1
|
Ghosh T. Microplastics bioaccumulation in fish: Its potential toxic effects on hematology, immune response, neurotoxicity, oxidative stress, growth, and reproductive dysfunction. Toxicol Rep 2025; 14:101854. [PMID: 39802604 PMCID: PMC11720882 DOI: 10.1016/j.toxrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes. Microplastics lead to an imbalance in the generation of ROS and antioxidant defense of fish, which resulting in oxidative injury. Moreover, microplastics affect immunological responses through physico-chemical damage, hence produce neurotoxicity and modifies the activity of the acetylcholine esterase. Exposure to microplastics caused damage to the hepatic and gut tissue, affect intestinal barrier function and dysbiosis of microbial composition, altered the metabolism of host, affecting the activities of the digestive enzymes, eventually affecting the growth performance of fish. Microplastics exposure target the HPG axis and interfere with the process of steroidogenesis, apoptosis of the gonadal tissue, ultimately causing reproductive dysfunction. Fish exposed to microplastics have a range of toxic effects viz. alteration to immune, antioxidant and hematological indices, bioaccumulation, neurotoxicity, growth and reproductive dysfunction, all were examined in this present review by using different indicators.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
- Department of Zoology, Scottish Church College, Kolkata, West Bengal 700006, India
| |
Collapse
|
2
|
Timaná Morales M, Peraza Gómez V, Kozak ER, Trejo Flores JV, Robles Ravelero M, Espinosa Chaurand LD, Jiménez Ruíz EI. Microplastics in marine fish: a mini-review on presence, classification, and impacts. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:169-180. [PMID: 39616298 DOI: 10.1007/s10646-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/20/2025]
Abstract
Plastic production has experienced exponential growth in recent years due to its diverse industrial applications, low cost, and high availability, also causing issues, since plastic waste in aquatic ecosystems transforms into microplastics (MPs) through mechanical and weathering processes. Microplastics are distributed ubiquitously in water bodies, where they can be ingested by a wide aquatic organism range, including fish, which have been used as bioindicators to assess microplastic presence and toxicity. Research has revealed microplastic presence in various fish species worldwide; the most common characteristics are fibers and fragments of blue, black, and transparent colors, and polyethylene, terephthalate, polypropylene and cellophane chemical composition. Experimental studies under laboratory conditions have demonstrated microplastics impact on fish, showing physical, immunological, and hematological damage, and oxidative stress ultimately leading to organisms' death. However, laboratory results do not necessarily predict impacts on wild fish due to different conditions to which the organisms are exposed. Therefore, further research needs to simulate real scenarios faced by wild fish in the marine environment, providing greater certainty about microplastic impacts and negative effects.
Collapse
Affiliation(s)
- María Timaná Morales
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Viridiana Peraza Gómez
- Programa de Maestría en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México.
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, San Blas, Nayarit, México.
| | - Eva R Kozak
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Jalisco, México
| | - José Vladimir Trejo Flores
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Pesqueras, Universidad Autónoma de Nayarit, Xalisco, Nayarit, México
| | - Maricruz Robles Ravelero
- Posgrado en Ciencias en Recursos Acuáticos. Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen S/N. Col. Los Pinos, Mazatlán, Sinaloa, 82000, México
| | | | - Edgar Iván Jiménez Ruíz
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit. Tepic, Nayarit, Mexico
| |
Collapse
|
3
|
Choi H, Hwang UK, Lee M, Kim YJ, Han T. Evaluating Toxic Interactions of Polystyrene Microplastics with Hazardous and Noxious Substances Using the Early Life Stages of the Marine Bivalve Crassostrea gigas. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:349. [PMID: 40072152 PMCID: PMC11901870 DOI: 10.3390/nano15050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
Plastics pose a significant threat to marine ecosystems, owing to their slow biodegradability. Microplastics (MPs), in particular, affect marine life and maricultural organisms and can enter the food chain via ingestion by marine organisms, leading to bioaccumulation in predators, including humans. This study assessed the toxic interactions between polystyrene microplastic particles (PSMPs) and cadmium (Cd) and phenanthrene (Phe) using marine bivalves. While PSMPs were non-toxic to Pacific oysters (Crassostrea gigas), the toxicity of Cd and Phe was concentration-dependent. In most conditions, PSMPs reduced the toxicity of Cd and Phe, but in simultaneous exposure, they acted as Cd messengers, altering the toxicity during the adult stage. This study confirms that PSMPs can interact with coastal environmental pollutants, thereby accelerating biotoxicity and posing a significant threat to marine wildlife, mariculture, and human health. It also highlights the need to assess MP toxicity in coastal environments and their interactions with pollutants.
Collapse
Affiliation(s)
- Hoon Choi
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon 34103, Republic of Korea;
- Tidal Flat Research Institute, Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, Republic of Korea;
| | - Un-Ki Hwang
- Tidal Flat Research Institute, Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, Republic of Korea;
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon 34103, Republic of Korea;
| | - Youn-Jung Kim
- Department of Marine Science, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea;
| | - Taejun Han
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Westenschapspark 1, Bluebridge, 8400 Oostende, Belgium;
| |
Collapse
|
4
|
Soliman AM, Mohamed AS, Abdel-Khalek AA, Badran SR. Impact of polyvinyl chloride nano-plastics on the biochemical status of Oreochromis niloticus under a predicted global warming scenario. Sci Rep 2025; 15:3671. [PMID: 39880882 PMCID: PMC11779928 DOI: 10.1038/s41598-025-87558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers. The fish groups were subjected to three distinct temperatures (30, 32, and 34 °C) and subsequently separated into two groups: 0 and 10 mg/L of PVC-NPs, as it is expected that these temperatures may modify their chemical properties, which can influence their absorption and toxicity in fish. After 4 days, the biochemical response of fish exposed to PVC-NPs and elevated temperatures showed a significant increase in the levels of plasma total proteins, albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, and uric acid. Additionally, the level of oxidative stress biomarkers in the liver, gills, and brain was found to have a significant increase in malondialdehyde (MDA) concentration and a decrease in glutathione reduced (GSH) concentration and catalase (CAT) activity in all studied groups. Finally, the current findings revealed a synergistic cytotoxic effect of PVC-NPs and temperatures on the metabolic and oxidative stress indices of O. niloticus.
Collapse
Affiliation(s)
| | - Ayman S Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr A Abdel-Khalek
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
- Department of Physiology, Faculty of Medicine, Tobruk University, Tobruk, Libya
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Hamed M, Abou Khalil NS, Alghriany AA, El-Din H. Sayed A. The protective effects of dietary microalgae against hematological, biochemical, and histopathological alterations in pyrogallol-intoxicated Clarias gariepinus. Heliyon 2024; 10:e40930. [PMID: 39759355 PMCID: PMC11699231 DOI: 10.1016/j.heliyon.2024.e40930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Microalgae have well-established health benefits for farmed fish. Thus, this study aims to explore the potential protective effects of Spirulina platensis, Chlorella vulgaris, and Moringa oleifera against pyrogallol-induced hematological, hepatic, and renal biomarkers in African catfish (Clarias gariepinus), as well as the histopathological changes in the liver and kidney. Fish weighing 200 ± 25 g were divided into several groups: group 1 served as the control, group 2 was exposed to 10 mg/L of pyrogallol, and groups 3, 4, and 5 were exposed to the same concentration of pyrogallol, supplemented with S. platensis at 20 g/kg diet, C. vulgaris at 50 g/kg diet, and M. oleifera at 5 g/kg diet, respectively, for 15 days. Exposure to pyrogallol led to decreased packed cell volume (PCV) and lymphocyte count, but these effects were alleviated by microalgae interventions. C. vulgaris and M. oleifera equally restored PCV and increased lymphocyte counts. Supplementation with C. vulgaris and M. oleifera successfully normalized both neutrophil and eosinophil counts. Pyrogallol intoxication engenders an increase in glycemic status, but C. vulgaris and M. oleifera effectively mitigated this rise. Pyrogallol-exposed fish exhibited signs of renal dysfunction, with increased serum creatinine and total cholesterol levels. A significant decrease in both erythrocytic cellular and nuclear abnormalities was observed following supplementation with microalgae. C. vulgaris and M. oleifera showed promise in decreasing serum glucose and creatinine levels, and improving hematological parameters, while S. platensis exhibited limited efficacy in this regard. Exposure to pyrogallol led to a notable decrease in serum superoxide dismutase activity and total antioxidant capacity (TAC), accompanied by an increase in serum malondialdehyde (MDA) levels. Diets enriched with C. vulgaris and M. oleifera effectively restored these parameters to normal levels, whereas S. platensis did not induce significant changes. None of the microalgae improved TAC except for M. oleifera, which significantly enhanced it. MDA levels returned to control levels equally and significantly across all groups. Interleukin-6 levels did not exhibit significant differences between any of the groups. Collectively, the histopathological changes induced by pyrogallol were most prominently alleviated in the pyrogallol + C. vulgaris and pyrogallol + M. oleifera groups, and to a limited degree in the pyrogallol + S. platensis group. While the tested microalgae did not cause hepatic or renal dysfunction, they did lead to metabolic abnormalities. The incorporation of microalgae into the diet holds significant importance in mitigating the metabolic and histological toxicity of pyrogallol and should be considered in the formulation of fish feed.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of veterinary Medicine, Badr University, Assuit, Egypt
| | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
6
|
Fang L, Wang S, Sun X, Wang K. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107144. [PMID: 39520844 DOI: 10.1016/j.aquatox.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Lanjin Fang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Shuangshuang Wang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Xingbin Sun
- College of Forest, Northeast Forest University, Harbin 150040, China.
