1
|
Lange TE, Naji A, van der Hoeven R, Liang H, Zhou Y, Hammond GR, Hancock JF, Cho KJ. MTMR regulates KRAS function by controlling plasma membrane levels of phospholipids. J Cell Biol 2025; 224:e202403126. [PMID: 40314454 PMCID: PMC12047185 DOI: 10.1083/jcb.202403126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/08/2024] [Accepted: 10/18/2024] [Indexed: 05/03/2025] Open
Abstract
KRAS, a small GTPase involved in cell proliferation and differentiation, frequently gains activating mutations in human cancers. For KRAS to function, it must bind the plasma membrane (PM) via interactions between its membrane anchor and phosphatidylserine (PtdSer). Therefore, depleting PM PtdSer abrogates KRAS PM binding and activity. From a genome-wide siRNA screen to identify genes regulating KRAS PM localization, we identified a set of phosphatidylinositol (PI) 3-phosphatases: myotubularin-related proteins (MTMR) 2, 3, 4, and 7. Here, we show that silencing MTMR 2/3/4/7 disrupts KRAS PM interactions by reducing PM PI 4-phosphate (PI4P) levels, thereby disrupting the localization and operation of ORP5, a lipid transfer protein maintaining PM PtdSer enrichment. Concomitantly, silencing MTMR 2/3/4/7 elevates PM PI3P levels while reducing PM and total PtdSer levels. We also observed MTMR 2/3/4/7 expression is interdependent. We propose that the PI 3-phosphatase activity of MTMR is required for generating PM PI, necessary for PM PI4P synthesis, promoting the PM localization of PtdSer and KRAS.
Collapse
Affiliation(s)
- Taylor E. Lange
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ransome van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Zhang P, Zhang Y, Sun Y, Chen Y, Cao X, He Y, Tan Y, Zhang Z, Deng S, Zhou W, Zhong C, Zeng A, Liu H, Xu JY, Zhou Y, Shen S, Li P, Li Y. Discovery of 2-Amino-7-Amide Quinazoline Derivatives as Potent and Orally Bioavailable Inhibitors Targeting Extracellular Signal-Regulated Kinase 1/2. J Med Chem 2025. [PMID: 40370105 DOI: 10.1021/acs.jmedchem.5c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Aberrant activation of the ERK/MAPK pathway is closely associated with various cancers. Directly targeting ERK1/2, the most distal node of this cascade, is not only a rational therapeutic approach for cancers harboring pathway-activating alterations, but also provides a potential solution for overcoming resistance from upstream signaling. Herein, we described the discovery of potent and orally bioavailable ERK1/2 inhibitors featuring 2-amino-7-amide quinazoline skeletons through structure-based drug design. Among them, the optimal compound 23 inhibited ERK1/2 at single-digital nanomolar concentrations with good specificity, and exhibited great potencies in preventing cell growth, migration and invasion, disrupting cell cycle, and inducing cell apoptosis. Further mechanism studies demonstrated that 23 dose-dependently suppressed the phosphorylation of the downstream substrate RSK. Remarkably, 23 exerted favorable ADMET and PK profiles, as well as significant in vivo antitumor efficacy with excellent tolerance. Collectively, this work offers a novel and highly promising candidate targeting ERK1/2 for further drug development.
Collapse
Affiliation(s)
- Peili Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yuelan Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yanyan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiang Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yu He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Chuhai Zhong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ai Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huanhuan Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jun-Yu Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiyang Shen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Olascoaga S, Konigsberg M, Espinal‐Enríquez J, Tovar H, Matadamas‐Martínez F, Pérez‐Villanueva J, López‐Diazguerrero NE. Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics. FEBS J 2025; 292:1950-1971. [PMID: 39871113 PMCID: PMC12001159 DOI: 10.1111/febs.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown. By analyzing transcriptomic signature profiles generated by the LINCS L1000 project and using network-based methods, we identified various genes that could represent new senescence-related survival mechanisms. Additionally, employing the same methodology, we identified over 600 molecules with potential senolytic activity. Experimental validation of our computational findings confirmed the senolytic activity of Fluorouracil, whose activity would be mediated by a multitarget mechanism, revealing that its targets AURKA, EGFR, IRS1, SMAD4, and KRAS are new senescent cell antiapoptotic pathways (SCAPs). The development of these pathways could depend on the stimulus that induces cellular senescence. The SCAP development and activation mechanisms proposed in this work offer new insights into how senescent cells survive. Identifying new antiapoptotic resistance targets and drugs with potential senolytic activity paves the way for developing new pharmacological therapies to eliminate senescent cells selectively.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBSUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Mina Konigsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | | | - Hugo Tovar
- Computational Genomics DivisionNational Institute of Genomic MedicineMexico CityMexico
| | - Félix Matadamas‐Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias‐UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexico CityMexico
| | - Jaime Pérez‐Villanueva
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana‐Xochimilco (UAM‐X)Mexico CityMexico
| | - Norma Edith López‐Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| |
Collapse
|
5
|
Mahadevan KK, Maldonado AS, Li B, Bickert AA, Perdyan A, Kumbhar SV, Piya S, Sockwell A, Morse SJ, Arian K, Sugimoto H, Shalapour S, Hong DS, Heffernan TP, Maitra A, Kalluri R. Inhibitors of oncogenic Kras specifically prime CTLA4 blockade to transcriptionally reprogram Tregs and overcome resistance to suppress pancreas cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640711. [PMID: 40093186 PMCID: PMC11908235 DOI: 10.1101/2025.02.28.640711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lack of sustained response to oncogenic Kras (Kras*) inhibition in preclinical models and patients with pancreatic ductal adenocarcinoma (PDAC) emphasizes the need to identify impactful synergistic combination therapies to achieve robust clinical benefit. Kras* targeting results in an influx of global T cell infiltrates including Tregs, effector CD8 + T cells and exhausted CD8 + T cells expressing several immune checkpoint molecules in PDAC. Here, we probe whether the T cell influx induced by diverse Kras* inhibitors open a therapeutic window to target the adaptive immune response in PDAC. We show a specific synergy of anti-CTLA4 immune checkpoint blockade with Kras* targeting primed by Kras G12D allele specific inhibitor, MRTX1133 and multi-selective pan-RAS inhibitor, RMC-6236, both currently in clinical testing phase. In contrast, attempted therapeutic combination following Kras* targeting with multiple checkpoint inhibitors, including anti-PD1, anti-Tim3, anti-Lag3, anti-Vista and anti-4-1BB agonist antibody failed due to compensatory mechanisms mediated by other checkpoints on exhausted CD8 + T cells. Anti-CTLA4 therapy in Kras* targeted PDAC transcriptionally reprograms effector T regs to a naïve phenotype, reverses CD8 + T cell exhaustion and is associated with recruitment of tertiary lymphoid structures (TLS) containing interferon (IFN)-stimulated/ activated B cells and germinal center B cells to enable immunotherapy efficacy and overcome resistance with long-term survival. Single cell ATAC sequencing analysis revealed that transcriptional reprogramming of Tregs is epigenetically regulated by downregulation of AP-1 family of transcription factors including Fos, Fos-b, Jun-b, Jun-d in the IL-35 promoter region. This study reveals an actionable vulnerability in the adaptive immune response in Kras* targeted PDAC with important clinical implications. Graphical abstract
Collapse
|
6
|
Wu X, Zhang Y, Ding Y, Yang J, Song Z, Lin S, Zhang R, Wu J, Shen S. Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414525. [PMID: 39823528 PMCID: PMC11904949 DOI: 10.1002/advs.202414525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis. Furthermore, it is demonstrated that PBRM1 can impede iCCA progression, and a gene therapy nanomedicine is developed to treat iCCA in vivo by modulating PBRM1 expression. The heightened expression of PBRM1 induces by the nanomedicine substantially inhibited tumor growth in iCCA. Conversely, the decrease in PBRM1 results in the abnormal activation of the ERK1/2 signaling pathway, a reduction in p16, p53/p21, and cellular senescence, thereby promoting iCCA advancement. Treatment with U0126, an ERK1/2 inhibitor, effectively halted iCCA progression by regulating the PBRM1-ERK1/2-cellular senescence pathway. These findings underscore the significant role of PBRM1 in controlling iCCA progression and predicting prognosis. Targeting the PBRM1-ERK1/2-cellular senescence pathway with U0126 shows promise for clinical applications in treating iCCA.
