1
|
Teng M, Gu Y, Wang T, Wang Y, Ma Z, Li Y, Fan Y, Wan Q, Li Y. Transforming the Tumor Microenvironment: An Outstanding AIE-Active Photosensitizer to Boost the Effectiveness of Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503355. [PMID: 40351086 DOI: 10.1002/smll.202503355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/26/2025] [Indexed: 05/14/2025]
Abstract
Immunotherapy, currently the most promising therapeutic approach for cancer, has shown significant efficacy. However, its clinical effectiveness is often constrained by such factors as tumor heterogeneity, the abundance of M2 macrophages, tumor-vascular hypoxia, and the immunosuppressive microenvironment created by immune checkpoint (IC) complexes. In this work, an effective photosensitizer (TSPA) with aggregation-induced emission (AIE) nature is adopted to counter above limitations. The synthesized TSPA demonstrated potent efficacy in eradicating primary tumors because of their effective generation reactive oxygen species (ROS) after undergoing photodynamic therapy (PDT) process. Moreover, TSPA can improve hypoxic conditions in tumor by normalizing blood vessels, and can instigate immunogenic cell death (ICD), thus stimulating immune cell activation. TSPA demonstrates the ability to reprogram M2 tumor-associated macrophages (TAMs) into the anti-tumor M1 phenotype, thereby increasing the infiltration of M1 macrophages within the tumor. This procedure notably ameliorates the immune microenvironment, effectively suppressing the long-term metastasis of breast cancer (BC). This research notably enhances the efficiency of tumor immunotherapy and is anticipated to emerge as a new strategy for improving the tumor's immunosuppressive microenvironment and overcoming immune evasion.
Collapse
Affiliation(s)
- Muzhou Teng
- Gansu Provincial Maternity and Child-Care Hospital(Gansu Provincial Central Hospital), Lanzhou, 730050, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yanmei Gu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Tongxin Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yingying Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Zihang Ma
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yirong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Yitao Fan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
- AIE institute, South China University of Technology, Guangzhou, 510640, China
| | - Yumin Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Liang H, Zhang S. Thrombospondin-1 induces CD8 + T cell exhaustion and immune suppression within the tumor microenvironment of ovarian cancer. J Ovarian Res 2025; 18:99. [PMID: 40349060 PMCID: PMC12065243 DOI: 10.1186/s13048-025-01668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) progression is heavily influenced by the tumor microenvironment (TME), where immune suppression plays a critical role. This study explores the role of thrombospondin-1 (THBS1) in regulating tumor-associated macrophages (TAMs), T cell exhaustion, and immune checkpoint expression, as well as its transcriptional regulation by SNF2H. METHODS We analyzed THBS1 expression and its clinical significance using publicly available datasets (TCGA-OV, GSE14407) and tissue microarrays containing OC and adjacent normal tissues. In vitro functional studies were conducted using OC cell lines (SKOV3, A2780) and co-cultures with macrophages. Chromatin immunoprecipitation (ChIP) assays and RNA interference were employed to investigate SNF2H-mediated transcriptional regulation of THBS1. In vivo, the role of THBS1 in immune suppression was validated using mouse tumor models. RESULTS THBS1 was significantly overexpressed in OC tissues and associated with poor prognosis. High levels of THBS1 correlated with increased TAM infiltration, M2 macrophage polarization, and upregulation of immune checkpoints PD-L1 and GAL-3, which contribute to T cell exhaustion. Functional assays demonstrated that THBS1 promotes macrophage recruitment and induces M2 polarization through TGF-β1 and IL-4 signaling. Additionally, ChIP assays identified SNF2H as a transcriptional regulator of THBS1, contributing to its overexpression. In vitro targeting of THBS1 reduced TAM-mediated immune suppression and restored T cell cytotoxicity. CONCLUSION This study positions THBS1 as a key regulator of the OC TME, linking TAM recruitment and polarization to CD8+ T cell exhaustion via immune checkpoint modulation. By identifying SNF2H as a transcriptional regulator of THBS1, we offer new insights into its epigenetic dysregulation and suggest potential therapeutic strategies to reprogram the TME and improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Reproductive Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515031, Guangdong, China
| | - Suwei Zhang
- Department of Clinical Laboratory, Shantou Central Hospital, No.114 of Waima Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
3
|
Dreyer SB, Beer P, Hingorani SR, Biankin AV. Improving outcomes of patients with pancreatic cancer. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01019-9. [PMID: 40329051 DOI: 10.1038/s41571-025-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Research studies aimed at improving the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have brought about limited progress, and in clinical practice, the optimized use of surgery, chemotherapy and supportive care have led to modest improvements in survival that have probably reached a plateau. As a result, PDAC is expected to be the second leading cause of cancer-related death in Western societies within a decade. The development of therapeutic advances in PDAC has been challenging owing to a lack of actionable molecular targets, a typically immunosuppressive microenvironment, and a disease course characterized by rapid progression and clinical deterioration. Yet, the progress in our understanding of PDAC and identification of novel therapeutic opportunities over the past few years is leading to a strong sense of optimism in the field. In this Perspective, we address the aforementioned challenges, including biological aspects of PDAC that make this malignancy particularly difficult to treat. We explore specific areas with potential for therapeutic advances, including targeting mutant KRAS, novel strategies to harness the antitumour immune response and approaches to early detection, and propose mechanisms to improve clinical trial design and to overcome various community and institutional barriers to progress.
Collapse
Affiliation(s)
- Stephan B Dreyer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- Department of Hepatobiliary Surgery, Royal Liverpool University Hospital, Liverpool, UK
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK
- Hull York Medical School, University of York, York, UK
| | - Sunil R Hingorani
- Department of Internal Medicine, Division of Hemotology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, UK.
- West of Scotland Hepato-Biliary and Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK.
| |
Collapse
|
4
|
Summer M, Riaz S, Ali S, Noor Q, Ashraf R, Khan RRM. Understanding the Dual Role of Macrophages in Tumor Growth and Therapy: A Mechanistic Review. Chem Biodivers 2025; 22:e202402976. [PMID: 39869825 DOI: 10.1002/cbdv.202402976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis. M2 macrophages or tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and have a basic role in tumor progression by interacting with other immune cells in TME. By the expression of various cytokines, chemokines, and growth factors, TAMs lead to strengthening tumor cell proliferation, angiogenesis, and suppression of the immune system which further support invasion and metastasis. This review discusses recent and updated mechanisms regarding tumor progression by M2 macrophages. Moreover, the current therapeutic approaches targeting TAMs, their advantages, and limitations are also summarized, and further treatment approaches are outlined along with an elaboration of the tumor regression role of macrophages. This comprehensive review article possibly helps to understand the mechanisms underlying the tumor progression and regression role of macrophages in a comparative way from a basic level to the advanced one.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saima Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Qudsia Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Ashraf
