1
|
Zhao J, Zhang Y, Wang Z, Yang D. Incorporation of Cages into Gels: Access to a New Class of Soft Materials with Well-Defined Functionality. Chemistry 2025; 31:e202404363. [PMID: 39876063 DOI: 10.1002/chem.202404363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications. In particular, the host-guest chemistry endows the hybrid gel materials with possibilities for guest-specific responsive systems.
Collapse
Affiliation(s)
- Jie Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yijie Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Zhe Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Dong Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Zhang M, Qiu M, Li Z, Xu R, Wang Y, Wang W, Snow CD, Kipper MJ, Belfiore LA, Tang J. Luminescent bio-sensors via co-assembly of hen egg white lysozyme with Eu 3+/Tb 3+-complexes. J Mater Chem B 2025; 13:3198-3208. [PMID: 39917862 DOI: 10.1039/d4tb01766h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Protein crystals have advantageous properties as framework materials, such as porosity and organized, high-density functional groups with the potential for guest specificity. Thus, protein crystal materials open up vast opportunities for fluorescent species doping and drug sensing. In this work, we explore this frontier by combining two lanthanide complexes with hen egg white lysozyme (HEWL) and directly obtaining co deposited structures in one step using an anti-solvent method different from the previous two-step method. Cross-linking of the protein was achieved using glutaraldehyde, ensuring the stability of the assembly in diverse solvent environments. The use of glutaraldehyde achieved protein cross-linking, ensuring the stability of the components in various solvent environments, including no leakage of fluorescent substances in ultrapure water and anhydrous ethanol. Differential fluorescence quenching effects of amino acids on the two doped luminescent complexes were observed. Introduction of amino acids, varying in concentration and type, resulted in distinct fluorescence enhancement or quenching effects on the protein assembly loaded with the complexes, and the detection results are reflected through different fitting equations and parameters. By exploring the application of this hybrid material for amino acid detection, this work lays the groundwork for broader applications.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Miao Qiu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zengkun Li
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Rui Xu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
3
|
Durmisevic A, Regeni I, Namoro ME, Baksi A, Clever GH. Phenazinium- and Malachite Green-Based Pd(II) Cages: Chiroptical Discrimination of Nucleoside Triphosphates. Chemistry 2025; 31:e202403679. [PMID: 39469986 PMCID: PMC11771618 DOI: 10.1002/chem.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024]
Abstract
Organic chromophores have been successfully implemented into supramolecular systems to bestow them with distinct photophysical properties for various applications, ranging from solar energy conversion, photochemical reactions or as receptors for guest molecules with optical readout. We had previously introduced first members of the large family of coal-tar dyes (methylene blue, crystal violet and rhodamine) as integral components of coordination cages. Here, we add two new chromophores, malachite green (MGP) and a purple phenazinium dye (PHP), serving as backbones of bis-monodentate banana-shaped ligands with pyridine donors. We show the formation of corresponding green and purple coloured Pd2L4 coordination cages and investigate their interaction with chiral guest molecules via UV-Vis and CD spectroscopy. The PHP cage can be used to recognize nucleoside triphosphates, based on chirality transfer from the guests to the structurally flexible helicate. In combination with the already known methylene blue cage MBP we could further differentiate between all four canonical NTPs through characteristic changes in the observed CD signatures.
Collapse
Affiliation(s)
- Armin Durmisevic
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Irene Regeni
- Leiden Institute of ChemistryLeiden University2333CCLeidenThe Netherlands
| | - Mark Ely Namoro
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| | - Ananya Baksi
- Department of ChemistryJadavpur UniversityKolkata, West Bengal700032India
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 644227DortmundGermany
| |
Collapse
|
4
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
5
|
Shahzad SA, Javid T, Assiri MA, Pervaiz A, Irshad H, Han FS, He DD. Drug molecules beyond chemical biology: fluorescence- and DFT-based investigations for fluoride ion sensing and the trace detection of chloroform. RSC Adv 2024; 14:37993-38001. [PMID: 39610822 PMCID: PMC11603578 DOI: 10.1039/d4ra04844j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Excessive unmonitored use of fluoride has remained a threatening issue for a long time now as its long-term use is linked to several health issues. Similarly, chloroform is a highly carcinogenic solvent that requires proper monitoring. The increasing demand for a convenient, selective and sensitive fluoride and chloroform sensor intrigued us to utilize etoricoxib (ECX) as a sensor as it is highly safe and easily available. The photophysical properties of ECX, which were previously unexplored, were now studied with increasing water fractions and a significant aggregation-induced emission enhancement (AIEE) was seen through fluorescence spectroscopy. ECX was also successfully used for the trace level detection of chloroform through a significant emission enhancement. Similarly, the ECX-based sensor successfully detected fluoride ions by showing enhancement in emission intensity with maximum emission wavelength at 373 nm. Through fluorescence titration experiments, the effects of different conditions and interfering species on the sensing efficiency of ECX were studied, and the results showed that the sensor was highly selective and sensitive towards fluoride, with a limit of detection of 20 nM. Other than fluorescence spectroscopy, the type of interaction between the sensor and analyte was also studied through UV-Vis spectroscopy, revealing a non-covalent type of interaction, which was further validated through DFT studies. Frontier molecular orbital (FMO) analysis was performed along with density of state (DOS) studies to investigate the energy levels of the orbitals. Non-covalent interaction (NCI) and natural bond orbital (NBO) analysis provided information about the types of interaction and charge transfer. ECX has the potential to be used for real-time sensing applications and could be used for sensing moisture and fluoride in real samples.