| | - Kejing Wang
- Ecological and Environmental Monitoring Centre of Heilongjiang Province, Harbin 150056, China.
| |
Collapse
|
7
|
Rashid E, Hussain SM, Ali S, Sarker PK, Farah MA. Investigating the toxicity of polylactic acid microplastics on the health and physiology of freshwater fish, Cirrhinus mrigala. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1210-1221. [PMID: 39356372 DOI: 10.1007/s10646-024-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic ecosystems has raised growing concerns among ecotoxicologists regarding their potential toxicity. This study explored the impacts of polylactic acid (PLA) MPs on the physiology and health of freshwater fish, Cirrhinus mrigala, by dietary exposure for 90 days. The experiment consisted of six groups: five treatment groups (0.5%, 1%, 1.5%, 2%, and 2.5% PLA-MP) and a control group (0% PLA-MP). Each group was comprised of fifteen fish, and the experiment was replicated three times. The exposure severity of PLA-MPs varied from low to high, with treatment levels ranging from 0.5% to 2.5% PLA-MPs, relative to the control group. This exposure significantly affected their growth performance. Additionally, the apparent digestibility of the SFM-based diet decreased with increasing PLA-MPs concentration. Exposure to PLA-MPs induced considerable changes in body composition, characterized by increased moisture and crude fat content and decreased ash content and crude protein. The blood profile, including MCHC, RBCs, Hb, PLT and PCV exhibited significant declines in the high treatment group (2.5% PLA-MPs), while MCH, WBCs and MCV showed notable increases. Furthermore, histopathological examination of the intestine revealed an increase in abnormalities in the intestine at 2.5% PLA-MPs level. The high treatment group (2.5% PLA-MPs) showed the lowest mineral content in the fish muscles. In summary, dietary exposure to PLA-MPs led to alterations in overall body performance across the treatment groups, ranging from low to high severity levels.
Collapse
Affiliation(s)
- Eram Rashid
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Khan MIR, Sharma M, Sonkar P, Komre P, Kumar S, Barik P. Documentation of phytochemicals, bio-toxicity and haemato-physiological responses at sub-lethal concentrations of Parthenium hysterophorus hydroethanolic extract in Cyprinus carpio: a concept of waste valorization as a phyto-ichthyotoxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62213-62229. [PMID: 37247154 DOI: 10.1007/s11356-023-27444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
In the present study, phytoextraction of a weed plant, Parthenium hysterophorus, was performed through aqueous, alcoholic and hydroethanolic (80%) solvents followed by phytochemical profiling and evaluation of median lethal concentration (LC50) of hydroethanolic extract in a freshwater fish, common carp (Cyprinus carpio). Haemato-physiological response was also evaluated based on LC50 (18.99 mg L-1) at two sub-lethal concentrations of extract [T1: 0.379 mg L-1 (LC50/50), T2: 0.759 mg L-1 (LC50/25) and a control: devoid of extract] at three intervals (24, 48 and 96 h). The study revealed toxic constituents in extracts and the superior extraction ability of hydroethanolic solvent which was chosen for further biological characterisation, particularly on haematotoxicity. The anti-bacterial assay revealed the inhibitory capacity of the extract, whereas the phyto-haemagglutination assay, haemagglutination limit test and haemolytic activity revealed clumping, agglutination (at 1/96th dilution) and lytic capability of extract, respectively. Later, in vivo analyses revealed a significant modulation in haemato-immunological and serum biochemical parameters upon hydroethanolic extract exposure. In conclusion, the present study emphasises locally available gajar ghas, P. hysterophorus as a non-chemical phyto-ichthyotoxin towards sustainable aquaculture.
Collapse
Affiliation(s)
- Md Idrish Raja Khan
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India.
| | - Monika Sharma
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India
| | - Parasmani Sonkar
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India
| | - Priyanka Komre
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India
| | - Shashank Kumar
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India
| | - Pabitra Barik
- Department of Aquatic Environment and Health Management, Late Shri Punaram Nishad College of Fisheries, Dau Shri Vasudev Chandrakar Kamdhenu Vishwavidyalaya (DSVCKV), Kawardha, 491995, Chhattisgarh, India
| |
Collapse
|
9
|
Liang J, Ji F, Abdullah ALB, Qin W, Zhu T, Tay YJ, Li Y, Han M. Micro/nano-plastics impacts in cardiovascular systems across species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173770. [PMID: 38851343 DOI: 10.1016/j.scitotenv.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.
Collapse
Affiliation(s)
- Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | | | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Tian Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
10
|
Du B, Li T, He H, Xu X, Zhang C, Lu X, Wang Y, Cao J, Lu Y, Liu Y, Hu S, Li J, Li L, Shi M. Analysis of Biodistribution and in vivo Toxicity of Varying Sized Polystyrene Micro and Nanoplastics in Mice. Int J Nanomedicine 2024; 19:7617-7630. [PMID: 39081896 PMCID: PMC11288365 DOI: 10.2147/ijn.s466258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Studies have shown that microplastics (MPs) and nanoplastics (NPs) could accumulate in the human body and pose a potential threat to human health. The purpose of this study is to evaluate the biodistribution and toxicity of MPs/NPs with different particle sizes comprehensively and thoroughly. Methods The purpose of this study was to investigate the biodistribution and in vivo toxicity of polystyrene (PS) MPs/NPs with different sizes (50 nm, 100 nm, and 500 nm). The BALB/c mice were given 100 μL of PS50, PS100 and PS500 at the dosage of 1 mg/kg BW or 10 mg/kg BW, respectively, by gavage once a day. After 28 consecutive days of treatment, the biodistribution of differently sized PS MPs/NPs was determined through cryosection fluorescence microscopy and fluorescent microplate reader analysis, and the subsequent effects of differently sized PS MPs/NPs on histopathology, hematology and blood biochemistry were also evaluated. Results The results showed that the three different sizes of PS MPs/NPs were distributed in the organs of mice, mainly in the liver, spleen, and intestine. At the same time, the smaller the particle size, the more they accumulate in the body and more easily penetrate the tissue. During the whole observation period, no abnormal behavior and weight change were observed. The results of H&E staining showed that no severe histopathological abnormalities were observed in the main organs in the low-dose exposure group, while. Exposure of three sizes of PS MPs/NPs could cause some changes in hematological parameters or biochemical parameters related to heart, liver, and kidney function; meanwhile, there were size- and dose-dependencies. Conclusion The biological distribution and toxicity of plastic particles in mice were more obvious with the decrease of particle size and the increase of concentration of plastic particles. Compared with MPs, NPs were easier to enter the tissues and produce changes in liver, kidney, and heart functions. Therefore, more attention should be paid to the toxicity of NPs.
Collapse
Affiliation(s)
- Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xun Xu
- Experimental Animal Center, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Shanshan Hu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Juxiao Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, 523808, People’s Republic of China
| |
Collapse
|
11
|
Khalefa HS, AbuBakr HO, Aljuaydi SH, Kotp YH, Al-Mokaddem AK, Abdel-Moneam DA. Aquatic assessment of the chelating ability of Silica-stabilized magnetite nanocomposite to lead nitrate toxicity with emphasis to their impact on hepatorenal, oxidative stress, genotoxicity, histopathological, and bioaccumulation parameters in Oreochromis niloticus and Clarias gariepinus. BMC Vet Res 2024; 20:262. [PMID: 38890656 PMCID: PMC11184684 DOI: 10.1186/s12917-024-04094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.
Collapse
Affiliation(s)
- Hanan S Khalefa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, Egyptian Chinese University, Cairo, Egypt
| | - Samira H Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yousra H Kotp
- Hydrogeochemistry Department, Desert Research Center, Cairo, 11753, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Dalia A Abdel-Moneam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
12
|
Verma A, Holeyappa SA, Bansal N, Kaur VI. Efficacy of quercetin in ameliorating hypoxia-induced hematological and histopathological alterations in rohu Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1171-1187. [PMID: 38446317 DOI: 10.1007/s10695-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Hypoxia, a major issue in aquatic ecosystems, in special reference to climate change, and exacerbated by anthropogenic activities. It is causing slow growth, disease outbreaks, and mortality in finfish and shellfish. Therefore, adaptation to lowering oxygen levels through supplementation of herbs or their extracts in diets is imperative. In this study, hypoxia was simulated in controlled conditions with quercetin-enriched diets. Quercetin is a plant pigment (flavonol) possessing anti-oxidant property and is present in vegetables, leaves, seeds, pulses, and fruits. The experiment was conducted on rohu Labeo rohita, which is most widely cultured in India. There were four treatments including T1 (Normoxia: > 5 ppm dissolved oxygen; DO2), T2 (hypoxia: 3-4 ppm DO2), T3 (hypoxia + 50 mg quercetin/kg diet), and T4 (hypoxia + 100 mg quercetin/kg diet). The study was conducted for 30 days, and water quality was measured regularly. The results revealed that the hematological parameters were negatively affected. The tissue micro-architecture illustrated the impairment through degeneration of neurons in the brain, increased pigmentation as melanosis in the kidney, increased thickness of primary lamellae in the gills, and dilatations of sinusoids in the liver in hypoxia groups, while quercetin-enriched diets improved the hematological and histomorphological parameters. The results confirm the utility of hematological and histopathological tools as biomarkers and reflect the possible threats of hypoxia on fish. In conclusion, quercetin in diets appeared to show resistance towards chronic hypoxia by restoring the structure and functions of the vital organs towards normalcy and could be recommended as a potential ameliorative agent.