Collapse
Affiliation(s)
- Xiwen Wu
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Clinical NutritionSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Yi Zhang
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Hepatobiliary SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yuan Ding
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiali Yang
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zimin Song
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Shuirong Lin
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Ruhe Zhang
- Department of HematologyThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Jun Wu
- Bioscience and Biomedical Engineering ThrustThe Hong Kong University of Science and Technology (Guangzhou)NanshaGuangzhouGuangdong511400China
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong Kong SAR999077China
| | - Shunli Shen
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
7
|
Wang M, Yang S, Li X, Zheng Y, Bai Y, Luo W, Zhu G, Chang J, Zhu B. Discovery of Novel Aromatic Urea-Imidazole Salt Derivatives for Cancer Therapy via Targeting ERK1/2. J Med Chem 2025; 68:4101-4132. [PMID: 39950600 DOI: 10.1021/acs.jmedchem.4c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Extracellular signal-regulated kinases (ERKs) are pivotal signaling molecules in the RAS-RAF-MEK-ERK signaling pathway and have emerged as potential antitumor targets, providing a promising strategy for tumor therapy. Therefore, the development of antitumor drugs targeting ERK protein has received extensive attention. Here, we developed a compound library based on a series of novel aromatic urea-imidazole salt derivatives and conducted phenotypic screening against various cancer cell lines. Notably, 21y exhibited high efficacy against MCF-7 cells (IC50 = 0.67 μM). Furthermore, label-free drug affinity responsive target stability (DARTS) and LC-MS/MS proteomics techniques revealed that 21y directly targets ERK1/2. Mechanistically, 21y induced cell apoptosis and autophagy-related cell death. In vivo studies confirmed that 21y strongly inhibited tumor growth and lung metastasis in breast cancer. Taken together, 21y targets ERK1/2 as a promising therapeutic agent for breast cancer therapy.
Collapse
Affiliation(s)
- Mengqi Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuping Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinge Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yingying Zheng
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Bai
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenhan Luo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gongming Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Loveless IM, Kemp SB, Hartway KM, Mitchell JT, Wu Y, Zwernik SD, Salas-Escabillas DJ, Brender S, George M, Makinwa Y, Stockdale T, Gartrelle K, Reddy RG, Long DW, Wombwell A, Clark JM, Levin AM, Kwon D, Huang L, Francescone R, Vendramini-Costa DB, Stanger BZ, Alessio A, Waters AM, Cui Y, Fertig EJ, Kagohara LT, Theisen B, Crawford HC, Steele NG. Human Pancreatic Cancer Single-Cell Atlas Reveals Association of CXCL10+ Fibroblasts and Basal Subtype Tumor Cells. Clin Cancer Res 2025; 31:756-772. [PMID: 39636224 PMCID: PMC11831110 DOI: 10.1158/1078-0432.ccr-24-2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) patients with tumors enriched for the basal-like molecular subtype exhibit enhanced resistance to standard-of-care treatments and have significantly worse overall survival compared with patients with classic subtype-enriched tumors. It is important to develop genomic resources, enabling identification of novel putative targets in a statistically rigorous manner. EXPERIMENTAL DESIGN We compiled a single-cell RNA sequencing (scRNA-seq) atlas of the human pancreas with 229 patient samples aggregated from publicly available raw data. We mapped cell type-specific scRNA-seq gene signatures in bulk RNA-seq (n = 744) and spatial transcriptomics (ST; n = 22) and performed validation using multiplex immunostaining. RESULTS Analysis of tumor cells from our scRNA-seq atlas revealed nine distinct populations, two of which aligned with the basal subtype, correlating with worse overall survival in bulk RNA-seq. Deconvolution identified one of the basal populations to be the predominant tumor subtype in nondissociated ST tissues and in vitro tumor cell and patient-derived organoid lines. We discovered a novel enrichment and spatial association of CXCL10+ cancer-associated fibroblasts with basal tumor cells. We identified that besides immune cells, ductal cells also express CXCR3, the receptor for CXCL10, suggesting a relationship between these cell types in the PDAC tumor microenvironment. CONCLUSIONS We show that our scRNA-seq atlas (700,000 cells), integrated with ST data, has increased statistical power and is a powerful resource, allowing for expansion of current subtyping paradigms in PDAC. We uncovered a novel signaling niche marked by CXCL10+ cancer-associated fibroblasts and basal tumor cells that could be explored for future targeted therapies.
Collapse
Affiliation(s)
- Ian M. Loveless
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
| | - Samantha B. Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kailee M. Hartway
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jacob T. Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Samuel D. Zwernik
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel James Salas-Escabillas
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | - Sydney Brender
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Yetunde Makinwa
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Thais Stockdale
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Rohit G. Reddy
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Daniel W. Long
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Allison Wombwell
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Julie M. Clark
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Albert M. Levin
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - David Kwon
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | - Ling Huang
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ralph Francescone
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
| | | | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Alessio
- Medical Imaging and Data Integration Lab, Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan
- Department of Radiology, MSU, Michigan State University, East Lansing, Michigan
| | - Andrew M. Waters
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
- The Skip Viragh Center for Clinical and Translational Research, Baltimore, Maryland
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Brian Theisen
- Department of Pathology, Henry Ford Health, Detroit, Michigan
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Cancer Biology, University of Michigan, Ann Arbor, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Hospital, Detroit, Michigan
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| |
Collapse
|
9
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
10
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
11
|
Ye WL, Huang L, Yang XQ, Wan S, Gan WJ, Yang Y, He XS, Liu F, Guo X, Liu YX, Hu G, Li XM, Shi WY, He K, Wu YY, Wu WX, Lu JH, Song Y, Qu CJ, Wu H. TRIM21 induces selective autophagic degradation of c-Myc and sensitizes regorafenib therapy in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2406936121. [PMID: 39388269 PMCID: PMC11494295 DOI: 10.1073/pnas.2406936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.