Collapse
Affiliation(s)
- Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, University Road Abbottabad 22060 Pakistan
| | - Tayyeba Javid
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, University Road Abbottabad 22060 Pakistan
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
- Central Labs, King Khalid University AlQura'a, Abha, P. O. Box 960 61413 Saudi Arabia
| | - Aqsa Pervaiz
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, University Road Abbottabad 22060 Pakistan
| | - Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, University Road Abbottabad 22060 Pakistan
| | - Fu-She Han
- Changchun Institute of Applied Chemistry, Chinese Academy of Science 5625 Renming Street Changchun Jilin 200032 China
| | - Di Demi He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
6
|
Ebbert KE, Benchimol E, Platzek A, Drechsler C, Openy J, Hasegawa S, Holstein JJ, Clever GH. Ring-Size Control and Guest-Induced Circularly Polarized Luminescence in Heteroleptic Pd 3A 3B 3 and Pd 4A 4B 4 Assemblies. Angew Chem Int Ed Engl 2024; 63:e202413323. [PMID: 39072876 DOI: 10.1002/anie.202413323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Two new structural motifs within the class of heteroleptic PdnAnBn assemblies, namely syn-cis-Pd3A3B3 bowls and bowl- (syn) or saddle- (anti) shaped cis-Pd4A4B4 rings are introduced. All of the ten examples share a common longer fluorenone-based bis-monodentate ligand, equipped with meta-pyridine donor groups. The ring size (3- vs. 4-membered) and conformational preference (bowl vs. saddle) are controlled by the choice of the shorter ligand. These carry para-pyridine donors, different aromatic backbones (benzene, thiophene or selenophene) and either no or small or bulky endohedral substituents, serving to control the nuclearity of the heteroleptic rings through different effects (ligand angle, charge distribution or backbone bulk). Moreover, the luminescence of the fluorenone ligand is conserved in the formed architectures. Emission intensity as well as host-guest properties vary depending on the inward-pointing functions. All Pd3A3B3 assemblies are shown to bind chiral guest BINOL bis-sulfonate which imparts its chirality to the entire host-guest complex. This results in a guest-induced circular dichroism (CD) and circularly polarized luminescence (CPL) with dissymmetry factor glum up to 10-3.
Collapse
Affiliation(s)
- Kristina E Ebbert
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - André Platzek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Joseph Openy
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Shota Hasegawa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
8
|
Mohammed FA, Xiao T, Wang L, Elmes RBP. Macrocyclic receptors for anion recognition. Chem Commun (Camb) 2024; 60:11812-11836. [PMID: 39323234 DOI: 10.1039/d4cc04521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Macrocyclic receptors have emerged as versatile and efficient molecular tools for the recognition and sensing of anions, playing a pivotal role in molecular recognition and supramolecular chemistry. The following review provides an overview of the recent advances in the design, synthesis, and applications of macrocyclic receptors specifically tailored for anion recognition. The unique structural features of macrocycles, such as their well-defined structures and pre-organised binding sites, contribute to their exceptional anion-binding capabilities that have led to their application across a broad range of the chemical and biological sciences.
Collapse
Affiliation(s)
- Farhad Ali Mohammed
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Leyong Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Robert B P Elmes
- Department of Chemistry, Maynooth University, National University of Ireland, Maynooth, Co, Kildare, Ireland.
- SSPC - the Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, V94 T9PX Limerick, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, Co. Kildare, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
9
|
Stauber JM. Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition. Angew Chem Int Ed Engl 2024; 63:e202408751. [PMID: 38829965 DOI: 10.1002/anie.202408751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Multivalency is a fundamental principle in nature that leads to high-affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin-carbohydrate interactions that participate in many essential biological processes. Designing high-affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self-assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well-defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure-function relationships governing lectin-saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.
Collapse
Affiliation(s)
- Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, La Jolla, 92092, San Diego, California, United States
| |
Collapse
|
10
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
11
|
Chakraborty D, Pradhan S, Clegg JK, Mukherjee PS. Mechanically Interlocked Water-Soluble Pd 6 Host for the Selective Separation of Coal Tar-Based Planar Aromatic Molecules. Inorg Chem 2024; 63:14924-14932. [PMID: 39129449 DOI: 10.1021/acs.inorgchem.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sailendra Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jack Kay Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
13
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
14
|
Kim D, Kim G, Kim G, Park J, Han J, Hossain MM, Jung OS, Lee YA. M(II) effect on encapsulation of guests into a series of M 3L 2 chiral cages: enantio-recognition. Dalton Trans 2024; 53:10704-10711. [PMID: 38869436 DOI: 10.1039/d4dt01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Self-assembly of M(ClO4)2 (M2+ = Ni2+, Cu2+, and Zn2+) with (1S,1'S,1''S,2R,2'R,2''R)-(benzenetricarbonyltris(azanediyl))tris(2,3-dihydro-1H-indene-2,1-diyl) trinicotinate (s,r-L) and the corresponding enantiomer (r,s-L) as a pair of chiral tridentate donors gives rise to the chiral cage pairs [M3(s,r- and r,s-L)2](ClO4)6. For the two pairs of [(Me2CO)(H2O)@M3(r,-s and s,r-L)2](ClO4)6 (M2+ = Ni2+ and Zn2+), the inner cavity is occupied by both an acetone and a single water molecule, whereas for the copper(II) pair of [Me2CO@Cu3(r,s- and s,r-L)2](ClO4)6 under the same conditions, the cavity is filled by only one acetone molecule. Thus, the encapsulation of guest molecules into the cages during self-assembly shows significant metal(II) ion effects. These chiral cages are effective for the enantio-recognition of chiral (S)-2-butanol and (R)-2-butanol via the shifts of the electrochemical oxidation potentials obtained by the linear sweep voltammetry (LSV) technique, density functional theory (DFT) calculations, and the chiral 2-butanol adsorption in the single-crystal-to-single-crystal (SCSC) mode.
Collapse
Affiliation(s)
- Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Gyeongmin Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Gyeongwoo Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Junmyeong Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Jihun Han
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Mohammad Mozammal Hossain
- Department of Electrochemistry, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Young-A Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
15
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
16
|
Hosoya S, Shoji S, Nakanishi T, Kobayashi M, Wang M, Fushimi K, Taketsugu T, Kitagawa Y, Hasegawa Y. Guest-Responsive Near-Infrared-Luminescent Metal-Organic Cage Organized by Porphyrin Dyes and Yb(III) Complexes. Inorg Chem 2024; 63:10108-10113. [PMID: 38771149 DOI: 10.1021/acs.inorgchem.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic cages (MOCs) with luminophores have significant advantages for the facile detection of specific molecules based on turn-on or turn-off luminescence changes induced by host-guest complexation. One important challenge is the development of turn-on-type near-infrared (NIR)-luminescent MOCs. In this study, we synthesized a novel MOC consisting of two porphyrin dyes linked by four Yb(III) complexes, which exhibit bimodal red and NIR fluorescence signals upon photoexcitation of the porphyrin π system. Single-crystal X-ray structural analysis and computational molecular modeling revealed that planar aromatic perfluorocarbons were intercalated into the MOC. The tight packing between the MOC and guests enhanced the NIR fluorescence of Yb(III) by suppressing energy transfer from the photoexcited porphyrin to oxygen molecules. Guest-responsive turn-on NIR fluorescence changes in an MOC were successfully demonstrated.