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Li L, Pu H, Zhang X, Guo X, Li G, Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 2025; 209:104683. [PMID: 40024354 DOI: 10.1016/j.critrevonc.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, of which non-small cell lung cancer (NSCLC) accounts for about 85 %. Although immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 inhibitors, have significantly improved the prognosis of patients with NSCLC. There are still many patients do not benefit from ICIs. Primary resistance remains a major challenge in advanced NSCLC. The cancer-immunity cycle describes the process from antigen release to T cell recognition and killing of the tumor, which provides a framework for understanding anti-tumor immunity. The classical cycle consists of seven steps, and alterations at each stage can result in resistance. This review examines the current status of PD-1/PD-L1 blockade in the treatment of advanced NSCLC and explores potential mechanisms of resistance. We summarize the latest clinical trials of PD-1/PD-L1 inhibitors combined with other therapies and explore potential targets for overcoming primary resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaoxin Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaotian Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Guangrui Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
6
|
Chen S, Wang Y, Dang J, Song N, Chen X, Wang J, Huang GN, Brown CE, Yu J, Weissman IL, Rosen ST, Feng M. CAR macrophages with built-In CD47 blocker combat tumor antigen heterogeneity and activate T cells via cross-presentation. Nat Commun 2025; 16:4069. [PMID: 40307254 PMCID: PMC12043996 DOI: 10.1038/s41467-025-59326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Macrophage-based cancer cellular therapy has gained substantial interest. However, the capability of engineered macrophages to target cancer heterogeneity and modulate adaptive immunity remains unclear. Here, exploiting the myeloid antibody-dependent cellular phagocytosis biology and phagocytosis checkpoint blockade, we report the enhanced synthetic phagocytosis receptor (eSPR) that integrate FcRγ-driven phagocytic chimeric antigen receptors (CAR) with built-in secreted CD47 blockers. The eSPR engineering empowers macrophages to combat tumor antigen heterogeneity. Transduced by adenoviral vectors, eSPR macrophages are intrinsically pro-inflammatory imprinted and resist tumoral polarization. Transcriptomically and phenotypically, eSPR macrophages elicit a more favorable tumor immune landscape. Mechanistically, eSPR macrophages in situ stimulate CD8 T cells via phagocytosis-dependent antigen cross-presentation. We also validate the functionality of the eSPR system in human primary macrophages.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nuozi Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Christine E Brown
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Steven T Rosen
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Jing W, Han M, Wang G, Kong Z, Zhao X, Fu Z, Jiang X, Shi C, Chen C, Zhang J, Zheng Z, Gao J, Sun W, Tang C, Yang Z, Wang Y, Liu Y, Zhao K, Zhu D, Shi B, Jiang X. An in situ engineered chimeric IL-2 receptor potentiates the tumoricidal activity of proinflammatory CAR macrophages in renal cell carcinoma. NATURE CANCER 2025:10.1038/s43018-025-00950-1. [PMID: 40301655 DOI: 10.1038/s43018-025-00950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025]
Abstract
Chimeric antigen receptor macrophage (CAR-M) therapy has shown great promise in solid malignancies; however, the phenotypic re-domestication of CAR-Ms in the immunosuppressive tumor niche restricts their antitumor immunity. We here report an in situ engineered chimeric interleukin (IL)-2 signaling receptor (CSR) for controllably manipulating the proinflammatory phenotype of CAR-Ms, augmenting their sustained tumoricidal immunity. Specifically, our in-house-customized lipid nanoparticles efficiently introduce dual circular RNAs into macrophages to generate CSR-functionalized CAR-Ms. The intracellular inflammatory signaling pathway of CAR-Ms can be stimulated with the IL-2 therapeutic via the synthetic IL-2 receptor, which induces the antitumor phenotype shifting of CAR-Ms. Moreover, hydrogel-mediated combinatory treatment with lipid nanoparticles and IL-2 remodels the immunosuppressive tumor microenvironment and promotes tumor regression in renal carcinoma animal models. In summary, our findings establish that the proinflammatory phenotype of CAR-Ms can be modulated by a synthetic IL-2 receptor, benefiting the antitumor immunotherapy of CAR-Ms with broad application in other solid malignancies.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Maosen Han
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ganyu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhichao Kong
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaotian Zhao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhipeng Fu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Zhang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zuolin Zheng
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinxin Gao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiyi Sun
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunwei Tang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenmei Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kun Zhao
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Danqing Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xinyi Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
8
|
Zhang G, Yu H, Liu J, Dong G, Cai Z. Myeloid-lineage-specific membrane protein LRRC25 suppresses immunity in solid tumor and is a potential cancer immunotherapy checkpoint target. Cell Rep 2025; 44:115631. [PMID: 40279244 DOI: 10.1016/j.celrep.2025.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/20/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
Leucine-rich repeat containing 25 (LRRC25), a type I membrane protein, is specifically expressed in myeloid cells including neutrophils and macrophages. The anti-inflammatory role of LRRC25 was suggested in a few pathogenic models. However, its role in cancer immunity has not been interrogated. Here, we demonstrate that LRRC25 is robustly expressed in tumor-associated macrophages (TAMs). Lrrc25 deficiency in the tumor microenvironment (TME) suppresses growth of multiple murine tumor models by reprogramming TAMs toward an anti-tumor phenotype and thereby enhancing infiltration and activation of CD8+ T cells. The Nox2-ROS-Nlrp3-Il1β pathway is elevated in Lrrc25-deficient TAMs. Furthermore, a human myeloid cell line or mice with loss of Lrrc25 appear normal, indicating that LRRC25 is a safe immune target. Our results suggest that as an unappreciated immune checkpoint for tumor immunotherapy, the myeloid-specific membrane protein LRRC25 orchestrates the activity of TAMs via the canonical Nlrp3-IL1β inflammatory pathway and influences CD8+ T cell chemotaxis to the TME.
Collapse
Affiliation(s)
- Guorong Zhang
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hanzhi Yu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ge Dong
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhigang Cai
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; State Key Laboratory of Experimental Hematology, Tianjin Medical University, Tianjin, China; The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China; Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China.
| |
Collapse
|
9
|
Xie Y, Wang R, Xu M, Chen J, Tan W, Chen Y, Bai Y, Wu N, Wu F, Xu X, Ma X, Liu Y. Potential of CLSPN as a therapeutic target in melanoma: a key player in melanoma progression and tumor microenvironment. J Transl Med 2025; 23:470. [PMID: 40275302 PMCID: PMC12020306 DOI: 10.1186/s12967-025-06455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Melanoma is a highly aggressive form of skin cancer. Despite significant advances in targeted therapies and immunotherapeutic approaches, some patients still have poor response rates, making a deeper understanding of melanoma pathogenesis essential. METHODS The expression of Claspin (CLSPN), prognosis and immune infiltration in skin cutaneous melanoma patients were analyzed by public databases. Immunohistochemistry was used to validate. Moreover, quantitative real-time polymerase chain reaction analysis, western blot, cell counting kit-8 assay, colony formation assay, flow cytometry, animal experiments, and RNA-seq were applied to explore its biological functions and potential molecular mechanisms of CLSPN in melanoma. RESULTS Our results demonstrated that abnormal CLSPN expression was correlated with poor prognosis in melanoma. Meanwhile, CLSPN may promote melanoma growth and progression in vivo and in vitro through IFI44L/JAK/STAT1 signaling. Additionally, CLSPN was associated with negative immune microenvironment in melanoma and may be related to polarization of tumor associated macrophages towards M2-type. CONCLUSIONS These findings suggest that CLSPN may be a promising new target for melanoma and accelerate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ruoqi Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
- Shanghai Skin Disease Hospital, Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai, 200443, China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Wei Tan
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yanbin Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
- , Baode Road 1278 street, Shanghai, 200433, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Skin Disease Hospital, Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai, 200443, China.
- , Baode Road 1278 street, Shanghai, 200433, China.