Collapse
Affiliation(s)
- Wen-Long Ye
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Long Huang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Shan Wan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Wen-Juan Gan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yun Yang
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiao-Shun He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Feng Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xin Guo
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yi-Xuan Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiu-Ming Li
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wei-Yi Shi
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Kuang He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yue-Yue Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wen-Xin Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Jun-Hou Lu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yu Song
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Chen-Jiang Qu
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Hua Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
- Cancer Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| |
Collapse
|
12
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
13
|
Sevrin T, Imoto H, Robertson S, Rauch N, Dyn'ko U, Koubova K, Wynne K, Kolch W, Rukhlenko OS, Kholodenko BN. Cell-specific models reveal conformation-specific RAF inhibitor combinations that synergistically inhibit ERK signaling in pancreatic cancer cells. Cell Rep 2024; 43:114710. [PMID: 39240715 PMCID: PMC11474227 DOI: 10.1016/j.celrep.2024.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 09/08/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges for targeted clinical interventions due to prevalent KRAS mutations, rendering PDAC resistant to RAF and MEK inhibitors (RAFi and MEKi). In addition, responses to targeted therapies vary between patients. Here, we explored the differential sensitivities of PDAC cell lines to RAFi and MEKi and developed an isogenic pair comprising the most sensitive and resistant PDAC cells. To simulate patient- or tumor-specific variations, we constructed cell-line-specific mechanistic models based on protein expression profiling and differential properties of KRAS mutants. These models predicted synergy between two RAFi with different conformation specificity (type I½ and type II RAFi) in inhibiting phospho-ERK (ppERK) and reducing PDAC cell viability. This synergy was experimentally validated across all four studied PDAC cell lines. Our findings underscore the need for combination approaches to inhibit the ERK pathway in PDAC.
Collapse
Affiliation(s)
- Thomas Sevrin
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Hiroaki Imoto
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sarah Robertson
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Uscinnia Dyn'ko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Katerina Koubova
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland; Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Lilja J, Kaivola J, Conway JRW, Vuorio J, Parkkola H, Roivas P, Dibus M, Chastney MR, Varila T, Jacquemet G, Peuhu E, Wang E, Pentikäinen U, Martinez D Posada I, Hamidi H, Najumudeen AK, Sansom OJ, Barsukov IL, Abankwa D, Vattulainen I, Salmi M, Ivaska J. SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers. Nat Commun 2024; 15:8002. [PMID: 39266533 PMCID: PMC11393128 DOI: 10.1038/s41467-024-52326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Pekka Roivas
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Michal Dibus
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Megan R Chastney
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20520, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
| | - Emily Wang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ulla Pentikäinen
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | | | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Arafath K Najumudeen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Igor L Barsukov
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Department of Life Sciences and Medicine, University of Luxembourg, 4365, Esch- sur-Alzette, Luxembourg
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland.
- Western Finnish Cancer Center, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
15
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
16
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
17
|
Klomp JA, Klomp JE, Stalnecker CA, Bryant KL, Edwards AC, Drizyte-Miller K, Hibshman PS, Diehl JN, Lee YS, Morales AJ, Taylor KE, Peng S, Tran NL, Herring LE, Prevatte AW, Barker NK, Hover LD, Hallin J, Chowdhury S, Coker O, Lee HM, Goodwin CM, Gautam P, Olson P, Christensen JG, Shen JP, Kopetz S, Graves LM, Lim KH, Wang-Gillam A, Wennerberg K, Cox AD, Der CJ. Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers. Science 2024; 384:eadk0775. [PMID: 38843331 PMCID: PMC11301402 DOI: 10.1126/science.adk0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.
Collapse
Affiliation(s)
- Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priya S. Hibshman
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sen Peng
- Illumina, Inc., San Diego, CA 92121, USA
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Laura E. Herring
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex W. Prevatte
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Oluwadara Coker
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hey Min Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Peter Olson
- Mirati Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - John P. Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Lee M. Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology & Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Wang X, Breuer J, Garbe S, Giordano F, Brossart P, Feldmann G, Bisht S. Triple Blockade of Oncogenic RAS Signaling Using KRAS and MEK Inhibitors in Combination with Irradiation in Pancreatic Cancer. Int J Mol Sci 2024; 25:6249. [PMID: 38892436 PMCID: PMC11172716 DOI: 10.3390/ijms25116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of human malignancies and carries an exceptionally poor prognosis. It is mostly driven by multiple oncogenic alterations, with the highest mutation frequency being observed in the KRAS gene, which is a key oncogenic driver of tumorogenesis and malignant progression in PDAC. However, KRAS remained undruggable for decades until the emergence of G12C mutation specific KRAS inhibitors. Despite this development, this therapeutic approach to target KRAS directly is not routinely used for PDAC patients, with the reasons being the rare presence of G12C mutation in PDAC with only 1-2% of occurring cases, modest therapeutic efficacy, activation of compensatory pathways leading to cell resistance, and absence of effective KRASG12D or pan-KRAS inhibitors. Additionally, indirect approaches to targeting KRAS through upstream and downstream regulators or effectors were also found to be either ineffective or known to cause major toxicities. For this reason, new and more effective treatment strategies that combine different therapeutic modalities aiming at achieving synergism and minimizing intrinsic or adaptive resistance mechanisms are required. In the current work presented here, pancreatic cancer cell lines with oncogenic KRAS G12C, G12D, or wild-type KRAS were treated with specific KRAS or SOS1/2 inhibitors, and therapeutic synergisms with concomitant MEK inhibition and irradiation were systematically evaluated by means of cell viability, 2D-clonogenic, 3D-anchorage independent soft agar, and bioluminescent ATP assays. Underlying pathophysiological mechanisms were examined by using Western blot analyses, apoptosis assay, and RAS activation assay.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Johanna Breuer
- Institute of Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Stephan Garbe
- Department of Radiology and Radiation Oncology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Frank Giordano
- Department of Radiology and Radiation Oncology, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| | - Savita Bisht
- Department of Internal Medicine 3, Center of Integrated Oncology (CIO-ABCD) Aachen-Bonn-Cologne-Düsseldorf, University Hospital of Bonn, Venusberg Campus-1, 53127 Bonn, Germany
| |
Collapse
|
19
|
Dutta D, Ray P, De A, Ghosh A, Hazra RS, Ghosh P, Banerjee S, Diaz FJ, Upadhyay SP, Quadir M, Banerjee SK. pH-responsive targeted nanoparticles release ERK-inhibitor in the hypoxic zone and sensitize free gemcitabine in mutant K-Ras-addicted pancreatic cancer cells and mouse model. PLoS One 2024; 19:e0297749. [PMID: 38687749 PMCID: PMC11060587 DOI: 10.1371/journal.pone.0297749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Archana De
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Raj Shankar Hazra
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Pratyusha Ghosh
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Francisco J. Diaz
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sunil P. Upadhyay
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| |
Collapse
|
20
|
Shuai W, Xiao H, Yang P, Zhang Y, Bu F, Wu Y, Sun Q, Wang G, Ouyang L. Structure-Guided Discovery and Preclinical Assessment of Novel (Thiophen-3-yl)aminopyrimidine Derivatives as Potent ERK1/2 Inhibitors. J Med Chem 2024; 67:6425-6455. [PMID: 38613499 DOI: 10.1021/acs.jmedchem.3c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.
