1
|
Yamazaki M, Sun L, Nishimura T, Hongu T, Takamatsu S, Gabata T, Gotoh N, Watanabe S. Nanoscale structural dynamics of cell edges in breast tumour cells revealed by scanning ion conductance microscopy. NANOSCALE 2025. [PMID: 40397477 DOI: 10.1039/d4nr05161k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Cell migration plays a critical role in biological processes such as embryonic development, wound healing, cancer metastasis, and immune response. While the molecular mechanisms regulating cell movement are well-studied, bridging the gap between these mechanisms and macroscopic cell behaviour remains a significant challenge due to the disparity in scale. At the subcellular level, an intermediate scale between molecular and cellular scales, cell membranes exhibit complex structural dynamics that are difficult to quantify and poorly understood. In this study, we utilized time-lapse scanning ion conductance microscopy to visualise subcellular nanoscale structural dynamics at the edges of breast cancer cells. Through quantitative analysis, we successfully identified three key features: (1) dynamic edges with abundant filopodia, (2) an inverse relationship between the local cell migration rate and lamellipodia thickness, and (3) changes in the length and distance between cytoskeleton-filament-related structures following a Poisson process. These findings provide new insights into cell migration dynamics and contribute to bridging the gap between macroscopic and microscopic cellular motion.
Collapse
Affiliation(s)
- Masahiro Yamazaki
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Department of Radiology, Kanazawa University, Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, 920-8640, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Tsunaki Hongu
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Shigeyuki Takamatsu
- Department of Radiology, Kanazawa University, Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, 920-8640, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University, Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, 920-8640, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Zheng F, Yao H, Fan D, Huang S, Fang Y, Bi A, Bai S, Zhang S, Zou H, Chen F, Zeng W. Carboxylesterase-Triggered Theranostic Agent: Advancing Near-Infrared Imaging and Therapeutic Efficacy in Hepatocellular Carcinoma. J Med Chem 2025; 68:8471-8483. [PMID: 40172235 DOI: 10.1021/acs.jmedchem.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Hepatocellular carcinoma (HCC) poses a global challenge due to the lack of accurate early stage detection methods. Carboxylesterase (CE), a key HCC biomarker, presents an ideal target for HCC diagnosis. Herein, we developed a novel CE-sensitive fluorescent probe (HFP-CE) that offered powerful near-infrared fluorescence signals and a potent synergistic photodynamic/chemodynamic therapeutic effect against HCC. This probe was synthesized by linking ferrocenecarboxylic acid (a Fenton reagent) to HFP-OH (a photosensitizer) through a self-eliminating spacer. This activation enabled ratiometric fluorescence imaging of CE, allowing for specific differentiation of HCC cells from others, exceeding the capabilities of commercial kits. Moreover, HFP-CE could generate 1O2 and •OH upon CE activation in vitro, triggering both apoptosis and ferroptosis in cancer cells. Remarkably, HFP-CE enabled real-time tumor visualization and effective tumor growth inhibition in vivo. This study showcased the promise of HFP-CE as a versatile tool for advancing precision medicine in HCC.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Heying Yao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Anyao Bi
- The Second Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Shengwang Zhang
- The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, PR China
| |
Collapse
|
3
|
Saulle I, Vitalyos AV, D’Agate D, Clerici M, Biasin M. Unveiling the impact of ERAP1 and ERAP2 on migration, angiogenesis and ER stress response. Front Cell Dev Biol 2025; 13:1564649. [PMID: 40226591 PMCID: PMC11985534 DOI: 10.3389/fcell.2025.1564649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Recent studies have investigated the key roles exerted by ERAP1 and ERAP2 in maintaining cellular homeostasis, emphasizing their functions beyond traditional antigen processing and presentation. In particular, genetic variants of these IFNγ-inducible aminopeptidases significantly impact critical cellular pathways, including migration, angiogenesis, and autophagy, which are essential in immune responses and disease processes. ERAP1's influence on endothelial cell migration and VEGF-driven angiogenesis, along with ERAP2's role in managing stress-induced autophagy via the UPR, highlights their importance in cellular adaptation to stress and disease outcomes, including autoimmune diseases, cancer progression, and infections. By presenting recent insights into ERAP1 and ERAP2 functions, this review underscores their potential as therapeutic targets in immune regulation and cellular stress-response pathways.