| |
Collapse
|
10
|
He Y, Liu Q, Luo Z, Hu Q, Wang L, Guo Z. Role of Tumor-Associated Macrophages in Breast Cancer Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26995. [PMID: 40302326 DOI: 10.31083/fbl26995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer (BC) is the second leading cause of death among women worldwide. Immunotherapy has become an effective treatment for BC patients due to the rapid development of medical technology. Considerable breakthroughs have been made in research, marking the beginning of a new era in cancer treatment. Among them, various cancer immunotherapies such as immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer are effective and have good prospects. The tumor microenvironment (TME) plays a crucial role in determining the outcomes of tumor immunotherapy. Tumor-associated macrophages (TAMs) are a key component of the TME, with an immunomodulatory effect closely related to the immune evasion of tumor cells, thereby affecting malignant progression. TAMs also significantly affect the therapeutic effect of ICIs (such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors). TAMs are composed of multiple heterogeneous subpopulations, including M1 phenotypes macrophages (M1) and M2 phenotypes macrophages (M2). Furthermore, they mainly play an M2-like role and moderate a variety of harmful consequences such as angiogenesis, immunosuppression, and metastasis. Therefore, TAMs have become a key area of focus in the development of tumor therapies. However, several tumor immunotherapy studies demonstrated that ICIs are effective only in a small number of solid cancers, and tumor immunotherapy still faces relevant challenges in the treatment of solid tumors. This review explores the role of TAMs in BC immunotherapy, summarizing their involvement in BC development. It also explains the classification and functions of TAMs, outlines current tumor immunotherapy approaches and combination therapies, and discusses the challenges and potential strategies for TAMs in immuno-oncology treatments.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, 518052 Shenzhen, Guangdong, China
| | - Zhihao Luo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Li Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
11
|
Zhang J, Huang X, Li M, Zhang W, Yang H. CSF1R inhibition agents protect against cisplatin ototoxicity and synergize with immunotherapy for Head and Neck Squamous Cell Carcinoma. Int Immunopharmacol 2025; 152:114428. [PMID: 40073814 DOI: 10.1016/j.intimp.2025.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach. However, limited research exists on combining cisplatin with CSF1/CSF1R immunotherapy in Head and Neck Squamous Cell Carcinoma. Furthermore, few studies have investigated concurrent immunotherapeutic strategies to mitigate cisplatin-induced ototoxicity.Developing otoprotective agents that simultaneously reduce cisplatin resistance and enhance therapeutic efficacy holds significant implications for future treatment modalities. In this investigation, we evaluated the safety and efficacy profile of CSF1R inhibitor (PLX3397). Our findings demonstrate that PLX3397 confers otoprotection in cisplatin-induced ototoxicity through cochlear macrophage depletion, synergizes with cisplatin inhibited tumor cell survival, migration, and invasion in vitro. Additionally, it significantly suppressed xenograft tumor lesion growth and angiogenesis in zebrafish models while modulating the polarization state of tumor-associated macrophages in vitro and inducing tumor immune activation. Our findings suggest that PLX3397 represents a promising immunotherapeutic agent, and its combination with cisplatin may constitute a novel therapeutic strategy for attenuating cisplatin-induced ototoxicity while synergistically enhancing immunotherapy for Head and Neck Squamous Cell Carcinoma.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Moyang Li
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
12
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
13
|
Lim SH, An M, Lee H, Heo YJ, Min BH, Mehta A, Wright S, Kim KM, Kim ST, Klempner SJ, Lee J. Determinants of Response to Sequential Pembrolizumab with Trastuzumab plus Platinum/5-FU in HER2-Positive Gastric Cancer: A Phase II Chemoimmunotherapy Trial. Clin Cancer Res 2025; 31:1476-1490. [PMID: 40100100 PMCID: PMC11995005 DOI: 10.1158/1078-0432.ccr-24-3528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Adding pembrolizumab to first-line fluoropyrimidine (5-FU)/platinum chemotherapy plus trastuzumab improves outcomes in advanced HER2+ gastroesophageal adenocarcinomas, but the benefit is largely confined to dual HER2+ and PD-L1+ patients. To assess the contributions of components, we conducted a phase II trial evaluating 5-FU/platinum/trastuzumab and added pembrolizumab in cycle 2 in patients with metastatic HER2+ disease. PATIENTS AND METHODS Treatment-naïve patients with advanced HER2+ gastroesophageal cancer underwent a baseline biopsy and received a single dose of 5-FU/platinum with trastuzumab followed by repeat biopsy. Pembrolizumab was added, and a third biopsy was performed after six cycles. The primary endpoint was the objective response rate. Secondary endpoints included progression-free and overall survival. Exploratory biomarker analysis and dynamic changes in HER2 and PD-L1 were prespecified. RESULTS Sixteen patients were enrolled. The objective response rate was 69%, and the median progression-free survival was 11.9 months. Serial whole-exome, single-cell RNA, T-cell receptor sequencing, and spatial transcriptomics from pretreatment and on-treatment samples revealed early trastuzumab-induced NK cell infiltration in HER2+ tumor beds and an increase in Fc receptor gamma III expression in macrophages, suggesting that trastuzumab directs Fc receptor-mediated antibody-dependent cytotoxicity. This favorable remodeling was enhanced by the addition of pembrolizumab, primarily in PD-L1+ samples. We observed TGF-β signaling in HER2-negative tumor regions, which was associated with nonresponder status. CONCLUSIONS These data highlight the biology of intratumoral heterogeneity and the impact of tumor and immune cell features on clinical outcomes and may partly explain the lesser magnitude of pembrolizumab benefit in HER2+ and PD-L1-negative subgroups.
Collapse
Affiliation(s)
- Sung Hee Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minae An
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Byung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Arnav Mehta
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Samuel Wright
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Su X, Kang D, Wang J, Li L, Huang R, Zou Z. Tertiary lymphoid structures associated with improved survival and enhanced antitumor immunity in acral melanoma. NPJ Precis Oncol 2025; 9:103. [PMID: 40200106 PMCID: PMC11978811 DOI: 10.1038/s41698-025-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Understanding the impact of tertiary lymphoid structures (TLSs) on acral melanoma (AM) and the tumor microenvironment (TME) is critical. We analyzed TLS features in primary AM lesions from 46 patients and identified intratumoral TLSs (intra-TLSs) in 25 patients. Intra-TLS presence was significantly associated with improved overall survival. Hematoxylin and eosin staining and multiplex immunofluorescence revealed increased T-cell and CD8+ T-cell infiltration and fewer tumor-associated macrophages in the TME of intra-TLS patients. Transcriptomic analysis identified a TLS-associated Th1/B-cell gene set as a predictor of survival and immunotherapy response. These findings highlight the prognostic value of intra-TLSs in AMs and suggest that targeting TLS formation could enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Xinyu Su
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Donglin Kang
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rong Huang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
15
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
17
|
Zhu Q, Balasubramanian A, Asirvatham JR, Chatterjee M, Piyarathna B, Kaur J, Mohamed N, Wu L, Wang S, Pourfarrokh N, Binsol PD, Bhargava M, Rasaily U, Xu Y, Zheng J, Jebakumar D, Rao A, Gutierrez C, Omilian A, Morrison C, Das GM, Ambrosone C, Seeley EH, Chen SH, Li Y, Chang E, Li X, Baker E, Aneja R, Zhang XHF, Sreekumar A. Integrative spatial omics reveals distinct tumor-promoting multicellular niches and immunosuppressive mechanisms in Black American and White American patients with TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.17.585428. [PMID: 38562769 PMCID: PMC10983891 DOI: 10.1101/2024.03.17.585428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Racial disparities in the clinical outcomes of triple-negative breast cancer (TNBC) have been well-documented, but the underlying biological mechanisms remain poorly understood. To investigate these disparities, we employed a multi-omic approach integrating imaging mass cytometry and spatial transcriptomics to characterize the tumor microenvironment (TME) in self-identified Black American (BA) and White American (WA) TNBC patients. Our analysis revealed that the TME in BA patients is marked by a network of endothelial cells, macrophages, and mesenchymal-like cells, which correlates with reduced patient survival. In contrast, the WA TNBC microenvironment is enriched in T-cells and neutrophils, indicative of T-cell exhaustion and suppressed immune responses. Ligand-receptor and pathway analyses further demonstrated that BA TNBC tumors exhibit a relatively "immune-cold" profile, while WA TNBC tumors display features of an "inflamed" TME, suggesting the evolution of a unique immunosuppressive mechanism. These findings provide insight into racially distinct tumor-promoting and immunosuppressive microenvironments, which may contribute to the observed differences in clinical outcomes among BA and WA TNBC patients. Statement of Significance This study identifies distinct tumor microenvironment (TME) profiles in Black and White American TNBC patients, providing new insights into the biological mechanisms driving outcome disparities. Our findings highlight the role of the tumor-endothelial-macrophage niche in these disparities, offering a potential therapeutic target for race-inclusive strategies aimed at improving clinical outcomes. By revealing racial differences in treatment response profiles, this work underscores the necessity for tailored therapies in TNBC. These insights lay the groundwork for the development of inclusive, precision-driven treatment approaches that may help mitigate racial disparities and enhance patient outcomes.
Collapse
|
18
|
El-Shemi AG, Alqurashi A, Abdulrahman JA, Alzahrani HD, Almwalad KS, Felfilan HH, Alomiri WS, Aloufi JA, Madkhali GH, Maqliyah SA, Alshahrani JB, Kamal HT, Daghistani SH, Refaat B, Minshawi F. IL-10-Directed Cancer Immunotherapy: Preclinical Advances, Clinical Insights, and Future Perspectives. Cancers (Basel) 2025; 17:1012. [PMID: 40149345 PMCID: PMC11940594 DOI: 10.3390/cancers17061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Interleukin-10 (IL-10) is a dimeric cytokine encoded by the IL-10 gene on chromosome 1 [...].