Collapse
Affiliation(s)
- Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| |
Collapse
|
21
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
22
|
Chatterjee S, Prashanth P, Rawat V, Ghosh Roy S. Regulation of lipid and serine metabolism by the oncogene c-Myc. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:236-256. [PMID: 39396848 DOI: 10.1016/bs.ircmb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Tumor formation is supported by metabolic reprogramming, characterized by increase nutrient uptake, glycolysis and glutaminolysis. The c-Myc proto-oncogene is a transcription factor, upregulated in most cancers and several reports showed the role of c-Myc in other metabolic pathways such as glucose, amino acid, and nucleotide metabolism. In this short report, we tried to summarize the existing takeaway points from studies conducted in different cancer types with respect to c-Myc and lipid and serine metabolism. Here, we report that c-Myc can activate both lipid and serine metabolism against the backdrop of tumor formation, and different therapies like aspirin and lomitapide target the links between c-Myc and metabolism to slow down tumor progression and invasion. We also report diverse upstream regulators that influence c-Myc in different cancers, and interestingly components of the lipid metabolism (like lipid phosphate phosphatase and leptin) and serine metabolism can also act upstream of c-Myc in certain occasions. Finally, we also summarize the existing knowledge on the involvement of epigenetic pathways and non-coding RNAs in regulating lipid and serine metabolism and c-Myc in tumor cells. Identification of non-coding factors and epigenetic mechanisms present a promising avenue of study that could empower researchers with novel anticancer treatment targeting c-Myc and lipid and serine metabolism pathways!
Collapse
Affiliation(s)
- Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL, United States.
| | - Sounak Ghosh Roy
- Henry M Jackson Foundation for the Advancement of Military Medicine (In Support of Agile Vaccines & Therapeutics, Directorate for Defense Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD, United States.
| |
Collapse
|
23
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
26
|
Nair GG, Linster ED, Ray P, Quadir MA, Reindl KM. Extracellular Signal-Regulated Kinase Inhibitor SCH772984 Augments the Anti-Cancer Effects of Gemcitabine in Nanoparticle Form in Pancreatic Cancer Models. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:220-233. [PMID: 39493509 PMCID: PMC11530947 DOI: 10.22088/ijmcm.bums.13.3.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 11/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a poor response to the limited treatment options currently available. Hence, there is a need to identify new agents that could enhance the efficacy of existing treatments. This study investigated a combination therapy using gemcitabine (GEM) and SCH772984, an extracellular signal-regulated kinase (ERK) inhibitor, in both free form and nanoparticle-encapsulated form for PDAC treatment. Cell viability and Matrigel growth assays were used to determine the anti-proliferative and cytotoxic effects of GEM and SCH772984 on PDAC cells. Additionally, western blotting was used to determine the degree to which SCH772984 engaged ERK in PDAC cells. Lastly, immunohistochemistry and hematoxylin and eosin (H&E) staining were used to determine how GEM and SCH772984 affected expression of Ki-67 cell proliferation marker in PDX (patient derived xenograft) PDAC tissues. PDAC cell lines (MIA PaCa-2 and PANC-1) treated with the combination of free GEM and SCH772984 showed reduction in cell viability compared to cells treated with free GEM or SCH772984 administered as a single agent. Encapsulated forms of GEM and SCH772984 caused a greater reduction in cell viability than the free forms. Interestingly, co-administration of GEM and SCH772984 in separate nanoparticle (NP) systems exhibited the highest reduction in cell viability. Western blotting analysis confirmed ERK signaling was inhibited by both free and encapsulated SCH772984. Importantly, GEM did not interfere with the inhibitory effect of SCH772984 on phosphorylated ERK (pERK). Collectively, our studies suggest that combination therapy with GEM and SCH772984 effectively reduced PDAC cell viability and growth, and co-administration of NP encapsulated GEM and SCH772984 in separate NP systems is an effective treatment strategy for PDAC.
Collapse
Affiliation(s)
- Gauthami G Nair
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Elena D Linster
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Mohiuddin A Quadir
- Department of Coatings and Polymeric Materials, NDSU, Fargo, North Dakota, U.S.A.
| | - Katie M Reindl
- Department of Biological Sciences, NDSU, Fargo, North Dakota, U.S.A.
| |
Collapse
|
27
|
Wang Y, Yao M, Li C, Yang K, Qin X, Xu L, Shi S, Yu C, Meng X, Xie C. Targeting ST8SIA6-AS1 counteracts KRAS G12C inhibitor resistance through abolishing the reciprocal activation of PLK1/c-Myc signaling. Exp Hematol Oncol 2023; 12:105. [PMID: 38104151 PMCID: PMC10724920 DOI: 10.1186/s40164-023-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND KRASG12C inhibitors (KRASG12Ci) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRASG12C-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies. METHODS By using RNA sequencing, RT-qPCR and immunoblotting, we identified and validated the upregulation of c-Myc activity and the amplification of the long noncoding RNA ST8SIA6-AS1 in KRASG12Ci-resistant cells. The regulatory axis ST8SIA6-AS1/Polo-like kinase 1 (PLK1)/c-Myc was investigated by bioinformatics, RNA fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation. Gain/loss-of-function assays, cell viability assay, xenograft models, and IHC staining were conducted to evaluate the anti-cancer effects of co-inhibition of ST8SIA6-AS1/PLK1 pathway and KRAS both in vitro and in vivo. RESULTS KRASG12Ci sustainably decreased c-Myc levels in responsive cell lines but not in cell lines with intrinsic or acquired resistance to KRASG12Ci. PLK1 activation contributed to this ERK-independent c-Myc stability, which in turn directly induced PLK1 transcription, forming a positive feedback loop and conferring resistance to KRASG12Ci. ST8SIA6-AS1 was found significantly upregulated in resistant cells and facilitated the proliferation of KRASG12C-mutant cancers. ST8SIA6-AS1 bound to Aurora kinase A (Aurora A)/PLK1 and promoted Aurora A-mediated PLK1 phosphorylation. Concurrent targeting of KRAS and ST8SIA6-AS1/PLK1 signaling suppressed both ERK-dependent and -independent c-Myc expression, synergistically led to cell death and tumor regression and overcame KRASG12Ci resistance. CONCLUSIONS Our study deciphers that the axis of ST8SIA6-AS1/PLK1/c-Myc confers both intrinsic and acquired resistance to KRASG12Ci and represents a promising therapeutic target for combination strategies with KRASG12Ci in the treatment of KRASG12C-mutant cancers.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiaolong Qin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Yu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiangjun Meng
- Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
- China Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai, 200001, China
- China Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, 200001, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
28
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
29
|
Zhang J, Darman L, Hassan MS, Von Holzen U, Awasthi N. Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review). Oncol Rep 2023; 50:206. [PMID: 37800636 PMCID: PMC10570661 DOI: 10.3892/or.2023.8643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 10/07/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.