Collapse
Affiliation(s)
- Irma Saulle
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
| | | | - Daniel D’Agate
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| | - Mario Clerici
- Università degli Studi di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milano, Italy
- IRCCS, Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Mara Biasin
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche, Milano, Italy
| |
Collapse
|
4
|
Burus A, Ozcan M, Canpinar H, Bozdemir O, Zeybek ND, Bayazit Y. The effect of the combination therapy with chlorophyllin, a glutathione transferase P1-1 inhibitor, and docetaxel on triple-negative breast cancer invasion and metastasis in vivo/in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03929-y. [PMID: 40014124 DOI: 10.1007/s00210-025-03929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
The expression of glutathione S-transferase P1 (GSTP1) enzyme increases in cancer cells, leading to anticancer drug resistance. The antioxidant chlorophyllin has an inhibitory effect on GSTP1. In this study, we investigated the effect of chlorophyllin and its combined administration with the chemotherapeutic agent docetaxel on metastatic processes. For this purpose, both the 4T1 triple-negative breast cancer cell line and metastatic animal model were used. The MTT, flow cytometry, and wound healing assays were used to investigate cell viability, cell cycle, and cell migration, respectively. Total gelatinase activity, GST activity, and glutathione levels in cell and liver tissue lysates measured by colorimetric methods. Micrometastases were evaluated histochemically in liver tissue sections. As a result, the coadministration of chlorophyllin and docetaxel significantly inhibited cell migration in vitro. There was a significant decrease in the total gelatinase activity in vivo. We found that only combined treatment reduced the micrometastatic lesions in the liver tissues, though this reduction was not statistically significant. In conclusion, the coadministration of chlorophyllin and docetaxel may have a potential role in controlling metastatic processes by suppressing cell migration, gelatinase activity, and micrometastasis formation in triple-negative breast cancers.
Collapse
Affiliation(s)
- Ayse Burus
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Zonguldak Bulent Ecevit University Faculty of Medicine, Zonguldak, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Ozlem Bozdemir
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Yasemin Bayazit
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Saez P, Shirke PU, Seth JR, Alegre-Cebollada J, Majumder A. Competing elastic and viscous gradients determine directional cell migration. Math Biosci 2025; 380:109362. [PMID: 39701208 DOI: 10.1016/j.mbs.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Cell migration regulates central life processes including embryonic development, tissue regeneration, and tumor invasion. To establish the direction of migration, cells follow exogenous cues. Durotaxis, the directed cell migration towards elastic stiffness gradients, is the classical example of mechanical taxis. However, whether gradients of the relaxation properties in the extracellular matrix may also induce tactic responses (viscotaxis) is not well understood. Moreover, whether and how durotaxis and viscotaxis interact with each other has never been investigated. Here, we integrate clutch models for cell adhesions with an active gel theory of cell migration to reveal the mechanisms that govern viscotaxis. We show that viscotaxis is enabled by an asymmetric expression of cell adhesions that further polarize the intracellular motility forces to establish the cell front, similar to durotaxis. More importantly, when both relaxation and elastic gradients coexist, durotaxis appears more efficient in controlling directed cell migration, which we confirm with experimental results. However, the presence of opposing relaxation gradients to an elastic one can arrest or shift the migration direction. Our model rationalizes for the first time the mechanisms that govern viscotaxis and its competition with durotaxis through a mathematical model.
Collapse
Affiliation(s)
- Pablo Saez
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain; Institute of Mathematics of UPC-BarcelonaTech.-IMTech, Barcelona, Spain.