Collapse
Affiliation(s)
- Shota Hosoya
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Sunao Shoji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Takayuki Nakanishi
- Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masato Kobayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
17
|
Ling QH, Fu Y, Lou ZC, Yue B, Guo C, Hu X, Lu W, Hu L, Wang W, Zhang M, Yang HB, Xu L. Naphthalene Diimide-Based Metallacage as an Artificial Ion Channel for Chloride Ion Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308181. [PMID: 38459671 DOI: 10.1002/advs.202308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Indexed: 03/10/2024]
Abstract
Developing synthetic molecular devices for controlling ion transmembrane transport is a promising research field in supramolecular chemistry. These artificial ion channels provide models to study ion channel diseases and have huge potential for therapeutic applications. Compared with self-assembled ion channels constructed by intermolecular weak interactions between smaller molecules or cyclic compounds, metallacage-based ion channels have well-defined structures and can exist as single components in the phospholipid bilayer. A naphthalene diimide-based artificial chloride ion channel is constructed through efficient subcomponent self-assembly and its selective ion transport activity in large unilamellar vesicles and the planar lipid bilayer membrane by fluorescence and ion-current measurements is investigated. Molecular dynamics simulations and density functional theory calculations show that the metallacage spans the entire phospholipid bilayer as an unimolecular ion transport channel. This channel transports chloride ions across the cell membrane, which disturbs the ion balance of cancer cells and inhibits the growth of cancer cells at low concentrations.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhen-Chen Lou
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bangkun Yue
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518055, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
18
|
Li S, Gao X, Nie L, Bu L, Dong G, Song D, Liu W, Meng D, Geng X, Zhou Q. Strategy for establishing sensitive fluorescent sensor toward p-nitrophenol integrating magnetic molecularly imprinted materials and carbon dots. Talanta 2024; 272:125749. [PMID: 38359723 DOI: 10.1016/j.talanta.2024.125749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
In this work, a sensitive fluorescent sensor toward p-nitrophenol (4-NP) integrating magnetic molecularly imprinted materials and carbon dots (CDs) was proposed. Magnetic material and CDs derived from K3 [Fe(CN)6] and glucose were simultaneously obtained through simple one-step hydrothermal process. Introducing of molecularly imprinted materials based magnetic solid phase extraction (MSPE) endowed the constructed fluorescent sensor with higher sensitivity and selectivity. The significant factors affecting the sensitivity of the sensor toward 4-NP were optimized. Good linearity was obtained between fluorescent intensity of CDs and different concentration of 4-NP from 0.08 to 62.5 μg L-1. The sensitivity of constructed sensor was very low with detection limit of 0.02 μg L-1. Reliable applicability was also proved by the well-pleasing recoveries of 94.2-97.8% with different spiked concentrations of 4-NP in real environmental waters.
Collapse
Affiliation(s)
- Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xiaozhong Gao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
19
|
Neukirch L, Kulas MD, Holstein JJ, Clever GH. Non-Templated Assembly of D 5h-Symmetric Pd 5L 10 Rings by Precise Ligand Angle Adjustment. Chemistry 2024; 30:e202400132. [PMID: 38441728 DOI: 10.1002/chem.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/20/2024]
Abstract
We report a series of Pd(II)nL2n coordination rings for which nuclearity is controlled by the binding angle of the corresponding bis-monodentate bridging ligands. Judicious choice of the angle within a family of rather rigid ligands allowed for the first-time to synthesize a homoleptic five-membered Pd5L10 ring that does not require any template to form. We demonstrate that control over the ring size is maintained both in the solid-, solution-, and gas-phase. Two X-ray structures of five-membered rings from ligands with ideal angles (yielding a perfect pentagonal ring) vs. suboptimal angles (resulting in a highly distorted structure) illustrate the importance of the correct ligand geometry. A mathematical model for estimating the expected ring size based on the ligand angle was derived and DFT computations show that ring-strain is the major factor determining the assembly outcome.
Collapse
Affiliation(s)
- Laura Neukirch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Milan D Kulas
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
20
|
Séjourné S, Labrunie A, Dalinot C, Canevet D, Guechaichia R, Bou Zeid J, Benchohra A, Cauchy T, Brosseau A, Allain M, Chamignon C, Viger-Gravel J, Pintacuda G, Carré V, Aubriet F, Vanthuyne N, Sallé M, Goeb S. Chiral Truxene-Based Self-Assembled Cages: Triple Interlocking and Supramolecular Chirogenesis. Angew Chem Int Ed Engl 2024; 63:e202400961. [PMID: 38284742 DOI: 10.1002/anie.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex. The maximum separation between both facing chiral units in the assembly is fixed by the intermetallic distance within the lateral bis-ruthenium complex (8.4 Å). The resulting chiral cavity was shown to encapsulate polyaromatic guest molecules, but also to afford a chiral triply interlocked [2]catenane structure. The formation of the latter occurs at high concentration, while its disassembly could be achieved by the addition of a planar achiral molecule. Interestingly the planar achiral molecule exhibits induced circular dichroism signature when trapped within the chiral cavity, thus demonstrating the ability of the cage to induce supramolecular chirogenesis.