Collapse
Affiliation(s)
- Joshua Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lily Darman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Md Sazzad Hassan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Urs Von Holzen
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
- Goshen Center for Cancer Care, Goshen, IN 46526, USA
- University of Basel School of Medicine, 4056 Basel, Switzerland
| | - Niranjan Awasthi
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| |
Collapse
|
30
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
31
|
Macaya I, Roman M, Welch C, Entrialgo-Cadierno R, Salmon M, Santos A, Feliu I, Kovalski J, Lopez I, Rodriguez-Remirez M, Palomino-Echeverria S, Lonfgren SM, Ferrero M, Calabuig S, Ludwig IA, Lara-Astiaso D, Jantus-Lewintre E, Guruceaga E, Narayanan S, Ponz-Sarvise M, Pineda-Lucena A, Lecanda F, Ruggero D, Khatri P, Santamaria E, Fernandez-Irigoyen J, Ferrer I, Paz-Ares L, Drosten M, Barbacid M, Gil-Bazo I, Vicent S. Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer. Nat Commun 2023; 14:6332. [PMID: 37816716 PMCID: PMC10564741 DOI: 10.1038/s41467-023-41828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Drug combinations are key to circumvent resistance mechanisms compromising response to single anti-cancer targeted therapies. The implementation of combinatorial approaches involving MEK1/2 or KRASG12C inhibitors in the context of KRAS-mutated lung cancers focuses fundamentally on targeting KRAS proximal activators or effectors. However, the antitumor effect is highly determined by compensatory mechanisms arising in defined cell types or tumor subgroups. A potential strategy to find drug combinations targeting a larger fraction of KRAS-mutated lung cancers may capitalize on the common, distal gene expression output elicited by oncogenic KRAS. By integrating a signature-driven drug repurposing approach with a pairwise pharmacological screen, here we show synergistic drug combinations consisting of multi-tyrosine kinase PKC inhibitors together with MEK1/2 or KRASG12C inhibitors. Such combinations elicit a cytotoxic response in both in vitro and in vivo models, which in part involves inhibition of the PKC inhibitor target AURKB. Proteome profiling links dysregulation of MYC expression to the effect of both PKC inhibitor-based drug combinations. Furthermore, MYC overexpression appears as a resistance mechanism to MEK1/2 and KRASG12C inhibitors. Our study provides a rational framework for selecting drugs entering combinatorial strategies and unveils MEK1/2- and KRASG12C-based therapies for lung cancer.
Collapse
Affiliation(s)
- Irati Macaya
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Connor Welch
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | | | - Marina Salmon
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alba Santos
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Iker Feliu
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Joanna Kovalski
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Ines Lopez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Maria Rodriguez-Remirez
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Sara Palomino-Echeverria
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Shane M Lonfgren
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Macarena Ferrero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
| | - Silvia Calabuig
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Iziar A Ludwig
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - David Lara-Astiaso
- University of Navarra, Center for Applied Medical Research, Genomics Platform, Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Molecular Oncology Laboratory, Fundación Para La Investigación del Hospital General Universitario de Valencia, Valencia, Spain
- Mixed Unit TRIAL (Principe Felipe Research Centre & Fundación para la Investigación del Hospital General Universitario de Valencia), Valencia, Spain
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Elizabeth Guruceaga
- University of Navarra, Center for Applied Medical Research, Bioinformatics Platform, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shruthi Narayanan
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Antonio Pineda-Lucena
- University of Navarra, Center for Applied Medical Research, Molecular Therapies Program, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Purvesh Khatri
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaria
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Fernandez-Irigoyen
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Irene Ferrer
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Medical School, Universidad Complutense, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Gil-Bazo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Clinica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
- Department of Oncology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Silve Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain.
| |
Collapse
|
32
|
Afifi MM, Crncec A, Cornwell JA, Cataisson C, Paul D, Ghorab LM, Hernandez MO, Wong M, Kedei N, Cappell SD. Irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation. Cell Rep 2023; 42:113079. [PMID: 37656618 PMCID: PMC10591853 DOI: 10.1016/j.celrep.2023.113079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Cells can irreversibly exit the cell cycle and become senescent to safeguard against uncontrolled proliferation. While the p53-p21 and p16-Rb pathways are thought to mediate senescence, they also mediate reversible cell cycle arrest (quiescence), raising the question of whether senescence is actually reversible or whether alternative mechanisms underly the irreversibility associated with senescence. Here, we show that senescence is irreversible and that commitment to and maintenance of senescence are mediated by irreversible MYC degradation. Senescent cells start dividing when a non-degradable MYC mutant is expressed, and quiescent cells convert to senescence when MYC is knocked down. In early oral carcinogenesis, epithelial cells exhibit MYC loss and become senescent as a safeguard against malignant transformation. Later stages of oral premalignant lesions exhibit elevated MYC levels and cellular dysplasia. Thus, irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation, but bypassing this degradation may allow tumor cells to escape during cancer initiation.
Collapse
Affiliation(s)
- Marwa M Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Adrijana Crncec
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laila M Ghorab
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maria O Hernandez
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Madeline Wong
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Flint AC, Mitchell DK, Angus SP, Smith AE, Bessler W, Jiang L, Mang H, Li X, Lu Q, Rodriguez B, Sandusky GE, Masters AR, Zhang C, Dang P, Koenig J, Johnson GL, Shen W, Liu J, Aggarwal A, Donoho GP, Willard MD, Bhagwat SV, Wade Clapp D, Rhodes SD. Combined CDK4/6 and ERK1/2 Inhibition Enhances Antitumor Activity in NF1-Associated Plexiform Neurofibroma. Clin Cancer Res 2023; 29:3438-3456. [PMID: 37406085 PMCID: PMC11060649 DOI: 10.1158/1078-0432.ccr-22-2854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. EXPERIMENTAL DESIGN Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. RESULTS Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. CONCLUSIONS These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.
Collapse
Affiliation(s)
- Alyssa C. Flint
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brooke Rodriguez
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andi R. Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Pengtao Dang
- Center for Computational Biology and Bioinformatics and Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Jenna Koenig
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Weihua Shen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiangang Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Amit Aggarwal
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Gregory P. Donoho
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Melinda D. Willard
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Shripad V. Bhagwat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
34
|
Carroll RS, Du J, O'Leary BR, Steers G, Goswami PC, Buettner GR, Cullen JJ. Pharmacological ascorbate induces sustained mitochondrial dysfunction. Free Radic Biol Med 2023; 204:108-117. [PMID: 37137343 PMCID: PMC10375417 DOI: 10.1016/j.freeradbiomed.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.