Collapse
Affiliation(s)
- Arvind Verma
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| | - Shanthanagouda A Holeyappa
- Department of Aquatic Environment, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004.
- Inland Fisheries Unit, Zonal Agricultural and Horticultural Sciences, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Navile, Shivamogga, Karnataka, India, 577 204.
| | - Neelam Bansal
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| | - Vaneet Inder Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 141 004
| |
Collapse
|
13
|
Bjedov D, Barbosa RS, de Oliveira DP, Dorta DJ, Sarmento MI, Sarmento RA, Silva ALP, Gravato C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. BIOLOGY 2024; 13:337. [PMID: 38785819 PMCID: PMC11117760 DOI: 10.3390/biology13050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Understanding the interplay among organophosphorus flame retardants (OPFRs), microplastics, and freshwater organisms is crucial for unravelling the dynamics within freshwater environments and foreseeing the potential impacts of organic pollutants and plastic contamination. For that purpose, the present research assessed the exposure impact of 10 mg L-1 flame-retardant aluminium diethylphosphinate (ALPI), 10 μg mg-1liver microplastics polyurethane (PU), and the combination of ALPI and PU on the freshwater planarian Girardia tigrina. The exposure to both ALPI and PU revealed a sequential effect, i.e., a decrease in locomotor activity, while oxidative stress biomarkers (total glutathione, catalase, glutathione S-transferase, lipid peroxidation) and metabolic responses (cholinesterase activity, electron transport system, and lactate dehydrogenase) remained unaffected. Despite this fact, it was possible to observe that the range of physiological responses in exposed organisms varied, in particular in the cases of the electron transport system, cholinesterase activity, glutathione S-transferase, catalase, and levels of total glutathione and proteins, showing that the energetic costs for detoxification and antioxidant capacity might be causing a lesser amount of energy allocated for the planarian activity. By examining the physiological, behavioural, and ecological responses of planarians to these pollutants, insights can be gained into broader ecosystem-level effects and inform strategies for mitigating environmental risks associated with OPFRs and microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Dora Bjedov
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Rone S. Barbosa
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, Campus de Ribeirão Preto, Ribeirão Preto 77402-970, SP, Brazil;
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
| | - Daniel Junqueira Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara 14800-060, SP, Brazil;
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Maíra Ignacio Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Renato Almeida Sarmento
- Graduate Program in Forestry and Environmental Sciences, Universidade Federal do Tocantins, Campus de Gurupi, Gurupi 77402-970, TO, Brazil (M.I.S.); (R.A.S.)
| | - Ana L. Patrício Silva
- Centre for Environmental and Marine Studies (CESAM), Departament of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
14
|
Sayed AEDH, Emeish WFA, Bakry KA, Al-Amgad Z, Lee JS, Mansour S. Polystyrene nanoplastic and engine oil synergistically intensify toxicity in Nile tilapia, Oreochromis niloticus : Polystyrene nanoplastic and engine oil toxicity in Nile tilapia. BMC Vet Res 2024; 20:143. [PMID: 38622626 PMCID: PMC11020678 DOI: 10.1186/s12917-024-03987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1β (IL-1β), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Assiut University, Assiut, 71516, Egypt.
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | | | - Karima A Bakry
- Fish Diseases Department, South Valley University, Qena, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Salwa Mansour
- Zoology Department, South Valley University, Qena, Egypt
| |
Collapse
|
15
|
Sayed AEDH, Khalil NSA, Alghriany AAI, Abdel-Ghaffar SK, Hussein AAA. Prefeeding of Clarias gariepinus with Spirulina platensis counteracts petroleum hydrocarbons-induced hepato- and nephrotoxicity. Sci Rep 2024; 14:7219. [PMID: 38538743 PMCID: PMC10973332 DOI: 10.1038/s41598-024-57420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/18/2024] [Indexed: 12/09/2024] Open
Abstract
Petroleum aromatic hydrocarbons are considered one of the most dangerous aquatic pollutants due to their widespread across water bodies, persistence, and extension to the food chain. To our knowledge, there hasn't been any research investigating the hepatorenoprotective effects of Spirulina platensis (SP) against toxicity induced by these environmental toxicants in fish. Thus, we decided to explore its potential safeguarding against benzene and toluene exposure in adult Clarias gariepinus. To achieve this objective, fish were divided into five groups (60 per group; 20 per replicate). The first group served as a control. The second and third groups were intoxicated with benzene and toluene at doses of 0.762 and 26.614 ng/L, respectively for 15 days. The fourth and fifth groups (SP + benzene and SP + toluene, respectively) were challenged with benzene and toluene as previously mentioned following dietary inclusion of SP at a dose of 5 g/kg diet for 30 days. The marked increase in liver metabolizing enzymes, glucose, total protein, albumin, globulin, albumin/globulin ratio, and creatinine confirmed the hepato- and nephrotoxic impacts of benzene and toluene. These outcomes were coupled with cytopathological affections and excessive collagen deposition. The incorporation of SP in ration formulation, on the contrary, restored the previously mentioned toxicological profile due to its antioxidant and cytoprotective attributes. Regardless of SP intervention, the renal tissues still displayed histo-architectural lesions, because of insufficient dose and timeframe. Additional research will be required to identify the ideal SP remediation regimen.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assuit University, Assiut, 71516, Egypt
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt
| | | | - Sary Kh Abdel-Ghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary of Medicine, Assiut University, Assiut, 71516, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Asmaa A A Hussein
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
16
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
17
|
Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:173. [PMID: 38204025 PMCID: PMC10779931 DOI: 10.3390/ma17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Dominika Piwowarska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-237 Łódź, Poland
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-232 Łódź, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna Str., 90-364 Łódź, Poland
| | - Natalia Festinger
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
18
|
Liang J, Xiong S, He C, Song Z, Yang S, Ma D, Yan W, Wang H, Tahir R, Han M. The organism fate of inland freshwater system under micro-/nano-plastic pollution: A review of past decade. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106774. [PMID: 38000134 DOI: 10.1016/j.aquatox.2023.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Micro- and nano-plastics (MPs/NPs) are characterized by their small size and extensive surface area, making them global environmental pollutants with adverse effects on organisms at various levels, including organs, cells, and molecules. Freshwater organisms, such as microalgae, emerging plants, zooplankton, benthic species, and fish, experience varying impacts from MPs/NPs, which are prevalent in both terrestrial and aquatic inland environments. MPs/NPs significantly impact plant physiological processes, including photosynthesis, antioxidant response, energy metabolism, and nitrogen removal. Extended exposure and ingestion to MPs/NPs might cause metabolic and behavioral deviations in zooplankton, posing an extinction risk. Upon exposure to MPs/NPs, both benthic organisms and fish display behavioral and metabolic disturbances, due to oxidative stress, neural toxicity, intestinal damage, and metabolic changes. Results from laboratory and field investigations have confirmed that MPs/NPs can be transported across multiple trophic levels. Moreover, MPs/NPs-induced alterations in zooplankton populations can impede energy transfer, leading to food scarcity for filter-feeding fish, larvae of benthic organism and fish, thus jeopardizing aquatic ecosystems. Furthermore, MPs/NPs can harm the nervous systems of aquatic organisms, influencing their feeding patterns, circadian rhythms, and mobility. Such behavioral alterations might also introduce unforeseen ecological risks. This comprehensive review aims to explore the consequences of MPs/NPs on freshwater organisms and their interconnected food webs. The investigation encompasses various aspects, including behavioral changes, alterations in physiology, impacts on metabolism, transgenerational effects, and the disruption of energy transfer within the ecosystem. This review elucidated the physiological and biochemical toxicity of MPs/NPs on freshwater organisms, and the ensuing risks to inland aquatic ecosystems.