Collapse
Affiliation(s)
- Simon Séjourné
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | | | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Cécile Chamignon
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Jasmine Viger-Gravel
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France
| | | | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, FSCM, Chiropole, F-13397, Marseille, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
21
|
Wu K, Benchimol E, Baksi A, Clever GH. Non-statistical assembly of multicomponent [Pd 2ABCD] cages. Nat Chem 2024; 16:584-591. [PMID: 38243023 DOI: 10.1038/s41557-023-01415-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Self-assembled hosts, inspired by biological receptors and catalysts, show application potential in sustainable synthesis, energy conversion and medicine. Implementing multiple functionalities in the form of distinguishable building blocks, however, is difficult without risking narcissistic self-sorting or a statistical mess. Here we report a systematic series of integratively self-assembled heteroleptic cages in which two square-planar PdII cations are bridged by four different bis-pyridyl ligands, A, B, C and D, via synergistic effects to exclusively form a single isomer-the lantern-shaped cage [Pd2ABCD]. This self-sorting goal-forming just one out of 55 possible structures-is reached under full thermodynamic control and can be realized progressively (by combining progenitors, such as [Pd2A2C2] with [Pd2B2D2]), directly from ligands and PdII cations or by mixing all four corresponding homoleptic cages. The rational design of complex multicomponent assemblies that enables the modular incorporation of diverse chemical moieties will advance their applicability in functional nanosystems.
Collapse
Affiliation(s)
- Kai Wu
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Ananya Baksi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
22
|
Yin F, Yang J, Zhou LP, Meng X, Tian CB, Sun QF. 54 K Spin Transition Temperature Shift in a Fe 6L 4 Octahedral Cage Induced by Optimal Fitted Multiple Guests. J Am Chem Soc 2024; 146:7811-7821. [PMID: 38452058 DOI: 10.1021/jacs.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Spin-crossover (SCO) coordination cages are at the forefront of research for their potential in crafting next-generation molecular devices. However, due to the scarcity of SCO hosts and their own limited cavities, the interplay between the SCO host and the multiple guests binding has remained elusive. In this contribution, we present a family of pseudo-octahedral coordination cages (M6L4, M = ZnII, CoII, FeII, and NiII) assembled from a tritopic tridentate ligand L with metal ions. The utilization of FeII ion leads to the successful creation of the Fe6L4-type SCO cage. Host-guest studies of these M6L4 cages reveal their capacity to encapsulate four adamantine-based guests. Notably, the spin transition temperature T1/2 of Fe6L4 is dependent on the multiple guests encapsulated. The inclusion of adamantine yields an unprecedented T1/2 shift of 54 K, a record shift in guest-mediated SCO coordination cages to date. This drastic shift is ascribed to the synergistic effect of multiple guests coupled with their optimal fit within the host. Through a straightforward thermodynamic cycle, the binding affinities of the high-spin (HS) and low-spin (LS) states are separated from their apparent binding constant. This result indicates that the LS state has a stronger binding affinity for the multiple guests than the HS state. Exploring the SCO thermodynamics of host-guest complexes allows us to examine the optimal fit of multiple guests to the host cavity. This study reveals that the T1/2 of the SCO host can be manipulated by the encapsulation of multiple guests, and the SCO cage is an ideal candidate for determining the multiple guest fit.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Prajapati D, Bhandari P, Zangrando E, Mukherjee PS. A water-soluble Pd 4 molecular tweezer for selective encapsulation of isomeric quinones and their recyclable extraction. Chem Sci 2024; 15:3616-3624. [PMID: 38455025 PMCID: PMC10915840 DOI: 10.1039/d3sc05093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Quinones (QN) are one of the main components of diesel exhaust particulates that have significant detrimental effects on human health. Their extraction and purification have been challenging tasks because these atmospheric particulates exist as complex matrices consisting of inorganic and organic compounds. In this report, we introduce a new water soluble Pd4L2 molecular architecture (MT) with an unusual tweezer-shaped structure obtained by self-assembly of a newly designed phenothiazine-based tetra-imidazole donor (L) with the acceptor cis-[(tmeda)Pd(NO3)2] (M) [ tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. The molecular tweezer encapsulates some quinones existing in diesel exhaust particulates (DEPs) leading to the formation of host-guest complexes in 1 : 1 molar ratio. Moreover, MT binds phenanthrenequinone (PQ) more strongly than its isomer anthraquinone (AQ), an aspect that enables extraction of PQ with a purity of 91% from an equimolar mixture of the two isomers. Therefore, MT represents an excellent example of supramolecular receptor capable of selective aqueous extraction of PQ from PQ/AQ with many cycles of reusability.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceuticals Sciences, University of Trieste Trieste 34127 Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
24
|
Qin D, Han Y, Jiang H, Hu L. A rhodamine coumarin-derived fluorescence probe that selectively detects Fe 3+ and measures radiation doses. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:403-410. [PMID: 38164930 DOI: 10.1039/d3ay01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We synthesized a fluorescence ratiometric probe by combining coumarin and rhodamine B with ethylenediamine to sense Fe3+ and measure ionizing radiation doses. The presence of Fe3+ caused rhodamine to transition from a closed helical structure to an open-ring structure. Additionally, fluorescence resonance energy transfer (FRET) occurred between coumarin and rhodamine B. As a result, the fluorescence intensity at 405 nm (I405) due to coumarin was decreased, whereas that at 585 nm (I585) derived from open-ring structure rhodamine B was increased. The ratio of I585 and I405 (I585/I405) linearly increased as the Fe3+ concentration increased. The probe sensed Fe3+ in a 0-110 μM range, with a lower limit of detection (LOD) of 0.226 μM. Inspired by Fricke dosimeters, we extended the probe to measure X-ray doses using the fluorescence methodology. The probe measured X-ray doses in a 0-30 Gy range with a lower LOD of 0.5 Gy. Additionally, the dosing capability was independent of the dosing rates. Our probe showed potential for detecting Fe3+ and measuring ionizing radiation doses.
Collapse
Affiliation(s)
- Danni Qin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
| | - Yaqi Han
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
| | - Hao Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Molinska P, Tarzia A, Male L, Jelfs KE, Lewis JEM. Diastereoselective Self-Assembly of Low-Symmetry Pd n L 2n Nanocages through Coordination-Sphere Engineering. Angew Chem Int Ed Engl 2023; 62:e202315451. [PMID: 37888946 PMCID: PMC10952360 DOI: 10.1002/anie.202315451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.