Collapse
Affiliation(s)
- Rory S Carroll
- Departments of Surgery, University of Iowa College of Medicine, USA
| | - Juan Du
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA
| | - Brianne R O'Leary
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA
| | - Garett Steers
- Departments of Surgery, University of Iowa College of Medicine, USA
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA
| | - Joseph J Cullen
- Departments of Surgery, University of Iowa College of Medicine, USA; Free Radical and Radiation Biology Program, University of Iowa College of Medicine, USA; Radiation Oncology, University of Iowa College of Medicine, USA; Holden Comprehensive Cancer Center, University of Iowa College of Medicine, USA.
| |
Collapse
|
35
|
Pereira CH, Bare DJ, Rosas PC, Dias FAL, Banach K. The role of P21-activated kinase (Pak1) in sinus node function. J Mol Cell Cardiol 2023; 179:90-101. [PMID: 37086972 PMCID: PMC10294268 DOI: 10.1016/j.yjmcc.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
Sinoatrial node (SAN) dysfunction (SND) and atrial arrhythmia frequently occur simultaneously with a hazard ratio of 4.2 for new onset atrial fibrillation (AF) in SND patients. In the atrial muscle attenuated activity of p21-activated kinase 1 (Pak1) increases the risk for AF by enhancing NADPH oxidase 2 dependent production of reactive oxygen species (ROS). However, the role of Pak1 dependent ROS regulation in SAN function has not yet been determined. We hypothesize that Pak1 activity maintains SAN activity by regulating the expression of the hyperpolarization activated cyclic nucleotide gated cation channel (HCN). To determine Pak1 dependent changes in heart rate (HR) regulation we quantified the intrinsic sinus rhythm in wild type (WT) and Pak1 deficient (Pak1-/-) mice of both sexes in vivo and in isolated Langendorff perfused hearts. Pak1-/- hearts displayed an attenuated HR in vivo after autonomic blockage and in isolated hearts. The contribution of the Ca2+ clock to pacemaker activity remained unchanged, but Ivabradine (3 μM), a blocker of HCN channels that are a membrane clock component, eliminated the differences in SAN activity between WT and Pak1-/- hearts. Reduced HCN4 expression was confirmed in Pak1-/- right atria. The reduced HCN activity in Pak1-/- could be rescued by class II HDAC inhibition (LMK235), ROS scavenging (TEMPOL) or attenuation of Extracellular Signal-Regulated Kinase (ERK) 1/2 activity (SCH772984). No sex specific differences in Pak1 dependent SAN regulation were determined. Our results establish Pak1 as a class II HDAC regulator and a potential therapeutic target to attenuate SAN bradycardia and AF susceptibility.
Collapse
Affiliation(s)
- Carlos H Pereira
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA; Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Dan J Bare
- Dept. of Physiology & Biophysics, The Ohio State University, 5018 Graves Hall, 333 W.10th Ave., Columbus, OH 4321, USA.
| | - Paola C Rosas
- Dept. of Pharmacy Practice, College of Pharmacy, 833 S Wood St., Chicago, IL 60612, USA.
| | - Fernando A L Dias
- Biological Science Center, Department of Physiology, Av. Cel Francisco H. dos Santos 100, 19031 Centro Politécnico-Curitiba, Brazil.
| | - Kathrin Banach
- Dept. of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Entrialgo-Cadierno R, Cueto-Ureña C, Welch C, Feliu I, Macaya I, Vera L, Morales X, Michelina SV, Scaparone P, Lopez I, Darbo E, Erice O, Vallejo A, Moreno H, Goñi-Salaverri A, Lara-Astiaso D, Halberg N, Cortes-Dominguez I, Guruceaga E, Ambrogio C, Lecanda F, Vicent S. The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer. Mol Cancer 2023; 22:86. [PMID: 37210549 DOI: 10.1186/s12943-023-01788-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
Collapse
Affiliation(s)
- Rodrigo Entrialgo-Cadierno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Cristina Cueto-Ureña
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Connor Welch
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iker Feliu
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Laura Vera
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Xabier Morales
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Ines Lopez
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Elodie Darbo
- University of Bordeaux, INSERM, BRIC, U 1312, F-33000, Bordeaux, France
| | - Oihane Erice
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Adrian Vallejo
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | | | - David Lara-Astiaso
- Molecular Therapies Program, University of Navarra, CIMA, Pamplona, Spain
- Wellcome - MRC Cambridge Stem Cell Institute (CSCI), Cambridge, UK
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ivan Cortes-Dominguez
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Fernando Lecanda
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Silve Vicent
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
37
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
38
|
Li X, Kaur N, Albahrani M, Karpf AR, Black AR, Black JD. Crosstalk between protein kinase C α and transforming growth factor β signaling mediated by Runx2 in intestinal epithelial cells. J Biol Chem 2023; 299:103017. [PMID: 36791912 PMCID: PMC10036670 DOI: 10.1016/j.jbc.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor β (TGFβ) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFβ signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFβ receptor 1 (TGFβR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFβR1 mRNA and protein expression in these cells. Effects on TGFβR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFβR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFβR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFβR1 signaling axis. In further support of a link between PKCα and TGFβ signaling, PKCα knockdown reduced the ability of TGFβ to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFβR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFβR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFβR1 in endometrial cancer cells, and PKCα, Runx2, and TGFβR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFβ signaling may be a common mechanism in diverse epithelial tissues.