Collapse
Affiliation(s)
- Adel G. El-Shemi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Jihan Abdullah Abdulrahman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hanin Dhaifallah Alzahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Khawlah Saad Almwalad
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Hadeel Hisham Felfilan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Wahaj Saud Alomiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Jana Ahmed Aloufi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Ghadeer Hassn Madkhali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Hematology, Dr. Sulaiman Al-Habib Medical Diagnostic Laboratory, Olaya District, Riyadh 12234-3785, Saudi Arabia
| | - Sarah Adel Maqliyah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
- Department of Blood Bank and Laboratory, Saudi German Hospital, Makkah 24242, Saudi Arabia
| | - Jood Bandar Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Huda Taj Kamal
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Sawsan Hazim Daghistani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah 21955, Saudi Arabia; (A.G.E.-S.); (J.A.A.); (H.D.A.); (K.S.A.); (H.H.F.); (W.S.A.); (J.A.A.); (G.H.M.); (S.A.M.); (J.B.A.); (H.T.K.); (S.H.D.); (B.R.)
| |
Collapse
|
19
|
Lin Y, Lin Q, Guan Q, Chen D, Zhou Y, Li S. Immune cell infiltration as a prognostic factor in endometrial cancer: a meta-analysis. Am J Cancer Res 2025; 15:1335-1345. [PMID: 40226477 PMCID: PMC11982738 DOI: 10.62347/bxzm8857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025] Open
Abstract
The immune system's role in cancer development and progression is receiving increasing attention. Endometrial cancer, common gynecological malignancy, has exhibited promising responses to immunotherapies. This study aims to assess the prognostic significance of various immune cell subsets in endometrial cancer, focusing on potential novel biomarkers and therapeutic targets. A systematic literature review and meta-analysis were conducted. Eleven eligible studies, comprising 2,319 patients with endometrial cancer, were included. The primary outcome was the association between levels of immune cell types, particularly CD8+ T cells, and overall prognosis. The meta-analysis found that high levels of tumor-infiltrating lymphocytes (TILs), particularly CD8+ T cells, were significantly associated with better overall prognosis in endometrial cancer patients. These findings suggest that the tumor immune microenvironment plays a crucial role in endometrial cancer prognosis. This meta-analysis indicates that higher levels of CD8+ T cells in the tumor microenvironment are linked to improved prognosis in endometrial cancer, underscoring the immune system's potential in prognostication and therapy.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Qiaoming Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Qi Guan
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Danru Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Yan Zhou
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| | - Sang Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital Fuzhou 350014, Fujian, PR China
| |
Collapse
|
20
|
Meng Z, Li J, Wang H, Cao Z, Lu W, Niu X, Yang Y, Li Z, Wang Y, Lu S. NLRP4 unlocks an NK/macrophages-centered ecosystem to suppress non-small cell lung cancer. Biomark Res 2025; 13:44. [PMID: 40087771 PMCID: PMC11909883 DOI: 10.1186/s40364-025-00756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Tumor immune evasion extends beyond T cells, affecting innate immune elements like natural killer cells (NK) and macrophages within the tumor-immune microenvironment (TIME). Nevertheless, translational strategies to trigger collaboration of NK cells and macrophages to initiate sufficient anti-tumor cytoxicity remain scarce and are urgently needed. METHODS In this study, TCGA datasets was used to confirm the prognosis value of the expression level of NLR family pyrin domain containing 4 (NLRP4) in NSCLC and the tumor tissues microarray was used to further check its clinical-relevance at protein-level. Subsequently, a tumor cell line with stable NLRP4 overexpression was established and subcutaneous tumor models in C57BL/6J mice were used to validate the anti-tumor characteristics of NLRP4. After analyzing the tumor microenvironment using flow cytometry and multiplex immunofluorescence, we further validated our findings through co-culture transwell assays and TCGA analysis. Utilizing bulk-RNA sequencing, proteomics, and mass spectrometry of mouse tumor tissues, we innovatively identified the downstream pathways of NLRP4 and verified them through co-immunoprecipitation (co-IP) and Western blot (WB) experiments. RESULTS NLRP4 could trigger a distinct anti-tumor ecosystem organized by TIGIT+TNFA+ NK and iNOS+ M1 in lung cancer, discovered in TCGA analysis and verified in murine model. NLRP4-eco exerted tumor-suppression capacity through chemokine reprogramming including CCL5 and CXCL2. Meanwhile, the cytoxicity of NK could be facilitated by iNOS+M1. Mechanistically, NLRP4 stimulated PI3K/Akt-NF-kB axis through suppression of the activity of PP2A. Besides, knockdown of CCL5 and blockade of CXCL2-CXCR2 axis abolished chemotaxis of TIGIT+TNFA+ NK and iNOS+ M1 respectively, as well as for LB-100, a PP2A inhibitor. CONCLUSION Altogether, we delineated NLRP4's unexplored facets and discovered an NLRP4-driven anti-tumor ecosystem composed of TIGIT+TNFA+ NK and iNOS+ M1. Finally, targeting PP2A by its inhibitor successfully mimicked the anti-tumor capacity of the overexpression of NLRP4.
Collapse
Affiliation(s)
- Zhouwenli Meng
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Jian Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Hui Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Zhengqi Cao
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Wenqing Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xiaomin Niu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yi Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China.
| |
Collapse
|
21
|
Liu J, Li P, Zhang Y, Zheng L. Transcriptome combined with single-cell sequencing explored prognostic markers associated with T cell exhaustion characteristics in head and neck squamous carcinoma. Sci Rep 2025; 15:8209. [PMID: 40065044 PMCID: PMC11893791 DOI: 10.1038/s41598-025-91299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes. In this study, a single-cell atlas of HNSC was constructed, enabling an in-depth analysis of T cell heterogeneity. The differentiation trajectory of T cells, transitioning from normal tissue to HNSC, was characterized, revealing a predisposition toward depletion in the C2 T cell subgroup. A subsequent cross-analysis of significantly upregulated differentially expressed genes in the C2 T cell subset identified five characteristics pertinent to T cell C2, which informed the development of a clinical prognostic model. Additionally, maximum half inhibitory concentration (IC50) values for various pharmacological agents were calculated, leading to the identification of eleven drugs relevant to the risk model, providing an intriguing starting point for further work in personalized cancer treatment. However, certain limitations of this study must be acknowledged. While T cell heterogeneity and differentiation trajectories were mapped, the interrelationships among these subpopulations remain poorly understood. Further research is required to elucidate the specific biological processes and molecular evolutionary mechanisms involved. The insights from this study provide a valuable foundation for future investigations into the molecular mechanisms and immune landscape associated with the progression from normal tissue to malignant squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yuanyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshedong Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
22
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
23
|
Su Y, Ouchi R, Daroonpan P, Hamagaki M, Ikeda T, Rika N, Nishii N, Tsushima F, Kano Y, Asakage T, Noguchi M, Harada H, Azuma M. Stratification of the immunotypes of tongue squamous cell carcinoma to improve prognosis and the response to immune checkpoint inhibitors. Cancer Immunol Immunother 2025; 74:130. [PMID: 40025278 PMCID: PMC11872838 DOI: 10.1007/s00262-025-03982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES An understanding of the tumor immune microenvironment is required to improve treatment, especially the selection of immune checkpoint inhibitors (ICIs). In this study, we stratified the immunotypes of tongue squamous cell carcinoma (TSCC) based on the results of comprehensive immune profiling. METHODS We enrolled 87 therapy-naïve TSCC and 17 ICI-treated TSCC patients who underwent glossectomy without any other prior therapy. Comprehensive immune profile analyses employed multiplex immunofluorescence and tissue imaging. RESULTS Based on the hierarchies of 58 immune parameters and the spatial distances between cytotoxic T lymphocytes (CTL) and tumor cells, we stratified five immunotypes: Immunoactive type I, border type II, immunosuppressed type III, immunoisolating type IV, and immunodesert type V. The type I frequency was only 16%. Most TSCCs (~ 70%) were of types III-V. The CTL density (CTL-D) was closely correlated with the PD-L1+ pan-macrophages (panM)-D, and the panM-D closely correlated with the PD-1+ CTL-D. This indicated that PD-1 and PD-L1 expression required macrophages and CTL recruitment in the tumor microenvironment. No ICI-treated TSCC patients, all of whom were recurrent/metastatic cases, were of the type I immunotype, and almost half (47.0%) were of the immunodesert type V. Most cases exhibited an imbalance between T-cell PD-1 and macrophage PD-L1 expression. CONCLUSION We defined five TSCC-specific immunotypes based on the results of comprehensive immune profiling analyses. Immunoactive type, which would be sensitive to ICI monotherapy, was rare, and most TSCC cases exhibited immune-regulated immunotypes. Immunotype-based personalized treatments are required to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuya Su
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Oral Science Center (OSC), Institute of Science Tokyo (SCIENCE TOKYO), Tokyo, 113-8519, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Ryo Ouchi
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Pissacha Daroonpan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
- Department of Oral Diagnosis, Naresuan University, Phitsanulok, 65000, Thailand
| | - Miwako Hamagaki
- Division of Surgical Pathology, Institute of Science Tokyo Hospital, Tokyo, 113-8519, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo, 113-8519, Japan
| | - Noji Rika
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Naoto Nishii
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Fumihiko Tsushima
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Yoshihito Kano
- Department of Medical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo, 113-8519, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), Tokyo, 113-8519, Japan
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Miyuki Azuma
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (SCIENCE TOKYO), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Oral Science Center (OSC), Institute of Science Tokyo (SCIENCE TOKYO), Tokyo, 113-8519, Japan.