Collapse
Affiliation(s)
- Paulina Molinska
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Andrew Tarzia
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| | - Kim E. Jelfs
- Department of ChemistryImperial College London, Molecular Sciences Research Hub White City CampusWood LaneLondonW12 0BZUK
| | - James E. M. Lewis
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUK
| |
Collapse
|
26
|
La Cognata S, Amendola V. Recent applications of organic cages in sensing and separation processes in solution. Chem Commun (Camb) 2023; 59:13668-13678. [PMID: 37902039 DOI: 10.1039/d3cc04522f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Organic cages are three-dimensional polycyclic compounds of great interest in the scientific community due to their unique features, which generally include simple synthesis based on the dynamic covalent chemistry strategies, structural tunability and high selectivity. In this feature article, we present the advances over the last ten years in the application of organic cages as chemosensors or components in chemosensing devices for the determination of analytes (pollutants, analytes of biological interest) in complex aqueous media including wine, fruit juice, urine. Details on the recent applications of organic cages as selective (back-)extractants or masking agents for potential applications in relevant separation processes, such as the plutonium and uranium recovery by extraction, are also provided. Over the last ten years, organic cages with permanent porosity in the liquid and solid states have been highly appreciated as porous materials able to discriminate molecules of different sizes. These features, combined with good solvent processability and film-forming tendency, have proved useful in the fabrication of membranes for gas separation, solvent nanofiltration and water remediation processes. An overview of the recent applications of organic cages in membrane separation technologies is given.
Collapse
Affiliation(s)
- Sonia La Cognata
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy.
| |
Collapse
|
27
|
Sharma B, Gadi R. Analytical Tools and Methods for Explosive Analysis in Forensics: A Critical Review. Crit Rev Anal Chem 2023; 55:251-277. [PMID: 37934616 DOI: 10.1080/10408347.2023.2274927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
This review summarizes (i) compositions and types of improvised explosive devices; (ii) the process of collection, extraction and analysis of explosive evidence encountered in explosive and related cases; (iii) inter-comparison of analytical techniques; (iv) the challenges and prospects of explosive detection technology. The highlights of this study include extensive information regarding the National & International standards specified by USEPA, ASTM, and so on, for explosives detection. The holistic development of analytical tools for explosive analysis ranging from conventional methods to advanced analytical tools is also covered in this article. The most important aspect of this review is to make forensic scientists familiar with the challenges during explosive analysis and the steps to avoid them. The problems during analysis can be analyte-based, that is, interferences due to matrix or added molding/stabilizing agents, trace amount of parent explosives in post-blast samples and many more. Others are techniques-based challenges viz. specificity, selectivity, and sensitivity of the technique. Thus, it has become a primary concern to adopt rapid, field deployable, and highly sensitive techniques.
Collapse
Affiliation(s)
- Bhumika Sharma
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| | - Ranu Gadi
- Department of Applied Sciences & Humanities, Indira Gandhi Delhi Technical University for Women, Delhi, India
| |
Collapse
|
28
|
Singh M, Kumar J. Flourescence sensors for heavy metal detection: major contaminants in soil and water bodies. ANAL SCI 2023; 39:1829-1838. [PMID: 37531068 DOI: 10.1007/s44211-023-00392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Due to the increasing consumption of heavy metals, there is a rising need for specific and useful methods that are employed for the detection of heavy metals. Fluorescence sensing is a highly selective, rapid and biosensing technique that is employed in the determination of some heavy metals in any sample of soil or water, any other living person, the food being consumed or any other substance which are being used daily. These fluorescent methods are a type of analytical technique and they are mainly based on detection. Many types of metal conjugated molecules have been used of the detection of these heavy metals with various mechanisms. We have taken into account some specific sensor molecules as they were more suitable and easily accessible. These techniques that were employed in the detection of various heavy metals such as copper, lead and mercury have been discussed in the following review article.
Collapse
Affiliation(s)
- M Singh
- Chandigarh University, Mohali, Punjab, 140413, India
| | - J Kumar
- Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
29
|
Back HJ, Kim D, Kim D, Han J, Hossain MM, Jung OS, Lee YA. Formation Process of SiF 6@Cu 2L 4 Chiral Cage Pairs in a Glass Vessel: Catechol Oxidation Catalysis and Chiral Recognition. ACS OMEGA 2023; 8:39720-39729. [PMID: 37901500 PMCID: PMC10601440 DOI: 10.1021/acsomega.3c05659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
Self-assembly of CuX2 (X- = BF4-, PF6-, and SbF6-) with a pair of chiral bidentate ligands, (1R,2S)-(+)- and (1S,2R)-(-)-1-(nicotinamido)-2,3-dihydro-1H-inden-2-yl-nicotinate (r,s-L or s,r-L), in a mixture solvent including ethanol in a glass vessel gives rise to SiF62--encapsulated Cu2L4 chiral cage products. The SiF62- anion from the reaction of X- with SiO2 of the glass-vessel surface acts as a cage template or cage bridge. One of the products, [SiF6@Cu2(SiF6)(s,r-L)4]·3CHCl3·4EtOH, is one of the most effective heterogeneous catalysts for the oxidation of 3,5-di-tert-butylcatechol. Furthermore, an l-DOPA/d-DOPA pair is recognizable by the cyclic voltammetry (CV) signals of its combination with chiral cages [SiF6@Cu2(BF4)2(s,r- or r,s-L)4]·4CHCl3·2EtOH pair and [SiF6@Cu2(SiF6)(s,r- or r,s-L)4]·3CHCl3·4EtOH pair.