Collapse
Affiliation(s)
- Xinyue Li
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mustafa Albahrani
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
39
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
40
|
Sigaud R, Rösch L, Gatzweiler C, Benzel J, von Soosten L, Peterziel H, Selt F, Najafi S, Ayhan S, Gerloff XF, Hofmann N, Büdenbender I, Schmitt L, Foerster KI, Burhenne J, Haefeli WE, Korshunov A, Sahm F, van Tilburg CM, Jones DTW, Pfister SM, Knoerzer D, Kreider BL, Sauter M, Pajtler KW, Zuckermann M, Oehme I, Witt O, Milde T. The first-in-class ERK inhibitor ulixertinib shows promising activity in mitogen-activated protein kinase (MAPK)-driven pediatric low-grade glioma models. Neuro Oncol 2023; 25:566-579. [PMID: 35882450 PMCID: PMC10013652 DOI: 10.1093/neuonc/noac183] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pediatric low-grade gliomas (pLGG) are the most common pediatric central nervous system tumors, with driving alterations typically occurring in the MAPK pathway. The ERK1/2 inhibitor ulixertinib (BVD-523) has shown promising responses in adult patients with mitogen-activated protein kinase (MAPK)-driven solid tumors. METHODS We investigated the antitumoral activity of ulixertinib monotherapy as well as in combination with MEK inhibitors (MEKi), BH3-mimetics, or chemotherapy in pLGG. Patient-derived pLGG models reflecting the two most common alterations in the disease, KIAA1549:BRAF-fusion and BRAFV600E mutation (DKFZ-BT66 and BT40, respectively) were used for in vitro and in vivo (zebrafish embryos and mice) efficacy testing. RESULTS Ulixertinib inhibited MAPK pathway activity in both models, and reduced cell viability in BT40 with clinically achievable concentrations in the low nanomolar range. Combination treatment of ulixertinib with MEKi or BH3-mimetics showed strong evidence of antiproliferative synergy in vitro. Ulixertinib showed on-target activity in all tested combinations. In vivo, sufficient penetrance of the drug into brain tumor tissue in concentrations above the in vitro IC50 and reduction of MAPK pathway activity was achieved. In a preclinical mouse trial, ulixertinib mono- and combined therapies slowed tumor growth and increased survival. CONCLUSIONS These data indicate a high clinical potential of ulixertinib for the treatment of pLGG and strongly support its first clinical evaluation in pLGG as single agent and in combination therapy in a currently planned international phase I/II umbrella trial.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Lisa Rösch
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Charlotte Gatzweiler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura von Soosten
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Preclinical Modeling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sara Najafi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Simay Ayhan
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Xenia F Gerloff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Hofmann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Preclinical Modeling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isabel Büdenbender
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Lukas Schmitt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Soft Tissue Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Preclinical Modeling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
41
|
Silvis MR, Silva D, Rohweder R, Schuman S, Gudipaty S, Truong A, Yap J, Affolter K, McMahon M, Kinsey C. MYC-mediated resistance to trametinib and HCQ in PDAC is overcome by CDK4/6 and lysosomal inhibition. J Exp Med 2023; 220:e20221524. [PMID: 36719686 PMCID: PMC9930170 DOI: 10.1084/jem.20221524] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacological inhibition of KRAS>RAF>MEK1/2>ERK1/2 signaling has provided no clinical benefit to patients with pancreatic ductal adenocarcinoma (PDAC). Interestingly, combined inhibition of MEK1/2 (with trametinib [T]) plus autophagy (with chloroquine [CQ] or hydroxychloroquine [HCQ]) demonstrated striking anti-tumor effects in preclinical models and in a patient (Patient 1). However, not all patients respond to the T/HCQ regimen, and Patient 1 eventually developed resistant disease. Here we report that primary or acquired resistance is associated with focal DNA copy number gains encompassing c-MYC. Furthermore, ectopic expression of c-MYC in PDAC cell lines rendered them T/HCQ resistant. Interestingly, a CDK4/6 inhibitor, palbociclib (P), also induced autophagy and overrode c-MYC-mediated T/HCQ resistance, such that P/HCQ promoted regression of T/HCQ-resistant PDAC tumors with elevated c-MYC expression. Finally, P/HCQ treatment of Patient 1 resulted in a biochemical disease response. These data suggest that elevated c-MYC expression is both a marker and a mediator of T/HCQ resistance, which may be overcome by the use of P/HCQ.
Collapse
Affiliation(s)
- Mark R. Silvis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Dilru Silva
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Riley Rohweder
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Jeffrey Yap
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Kajsa Affolter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Conan Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Grierson PM, Tan B, Pedersen KS, Park H, Suresh R, Amin MA, Trikalinos NA, Knoerzer D, Kreider B, Reddy A, Liu J, Der CJ, Wang-Gillam A, Lim KH. Phase Ib Study of Ulixertinib Plus Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Adenocarcinoma. Oncologist 2023; 28:e115-e123. [PMID: 36427020 PMCID: PMC9907047 DOI: 10.1093/oncolo/oyac237] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ulixertinib is a novel oral ERK inhibitor that has shown promising single-agent activity in a phase I clinical trial that included patients with RAS-mutant cancers. METHODS We conducted a phase Ib trial combining ulixertinib with gemcitabine and nab-paclitaxel (GnP) for untreated metastatic pancreatic adenocarcinoma. The trial comprised a dose de-escalation part and a cohort expansion part at the recommended phase II dose (RP2D). Primary endpoint was to determine the RP2D of ulixertinib plus GnP and secondary endpoints were to assess toxicity and safety profile, biochemical and radiographic response, progression-free survival (PFS) and overall survival (OS). RESULTS Eighteen patients were enrolled. Ulixertinib 600 mg PO twice daily (BID) with GnP was initially administered but was de-escalated to 450 mg BID as RP2D early during dose expansion due to poor tolerability, which ultimately led to premature termination of the study. Common treatment-related adverse events (TRAEs) were anemia, thrombocytopenia, rash and diarrhea. For 5 response evaluable patients, one patient achieved a partial response and 2 patients achieved stable disease. For 15 patients who received the triplet, median PFS and OS were 5.46 and 12.23 months, respectively. CONCLUSION Ulixertinib plus GnP had similar frequency of grade ≥3 TRAEs and potentially efficacy as GnP, however was complicated by a high rate of all-grade TRAEs (ClinicalTrials.gov Identifier: NCT02608229).
Collapse
Affiliation(s)
- Patrick M Grierson
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Benjamin Tan
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Katrina S Pedersen
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Haeseong Park
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Rama Suresh
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Manik A Amin
- Section of Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nikolaos A Trikalinos
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | | | | | | | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery, Washington University, St. Louis, MO, USA
| | - Channing J Der
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
43
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
44
|
Goodwin CM, Waters AM, Klomp JE, Javaid S, Bryant KL, Stalnecker CA, Drizyte-Miller K, Papke B, Yang R, Amparo AM, Ozkan-Dagliyan I, Baldelli E, Calvert V, Pierobon M, Sorrentino JA, Beelen AP, Bublitz N, Lüthen M, Wood KC, Petricoin EF, Sers C, McRee AJ, Cox AD, Der CJ. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res 2023; 83:141-157. [PMID: 36346366 PMCID: PMC9812941 DOI: 10.1158/0008-5472.can-22-0391] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/08/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Mutational loss of CDKN2A (encoding p16INK4A) tumor-suppressor function is a key genetic step that complements activation of KRAS in promoting the development and malignant growth of pancreatic ductal adenocarcinoma (PDAC). However, pharmacologic restoration of p16INK4A function with inhibitors of CDK4 and CDK6 (CDK4/6) has shown limited clinical efficacy in PDAC. Here, we found that concurrent treatment with both a CDK4/6 inhibitor (CDK4/6i) and an ERK-MAPK inhibitor (ERKi) synergistically suppresses the growth of PDAC cell lines and organoids by cooperatively blocking CDK4/6i-induced compensatory upregulation of ERK, PI3K, antiapoptotic signaling, and MYC expression. On the basis of these findings, a Phase I clinical trial was initiated to evaluate the ERKi ulixertinib in combination with the CDK4/6i palbociclib in patients with advanced PDAC (NCT03454035). As inhibition of other proteins might also counter CDK4/6i-mediated signaling changes to increase cellular CDK4/6i sensitivity, a CRISPR-Cas9 loss-of-function screen was conducted that revealed a spectrum of functionally diverse genes whose loss enhanced CDK4/6i growth inhibitory activity. These genes were enriched around diverse signaling nodes, including cell-cycle regulatory proteins centered on CDK2 activation, PI3K-AKT-mTOR signaling, SRC family kinases, HDAC proteins, autophagy-activating pathways, chromosome regulation and maintenance, and DNA damage and repair pathways. Novel therapeutic combinations were validated using siRNA and small-molecule inhibitor-based approaches. In addition, genes whose loss imparts a survival advantage were identified (e.g., RB1, PTEN, FBXW7), suggesting possible resistance mechanisms to CDK4/6 inhibition. In summary, this study has identified novel combinations with CDK4/6i that may have clinical benefit to patients with PDAC. SIGNIFICANCE CRISPR-Cas9 screening and protein activity mapping reveal combinations that increase potency of CDK4/6 inhibitors and overcome drug-induced compensations in pancreatic cancer.