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan.
| |
Collapse
|
24
|
Zhang S, Dong H, Jin X, Sun J, Li Y. The multifaceted roles of macrophages in the transition from hepatitis to hepatocellular carcinoma: From mechanisms to therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167676. [PMID: 39828046 DOI: 10.1016/j.bbadis.2025.167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC. In the early stages of hepatitis, macrophages are essential for pathogen clearance and tissue repair. However, chronic activation leads to prolonged inflammation, which exacerbates liver damage and promotes fibrosis. As the disease progresses to liver fibrosis, macrophages interact with hepatic stellate cells, fostering a pro-tumorigenic microenvironment that supports HCC development. In hepatocarcinogenesis, macrophages contribute to tumor initiation, growth, metastasis, immune evasion, cancer stem cell maintenance, and angiogenesis. Their functional plasticity enables them to adapt to the tumor microenvironment, thereby promoting tumor progression and resistance to therapy. Targeting macrophages represents a promising strategy for preventing and treating HCC. Therapeutic approaches, including reprogramming macrophage phenotypes to enhance anti-tumor immunity, blocking macrophage recruitment and activation, and utilizing nanoparticle-based drug delivery systems, may provide new avenues for combating HCC by modulating macrophage functions and tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Shuairan Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Hang Dong
- Phase I Clinical Trials Center, The People's Hospital of China Medical University, Shenyang, PR China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
25
|
Sun Y, Zhou P, Qian J, Zeng Q, Wei G, Li Y, Liu Y, Lai Y, Zhan Y, Wu D, Fang Y. Spermine synthase engages in macrophages M2 polarization to sabotage antitumor immunity in hepatocellular carcinoma. Cell Death Differ 2025; 32:573-586. [PMID: 39658701 PMCID: PMC11894157 DOI: 10.1038/s41418-024-01409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Disturbances in tumor cell metabolism reshape the tumor microenvironment (TME) and impair antitumor immunity, but the implicit mechanisms remain elusive. Here, we found that spermine synthase (SMS) was significantly upregulated in tumor cells, which correlated positively with the immunosuppressive microenvironment and predicted poor survival in hepatocellular carcinoma (HCC) patients. Via "subcutaneous" and "orthotopic" HCC syngeneic mouse models and a series of in vitro coculture experiments, we identified elevated SMS levels in HCC cells played a role in immune escape mainly through its metabolic product spermine, which induced M2 polarization of tumor-associated macrophages (TAMs) and subsequently corresponded with a decreased antitumor functionality of CD8+ T cells. Mechanistically, we discovered that spermine reprogrammed TAMs mainly by activating the PI3K-Akt-mTOR-S6K signaling pathway. Spermine inhibition in combination with immune checkpoint blockade effectively diminished tumor burden in vivo. Our results expand the understanding of the critical role of metabolites in regulating cancer progression and antitumor immunity and open new avenues for developing novel therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Yining Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China
| | - Junying Qian
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qin Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guangyan Wei
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingjie Lai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhi Zhan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China.
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
26
|
Ray A, Bassette M, Hu KH, Pass LF, Courau T, Samad B, Combes A, Johri V, Davidson B, Wai K, Ha P, Hernandez G, Zaleta-Linares I, Krummel MF. Multimodal delineation of a layer of effector function among exhausted CD8 T cells in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.26.559470. [PMID: 37808790 PMCID: PMC10557647 DOI: 10.1101/2023.09.26.559470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The anti-tumor function of CD8 T cells is limited through well-established pathways of T cell exhaustion (TEX). Strategies to capture emergent functional states amongst this dominant trajectory of dysfunction are necessary to find pathways to durable anti-tumor immunity. By leveraging transcriptional reporting (by the fluorescent protein TFP) of the T cell activation marker Cd69, related to upstream AP-1 transcription factors, we define a classifier for potent versus suboptimal CD69+ activation states arising from T cell stimulation. In tumors, this delineation acts an additional functional readout along the TEX differentiation trajectory, within and across TEX subsets, marked by enhanced effector cytokine and granzyme B production. The more potent state remains differentially prominent in a T cell-mediated tumor clearance model, where they also show increased engagement in the microenvironment and are superior in tumor cell killing. Employing multimodal CITE-Seq in human head and neck tumors enables a similar strategy to identify Cd69RNAhiCD69+ cells that also have enhanced functional features in comparison to Cd69RNAloCD69+ cells, again within and across intratumoral CD8 T cell subsets. Refining the contours of the T cell functional landscape in tumors in this way paves the way for the identification of rare exceptional effectors, with imminent relevance to cancer treatment.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Molly Bassette
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Lomax F. Pass
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vrinda Johri
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Brittany Davidson
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Katherine Wai
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, CA 94143, USA
| | - Grace Hernandez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Zhu Y, Zhang X, Jin J, Wang X, Liu Y, Gao J, Hang D, Fang L, Zhang H, Liu H. Engineered oncolytic virus coated with anti-PD-1 and alendronate for ameliorating intratumoral T cell hypofunction. Exp Hematol Oncol 2025; 14:16. [PMID: 39955603 PMCID: PMC11829442 DOI: 10.1186/s40164-025-00611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive and devastating primary brain tumor that is resistant to conventional therapies. Oncolytic viruses represent a promising therapeutic approach for glioblastoma by selectively lysing tumor cells and eliciting an anti-tumor immune response. However, the clinical efficacy of oncolytic viruses is often hindered by challenges such as short persistence, host antiviral immune responses, and T cell dysfunction. METHODS We have developed a novel therapeutic strategy by "dressing" oncolytic viruses with anti-PD-1 antibodies and alendronate (PD-1/Al@OV) to prevent premature clearance of the oncolytic viruses and enhance T cell function, thereby improving immunotherapy outcomes against glioma. RESULTS We found that in the high reactive oxygen species environment of the tumor, PD-1/Al@OV disassembled to release oncolytic viruses, anti-PD-1, and alendronate. The released anti-PD-1 blocked the PD-1/PD-L1 pathway, activating T cells; the alendronate eliminated tumor-associated macrophages, increasing the concentration of oncolytic viruses; and the oncolytic viruses directly lysed cancer cells, enhancing intratumoral T cell infiltration. CONCLUSION This approach effectively improved the immunosuppressive microenvironment of glioblastoma and achieved a robust anti-tumor effect. Consequently, this study presents a novel strategy for immune combination therapy and the improvement of the glioblastoma immune microenvironment, thereby offering new prospects for the clinical application of oncolytic viruses.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China.
| | - Xuefeng Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Jiaqi Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, China
| | - Xiaoqian Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155, Nanjing Bei Street, Shenyang, 110001, China
| | - Jian Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Diancheng Hang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, China.