Collapse
Affiliation(s)
- Ji Liang
- Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; School of Humanities, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Sen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Chunlin He
- Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China; College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaobin Song
- College of Life Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Daiqiang Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wenchu Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Jncon Environmental Protection Technology Co., Ltd, Chengdu, Sichuan 611130, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Department of Zoology, The Islamia University of Bahawalpur Pakistan, Punjab 63100, Pakistan
| | - Mingming Han
- Centre for marine and coastal studies, University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
19
|
Saad E, Sayed AEDH. Effects of black sand on Oreochromis niloticus: insights into the biogeochemical impacts through an experimental study. FRONTIERS IN EARTH SCIENCE 2023; 11. [DOI: 10.3389/feart.2023.1289665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Trace elements such as titanium, zirconium, thorium, and uranium, are found in black sand (BS) after weathering and corrosion. Precious metals are not the only valuable elements in black sand, rare earth elements are also found. The aquatic life in lakes and reservoirs is negatively affected by lithophilic elements such as lithium, uranium, and tin. Accordingly, intensive experiments were conducted on Nile tilapia (Oreochromis niloticus) after exposure to isolated black sand. Blood biomarkers, antioxidant balance, morpho-nuclear erythrocyte’s alterations, and histopathological signs have been investigated after fish exposure for 15 days to a 6.4 g BS/kg diet, 9.6 g BS/kg diet, and 2.4 g BS/kg diet. The blood profile, including platelets and white blood cells, was pronouncedly decreased as a result. Functions of the liver and kidneys were impaired. An increase in serum-antioxidant enzymes such as catalase activities and superoxide dismutase was recorded. Also, exposure to black sand induced cellular and nuclear abnormalities in the erythrocytes. In conclusion, the black sand isolated from the Red sea beach influenced Oreochromis niloticus’s hematology, biochemistry, and antioxidant parameters. Poikilocytosis and RBC nuclear abnormalities were also associated with exposure to black sand. The resulting erosion of rocks and rocks’ access to water forces us to consider the seriousness of climatic change on the aquatic ecosystem.
Collapse
|
20
|
Choi JH, Kim JH. Toxic effects of sub-acute microplastic (polyamide) exposure on the accumulation, hematological, and antioxidant responses in crucian carp, Carassius carassius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104199. [PMID: 37391052 DOI: 10.1016/j.etap.2023.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
The purpose of this study is to investigate the impact of microplastics (MPs) on fish and to confirm the toxic effects of MPs on fish, as well as to clarify the standard indicators. MPs are present in a large amount in the aquatic environment and can have various adverse effects on aquatic animals. Crucian carp, Carassius carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm), were exposed to PA (Polyamide) concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. The PA accumulation profile in C. carassius decreased from the intestine to the gill to the liver. Hematological parameters such as red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Ht) notably decreased at high levels of PA exposure. Plasma components such as calcium, magnesium, glucose, cholesterol, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly altered by PA exposure. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione (GSH) of liver, gill and intestine significantly increased following PA exposure. The results of this study suggest that MP exposure affects the hematological physiology and antioxidant responses in C. carassius as well as accumulation in specific tissues.
Collapse
Affiliation(s)
- Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, the Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
21
|
Kumar N, Thorat ST, Reddy KS. Multi biomarker approach to assess manganese and manganese nanoparticles toxicity in Pangasianodon hypophthalmus. Sci Rep 2023; 13:8505. [PMID: 37231182 DOI: 10.1038/s41598-023-35787-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese (Mn) is an essential element for humans and animals including, fish. It is a still poorly studied in aquatic organisms, where it can be noticeably useful for dietary components and also found pollutant in aquatic environment at high concentrations. On the above information, an experiment was delineated to determine the lethal concentration of manganese (Mn) and manganese nanoparticles (Mn-NPs) alone and with high temperature (34 °C) and its effect on various biochemical markers in Pangasianodon hypophthalmus. The median lethal concentration (96-LC50) of Mn alone (111.75 mg L-1) and along with high temperature (110.76 mg L-1), Mn-NPs alone (93.81 mg L-1) and with high temperature (34 °C) (92.39 mg L-1) was determined in P. hypophthalmus. The length and weight of the fish were 6.32 ± 0.23 cm and 7.57 ± 1.35 g. The present investigation used five hundred forty-six fish, including range finding (216 fish) and definitive test (330 fish). The acute definitive doses were applied to assess the effect of oxidative stress, glycolytic biomarkers, protein biomarkers, fish immunity, neurotransmitter, energy level, stress hormone and histopathology. Oxidative stress (catalase, superoxide dismutase, glutathione-s-transferase and glutathione peroxidase), stress biomarkers (lipid peroxidation, cortisol, heat shock protein, and blood glucose), lactate and malate dehydrogenase, alanine and aspartate aminotransferase, a neurotransmitter, glucose-6-phosphate dehydrogenase (G6PDH), ATPase, immune system biomarkers (NBT, total protein, albumin, globulin and A:G ratio) were altered with exposure to Mn and Mn-NPs. The histopathology of the liver and gill were also changed due to exposure to Mn and Mn-NPs. The bioaccumulation of Mn in the liver, gill, kidney, brain and muscle tissues, and experimental water at different intervals of 24, 48, 72 and 96 h were determined. Based on the present results, it is strongly suggested that Mn and Mn-NPs exposure alone and with high temperature (34 °C) enhanced toxicity and altered biochemical and morphological attributes. This study also suggested that essential elements in both forms (inorganic and nano) at higher concentrations of Mn and Mn-NPs lead to pronounced deleterious alteration in cellular and metabolic activities and histopathology of P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
22
|
Iheanacho SC, Ekpenyong J, Nwose R, Adeolu AI, Offu P, Amadi-Eke A, Iheanacho AC, Ogunji J. Effects of burnt tire-ash on Na +/K +, Ca 2+-ATPase, serum immunoglobulin and brain acetylcholinesterase activities in clarias gariepinus (Burchell, 1822). Drug Chem Toxicol 2023; 46:503-509. [PMID: 35416109 DOI: 10.1080/01480545.2022.2061987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aquatic pollution may continue to deepen following the emergence of new class of toxicants. The present study investigated the effect of water-soluble fraction of burnt tire-ash on Clarias gariepinus. The fish were exposed to sublethal doses; 0.00 g/L, 2.24 g/L, 1.12 g/L and 0.56 g/L of tire-ash solution, representing 1/5, 1/10 and 1/20 of 11.2 g/L median lethal concentration (96 LC50), for 28 days, followed by 14 days recovery trial. Biological sampling was done on exposure day 1, 14 and 28, and on day14 recovery period for biochemical analysis such as the liver and gill Na+/K+ and Ca2+-ATPase, serum immunoglobulin (IgM) and brain acetylcholinesterase (AChE) of the experimental fish. Also, body biomass and behavior were evaluated. The behavioral responses exhibited by the fish to BTA exposure include reduced feeding, hypoactivity, air gulping and skin discoloration, which was observed to be concentration dependent. The body weight of 2.24 g/L and 1.12 g/L BTA-exposed fish decreased significantly than 0.56 g/L exposed fish and the control. Furthermore, findings revealed evident induction of Na+/K+ and Ca2 +-ATPase activities in both tissues, elevation of serum immunoglobulin content and inhibition of AChE activity in the brain of the exposed fish relative to the control. However, it was also observed that the biochemical parameters normalized after the recovery period. In conclusion, water-soluble fraction of burnt tire-ash produced toxicological effects in the experimental model, hence the present study provides the ecotoxicological insight of tire ash.
Collapse
Affiliation(s)
- Stanley C Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria.,Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Joshua Ekpenyong
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Roseline Nwose
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Adewale I Adeolu
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Peter Offu
- Department of Political Science, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Akunna Amadi-Eke
- Department of Fisheries and Aquaculture Technology, Federal University of Technology Owerri, Imo, Nigeria
| | - Angus C Iheanacho
- Department of Chemistry and Industrial Chemistry, University of Nigeria Nsukka, Enugu, Nigeria
| | - Johnny Ogunji
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| |
Collapse
|
23
|
Jeyavani J, Sibiya A, Stalin T, Vigneshkumar G, Al-Ghanim KA, Riaz MN, Govindarajan M, Vaseeharan B. Biochemical, Genotoxic and Histological Implications of Polypropylene Microplastics on Freshwater Fish Oreochromis mossambicus: An Aquatic Eco-Toxicological Assessment. TOXICS 2023; 11:toxics11030282. [PMID: 36977047 PMCID: PMC10052786 DOI: 10.3390/toxics11030282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
In recent years, polypropylene microplastic has persisted in freshwater ecosystems and biota, forming ever-growing threats. This research aimed to prepare polypropylene microplastics and evaluate their toxicity to the filter feeder Oreochromis mossambicus. In this research, fish were given a dietary supplement of polypropylene microplastics at 100, 500, and 1000 mg/kg for acute (96 h) and sub-acute (14 days) durations to assess toxic effects on liver tissues. FTIR results revealed the presence of polypropylene microplastic in their digestion matter. The ingestion of microplastics in O. mossambicus led to fluctuations in homeostasis, an upsurge in reactive oxygen species (ROS) levels, an alteration in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx); a promotion in the oxidation of lipid molecules; and a denaturation in the neurotransmitter enzyme acetylcholinesterase (AChE). Our data indicated that sustained exposure to microplastics (14 days) produced a more severe threat than acute exposure (96 h). In addition, higher apoptosis, DNA damage (genotoxicity), and histological changes were found in the liver tissues of the sub-acute (14 days) microplastics-treated groups. This research indicated that the constant ingestion of polypropylene microplastics is detrimental to freshwater environments and leads to ecological threats.
Collapse
Affiliation(s)
- Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ganesan Vigneshkumar
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India;
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
24
|
Wei S, Zhang J, Chen W, Shen A, Zhou D, Zheng J, Thiam H, Ding Z, Limbu SM, Kong Y. Adverse effects of chronic ammonia stress on juvenile oriental river prawn (Macrobrachium nipponense) and alteration of glucose and ammonia metabolism. ENVIRONMENTAL TOXICOLOGY 2023; 38:545-554. [PMID: 36288433 DOI: 10.1002/tox.23698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.