Collapse
Affiliation(s)
- Hyo Jeong Back
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Daeun Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwon Kim
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jihun Han
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Mohammad Mozammal Hossain
- Department
of Electrochemistry, Korea Institute of
Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Ok-Sang Jung
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Young-A Lee
- Department
of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
30
|
Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic Cages-Towards Nanostructured Smart Materials. Angew Chem Int Ed Engl 2023; 62:e202307552. [PMID: 37449543 DOI: 10.1002/anie.202307552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live-cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three-dimensional cage-based systems, this Review will provide the reader with the structure-dependent relationship between the employed cages and the properties of the materials.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
31
|
Marcinkowski D, Kubicki M, Consiglio G, Hnatejko Z, Majcher-Fitas AM, Podgajny R, Patroniak V, Gorczyński A. Unexpected structural complexity of d-block metallosupramolecular architectures within the benzimidazole-phenoxo ligand scaffold for crystal engineering aspects. Sci Rep 2023; 13:18055. [PMID: 37872235 PMCID: PMC10593740 DOI: 10.1038/s41598-023-45109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Design of metallosupramolecular materials encompassing more than one kind of supramolecular interaction can become deceptive, but it is necessary to better understand the concept of the controlled formation of supramolecular systems. Herein, we show the structural diversity of the bis-compartmental phenoxo-benzimidazole ligand H3L1 upon self-assembly with variety of d-block metal ions, accounting for factors such as: counterions, pH, solvent and reaction conditions. Solid-state and solution studies show that the parent ligand can accommodate different forms, related to (de)protonation and proton-transfer, resulting in the formation of mono-, bi- or tetrametallic architectures, which was also confirmed with control studies on the new mono-compartmental phenoxo-benzimidazole H2L2 ligand analogue. For the chosen architectures, structural variables such as porous character, magnetic behaviour or luminescence studies were studied to demonstrate how the form of H3L1 ligand affects the final form of the supramolecular architecture and observed properties. Such complex structural variations within the benzimidazole-phenoxo-type ligand have been demonstrated for the first time and this proof-of-concept can be used to integrate these principles in more sophisticated architectures in the future, combining both the benzimidazole and phenoxide subunits. Ultimately, those principles could be utilized for targeted manipulation of properties through molecular tectonics and crystal engineering aspects.
Collapse
Affiliation(s)
- Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università di Catania, 95125, Catania, Italy
| | - Zbigniew Hnatejko
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna M Majcher-Fitas
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
32
|
Mobili R, La Cognata S, Monteleone M, Longo M, Fuoco A, Serapian SA, Vigani B, Milanese C, Armentano D, Jansen JC, Amendola V. Gas Permeation through Mechanically Resistant Self-Standing Membranes of a Neat Amorphous Organic Cage. Chemistry 2023; 29:e202301437. [PMID: 37433050 DOI: 10.1002/chem.202301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
The synthesis and characterization of a novel film-forming organic cage and of its smaller analogue are here described. While the small cage produced single crystals suitable for X-ray diffraction studies, the large one was isolated as a dense film. Due to its remarkable film-forming properties, this latter cage could be solution processed into transparent thin-layer films and mechanically stable dense self-standing membranes of controllable thickness. Thanks to these peculiar features, the membranes were also successfully tested for gas permeation, reporting a behavior similar to that found with stiff glassy polymers such as polymers of intrinsic microporosity or polyimides. Given the growing interest in the development of molecular-based membranes, for example for separation technologies and functional coatings, the properties of this organic cage were investigated by thorough analysis of their structural, thermal, mechanical and gas transport properties, and by detailed atomistic simulations.
Collapse
Affiliation(s)
- Riccardo Mobili
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Sonia La Cognata
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Marcello Monteleone
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| | - Donatella Armentano
- Department of Chemistry & Chemical Technologies, University of Calabria, Via P. Bucci, 13/C, 87036, Rende (CS), Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS), 87036, Italy
| | - Valeria Amendola
- Department of Chemistry, University of Pavia, viale Torquato Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
33
|
Dorrat JC, Young RJ, Taylor CGP, Tipping MB, Blok AJ, Turner DR, McKay AI, Ovenden S, Ward MD, Dennison GH, Tuck KL. The preservation of sarin and O, O'-diisopropyl fluorophosphate inside coordination cage hosts. Dalton Trans 2023; 52:11802-11814. [PMID: 37272072 DOI: 10.1039/d3dt01378b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The host-guest chemistry of O,O'-diisopropyl fluorophosphate (DFP), a phosphonofluoridate G-series chemical warfare agent simulant, was investigated in the presence of a number of octanuclear cubic coordination cage hosts. The aim was to demonstrate cage-catalysed hydrolysis of DFP at near neutral pH: however, two octanuclear coordination cages, HPEG (containing water-solubilising PEG groups) and HW (containing water-solubilising hydroxymethyl groups), were actually found to increase the lifetime of DFP in aqueous buffer solution (pH 8.7). Crystallographic analysis of DFP with a structurally related host cage revealed that DFP binds to windows in the cage surface, not in the internal cavity. The phosphorus-fluorine bond is directed into the cavity rather than towards the external environment, with the cage/DFP association protecting DFP from hydrolysis. Initial studies with the chemical warfare agent (CWA) sarin (GB) with HPEG cage in a buffered solution also showed a drastically reduced rate of hydrolysis for sarin when bound in the host cage. The ability of these cages to inhibit hydrolysis of these P-F bond containing organophosphorus guests, by encapsulation, may have applications in forensic sample preservation and analysis.
Collapse
Affiliation(s)
- Jack C Dorrat
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia.
| | - Rosemary J Young
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia.
| | | | - Max B Tipping
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Andrew J Blok
- CBRN Defence Branch, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - David R Turner
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia.
| | - Alasdair I McKay
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia.
| | - Simon Ovenden
- CBRN Defence Branch, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Genevieve H Dennison
- CBRN Defence Branch, Sensors and Effectors Division, Defence Science and Technology Group, Fishermans Bend, VIC, 3207, Australia
- Weapon Seekers and Tactical Sensors Branch, Sensors and Effectors Division, Defence Science and Technology Group, Edinburgh, SA, 5111, Australia.
| | - Kellie L Tuck
- School of Chemistry, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
34
|
Liu HK, Ronson TK, Wu K, Luo D, Nitschke JR. Anionic Templates Drive Conversion between a Zn II9L 6 Tricapped Trigonal Prism and Zn II6L 4 Pseudo-Octahedra. J Am Chem Soc 2023. [PMID: 37440669 PMCID: PMC10375523 DOI: 10.1021/jacs.3c03981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
This work introduces the use of 8-aminoquinoline subcomponents to generate complex three-dimensional structures. Together with a tris(formylpyridine), 8-aminoquinoline condensed around ZnII templates to produce a tris(tridentate) ligand. This ligand is incorporated into either a tricapped trigonal prismatic ZnII9L6 structure or a pair of pseudo-octahedral ZnII6L4 diastereomers, with S4 and D2 symmetries. Introduction of a methyl group onto the aminoquinoline modulated the coordination sphere of ZnII, which favored the ZnII9L6 structure and disfavored the ZnII6L4 assembly. The tricapped trigonal prismatic ZnII9L6 architecture converted into a single ZnII6L4 cage diastereomer following the addition of a dianionic 4,4'-dinitrostilbene-2,2'-disulfonate guest. Four of these guests clustered tightly at the four windows of the ZnII6L4 cage, held in place through electrostatic interactions and hydrogen bonding, stabilize a single diastereomeric configuration with S4 symmetry.