| | - Hengzhu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Neurosurgery, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou University, No. 98, Nantong West Road, Yangzhou, 225009, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, No.84 Huaihai West Road, Xuzhou, 221002, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Xu Z, Kuhlmann-Hogan A, Xu S, Tseng H, Chen D, Tan S, Sun M, Tripple V, Bosenberg M, Miller-Jensen K, Kaech SM. Scavenger Receptor CD36 in Tumor-Associated Macrophages Promotes Cancer Progression by Dampening Type-I IFN Signaling. Cancer Res 2025; 85:462-476. [PMID: 39546763 PMCID: PMC11788022 DOI: 10.1158/0008-5472.can-23-4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Tumor-associated macrophages (TAM) are a heterogeneous population of myeloid cells that dictate the inflammatory tone of the tumor microenvironment. In this study, we unveiled a mechanism by which scavenger receptor cluster of differentiation 36 (CD36) suppresses TAM inflammatory states. CD36 was upregulated in TAMs and associated with immunosuppressive features, and myeloid-specific deletion of CD36 significantly reduced tumor growth. Moreover, CD36-deficient TAMs acquired inflammatory signatures including elevated type-I IFN (IFNI) production, mirroring the inverse correlation between CD36 and IFNI response observed in patients with cancer. IFNI, especially IFNβ, produced by CD36-deficient TAMs directly induced tumor cell quiescence and delayed tumor growth. Mechanistically, CD36 acted as a natural suppressor of IFNI signaling in macrophages through p38 activation downstream of oxidized lipid signaling. These findings establish CD36 as a critical regulator of TAM function and the tumor inflammatory microenvironment, providing additional rationale for pharmacologic inhibition of CD36 to rejuvenate antitumor immunity. Significance: CD36 in tumor-associated macrophages mediates immunosuppression and can be targeted as a therapeutic avenue for stimulating interferon production and increasing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | - Alexandra Kuhlmann-Hogan
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Hubert Tseng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Shirong Tan
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Ming Sun
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
29
|
Martinenaite E, Lecoq I, Aaboe-Jørgensen M, Ahmad SM, Perez-Penco M, Glöckner HJ, Chapellier M, Lara de la Torre L, Olsen LR, Rømer AMA, Pedersen AW, Andersen MH. Arginase-1-specific T cells target and modulate tumor-associated macrophages. J Immunother Cancer 2025; 13:e009930. [PMID: 39880485 PMCID: PMC11781113 DOI: 10.1136/jitc-2024-009930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/14/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization. METHODS Murine Arg1-specific CD4+T cells isolated from splenocytes of animals vaccinated with an Arg1-derived peptide in the adjuvant montanide were co-cultured with either in vitro M2-differentiated bone marrow-derived macrophages or ex vivo isolated F4/80+TAMs. Human Arg1-specific CD4+T cell clones were co-cultured with Arg1-expressing TAMs generated in vitro from either PBMC-derived CD14+cells or the myeloid cell lines MonoMac1 and THP-1. MHC class II-restricted Arg-1 peptide presentation by macrophages was confirmed by immunopeptidomics. T-cell-mediated changes in the macrophage immune phenotype and cytokine microenvironment were examined using flow cytometry, RT-qPCR and multiplex immunoassay. The effect of Arg1-derived peptide IMV on TAMs in vivo was assessed by multiplex gene analysis of F4/80+cells. RESULTS We show that Arg1-based IMV-mediated tumor control was linked to a decrease in multiple immunosuppressive pathways in the TAM population of the treated animals. Tumor-conditioned media (TCM) derived from Arg1-vaccinated mice induced significantly higher upregulation of MHC-II on exposed myeloid cells compared with controls. Furthermore, murine CD4+Arg1-specific T cells were able to target TAMs and effectively reprogram their phenotype ex vivo by secreting IL2 and IFNγ. Next, we established that human Arg1+TAMs present Arg1-derived peptides and are directly recognized by proinflammatory CD4+Arg1-specific T cell clones. These CD4+Arg1-specific T cells were able to reprogram TCM-conditioned macrophages as observed by increased expression of CD80 and HLA-DR. CONCLUSIONS TAMs may be directly targeted and modulated by Arg1-specific CD4+T cells. These findings provide a strong rationale for future clinical development of Arg1-based IMVs to alter the immune-suppressive TME by reprogramming TAMs and promoting a proinflammatory TME.
Collapse
Affiliation(s)
- Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Mia Aaboe-Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Hannah Jorinde Glöckner
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Lucía Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
- Department of Immunology, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
30
|
Gangadaran P, Onkar A, Rajendran RL, Goenka A, Oh JM, Khan F, Nagarajan AK, Muthu S, Krishnan A, Hong CM, Ahn BC. Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics. Biomark Res 2025; 13:20. [PMID: 39865337 PMCID: PMC11770947 DOI: 10.1186/s40364-025-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored. Enhancing our knowledge of macrophages and the dynamics of their extracellular vesicles (EVs) in cancer development can potentially improve therapeutic management. Notably, macrophages have also been harnessed to deliver drugs. Noninvasive in vivo molecular imaging of macrophages is crucial for investigating intricate cellular processes, comprehending the underlying mechanisms of diseases, tracking cells and EVs' migration, and devising macrophage-dependent drug-delivery systems in living organisms. Thus, in vivo imaging of macrophages has become an indispensable tool in biomedical research. The integration of multimodal imaging approaches and the continued development of novel contrast agents hold promise for overcoming current limitations and expanding the applications of macrophage imaging. This study comprehensively reviews several methods for labeling macrophages and various imaging modalities, assessing the merits and drawbacks of each approach. The review concludes by offering insights into the applicability of molecular imaging techniques for real time monitoring of macrophages in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - ArulJothi Kandasamy Nagarajan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Tamil Nadu, 639004, Karur, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, 641021, Coimbatore, India
| | - Anand Krishnan
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| |
Collapse
|
31
|
Chaurasia A, Brigi C, Daghrery A, Asa'ad F, Spirito F, Hasuike A, González-Alva P, Kojic DD, Ünsal RBK, Sivaramakrishnan G. Tumour-Associated Macrophages in Oral Squamous Cell Carcinoma. Oral Dis 2025. [PMID: 39846431 DOI: 10.1111/odi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting. METHODS A comprehensive analysis of the current literature on TAMs in OSCC was conducted. Specifically, we evaluated the biological functions of TAMs, their interactions within the tumour microenvironment, and their influence on disease progression and treatment outcomes. RESULTS TAMs contribute to OSCC progression by secreting cytokines, such as IL-10 and TGF-β, that inhibit effector immune cells. They facilitate angiogenesis, extracellular matrix remodelling and the epithelial-mesenchymal transition, which are essential for tumour invasion and metastasis. TAMs support cancer stem cells and recruit regulatory T cells and myeloid-derived suppressor cells, enhancing resistance to therapies. Their presence correlates with advanced OSCC stages, lymph node metastasis and poor prognosis. CONCLUSION TAMs regulate OSCC progression and therapy resistance. Reprogramming them to an M1-like phenotype or depleting them enhances treatments. Understanding TAM-OSCC interactions is crucial for developing interventions against their tumour-promoting functions and restoring anti-tumour immunity.
Collapse
Affiliation(s)
- Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow, India
| | - Carel Brigi
- Department of Oral Diagnosis, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Farah Asa'ad
- Department of Oral Biochemistry, Institute for Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Dave D Kojic
- Restorative Dentistry, A.T. Still University, Missouri School of Dentistry & Oral Health, Kirksville, Missouri, USA
| | - Revan Birke Koca Ünsal
- Department of Periodontics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
32
|
Cesano A, Augustin R, Barrea L, Bedognetti D, Bruno TC, Carturan A, Hammer C, Ho WS, Kather JN, Kirchhoff T, Lu RO, McQuade J, Najjar YG, Pietrobon V, Ruella M, Shen R, Soldati L, Spencer C, Betof Warner A, Warren S, Ziv E, Marincola FM. Advances in the understanding and therapeutic manipulation of cancer immune responsiveness: a Society for Immunotherapy of Cancer (SITC) review. J Immunother Cancer 2025; 13:e008876. [PMID: 39824527 PMCID: PMC11749597 DOI: 10.1136/jitc-2024-008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies. Recent advancements as well as novel approaches to address the limitations of current treatments are discussed here, with a specific focus on ICI and ACT.
Collapse
Affiliation(s)
| | - Ryan Augustin
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Tullia C Bruno
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Winson S Ho
- University of California San Francisco, San Francisco, California, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rongze O Lu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Jennifer McQuade
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Marco Ruella
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhine Shen
- Kite Pharma Inc, Santa Monica, California, USA
| | | | - Christine Spencer
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Elad Ziv
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
33
|
Waibl Polania J, Hoyt-Miggelbrink A, Tomaszewski WH, Wachsmuth LP, Lorrey SJ, Wilkinson DS, Lerner E, Woroniecka K, Finlay JB, Ayasoufi K, Fecci PE. Antigen presentation by tumor-associated macrophages drives T cells from a progenitor exhaustion state to terminal exhaustion. Immunity 2025; 58:232-246.e6. [PMID: 39724910 DOI: 10.1016/j.immuni.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers. Single-cell analyses of Tex_prog cells and Tex_term cells in glioblastoma (GBM), a setting of severe T cell exhaustion, revealed disproportionate loss of Tex_prog cells over time. Exhaustion concentrated within tumor-specific T cell subsets, with cognate antigen exposure requisite for acquisition of the Tex_term phenotype. Tumor-associated macrophages (TAMs)-not tumor cells-were the primary source of antigenic exposure governing the Tex_prog to Tex_term transition. TAM depletion increased frequencies of Tex_prog cells in multiple tumor models, increased PETER, and promoted responsiveness to αPD1 immunotherapy. Thus, targeting TAM-T cell interactions may further license checkpoint blockade responses.
Collapse
Affiliation(s)
| | | | | | - Lucas P Wachsmuth
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Selena J Lorrey
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Daniel S Wilkinson
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily Lerner
- Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Karolina Woroniecka
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John B Finlay
- Duke Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Ayasoufi
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Fernández-García F, Maier BB. Restimulation by macrophages exhausts T cells. Immunity 2025; 58:12-14. [PMID: 39813990 DOI: 10.1016/j.immuni.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Inhibiting T cell exhaustion is an attractive cancer immunotherapy strategy. In this issue of Immunity, Waibl Polania et al. examine the microenvironmental signals regulating terminal T cell exhaustion and find that antigen presentation by tumor-associated macrophages, not tumor cells, drives terminal T cell exhaustion in glioblastoma.
