontaneous membrane formation can be applied for the reconstitution of membrane proteins, encapsulation and concentration of nanomaterials, and the study of lipid membrane remodeling. I conclude by briefly outlining future challenges and opportunities.
Collapse
Affiliation(s)
- Neal K Devaraj
- University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
29
|
Kretschmer S, Zieske K, Schwille P. Large-scale modulation of reconstituted Min protein patterns and gradients by defined mutations in MinE's membrane targeting sequence. PLoS One 2017. [PMID: 28622374 PMCID: PMC5473585 DOI: 10.1371/journal.pone.0179582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The E. coli MinDE oscillator is a paradigm for protein self-organization and gradient formation. Previously, we reconstituted Min protein wave patterns on flat membranes as well as gradient-forming pole-to-pole oscillations in cell-shaped PDMS microcompartments. These oscillations appeared to require direct membrane interaction of the ATPase activating protein MinE. However, it remained unclear how exactly Min protein dynamics are regulated by MinE membrane binding. Here, we dissect the role of MinE’s membrane targeting sequence (MTS) by reconstituting various MinE mutants in 2D and 3D geometries. We demonstrate that the MTS defines the lower limit of the concentration-dependent wavelength of Min protein patterns while restraining MinE’s ability to stimulate MinD’s ATPase activity. Strikingly, a markedly reduced length scale—obtainable even by single mutations—is associated with a rich variety of multistable dynamic modes in cell-shaped compartments. This dramatic remodeling in response to biochemical changes reveals a remarkable trade-off between robustness and versatility of the Min oscillator.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- Graduate School of Quantitative Biosciences, Ludwig-Maximilians-Universität, München, Germany
| | - Katja Zieske
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
30
|
Abstract
In bacteria and archaea, the most widespread cell division system is based on the tubulin homologue FtsZ protein, whose filaments form the cytokinetic Z-ring. FtsZ filaments are tethered to the membrane by anchors such as FtsA and SepF and are regulated by accessory proteins. One such set of proteins is responsible for Z-ring's spatiotemporal regulation, essential for the production of two equal-sized daughter cells. Here, we describe how our still partial understanding of the FtsZ-based cell division process has been progressed by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FtsZ filaments. We summarise available data and how they inform mechanistic models for the cell division process.
Collapse
|
31
|
Thiele J. Polymer Material Design by Microfluidics Inspired by Cell Biology and Cell-Free Biotechnology. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e. V; Leibniz Research Cluster (LRC); Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
32
|
Rivas G, Minton AP. Macromolecular Crowding In Vitro, In Vivo, and In Between. Trends Biochem Sci 2016; 41:970-981. [PMID: 27669651 DOI: 10.1016/j.tibs.2016.08.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Biochemical processes take place in heterogeneous and highly volume-occupied or crowded environments that can considerably influence the reactivity and distribution of participating macromolecules. We summarize here the thermodynamic consequences of excluded-volume and long-range nonspecific intermolecular interactions for macromolecular reactions in volume-occupied media. In addition, we summarize and compare the information content of studies of crowding in vitro and in vivo. We emphasize the importance of characterizing the behavior not only of labeled tracer macromolecules but also the composition and behavior of unlabeled macromolecules in the immediate vicinity of the tracer. Finally, we propose strategies for extending quantitative analyses of crowding in simple model systems to increasingly complex media up to and including intact cells.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Liu X, Zhou P, Huang Y, Li M, Huang X, Mann S. Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angew Chem Int Ed Engl 2016; 55:7095-100. [PMID: 27144816 DOI: 10.1002/anie.201601427] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022]
Abstract
A facile route to hierarchically organized multicompartmentalized proteinosomes based on a recursive Pickering emulsion procedure using amphiphilic protein-polymer nanoconjugate building blocks is described. The number of incarcerated guest proteinosomes within a single host proteinosome is controlled, and enzymes and genetic polymers encapsulated within targeted subcompartments to produce chemically organized multi-tiered structures. Three types of spatiotemporal response-retarded concomitant release, synchronous release or hierarchical release of dextran and DNA-are demonstrated based on the sequential response of the host and guest membranes to attack by protease, or through variations in the positioning of disulfide-containing cross-links in either the host or guest proteinosomes integrated into the nested architectures. Overall, our studies provide a step towards the construction of hierarchically structured synthetic protocells with chemically and spatially integrated proto-organelles.
Collapse
Affiliation(s)
- Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Pei Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|
34
|
Liu X, Zhou P, Huang Y, Li M, Huang X, Mann S. Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Pei Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry; School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry; School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| |
Collapse
|
35
|
Akkarachaneeyakorn K, Li M, Davis SA, Mann S. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2912-2919. [PMID: 26981922 DOI: 10.1021/acs.langmuir.6b00553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation.
Collapse
Affiliation(s)
- Khrongkhwan Akkarachaneeyakorn
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Sean A Davis
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
36
|
Caschera F, Noireaux V. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell. ARTIFICIAL LIFE 2016; 22:185-195. [PMID: 26934095 DOI: 10.1162/artl_a_00198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.