Collapse
Affiliation(s)
- Shanshan Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Jin Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Wanxin Chen
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Anfu Shen
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Dongsheng Zhou
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Jinxian Zheng
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Habib Thiam
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Zhili Ding
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Youqin Kong
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
25
|
Santos SG, Souza MCO, Barbosa-Junior F, Prodocimo MM, Marcondes FR, Almeida W, Cestari MM, Souza-Bastos LR, Martino-Andrade AJ, Guiloski IC. Evaluation of the toxicity of di-iso-pentyl-phthalate (DiPeP) using the fish Danio rerio as an experimental model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27996-28009. [PMID: 36385344 DOI: 10.1007/s11356-022-24071-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of phthalates constitutes a risk to the health of aquatic environments and organisms. This work aimed to evaluate the toxic effects of di-iso-pentyl-phthalate (DiPeP) at environmentally relevant concentrations of 5, 25, and 125 µg/L in Danio rerio after subchronic exposure for 14 days. DiPeP altered the antioxidant system in the liver (125 μg/L), intestine (25 μg/L), brain, and gills in all concentrations tested. In animals exposed to 125 μg/L, DNA damage was identified in the gills. In addition, loss of cell boundary of hepatocytes, vascular congestion, necrosis in the liver, and presence of immune cells in the intestinal lumen were observed. Erythrocytic nuclear alterations in the blood occurred in animals exposed to 25 μg/L. DiPeP was quantified in muscle tissue at all exposure concentrations, appearing in a concentration-dependent manner. Contaminants such as DiPeP will still be used for a long time, mainly by industries, being a challenge for industry versus environmental health.
Collapse
Affiliation(s)
- Sheila Gabriel Santos
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, Água Verde, 80.250-200, 1632, Curitiba, PR, Brasil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brasil
| | - Marília Cristina Oliveira Souza
- Laboratório de Toxicologia Analítica e de Sistemas (ASTox), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Fernando Barbosa-Junior
- Laboratório de Toxicologia Analítica e de Sistemas (ASTox), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brasil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular e Molecular, Universidade Federal Do Paraná (UFPR), Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Fellip Rodrigues Marcondes
- Departamento de Genética, Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - William Almeida
- Departamento de Genética, Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Marta Margarete Cestari
- Departamento de Genética, Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | | | - Anderson Joel Martino-Andrade
- Departamento de Fisiologia, Universidade Federal do Paraná (UFPR), Setor de Ciências Biológicas, Curitiba, PR, Brasil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, Água Verde, 80.250-200, 1632, Curitiba, PR, Brasil.
- Faculdades Pequeno Príncipe, Curitiba, PR, Brasil.
| |
Collapse
|
26
|
Xia X, Guo W, Ma X, Liang N, Duan X, Zhang P, Zhang Y, Chang Z, Zhang X. Reproductive toxicity and cross-generational effect of polyethylene microplastics in Paramisgurnus dabryanus. CHEMOSPHERE 2023; 313:137440. [PMID: 36460160 DOI: 10.1016/j.chemosphere.2022.137440] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pollution of microplastics (MPs) has become a global environmental issue due to the difficulty in its degradation and may cause unexpected ecological effects. Nevertheless, little is known about the potential effects of MPs on reproduction toxicity in aquatic species. In this study, adult loach (Paramisgurnus dabryanus, F0 generation) were exposed to two concentrations (1 and 10 mg/L) of polyethylene MPs (PE-MPs) for 15 or 30 days, and the toxic effects in parental loach and the offspring (F1 generation) were examined. Our results showed that PE-MPs exposure could change the indicators content of antioxidant system in the brain, liver, and gonad. PE-MPs can accumulate in the gonads, disrupt the transcription of HPG-axis related genes, alter sex hormone levels, increase cell apoptosis and gonadal pathological lesions, lead to the damage of biological characteristics of semen, and affect the reproduction in F0 generation. PE-MPs remaining in the parental gonads can be transferred to the F1 generation embryos and accumulated on the embryonic chorionic membrane, increasing mortality and malformation rates, accelerating hatching time, and decreasing hatching rate and body length. These results suggest that PE-MPs leads to a potential adverse influence on reproduction and serious impacts on population sustainability. This work provides a new perspective into the effects of MPs on reproductive damage and cross-generational effects in teleost fish, which have implications in fields of freshwater ecology and environmental toxicology.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiangyu Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Peihan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ying Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaowen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
27
|
Kumar V, Swain HS, Roy S, Das BK, Upadhyay A, Ramteke MH, Kumar V, Kole RK, Banerjee H. Integrated biomarker approach strongly explaining in vivo sub-lethal acute toxicity of butachlor on Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109427. [PMID: 35944825 DOI: 10.1016/j.cbpc.2022.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Butachlor herbicide belongs to the family of chloroacetanilide group, widely used for control of grass and broadleaf weeds in paddy fields however, its repeated application may result in aquatic pollution. Butachlor residue has been detected in aquatic environments, which may produce toxic effects on non-target organisms including fish. Keeping this in mind, the present study was designed to estimate the LC50 of butachlor (Shaktiman®), and to evaluate the sub-lethal toxicity at two concentrations (12.42 μg L-1 and 62.10 μg L-1) in Labeo rohita for a period of 24, 48, and 72 h. Fish exposed to butachlor reduced the counts of red blood cells (RBC), haemoglobin (HGB), hematocrit (HCT), and white blood cells (WBC). A significant (p < 0.05) increase in the antioxidant enzyme (superoxide dismutase-SOD, glutathione-s-transferase-GST), and hepatic enzyme (glutamate-oxaloacetate transaminase-GOT, glutamate-pyruvate transaminase-GPT) were noticed in butachlor exposed fish. Heat shock protein 70 (HSP70) and HSP90 in gill; cortisol, protein, albumin, globulin, and triglyceride in serum were increased upon exposure of butachlor. On the contrary, complement 3 (C3) and immunoglobulin (IgM) in serum was found to be decreased compared to control fish. The findings thus suggest that the fish upon exposure to butachlor disrupts the biomarkers which ultimately leads to growth retardation in fish.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India; ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India.
| | - Aurobinda Upadhyay
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Mitesh Hiradas Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Hemanta Banerjee
- Department of Agricultural Chemicals, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
28
|
Microplastic burden in Africa: A review of occurrence, impacts, and sustainability potential of bioplastics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
29
|
Hamed M, Martyniuk CJ, Naguib M, Lee JS, Sayed AEDH. Neurotoxic effects of different sizes of plastics (nano, micro, and macro) on juvenile common carp ( Cyprinus carpio). Front Mol Neurosci 2022; 15:1028364. [PMID: 36340695 PMCID: PMC9630652 DOI: 10.3389/fnmol.2022.1028364] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Using common carp as a model, we assessed the effects of polyethylene (PE) plastics on the brain. We measured activity of acetylcholinesterase (AChE), monoamine oxidase (MAO), and the content of nitric oxide (NO) in carp brain following exposure to 100 mg/L of either macroplastics (MaP), microplastics (MPs), or nanoplastic (NPs) for 15 days compared to an unexposed group. Following exposure, each biochemical biomarker was reduced 30-40%, with a higher magnitude of change corresponding to the smaller size of the particles (NPs > MPs > MaPs). In the carp tectum, exposure for 15 days to plastic particles caused varying degrees of necrosis, fibrosis, changes in blood capillaries, tissue detachment, edema, degenerated connective tissues, and necrosis in large cerebellar neurons and ganglion cells. In the carp retina, there was evidence for necrosis, degeneration, vacuolation, and curvature in the inner layer. Here we provide evidence that exposure to plastic particles can be associated with neurotoxicity in common carp.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Asyut, Egypt
| | - Christopher J. Martyniuk
- Interdisciplinary Program in Biomedical Sciences Neuroscience, Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | | |
Collapse
|
30
|
Shahjahan M, Islam MJ, Hossain MT, Mishu MA, Hasan J, Brown C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156910. [PMID: 35753474 DOI: 10.1016/j.scitotenv.2022.156910] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Global climate change due to anthropogenic activities affects the dynamics of aquatic communities by altering the adaptive capacities of their inhabitants. Analysis of blood provides valuable insights in the form of a comprehensive representation of the physiological and functional status of fish under various environmental and treatment conditions. This review synthesizes currently available information about blood biomarkers used in climate change induced stress responses in fish. Alterations in informative blood-based indicators are used to monitor the physiological fitness of individual fishes or entire populations. Specific characteristics of fish blood, such as serum and plasma metabolites, cell composition, cellular abnormalities, cellular and antioxidant enzymes necessitate adapted protocols, as well as careful attention to experimental designs and meticulous interpretation of patterns of data. Moreover, the sampling technique, transportation, type of culture system, acclimation procedure, and water quality must all be considered for valid interpretation of hemato-biochemical parameters. Besides, blood collection, handling, and storage time of blood samples can all have significant impacts on the results of a hematological analysis, so it is optimal to perform hemato-biochemical evaluations immediately after blood collection because long-term storage can alter the results of the analyses, at least in part as a result of storage-related degenerative changes that may occur. However, the scarcity of high-throughput sophisticated approaches makes fish blood examination studies promising for climate-driven stress responses in fish.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Md Jakiul Islam
- Department of Fisheries Technology and Quality Control, Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher Brown
- FAO-World Fisheries University Pilot Programme, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea
| |
Collapse
|
31
|
Shi W, Guo H, Wang J, Han X, Cai W. Adverse Effects of Co-Exposure to Cd and Microplastic in Tigriopus japonicus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13215. [PMID: 36293796 PMCID: PMC9603085 DOI: 10.3390/ijerph192013215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
There is increasing concern about the adverse impact of exposure to microplastic, as an emerging pollutant, on wild organisms, and particularly on organisms co-exposed to microplastic and other environmental contaminants. It has been widely reported that the combination of microplastics and heavy metals showed obvious toxicity to organisms in terms their growth and development. The present study was performed to determine the impact of binary metal mixtures of cadmium (Cd) and polystyrene microplastic (PS-microplastic) on Tigriopus japonicus, a typical marine model organism, using a titration design. Increasing concentrations of PS-microplastic (2 μg/L, 20 μg/L, and 200 μg/L) were titrated against a constant concentration of Cd (15.2 μg/L). The results showed no significant impact of exposure to this dose of Cd or co-exposure to Cd and the lowest dose of PS-microplastic examined (2 μg/L). However, the feeding rate, filtration rate, oxygen consumption rate, and hatching number declined significantly in T. japonicus co-exposed to Cd and higher concentrations of PS-microplastic (20 μg/L and 200 μg/L) (p < 0.05). Furthermore, the development of F1 larvae from nauplius stage (N) to adult stage (A) was markedly delayed when co-exposed to Cd and higher doses of PS-microplastic (20 and 200 μg/L), and the effects persisted to the F2 larval stage. Interestingly, the present titration design did not affect the sex ratio or number of oocysts in either the F1 or F2 generation. These results indicated that the current marine environmental concentrations of Cd and microplastic are safe for wild organisms. Further studies are required to address the knowledge gap regarding toxicological effects at the cellular and molecular levels.