Collapse
Affiliation(s)
- Fernando Fernández-García
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090 Vienna, Austria
| | - Barbara B Maier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
35
|
Kudelka MR, Lavin Y, Sun S, Fuchs E. Molecular and cellular dynamics of squamous cell carcinomas across tissues. Genes Dev 2025; 39:18-35. [PMID: 39455281 PMCID: PMC11789493 DOI: 10.1101/gad.351990.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Squamous cell carcinomas (SCCs), arising from the skin, head and neck, lungs, esophagus, and cervix, are collectively among the most common cancers and a frequent cause of cancer morbidity and mortality. Despite distinct stratified epithelial tissues of origin, converging evidence points toward shared biologic pathways across SCCs. With recent breakthroughs in molecular technologies have come novel SCC treatment paradigms, including immunotherapies and targeted therapy. This review compares commonalities and differences across SCCs from different anatomical sites, including risk factors and genetics, as well as cellular and molecular programs driving tumorigenesis. We review landmark discoveries of the "cancer stem cells" (CSCs) that initiate and propagate SCCs and their gene and translational regulation programs. This has led to an appreciation that interactions between CSCs and the immune system play key roles in invasion and therapeutic resistance. Here, we review the unifying principles of SCCs that have emerged from these exciting advances in our understanding of these epithelial cancers.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yonit Lavin
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Siman Sun
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
36
|
Ray A, Hu KH, Kersten K, Courau T, Kuhn NF, Zaleta-Linares I, Samad B, Combes AJ, Krummel MF. Targeting CD206+ macrophages disrupts the establishment of a key antitumor immune axis. J Exp Med 2025; 222:e20240957. [PMID: 39601781 PMCID: PMC11602655 DOI: 10.1084/jem.20240957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
CD206 is a common marker of a putative immunosuppressive "M2" state in tumor-associated macrophages (TAMs). We made a novel conditional CD206 (Mrc1) knock-in mouse to specifically visualize and/or deplete CD206+ TAMs. Early depletion of CD206+ macrophages and monocytes (Mono/Macs) led to the indirect loss of conventional type I dendritic cells (cDC1), CD8 T cells, and NK cells in tumors. CD206+ TAMs robustly expressed CXCL9, contrasting with stress-responsive Spp1-expressing TAMs and immature monocytes, which became prominent with early depletion. CD206+ TAMs differentially attracted activated CD8 T cells, and the NK and CD8 T cells in CD206-depleted tumors were deficient in Cxcr3 and cDC1-supportive Xcl1 and Flt3l expressions. Disrupting this key antitumor axis decreased tumor control by antigen-specific T cells in mice. In human cancers, a CD206Replete, but not a CD206Depleted Mono/Mac gene signature correlated robustly with CD8 T cell, cDC1, and NK signatures and was associated with better survival. These findings negate the unqualified classification of CD206+ "M2-like" macrophages as immunosuppressive.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Mice
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Macrophages/immunology
- Macrophages/metabolism
- Humans
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mannose Receptor
- Mice, Inbred C57BL
- Mannose-Binding Lectins/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Chemokine CXCL9/metabolism
- Chemokine CXCL9/genetics
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Neoplasms/immunology
- Neoplasms/genetics
- Gene Knock-In Techniques
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Monocytes/immunology
- Monocytes/metabolism
- Receptors, Chemokine
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Kenneth H. Hu
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Tristan Courau
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Nicholas F. Kuhn
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
| | - Alexis J. Combes
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
- ImmunoX Initiative, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
| |
Collapse
|
37
|
Lau VWC, Mead GJ, Varyova Z, Mazet JM, Krishnan A, Roberts EW, Prota G, Gileadi U, Midwood KS, Cerundolo V, Gérard A. Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models. Nat Commun 2025; 16:2. [PMID: 39746898 PMCID: PMC11696141 DOI: 10.1038/s41467-024-54791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Loss of IFNγ-sensitivity by tumours is thought to be a mechanism enabling evasion, but recent studies suggest that IFNγ-resistant tumours can be sensitised for immunotherapy, yet the underlying mechanism remains unclear. Here, we show that IFNγ receptor-deficient B16-F10 mouse melanoma tumours are controlled as efficiently as WT tumours despite their lower MHC class I expression. Mechanistically, IFNγ receptor deletion in B16-F10 tumours increases IFNγ availability, triggering a remodelling of the immune landscape characterised by inflammatory monocyte infiltration and the generation of 'mono-macs'. This altered myeloid compartment synergises with an increase in antigen-specific CD8+ T cells to promote anti-tumour immunity against IFNγ receptor-deficient tumours, with such an immune crosstalk observed around blood vessels. Importantly, analysis of transcriptomic datasets suggests that similar immune remodelling occurs in human tumours carrying mutations in the IFNγ pathway. Our work thus serves mechanistic insight for the crosstalk between tumour IFNγ resistance and anti-tumour immunity, and implicates this regulation for future cancer therapy.
Collapse
Affiliation(s)
- Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Gracie J Mead
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zofia Varyova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anagha Krishnan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Immunodynamics Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gennaro Prota
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
39
|
Elewaut A, Estivill G, Bayerl F, Castillon L, Novatchkova M, Pottendorfer E, Hoffmann-Haas L, Schönlein M, Nguyen TV, Lauss M, Andreatta F, Vulin M, Krecioch I, Bayerl J, Pedde AM, Fabre N, Holstein F, Cronin SM, Rieser S, Laniti DD, Barras D, Coukos G, Quek C, Bai X, Muñoz I Ordoño M, Wiesner T, Zuber J, Jönsson G, Böttcher JP, Vanharanta S, Obenauf AC. Cancer cells impair monocyte-mediated T cell stimulation to evade immunity. Nature 2025; 637:716-725. [PMID: 39604727 PMCID: PMC7617236 DOI: 10.1038/s41586-024-08257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
The tumour microenvironment is programmed by cancer cells and substantially influences anti-tumour immune responses1,2. Within the tumour microenvironment, CD8+ T cells undergo full effector differentiation and acquire cytotoxic anti-tumour functions in specialized niches3-7. Although interactions with type 1 conventional dendritic cells have been implicated in this process3-5,8-10, the underlying cellular players and molecular mechanisms remain incompletely understood. Here we show that inflammatory monocytes can adopt a pivotal role in intratumoral T cell stimulation. These cells express Cxcl9, Cxcl10 and Il15, but in contrast to type 1 conventional dendritic cells, which cross-present antigens, inflammatory monocytes obtain and present peptide-major histocompatibility complex class I complexes from tumour cells through 'cross-dressing'. Hyperactivation of MAPK signalling in cancer cells hampers this process by coordinately blunting the production of type I interferon (IFN-I) cytokines and inducing the secretion of prostaglandin E2 (PGE2), which impairs the inflammatory monocyte state and intratumoral T cell stimulation. Enhancing IFN-I cytokine production and blocking PGE2 secretion restores this process and re-sensitizes tumours to T cell-mediated immunity. Together, our work uncovers a central role of inflammatory monocytes in intratumoral T cell stimulation, elucidates how oncogenic signalling disrupts T cell responses through counter-regulation of PGE2 and IFN-I, and proposes rational combination therapies to enhance immunotherapies.
Collapse
Affiliation(s)
- Anais Elewaut
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Guillem Estivill
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Felix Bayerl
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Leticia Castillon
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Elisabeth Pottendorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lisa Hoffmann-Haas
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Schönlein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Trung Viet Nguyen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Lauss
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Francesco Andreatta
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Milica Vulin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Izabela Krecioch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jonas Bayerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna-Marie Pedde
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Naomi Fabre
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Felix Holstein
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Shona M Cronin
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sarah Rieser
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, University Hospital of Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Research Center, Lausanne, Switzerland
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Miquel Muñoz I Ordoño
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Göran Jönsson
- Lund University Cancer Center, Division of Oncology, Lund University, Lund, Sweden
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sakari Vanharanta
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna C Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
40
|
Saito M, McDonald KA, Grier AK, Meghwani H, Rangel-Moreno J, Becerril-Villanueva E, Gamboa-Dominguez A, Bruno J, Beck CA, Proctor RA, Kates SL, Schwarz EM, Muthukrishnan G. Immune Checkpoint Molecules as Biomarkers of Staphylococcus aureus Bone Infection and Clinical Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630837. [PMID: 39803468 PMCID: PMC11722373 DOI: 10.1101/2024.12.30.630837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments don't exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are upregulated in the serum and the bone marrow of S. aureus PJI patients. A multiparametric nomogram combining high serum immune checkpoint protein levels with low proinflammatory cytokine levels (IFN-γ, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, and blockade of checkpoint proteins could potentially improve outcomes following surgery.