Collapse
|
37
|
Moreno-Flores S. Inward multivesiculation at the basal membrane of adherent giant phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:793-9. [PMID: 26828120 DOI: 10.1016/j.bbamem.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
Adherent giant vesicles composed of phosphatidylcholine, phosphatidylserine and biotinylated lipids form clusters of inward spherical buds at their basal membrane. The process is spontaneous and occurs when the vesicles undergo a sequence of osmotic swelling and deswelling. The daughter vesicles have a uniform size (diameter ≈ 2-3 μm), engulf small volumes of outer fluid and remain attached to the region of the membrane from which they generate, even after restoring the isotonicity. A pinning-sealing mechanism of long-wavelength modes of membrane fluctuations is proposed, by which the just-deflated vesicles reduce the surplus of membrane area and avoid excessive spreading and compression via biotin anchors. The work discusses the rationale behind the mechanism that furnishes GUVs with basal endovesicles, and its prospective use to simulate cellular events or to create molecular carriers.
Collapse
Affiliation(s)
- Susana Moreno-Flores
- Former affiliation: Institute for Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU) Vienna, Muthgasse 11, A-1190, Vienna, Austria.
| |
Collapse
|
38
|
Vogel SK. Reconstitution of a Minimal Actin Cortex by Coupling Actin Filaments to Reconstituted Membranes. Methods Mol Biol 2016; 1365:213-23. [PMID: 26498787 DOI: 10.1007/978-1-4939-3124-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thin layer of actin filaments in many eukaryotic cell types drives pivotal aspects of cell morphogenesis and is generally cited as the actin cortex. Myosin driven contractility and actin cytoskeleton membrane interactions form the basis of fundamental cellular processes such as cytokinesis, cell migration, and cortical flows. How the interplay between the actin cytoskeleton, the membrane, and actin binding proteins drives these processes is far from being understood. The complexity of the actin cortex in living cells and the hardly feasible manipulation of the omnipotent cellular key players, namely actin, myosin, and the membrane, are challenging in order to gain detailed insights about the underlying mechanisms. Recent progress in developing bottom-up in vitro systems where the actin cytoskeleton is combined with reconstituted membranes may provide a complementary route to reveal general principles underlying actin cortex properties. In this chapter the reconstitution of a minimal actin cortex by coupling actin filaments to a supported membrane is described. This minimal system may be very well suited to study for example protein interactions on membrane bound actin filaments in a very controlled and quantitative manner as it may be difficult to perform in living systems.
Collapse
Affiliation(s)
- Sven K Vogel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany.
| |
Collapse
|
39
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
40
|
Schmid EM, Richmond DL, Fletcher DA. Reconstitution of proteins on electroformed giant unilamellar vesicles. Methods Cell Biol 2015; 128:319-38. [PMID: 25997355 DOI: 10.1016/bs.mcb.2015.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro reconstitution of simplified biological systems from molecular parts has proven to be a powerful method for investigating the biochemical and biophysical principles underlying cellular processes. In recent years, there has been a growing interest in reconstitution of protein-membrane interactions to understand the critical role played by membranes in organizing molecular-scale events into micron-scale patterns and protrusions. However, while all reconstitution experiments depend on identifying and isolating an essential set of soluble biomolecules, such as proteins, DNA, and RNA, reconstitution of membrane-based processes involves the additional challenge of forming and working with lipid bilayer membranes with composition, fluidity, and mechanical properties appropriate for the process at hand. Here we discuss a selection of methods for forming synthetic lipid bilayer membranes and present a versatile electroformation protocol that our lab uses for reconstituting proteins on giant unilamellar vesicles. This synthetic membrane-based approach to reconstitution offers the ability to study protein organization and activity at membranes under more cell-like conditions, addressing a central challenge to accomplishing the grand goal of "building the cell."
Collapse
Affiliation(s)
- Eva M Schmid
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA
| | - David L Richmond
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA; Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
41
|
Brea RJ, Cole CM, Devaraj NK. In situ vesicle formation by native chemical ligation. Angew Chem Int Ed Engl 2014; 53:14102-5. [PMID: 25346090 PMCID: PMC4418804 DOI: 10.1002/anie.201408538] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 01/07/2023]
Abstract
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non-enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water-soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self-assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.
Collapse
Affiliation(s)
- Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Christian M. Cole
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| |
Collapse
|
42
|
Kretschmer S, Schwille P. Toward Spatially Regulated Division of Protocells: Insights into the E. coli Min System from in Vitro Studies. Life (Basel) 2014; 4:915-28. [PMID: 25513760 PMCID: PMC4284474 DOI: 10.3390/life4040915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
For reconstruction of controlled cell division in a minimal cell model, or protocell, a positioning mechanism that spatially regulates division is indispensable. In Escherichia coli, the Min proteins oscillate from pole to pole to determine the division site by inhibition of the primary divisome protein FtsZ anywhere but in the cell middle. Remarkably, when reconstituted under defined conditions in vitro, the Min proteins self-organize into spatiotemporal patterns in the presence of a lipid membrane and ATP. We review recent progress made in studying the Min system in vitro, particularly focusing on the effects of various physicochemical parameters and boundary conditions on pattern formation. Furthermore, we discuss implications and challenges for utilizing the Min system for division site placement in protocells.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany.
| |
Collapse
|
43
|
Brea RJ, Cole CM, Devaraj NK. In Situ Vesicle Formation by Native Chemical Ligation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|