Collapse
Affiliation(s)
- Wenzhuo Shi
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
- School of Envirment, Beijing Normal Univeristy, Beijing 100875, China
| | - Hao Guo
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Junqiang Wang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xuemeng Han
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Wenqian Cai
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| |
Collapse
|
32
|
Jin H, Yang C, Jiang C, Li L, Pan M, Li D, Han X, Ding J. Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:107002. [PMID: 36251724 PMCID: PMC9555296 DOI: 10.1289/ehp10255] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The toxicity of microplastics (MPs) has attracted wide attention from researchers. Previous studies have indicated that MPs produce toxic effects on a variety of organs in aquatic organisms and mammals. However, the exact neurotoxicity of MPs in mammals is still unclear. OBJECTIVES We aimed to confirm the neurotoxicity of chronic exposure to polystyrene MPs (PS-MPs) at environmental pollution concentrations. METHODS In the present study, mice were provided drinking water containing 100μg/L and 1,000μg/L PS-MPs with diameters of 0.5, 4, and 10μm for 180 consecutive days. After the exposure period, the mice were anesthetized to gain brain tissues. The accumulation of PS-MPs in brain tissues, integrity of the blood-brain barrier, inflammation, and spine density were detected. We evaluated learning and memory ability by the Morris water maze and novel object recognition tests. RESULTS We observed the accumulation of PS-MPs with various particle diameters (0.5, 4, and 10μm) in the brains of exposed mice. Meanwhile, exposed mice also exhibited disruption of the blood-brain barrier, higher level of dendritic spine density, and an inflammatory response in the hippocampus. In addition, exposed mice exhibited cognitive and memory deficits compared with control mice as determined using the Morris water maze and novel object recognition tests, respectively. There was a concentration-dependent trend, but no particle size-dependent differences were seen in the neurotoxicity of MPs. CONCLUSIONS Collectively, our results suggested that PS-MPs exposure can lead to learning and memory dysfunctions and induce neurotoxic effects in mice, findings which have wide-ranging implications for the public regarding the potential risks of MPs. https://doi.org/10.1289/EHP10255.
Collapse
Affiliation(s)
- Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Chen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Chengyue Jiang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Luxi Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Mengge Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
33
|
Kılıç E, Yücel N, Mübarek Şahutoğlu S. First record of microplastic occurence at the commercial fish from Orontes River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119576. [PMID: 35671895 DOI: 10.1016/j.envpol.2022.119576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Freshwater environments are more sensitive to anthropogenic influences and usually contain higher concentrations of pollutants than marine environments. Microplastic pollution causes additional stress on freshwater animals; yet, studies evaluating the microplastic occurrence in freshwater biota are still limited. In this study, microplastic occurrence in the gastrointestinal tracts (GIT) and gill of commercial fish species (Prussian carp Carassius gibelio (Bloch, 1782); Abu mullet Planiliza abu (Heckel, 1843); Common carp Cyprinus carpio Linnaeus, 1758; European ell Anguilla Anguilla (Linnaeus, 1758); North African catfish Clarias gariepinus (Burchell, 1822); Goldfish Carassius auratus (Linnaeus, 1758) were reported from Orontes River. MPs abundance in the GIT and gill of six species were found as 5.1 ± 2 MPs fish-1 and 4.4 ± 2 MPs fish-1 with an occurrence of 95% and 74%, respectively. The majority of extracted microplastics were fiber, black and less than 1000 μm in size. FTIR analysis determined the main polymer types as polyester (50%), high-density polyethylene (HDPE) (10%), polypropylene (PP) (8%) and polyethylene terephthalate (PET) (5%). High MPs abundance and frequency of occurence indicate the exposure of microplastic pollution in freshwater biota which could threat the health of both individuals and consumers. Results obtained in this study will increase the acknowledgement of MPs pollution in the Orontes River. Also, this study will provide data to the administrators to set up necessary legislations in freshwater ecosystems.
Collapse
Affiliation(s)
- Ece Kılıç
- Iskenderun Technical University, Faculty of Marine Science and Technology, Department of Water Resources Management and Organization, Hatay, Turkey.
| | - Nebil Yücel
- Iskenderun Technical University, Faculty of Marine Science and Technology, Department of Water Resources Management and Organization, Hatay, Turkey.
| | - Seycan Mübarek Şahutoğlu
- Iskenderun Technical University, Faculty of Marine Science and Technology, Department of Water Resources Management and Organization, Hatay, Turkey.
| |
Collapse
|
34
|
Plastic Pollution in the Environment in Nigeria: A Rapid Systematic Review of the Sources, Distribution, Research Gaps and Policy Needs. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
36
|
Huang JN, Zhang Y, Xu L, He KX, Wen B, Yang PW, Ding JY, Li JZ, Ma HC, Gao JZ, Chen ZZ. Microplastics: A tissue-specific threat to microbial community and biomarkers of discus fish (Symphysodon aequifasciatus). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127751. [PMID: 34799162 DOI: 10.1016/j.jhazmat.2021.127751] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
As detriments in aquatic environments, microplastics (MPs) have been commonly studied on organisms, but tissue-scale effects of MPs were poorly understood. Discus fish (Symphysodon aequifasciatus), herewith, were exposed to polystyrene MPs (0/20/200 μg/L) for 28 d. We found that MPs significantly inhibited growth performance. MPs were observed in skin, gill and intestine after 14/28-d exposure. MPs bioaccumulation was independent of exposure time, but increased with MPs concentrations. Microbial community diversity of fish gill, but not skin and intestine, in MPs treatments was significantly increased. Bacterial community of MP-treated skin and gill were obviously separated from control. Skin dominant phyla changed from Actinobacteriota to Proteobacteria and Firmicutes. Proteobacteria gradually occupied dominance in gill after exposure. Furthermore, MPs-induced skin oxidative stress was demonstrated by the activation of superoxide dismutase and catalase. Skin malondialdehyde also increased and showed significant correlations with four bacterial phyla, e.g., Proteobacteria. Gill Na+/K+-ATPase activity decreased, strongly correlating to microbial community changes caused by MPs. Intestinal digestive enzymes activity (pepsin, lipase and α-amylase) reduced, revealing correlation with bacterial community especially Fibrobacterota. These results suggest a tissue-specific effect of MPs to microbial community and biomarkers in aquatic organism.
Collapse
Affiliation(s)
- Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Kai-Xuan He
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Pei-Wen Yang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jie-Yu Ding
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jing-Ze Li
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huan-Chao Ma
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
37
|
Babaei AA, Rafiee M, Khodagholi F, Ahmadpour E, Amereh F. Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11332-11344. [PMID: 34535860 DOI: 10.1007/s11356-021-15920-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, plastic pollution and in particular nano(micro)plastics is considered as an issue of global concern in environmental samples. The present work was conducted to clarify the oxidative stress of polystyrene nanoplastics (PS-NPs) exposure and physiological response of male Wistar rats. Animals were treated orally with PS-NPs at four doses (1, 3, 6, and10 mg/kg-day) for 5 weeks. Results demonstrated the accumulation of PS-NPs through whole body scanning and also a dose-dependent increase in the production of reactive oxygen species (ROS). Alterations in antioxidant responses including serum levels of catalase (CAT) and total glutathione content were noticed, but not superoxide dismutase (SOD), pointing towards the perturbation of redox state induced by exposure conditions. Biochemical parameters viz. glucose, cortisol, lipase, lactate, lactate dehydrogenase (LDH), alkaline phosphatase, gamma-glutamyl transpeptidase (GGT), triglycerides, and urea showed a significant increase, while total protein, albumin, and globulin levels showed an appreciable decline. The pattern of associations noticed with AChE activity and biochemical responses in our study suggests the possibility that a neurobehavioral effect or dysfunctions in energy metabolism may be the potential modes of action, possibly through stress response as well as liver function. Perturbations of creatinine and uric acid levels are indeed plausible biological explanations for the association with kidney dysfunction. Although we provided a new scientific clue for exploring the biological consequences of NPs which might induce effects such as oxidative stress relating to the induction of antioxidant enzymes, the results warrant additional research with a larger sample size.