Collapse
Affiliation(s)
- Hua-Kui Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Dong Luo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
35
|
Sheng TP, Sun CZ, Dai FR. Triphenylamine-Functionalized Coordination Cage as a Supramolecular Fluorescence Sensor for Sequential Detection of Aluminum Ions and Nitrofurantoin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294737 DOI: 10.1021/acsami.3c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (Ni-NTB), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. Ni-NTB exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al3+ and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of Ni-NTB on test strips enabled a quick naked-eye sequential sensing of Al3+ and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.
Collapse
Affiliation(s)
- Tian-Pu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Zhe Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Ghanbari B, Asadi Mofarrah L, Clegg JK. Selective Supramolecular Recognition of Nitroaromatics by a Fluorescent Metal-Organic Cage Based on a Pyridine-Decorated Dibenzodiaza-Crown Macrocyclic Co(II) Complex. Inorg Chem 2023; 62:7434-7445. [PMID: 37134276 DOI: 10.1021/acs.inorgchem.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two isomorphous fluorescent (FL) lantern-shaped metal-organic cages 1 and 2 were prepared by coordination-directed self-assembly of Co(II) centers with a new aza-crown macrocyclic ligand bearing pyridine pendant arms (Lpy). The cage structures were determined using single-crystal X-ray diffraction analysis, thermogravimetric, elemental microanalysis, FT-IR spectroscopy, and powder X-ray diffraction. The crystal structures of 1 and 2 show that anions (Cl- in 1 and Br- in 2) are encapsulated within the cage cavity. 1 and 2 bear two coordinated water molecules that are directed inside the cages, surrounded by the eight pyridine rings at the "bottom" and the "roof" of the cage. These hydrogen bond donors, π systems, and the cationic nature of the cages enable 1 and 2 to encapsulate the anions. FL experiments revealed that 1 could detect nitroaromatic compounds by exhibiting selective and sensitive fluorescence quenching toward p-nitroaniline (PNA), recommending a limit of detection of 4.24 ppm. Moreover, the addition of 50 μL of PNA and o-nitrophenol to the ethanolic suspension of 1 led to a significant large FL red shift, namely, 87 and 24 nm, respectively, which were significantly higher than the corresponding values observed in the presence of other nitroaromatic compounds. The titration of the ethanolic suspension of 1, with various concentrations of PNA (>12 μM) demonstrated a concentration-dependent emission red shift. Hence, the efficient FL quenching of 1 was capable of distinguishing the dinitrobenzene isomers. Meanwhile, the observed red shift (10 nm) and quenching of this emission band under the influence of a trace amount of o- and p-nitrophenol isomers also showed that 1 could discriminate between o- and p-nitrophenol. Replacement of the chlorido with a bromido ligand in 1 generated cage 2 which was a more electron-donating cage than 1. The FL experiments showed that 2 was partially more sensitive and less selective toward NACs than 1.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Leila Asadi Mofarrah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Li N, Jiang H, Chen L, Li Z, Han Q, Ning L, Chen Z, Zhao S, Liu X. Converting commonly-used paper into nano-engineered fluorescent biomass-based platform for rapid ClO - quantitative detection in living cells and water sources. CHEMOSPHERE 2023; 324:138227. [PMID: 36858120 DOI: 10.1016/j.chemosphere.2023.138227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Hypochlorous acid (HClO) and derivative ionic form (ClO-) are significant components of reactive oxygen species, and thus various diseases are correlatively related to the concentration of ClO-. Recently, paper-based indicators have been confirmed to be efficient strategy for sensing hazardous and noxious substances. However, most of these materials can only achieve qualitative detection of the substrates. Herein, an extremely simple manufacturing strategy was proposed to convert commonly-used paper into nano-engineered fluorescent biomass-based platform (CMJL-FP) integrated with on-demand self-assembled colorimetric and ratiometric fluorescence sensor (CMJL) for rapid ClO- quantitative detection in organisms or water sources using smartphones. The CMJL exhibited a highly selective and sensitive ratiometric response to ClO- at a low detection limit (LOD = 92.6 nM). The associating interactions between the fluorescence nano-particles and micro-nano fibers of CMJL-FP ensure good-stability during ClO- detection. It has been experimentally demonstrated that CMJL-FP allows one to realize the rapid quantitative detection of ClO- ions in living cells and large-scale water sources by using color recognition software as part of a simple smartphone. Therefore, integrating the proposed fluorescent paper with smartphones provides an effective, sustainable, cheap and conceptual strategy for quantitative detection of hazardous and noxious substances in organisms and environments.
Collapse
Affiliation(s)
- Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Lijuan Chen
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Zhijian Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Qingxin Han
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China
| | - Lulu Ning
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zhenjuan Chen
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an, 710021, PR China.
| |
Collapse
|
38
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
39
|
Tessarolo J, Benchimol E, Jouaiti A, Hosseini MW, Clever GH. Modular enhancement of circularly polarized luminescence in Pd 2A 2B 2 heteroleptic cages. Chem Commun (Camb) 2023; 59:3467-3470. [PMID: 36876714 PMCID: PMC10019126 DOI: 10.1039/d3cc00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Metal-mediated assembly allows us to combine an achiral emissive ligand A with different chiral ligands (such as B) in a non-statistical fashion, obtaining Pd2A2B2 heteroleptic cages showing circularly polarized luminescence (CPL). By using the 'shape complementary assembly' (SCA) strategy, the cages are exclusively obtained as cis-Pd2A2B2 stereoisomers, as confirmed by NMR, MS and DFT analyses. Their unique chiroptical properties derive from the synergy of all the building blocks. Ligand B imparts the chiral information of its aliphatic backbone, comprising two stereogenic sp3 carbon centres, to the overall structure, causing CD and CPL signal induction for the chromophore on ligand A. The heteroleptic cage shows CPL with a |glum| value of 2.5 × 10-3, which is 3-times higher than that for a progenitor based on aromatic helical building block H, thus opening a rational route towards optimizing the CPL properties of self-assembled nanostructures in a modular way.