Collapse
Affiliation(s)
- Motoo Saito
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katya A. McDonald
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex K. Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Himanshu Meghwani
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Enrique Becerril-Villanueva
- Psychoimmunology laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz.” Mexico City, Mexico
| | - Armando Gamboa-Dominguez
- Deparment of Pathology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Bruno
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
41
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
42
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
43
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
44
|
Schol P, van Elsas MJ, Middelburg J, Nijen Twilhaar MK, van Hall T, van der Sluis TC, van der Burg SH. Myeloid effector cells in cancer. Cancer Cell 2024; 42:1997-2014. [PMID: 39658540 DOI: 10.1016/j.ccell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
The role of myeloid cells in tumor immunity is multifaceted. While dendritic cells support T cell-mediated tumor control, the highly heterogenous populations of macrophages, neutrophils, and immature myeloid cells were generally considered immunosuppressive. This view has led to effective therapies reinvigorating tumor-reactive T cells; however, targeting the immunosuppressive effects of macrophages and neutrophils to boost the cancer immunity cycle was clinically less successful. Recent studies interrogating the role of immune cells in the context of successful immunotherapy affirm the key role of T cells, but simultaneously challenge the idea that the cytotoxic function of T cells is the main contributor to therapy-driven tumor regression. Rather, therapy-activated intra-tumoral T cells recruit and activate or reprogram several myeloid effector cell types, the presence of which is necessary for tumor rejection. Here, we reappreciate the key role of myeloid effector cells in tumor rejection as this may help to shape future successful immunotherapies.
Collapse
Affiliation(s)
- Pieter Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tetje C van der Sluis
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
45
|
Cai Y, Han Z, Shen J, Zou Z, Guo J, Liang Y, Li S, Liao H, Ren Z, Peng H, Fu YX. Concurrent intratumoural T reg cell depletion and CD8 + T cell expansion via a cleavable anti-4-1BB-interleukin-15 fusion protein. Nat Biomed Eng 2024:10.1038/s41551-024-01303-6. [PMID: 39623095 DOI: 10.1038/s41551-024-01303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Potent agonists of the inducible co-stimulatory receptor 4-1BB are too toxic for patients with advanced cancer. Here, on the basis of observations of a weak agonist of 4-1BB depleting regulatory T (Treg) cells within the tumour microenvironment without leading to substantial restoration of dysfunctional cytotoxic T cells (CTLs), we show that effective tumour control can be achieved via concurrent Treg cell depletion and CTL expansion through an anti-4-1BB antibody fused to interleukin-15 (IL-15) via a peptide sensitive to tumour proteases. In mouse models of advanced cancers, intraperitoneal injection of the bifunctional protein attenuated the activity of the interleukin mostly in the periphery of the primary tumour while allowing for the expansion of CTLs within the tumour microenvironment, led to more effective tumour inhibition and to lower systemic toxicity than treating the cancers with combinatorial treatment with unlinked anti-4-1BB antibody and IL-15, and reduced the resistance of tumours to checkpoint blockade. Concurrent eradication of Treg cells and activation of tumour-infiltrating lymphocytes may represent a general strategy for the effective control of advanced metastatic tumours.
Collapse
Affiliation(s)
- Yueqi Cai
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zilong Han
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
| | - Yong Liang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Shijie Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Changping Laboratory, Changping District, Beijing, China
| | - Huiping Liao
- Changping Laboratory, Changping District, Beijing, China
| | - Zhenhua Ren
- Changping Laboratory, Changping District, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Changping Laboratory, Changping District, Beijing, China.
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
46
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
47
|
Fan CY, Zheng JS, Hong LL, Ling ZQ. Macrophage crosstalk and therapies: Between tumor cells and immune cells. Int Immunopharmacol 2024; 141:113037. [PMID: 39213868 DOI: 10.1016/j.intimp.2024.113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In the tumor microenvironment, macrophages exhibit different phenotypes and functions in response to various signals, playing a crucial role in the initiation and progression of tumors. Several studies have indicated that intervention in the functions of different phenotypes of tumor-associated macrophages causes significant changes in the crosstalk between tumor cells and immune-related cells, such as T, NK, and B cells, markedly altering the course of tumor development. However, only a few specific therapeutic strategies targeting macrophages are yet available. This article comprehensively reviews the molecular biology mechanisms through which tumor-associated macrophages mediate the crosstalk between tumor cells and immune-related cells. Also, various treatment methods currently used in clinical practice and those in the clinical trial phase have been summarized, and the novel strategies for targeting tumor-associated macrophages have been categorized accordingly.
Collapse
Affiliation(s)
- Cheng-Yuan Fan
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
| | - Jing-Sen Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
48
|
Peng J, Yang Q, Lei R, Wang Y, Liu G, Qian Z. Preferential activation of type I interferon-mediated antitumor inflammatory signaling by CuS/MnO 2/diAMP nanoparticles enhances anti-PD-1 therapy for sporadic colorectal cancer. J Nanobiotechnology 2024; 22:699. [PMID: 39533269 PMCID: PMC11555826 DOI: 10.1186/s12951-024-02970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Converting the "cold" tumor microenvironment (TME) to a "hot" milieu has become the prevailing approach for enhancing the response of immune-excluded/immunosuppressed colorectal cancer (CRC) patients to immune checkpoint blockade (ICB) therapy. During this process, inflammation accompanied by different kinds of chemokines/cytokines inevitably occurs. However, some activated inflammatory signals exhibit protumor potency. Therefore, strategies that preferentially activate antitumor inflammatory signaling rather than tumor-promoting signaling need to be developed. Herein, we constructed a STING agonist-loaded CuS/MnO2 bimetallic nanosystem, termed diAMP-BCM. BCM with an optimized Cu/Mn ratio efficiently promoted the activation of proinflammatory signaling, and in combination with the STING agonist diAMP, diAMP-BCM controllably activated tumoricidal inflammatory signaling in APCs. DiAMP-BCM can efficiently generate ROS and promote the activation of STING, which induces the apoptosis of cancer cells and promotes the recruitment of monocytes while facilitating the polarization of macrophages and maturation of DCs. MC38 and CT26 CRC models were established to evaluate the in vivo antitumor effects of diAMP-BCM. Combined with ICB therapy, diAMP-BCM enables the rebuilding of tumor milieus with efficient tumor growth inhibition and alleviation of T-cell exhaustion, particularly in distal tumors, in sporadic colorectal cancer therapy. This study established a nanoplatform to promote the preferential activation of antitumor inflammatory signaling, rebuild the T-cell repertoire and alleviate T-cell exhaustion to enhance cancer ICB immunotherapy.
Collapse
Affiliation(s)
- Jinrong Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qian Yang
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Rong Lei
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yue Wang
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Gansha Liu
- Center of Scientific Research, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
50
|
Yin Y, Wang Y, Yu X, Li Y, Zhao Y, Wang Y, Liu Z. Spatial Isoforms Reveal the Mechanisms of Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402242. [PMID: 39312471 DOI: 10.1002/advs.202402242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/16/2024] [Indexed: 09/25/2024]
Abstract
In esophageal squamous cell carcinoma (ESCC), lymph node (LN) metastasis is associated with poor survival. Emerging evidence has demonstrated elevated CD8+ T-cell levels in metastatic LNs following immunotherapy and increased chemoresistance. However, the underlying regulatory mechanisms of CD8+ T cells in chemoresistant/metastatic patients have not been elucidated. Given that metastasis is linked to aberrant splicing patterns, transcripts with alternative splicing forms also play a critical role. With spatial transcriptomics (ST), spatial isoform transcriptomics (SiT), single-cell RNA sequencing (scRNA-seq), and T-cell receptor (TCR) sequencing, the spatial isoforms are analyzed quantitatively in human solid tumors and LNs. These isoforms are classified according to expression and spatial distribution patterns and proposed that the temporal heterogeneity in isoforms is attributed to isoform biogenesis dynamics. C1QC+ tumor-associated macrophages (TAMs) contribute to the formation of metastases in the context of both immunotherapy and chemotherapy. Additionally, CD74 isoforms can be targeted by mRNA drugs, such as antisense oligonucleotides (ASOs) and RNA interference (RNAi), to prevent chemoresistance and metastasis. Overall, this work suggests that C1QC+ TAMs interact with CD8+ CXCL13+ Tex cells via enrichment with the CD74 isoform in the ESCC 's metastatic lymph node.
Collapse
Affiliation(s)
- Yin Yin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan, 450000, China
| |
Collapse
|