Collapse
Affiliation(s)
- Ali Akbar Babaei
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality Health and Climate Change Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Ahmadpour
- Department of Environment and Occupational Health, Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Amereh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Iheanacho SC, Adeolu AI, Nwose R, Ekpenyong J, Offu P, Amadi-Eke A, Iheanacho AC, Ogunji J. Genotoxicity, oxidative stress and lysozyme induction in Clarias gariepinus chronically exposed to water-soluble fraction of burnt tire ash. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1983-1996. [PMID: 34529204 DOI: 10.1007/s10646-021-02474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The safety of aquatic ecosystems has been compromised by numerous anthropogenic activities, especially leachates from non-point source toxicants, leaching into aquatic systems. This study evaluated the toxicity of the water-soluble fractions (WSFs) of burnt tire ash (BTA) on Clarias gariepinus via a battery of integrated biomarkers. Juvenile C. gariepinus were exposed to sublethal (0.56, 1.12, and 2.24 g/L) concentrations of BTA, derived from 11.2 g/L median lethal concentration (96 LC50), at duration intervals of 1, 14, and 28 days, followed by a recovery trial that lasted for 14 days. Serum biochemical parameters, antioxidant enzyme activities of the gill and liver, lysozymes activity and erythron profile were assessed. The findings of the present study revealed that BTA-WSF induced prominent alterations on biochemical parameters, lysozymes activity and antioxidant enzymes activities in the exposed fish. Furthermore, toxicant exposure promoted oxidative stress, cellular damage and genotoxicity (erythrocytic nuclear and cellular abnormalities) in the exposed fish. In general, a post-exposure trial showed partial recovery from the exposure effects of the toxicant, following the evident modifications of serum enzymes and erythron pathopathology in the experimental model. Biomonitoring of BTA, using sentinel aquatic species such as C. gariepinus, provides insights into the ecotoxicological potency of this toxicant.
Collapse
Affiliation(s)
- Stanley C Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria.
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria.
| | - Adewale I Adeolu
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Roseline Nwose
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Joshua Ekpenyong
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Peter Offu
- Department of Political Science, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Akunna Amadi-Eke
- Department of Fisheries and Aquaculture Technology, Federal University of Technology Owerri, Imo, Nigeria
| | - Angus C Iheanacho
- Department of Pure and Industrial Chemistry, University of Nigeria Nsukka, Enugu, Nigeria
| | - Johnny Ogunji
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| |
Collapse
|
39
|
Xu Z, Cao J, Qin X, Qiu W, Mei J, Xie J. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Tissue Structure in Fish Exposed to Ammonia Nitrogen: A Review. Animals (Basel) 2021; 11:ani11113304. [PMID: 34828036 PMCID: PMC8614401 DOI: 10.3390/ani11113304] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ammonia nitrogen is a common environmental limiting factor in aquaculture, which can accumulate rapidly in water and reach toxic concentrations. In most aquatic environments, fish are vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. It has been found that the toxic effects of ammonia nitrogen on fish are multi-mechanistic. Therefore, the purpose of this review is to explore the various toxic effects of ammonia nitrogen on fish, including oxidative stress, neurotoxicity, tissue damage and immune response. Abstract Ammonia nitrogen is the major oxygen-consuming pollutant in aquatic environments. Exposure to ammonia nitrogen in the aquatic environment can lead to bioaccumulation in fish, and the ammonia nitrogen concentration is the main determinant of accumulation. In most aquatic environments, fish are at the top of the food chain and are most vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. In fish exposed to toxicants, ammonia-induced toxicity is mainly caused by bioaccumulation in certain tissues. Ammonia nitrogen absorbed in the fish enters the circulatory system and affects hematological properties. Ammonia nitrogen also breaks balance in antioxidant capacity and causes oxidative damage. In addition, ammonia nitrogen affects the immune response and causes neurotoxicity because of the physical and chemical toxicity. Thence, the purpose of this review was to investigate various toxic effects of ammonia nitrogen, including oxidative stress, neurotoxicity and immune response.
Collapse
Affiliation(s)
- Zhenkun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|
40
|
Hamed M, Osman AGM, Badrey AEA, Soliman HAM, Sayed AEDH. Microplastics-Induced Eryptosis and Poikilocytosis in Early-Juvenile Nile Tilapia ( Oreochromis niloticus). Front Physiol 2021; 12:742922. [PMID: 34650449 PMCID: PMC8507840 DOI: 10.3389/fphys.2021.742922] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023] Open
Abstract
This study aims to assess the impact of microplastics (MPs) on erythrocytes using eryptosis (apoptosis) and an erythron profile (poikilocytosis and nuclear abnormalities), considered to be novel biomarkers in Nile tilapia (Oreochromis niloticus). In this study, four groups of fish were used: The first was the control group. In the second group, 1 mg/L of MPs was introduced to the samples. The third group was exposed to 10 mg/L of MPs. Finally, the fourth group was exposed to 100 mg/L of MPs for 15 days, following 15 days of recovery. The fish treated with MPs experienced an immense rise in the eryptosis percentage, poikilocytosis, and nuclear abnormalities of red blood cells (RBCs) compared with the control group in a concentration-dependent manner. Poikilocytosis of MP-exposed groups included sickle cell shape, schistocyte, elliptocyte, acanthocyte, and other shapes. Nuclear abnormalities of the MPs-exposed groups included micronuclei, binucleated erythrocytes, notched, lobed, blebbed, and hemolyzed nuclei. After the recovery period, a greater percentage of eryptosis, poikilocytotic cells, and nuclear abnormalities in RBCs were still evident in the groups exposed to MPs when crosschecked with the control group. The results show concerning facts regarding the toxicity of MPs in tilapia.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | - Alaa G. M. Osman
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | - Ahmed E. A. Badrey
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), Cairo, Egypt
| | | | | |
Collapse
|
41
|
Bhattacharya R, Daoud I, Chatterjee A, Chatterjee S, Saha NC. An integrated in silico and in vivo approach to determine the effects of three commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate on growth rate and hematology in Cyprinus carpio L. Toxicol Mech Methods 2021; 32:132-144. [PMID: 34445924 DOI: 10.1080/15376516.2021.1973633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Ismail Daoud
- Laboratory of Natural and Bioactive Substances, University of Abou-Bakr Belkaid, Tlemcen, Algeria.,Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
42
|
Dimitriadi A, Papaefthimiou C, Genizegkini E, Sampsonidis I, Kalogiannis S, Feidantsis K, Bobori DC, Kastrinaki G, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Adverse effects polystyrene microplastics exert on zebrafish heart - Molecular to individual level. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125969. [PMID: 34492880 DOI: 10.1016/j.jhazmat.2021.125969] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.
Collapse
Affiliation(s)
| | - Chrisovalantis Papaefthimiou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Eleni Genizegkini
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-574 00 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
43
|
Effect of Substituting Fish Oil with Camelina Oil on Growth Performance, Fatty Acid Profile, Digestibility, Liver Histology, and Antioxidative Status of Red Seabream ( Pagrus major). Animals (Basel) 2021; 11:ani11071990. [PMID: 34359117 PMCID: PMC8300156 DOI: 10.3390/ani11071990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The shortage of natural resources, prices, and high demand for fish oil has encouraged the use of non-traditional ingredients in aquafeed. The search for an alternative lipid source in aquafeeds has seen terrestrial vegetable oils at the epicenter of various flagship aqua-feed research. Herein, we investigated the effects of substituting fish oil (FO) with camelina oil (CO) on growth performance, fatty acid profile, digestibility, liver histology, and antioxidative status of red seabream (Pagrus major). After 56 days of the feeding trial, the results suggested that FO can be replaced with CO in the feeds of farmed red seabream without compromising growth, blood chemistry, digestibility, and overall health status. Abstract A 56-day feeding trial to evaluate the responses of red seabream (initial weight: 1.8 ± 0.02 g) to the substitution of fish oil (FO) with camelina oil (CO) at different ratios was conducted. The control diet formulated at 46% CP (6F0C) contained only FO without CO; from the second to the fifth diet, the FO was substituted with CO at rates of 5:1 (5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6 (0F6C). The results of the present study showed that up to full substitution of FO with CO showed no significant effect on growth variables BW = 26.2 g–28.3 g), body weight gain (BWG = 1275.5–1365.3%), specific growth rate (SGR = 4.6–4.7), feed intake (FI = 25.6–27.8), feed conversion ratio (FCR = 1.0–1.1), biometric indices condition factor (CF = 2.2–2.4), hepatosomatic index (HSI = 0.9–1.1), viscerasomatic index (VSI = 7.5–9.5), and survival rates (SR = 82.2–100) with different FO substitution levels with CO. Similarly, there were no significant differences (p < 0.05) found in the whole-body composition except for the crude lipid content, and the highest value was observed in the control group (291 g/kg) compared to the other groups FO5CO1 (232 k/kg), FO4CO2 (212 g/kg), FO2CO4 (232 g/kg) and FO0CO6 (244 g/kg). Blood chemistry levels were not influenced in response to test diets: hematocrit (36–33%), glucose (Glu = 78.3–71.3 mg/dL), total protein (T-pro = 3.1–3.8 g/dL), total cholesterol (T-Chol = 196.0–241 mg/dL), blood urea nitrogen (BUN = 9.0–14.6 mg/dL), total bilirubin (T-Bil = 0.4–0.5 mg/dL), triglyceride (TG = 393.3–497.6 mg/dL), alanine aminotransferase test (ALT = 50–65.5 UL/L), aspartate aminotransferase test (AST = 38–69.3 UL/L). A remarkable modulation was observed in catalase (CAT) and superoxide dismutase (SOD) activities in the liver, as CAT and SOD values were lower with the complete FO substitution with CO (0F6C), and the highest values were observed in the control and (4F2C). This study indicates that red seabream may have the ability to maintain LC-PUFAs between tissues and diets, and CO substitution of FO could improve both lipid metabolism and oxidation resistance as well as maintain digestibility. In conclusion, dietary FO can be replaced up to 100% or 95% by CO in the diets of red seabream as long as n-3 HUFA, EPA, and DHA are incorporated at the recommended level.