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Abdelaziz Jouaiti
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Mir Wais Hosseini
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| |
Collapse
|
40
|
Lai YL, Su J, Wu LX, Luo D, Wang XZ, Zhou XC, Zhou CW, Zhou XP, Li D. Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
41
|
Xue H, Li DS, Cai HW, Sun XL, Wan WM. Radical Polymerization-Induced Nontraditional Intrinsic Luminescence of Triphenylmethyl Azide-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Hong Xue
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Hua-Wen Cai
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| |
Collapse
|
42
|
Metallic–Organic Cages (MOCs) with Heterometallic Character: Flexibility-Enhancing MOFs. Catalysts 2023. [DOI: 10.3390/catal13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dichotomy between metal–organic frameworks (MOFs) and metal–organic cages (MOCs) opens up the research spectrum of two fields which, despite having similarities, both have their advantages and disadvantages. Due to the fact that they have cavities inside, they also have applicability in the porosity sector. Bloch and coworkers within this evolution from MOFs to MOCs manage to describe a MOC with a structure of Cu2 paddlewheel Cu4L4 (L = bis(pyrazolyl)methane) with high precision thanks to crystallographic analyses of X-ray diffraction and also SEM-EDX. Then, also at the same level of concreteness, they were able to find the self-assembly of Pd(II)Cl2 moieties on the available nitrogen donor atoms leading to a [Cu4(L(PdCl2))4] structure. Here, calculations of the DFT density functional allow us to reach an unusual precision given the magnitude and structural complexity, explaining how a pyrazole ring of each bis(pyprazolyl)methane ligand must rotate from an anti to a syn conformation, and a truncation of the MOC structure allows us to elucidate, in the absence of the MOC constraint and its packing in the crystal, that the rotation is almost barrierless, as well as also explain the relative stability of the different conformations, with the anti being the most stable conformation. Characterization calculations with Mayer bond orders (MBO) and noncovalent interaction (NCI) plots discern what is important in the interaction of this type of cage with PdCl2 moieties, also CuCl2 by analogy, as well as simple molecules of water, since the complex is stable in this solvent. However, the L ligand is proved to not have the ability to stabilize an H2O molecule.
Collapse
|
43
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
44
|
Chen J, Ma Z, Li Y, Cao S, Zhuang Q. Research Progress in Metal-Porous Organic Cage Nanocomposites. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Min H, Craze AR, Wallis MJ, Tokunaga R, Taira T, Hirai Y, Bhadbhade MM, Fanna DJ, Marjo CE, Hayami S, Lindoy LF, Li F. Spin Crossover Induced by Changing the Identity of the Secondary Metal Ion from Pd II to Ni II in a Face-Centered Fe II 8 M II 6 Cubic Cage. Chemistry 2022; 29:e202203742. [PMID: 36550089 DOI: 10.1002/chem.202203742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe8 Pd6 L8 ]28+ constructed using semi-rigid metalloligands, found that FeII centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the NiII analogue, 1 ([Fe8 Ni6 L8 (CH3 CN)12 ]28+ ). The distorted octahedral coordination environment, as well as the occupation of the CH3 CN in the NiII axial positions of 1, prevented close packing of cages observed in the PdII analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.
Collapse
Affiliation(s)
- Hyunsung Min
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Alexander R Craze
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3Ta, UK
| | - Matthew J Wallis
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ryuya Tokunaga
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Takahiro Taira
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Yutaka Hirai
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Mohan M Bhadbhade
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Daniel J Fanna
- Advanced Materials Characterisation Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Christopher E Marjo
- Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry F11, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Feng Li
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
46
|
Li W, Zhou Y, Gao T, Li J, Yin S, Huang W, Li Y, Ma Q, Yao Z, Yan P, Li H. Circularly Polarized Luminescent Eu 4( LR) 4 Cage for Enantiomeric Excess and Concentration Simultaneous Determination of Chiral Diamines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55979-55988. [PMID: 36472626 DOI: 10.1021/acsami.2c17967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Undoubtably, it is challenging to simultaneously determine the identity, enantiomeric excess (ee), and total concentration of an enantiomer by just one optical measurement. Herein, we design a chiral tetrahedron Eu4(LR)4 with circularly polarized luminescence (CPL), which presents highly selective/stereoselective, rapid, and "turn-on" CPL response to chiral diamines, rather than the monoamino compounds, such as monoamines or amino alcohols. By recording the left- and right-CPL intensities of the Eu3+ ion at 591 nm, the enantiomeric composition and concentration of chiral diamines can be simultaneously determined by monitoring the glum value and total emission intensity (IL + IR), respectively. Spectroscopy analyses demonstrate that the variations of glum depend on the inversion and maintenance of configuration around the Eu3+ ion (Δ ↔ Λ), while the "turn-on" response arises from the raising of the T1 state of the ligand. The molecule/electron structural variations are proposed from the synergetic supramolecular interactions of NH2 groups with pendant diols and trifluoroacetyl groups.
Collapse
Affiliation(s)
- Wenwen Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yanyan Zhou
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Ting Gao
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Jingya Li
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization Institution, Baotou 014030, China
| | - Sen Yin
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Wenru Huang
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Yuying Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Qing Ma
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Zhiwei Yao
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Pengfei Yan
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| | - Hongfeng Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China
| |
Collapse
|
47
|
Yang X, Yu X, Wang Q, Zou J, Liao G, Li M, Liu X, Xia H, Xu F. Metal–organic cages ZrT-1-NH2 for rapid and selective sensing of nitrite. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
49
|
Chakraborty D, Saha R, Clegg JK, Mukherjee PS. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd 6 interlocked cage. Chem Sci 2022; 13:11764-11771. [PMID: 36320911 PMCID: PMC9580621 DOI: 10.1039/d2sc04660a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host-guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
50
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|