Collapse
Affiliation(s)
- Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew M. Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sehrish Javaid
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amber M. Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | | | | | - Natalie Bublitz
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Mareen Lüthen
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Autumn J. McRee
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, George Mason University, Fairfax, Virginia
| |
Collapse
|
45
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
46
|
Frank KJ, Mulero-Sánchez A, Berninger A, Ruiz-Cañas L, Bosma A, Görgülü K, Wu N, Diakopoulos KN, Kaya-Aksoy E, Ruess DA, Kabacaoğlu D, Schmidt F, Kohlmann L, van Tellingen O, Thijssen B, van de Ven M, Proost N, Kossatz S, Weber WA, Sainz B, Bernards R, Algül H, Lesina M, Mainardi S. Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer. Cell Rep Med 2022; 3:100815. [PMID: 36384095 PMCID: PMC9729824 DOI: 10.1016/j.xcrm.2022.100815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Katrin J Frank
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Antonio Mulero-Sánchez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Alexandra Berninger
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Kıvanç Görgülü
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Nan Wu
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Kalliope N Diakopoulos
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ezgi Kaya-Aksoy
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Derya Kabacaoğlu
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Fränze Schmidt
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Larissa Kohlmann
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Susanne Kossatz
- Department of Nuclear Medicine at Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technische Universität München, 81675 Munich, Germany; Department of Chemistry, Technische Universität München, 85748 Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine at Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technische Universität München, 81675 Munich, Germany
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Hana Algül
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Marina Lesina
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Drugging KRAS: current perspectives and state-of-art review. J Hematol Oncol 2022; 15:152. [PMID: 36284306 PMCID: PMC9597994 DOI: 10.1186/s13045-022-01375-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the ‘holy grail’ of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound ‘off’ state and the GTP-bound ‘on’ state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
Collapse
|
48
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Karamouzis MV. The Emerging Role of MicroRNAs and Autophagy Mechanism in Pancreatic Cancer Progression: Future Therapeutic Approaches. Genes (Basel) 2022; 13:1868. [PMID: 36292753 PMCID: PMC9602304 DOI: 10.3390/genes13101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer constitutes the fourth most frequent cause of death due to malignancy in the US. Despite the new therapeutic modalities, the management of pancreatic ductal adenocarcinoma (PDAC) is considered a difficult task for clinicians due to the fact that is usually diagnosed in already advanced stages and it is relatively resistant to the current chemotherapeutic agents. The molecular background analysis of pancreatic malignant tumors, which includes various epigenetic and genetic alterations, opens new horizons for the development of novel diagnostic and therapeutic strategies. The interplay between miRNAs, autophagy pathway, and pancreatic carcinogenesis is in the spotlight of the current research. There is strong evidence that miRNAs take part in carcinogenesis either as tumor inhibitors that combat the oncogene expression or as promoters (oncomiRs) by acting as oncogenes by interfering with various cell functions such as proliferation, programmed cell death, and metabolic and signaling pathways. Deregulation of the expression levels of various miRNAs is closely associated with tumor growth, progression, and dissemination, as well as low sensitivity to chemotherapeutic agents. Similarly, autophagy despite constituting a pivotal homeostatic mechanism for cell survival has a binary role in PDAC, either as an inhibitor or promoter of carcinogenesis. The emerging role of miRNAs in autophagy gets a great deal of attention as it opens new opportunities for the development of novel therapeutic strategies for the management of this aggressive and chemoresistant malignancy. In this review, we will shed light on the interplay between miRNAs and the autophagy mechanism for pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
49
|
Fu L, Chen S, He G, Chen Y, Liu B. Targeting Extracellular Signal-Regulated Protein Kinase 1/2 (ERK1/2) in Cancer: An Update on Pharmacological Small-Molecule Inhibitors. J Med Chem 2022; 65:13561-13573. [PMID: 36205714 DOI: 10.1021/acs.jmedchem.2c01244] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular signal-regulated protein kinase 1/2 (ERK1/2), the only known substrate of MEK1/2, is located downstream of the RAS-RAF-MEK-ERK (MAPK) pathway and is associated with the abnormal activation and poor prognosis of cancer. To date, several small-molecule inhibitors of RAS, RAF, and MEK have been reported to make rapid advances in cancer therapy; however, acquired resistance still occurs, thereby weakening the therapeutic efficacy of these inhibitors. Recently, selective inhibition of ERK1/2 has been regarded as a potential cancer therapeutic strategy that can not only effectively block the MAPK pathway but also overcome drug resistance caused by upstream mutations in RAS, RAF, and MEK. Herein, we summarize the oncogenic roles, key signaling network, and the single- and dual-target inhibitors of ERK1/2 in preclinical and clinical trials. Together, these inspiring findings shed new light on the discovery of more small-molecule inhibitors of ERK1/2 as candidate drugs to improve cancer therapeutics.
Collapse
Affiliation(s)
- Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Siwei Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Gu He
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Ravichandran M, Hu J, Cai C, Ward NP, Venida A, Foakes C, Kuljanin M, Yang A, Hennessey CJ, Yang Y, Desousa BR, Rademaker G, Staes AA, Cakir Z, Jain IH, Aguirre AJ, Mancias JD, Shen Y, DeNicola GM, Perera RM. Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation to RAS-MAPK Pathway Inhibition in Pancreatic Cancer. Cancer Discov 2022; 12:2198-2219. [PMID: 35771494 PMCID: PMC9444964 DOI: 10.1158/2159-8290.cd-22-0044] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jingjie Hu
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles Cai
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nathan P. Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anthony Venida
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Callum Foakes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Connor J. Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Yang
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brandon R. Desousa
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gilles Rademaker
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annelot A.L. Staes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zeynep Cakir
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H. Jain
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Rushika M. Perera
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|