Collapse
|
44
|
Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135768] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro- and nano-plastic (MP/NP) pollution represents a threat not only to marine organisms and ecosystems, but also a danger for humans. The effects of these small particles resulting from the fragmentation of waste of various types have been well documented in mammals, although the consequences of acute and chronic exposure are not fully known yet. In this review, we summarize the recent results related to effects of MPs/NPs in different species of fish, both saltwater and freshwater, including zebrafish, used as model organisms for the evaluation of human health risk posed by MNPs. The expectation is that discoveries made in the model will provide insight regarding the risks of plastic particle toxicity to human health, with a focus on the effect of long-term exposure at different levels of biological complexity in various tissues and organs, including the brain. The current scientific evidence shows that plastic particle toxicity depends not only on factors such as particle size, concentration, exposure time, shape, and polymer type, but also on co-factors, which make the issue extremely complex. We describe and discuss the possible entry pathways of these particles into the fish body, as well as their uptake mechanisms and bioaccumulation in different organs and the role of blood response (hematochemical and hematological parameters) as biomarkers of micro- and nano-plastic water pollution.
Collapse
|
45
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Acute toxicity and sublethal effects of sodium laureth sulfate on oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108998. [PMID: 33556537 DOI: 10.1016/j.cbpc.2021.108998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
The present study was performed to determine the acute toxicity of sodium laureth sulfate (SLES) and its sublethal effects on oxidative stress enzymes in benthic oligochaete worm Tubifex tubifex. The results showed that 96 h median lethal concentration (LC50) value of SLES for Tubifex tubifex is 21.68 mg/l. Moreover exposed worms showed abnormal behaviours including incremented erratic movement, mucus secretion, and decreased clumping tendency at acute level. Percentage of autotomy additionally increased significantly (P < 0.05) with the increasing dose of toxicant at 96 h exposure. Sublethal concentrations of SLES (10% and 30% of 96 h LC50 value) caused paramount alterations in the oxidative stress enzymes. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GPx) exhibited a striking initiatory increment followed by a resulting descending pattern. Moreover, during exposure times, catalase (CAT) activity and malondialdehyde (MDA) level increased markedly with incrementing concentrations of SLES. However, the effects of sodium laureth sulfate on Tubifex tubifex were characterized and portrayed by the development of a correlation matrix and an integrated biomarker response (IBR) assessment. These results indicate that exposure to this anionic surfactant alters the survivability and behavioral response at acute level and modifies changes in oxidative stress enzymes at sublethal level in Tubifex tubifex.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
46
|
Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108943. [PMID: 33220514 DOI: 10.1016/j.cbpc.2020.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 01/30/2023]
Abstract
The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC50 value of profenofos, λ cyhalothrin and azadirachtin to Tubifex tubifex are 0.59, 0.13 and 82.15 mg L-1 respectively. Pesticide treated worms showed several behavioral abnormalities including increased mucus secretion, erratic movements, wrinkling activity and decreased clumping tendency during acute exposure. The percentage of autotomy increased significantly (p < 0.05) with the increasing concentration of the pesticides at 96 h of exposure. Sublethal concentrations of profenofos (0.059 and 0.118 mg L-1), λ cyhalothrin (0.013 and 0.026 mg L-1) and azadirachtin (8.2 and 16.4 mg L-1) caused significant alterations in growth rate and oxidative stress enzymes in T. tubifex during 14 days exposure period. The growth rate of the pesticide exposed worms decreased significantly (P < 0.05) in a concentration and duration-dependent manner. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) demonstrated a noteworthy (p < 0.05) initial induction followed by a subsequent reduction, while catalase (CAT) and malondialdehyde (MDA) exhibited noteworthy induction (p < 0.05) all through the exposure time. Through principal component analysis, correlation matrix, and integrated biomarker response, the effects of profenofos, λ cyhalothrin and azadirachtin on T. tubifex were distinguished. These results indicate that exposure to profenofos, λ cyhalothrin and azadirachtin affect survivability, change the behavioral responses, reduce the growth rate and induce oxidative stress enzymes in T. tubifex.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
47
|
Iheanacho SC, Igberi C, Amadi-Eke A, Chinonyerem D, Iheanacho A, Avwemoya F. Biomarkers of neurotoxicity, oxidative stress, hepatotoxicity and lipid peroxidation in Clarias gariepinus exposed to melamine and polyvinyl chloride. Biomarkers 2020; 25:603-610. [PMID: 32962424 DOI: 10.1080/1354750x.2020.1821777] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Plastic particulates and chemicals are emerging environmental pollutants with significant impact on aquatic ecosystems. In this study, the effects of oral uptake of melamine, melamine formaldehyde, and polyvinyl chloride on serum biochemical profiles, antioxidant enzymes activities, lipid peroxidation levels and brain acetyl cholinesterase activities in Clarias gariepinus juveniles were investigated. METHODS Fish specimens were fed diets spiked with melamine, melamine formaldehyde and poly vinyl chloride at 0.3% (3.0 g Kg-1) dietary inclusion for 45 days. Toxicity effect of these plastic chemicals was estimated by assaying relevant biomarkers. RESULTS After 45 days exposure, Serum glucose was significantly elevated, whereas plasma protein levels were substantially reduced in the exposed fish groups. Serum transaminases were significantly elevated in the exposed groups. Brain acetylcholinesterase and antioxidant enzyme activities declined significantly, while malondialdehyde levels were elevated in the exposed groups. CONCLUSION C. gariepinus is an important bioindicator to monitor the ecotoxicological impact of plastic chemicals such as melamine, and polyvinyl chloride.
Collapse
Affiliation(s)
- Stanley Chidi Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ikwo, Nigeria.,Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Christiana Igberi
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ikwo, Nigeria
| | - Akunna Amadi-Eke
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, Owerri, Nigeria
| | - Delight Chinonyerem
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ikwo, Nigeria
| | - Angus Iheanacho
- Department of Chemistry and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Fred Avwemoya
- Department of Fisheries, Nigerian Maritime University, Okerenkoko Warri, Nigeria
| |
Collapse
|
48
|
Iheanacho SC, Odo GE. Dietary exposure to polyvinyl chloride microparticles induced oxidative stress and hepatic damage in Clarias gariepinus (Burchell, 1822). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21159-21173. [PMID: 32266633 DOI: 10.1007/s11356-020-08611-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/26/2020] [Indexed: 05/20/2023]
Abstract
The present study investigated the effects of polyvinyl chloride (PVC) microparticles (MP) on hepatic antioxidant enzymes activities, serum biochemical and liver histology of juvenile Clarias gariepinus. A total of 180 (25.15 g average weight) C. gariepinus were fed PVC MP (95.41 ± 4.23 μm) spiked diets at 0.5, 1.5, 3.0 percentage inclusion levels and a control diet for 45 days of exposure, then followed by 30 days of depuration trials. Fish specimens (9) from each treatment were sampled every 15-day interval for serum biochemical, liver antioxidant enzymes and histopathological assay. Glucose and triglyceride levels increased significantly in PVC-treated groups when compared with the control. Protein levels of 0.5% and 3.0% PVC-treated groups reduced significantly on the 15th and 30th day exposure periods, while serum enzyme activities of all PVC-treated groups increased significantly in a time-dependent manner. Antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) activity in the liver of the treated groups also decreased progressively in a time-dependent manner. A time-dependent elevation in lipid peroxidation levels was observed in PVC MP-treated groups. Histopathological assessment of the fish liver showed mild to severe levels of glycogen depletion, fatty vacuolation and degeneration, hepatocellular necrosis in PVC-treated groups with reference to the control. The present study revealed that PVC microplastic induced oxidative damage and hepatic histopathological alterations in the exposed fish.
Collapse
Affiliation(s)
- Stanley C Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi, Nigeria.
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria.
| | - Gregory E Odo
- Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| |
Collapse
|