| | - Pallavi U Shirke
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), 400076 Mumbai, India
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), 400076 Mumbai, India
| | | | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), 400076 Mumbai, India
| |
Collapse
|
6
|
Bunsick DA, Baghaie L, Li Y, Yaish AM, Aucoin EB, Skapinker E, Aldbai R, Szewczuk MR. Synthetic CB1 Cannabinoids Promote Tunneling Nanotube Communication, Cellular Migration, and Epithelial-Mesenchymal Transition in Pancreatic PANC-1 and Colorectal SW-620 Cancer Cell Lines. Cells 2025; 14:71. [PMID: 39851499 PMCID: PMC11763365 DOI: 10.3390/cells14020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Metastasizing cancer cells surreptitiously can adapt to metabolic activity during their invasion. By initiating their communications for invasion, cancer cells can reprogram their cellular activities to initiate their proliferation and migration and uniquely counteract metabolic stress during their progression. During this reprogramming process, cancer cells' metabolism and other cellular activities are integrated and mutually regulated by tunneling nanotube communications to alter their specific metabolic functional drivers of tumor growth and progression. Here, we investigated the in vitro effects of the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil on human pancreatic PANC-1 and colorectal SW-620 cancer cell lines to understand further cellular behaviors and the potential risks of their use in cancer therapy. For the first time, the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil significantly altered cancer cells in forming missile-like shapes to induce tunneling nanotube (TNT) communications in PANC-1 cells. Oseltamivir phosphate (OP) significantly prevented TNT formation. To assess the key survival pathways critical for pancreatic cancer progression, we used the AlamarBlue assay to determine synthetic CB1 cannabinoids to induce the cell's metabolic viability drivers to stage migratory intercellular communication. The synthetic CB1 cannabinoids significantly increased cell viability compared to the untreated control for PANC-1 and SW-620 cells, and this response was significantly reduced with the NMBR inhibitor BIM-23127, neuraminidase-1 inhibitor OP, and MMP-9 inhibitor (MMP-9i). CB1 cannabinoids also significantly increased N-cadherin and decreased E-cadherin EMT markers compared to the untreated controls, inducing the process of metastatic phenotype for invasion. BIM-23127, MMP9i, and OP significantly inhibited CB1 agonist-induced NFκB-dependent secretory alkaline phosphatase (SEAP) activity. To confirm this concept, we investigated the migratory invasiveness of PANC-1 and SW-620 cancer cells treated with the synthetic CB1 cannabinoids AM-404, arvanil, and olvanil in a scratch wound assay. CB1 cannabinoids significantly induced the rate of migration and invasiveness of PANC-1 cancer cells, whereas they had minimal effect on the rate of migration of already metastatic SW-620 cancer cells. Interestingly, olvanil-treated SW-620 cells significantly enhanced the migration rate and invasiveness of these cells. The data support the cellular and molecular mechanisms of the synthetic CB1 cannabinoids, orchestrating intercellular conduits to enhance metabolic drivers to stage migratory intercellular communication in pancreatic cancer cells.
Collapse
Affiliation(s)
- David A. Bunsick
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (Y.L.); (E.S.)
| | | | - Emilyn B. Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (Y.L.); (E.S.)
| | - Rashelle Aldbai
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.); (R.A.)
| |
Collapse
|
7
|
Keijzer KAE, Tsingos E, Merks RMH. How cells align to structured collagen fibrils: a hybrid cellular Potts and molecular dynamics model with dynamic mechanosensitive focal adhesions. Front Cell Dev Biol 2025; 12:1462277. [PMID: 39834385 PMCID: PMC11743931 DOI: 10.3389/fcell.2024.1462277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured in vitro. During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released. In this study, we use mathematical modeling to study the hypothesis that mechanical reciprocity between cells and the ECM is sufficient for directing cell shape changes and orientation. We show that FAs are preferentially stabilized along the orientation of ECM fibers, where cells can generate higher tension than in directions perpendicular to the ECM fibers. We present a hybrid computational model coupling three mathematical approaches: first, the cellular Potts model (CPM) describes an individual contractile cell; second, molecular dynamics (MD) represent the ECM as a network of cross-linked, deformable fibers; third, a set of ordinary differential equations (ODEs) describes the dynamics of the cell's FAs, in terms of a balance between assembly and a mechanoresponsive disassembly. The resulting computational model shows that mechanical reciprocity suffices for stiffness-dependent cell spreading, local ECM remodeling, and ECM-alignment-dependent cell elongation. These combined effects are sufficient to explain how cell morphology is influenced by the local ECM structure and mechanics.
Collapse
Affiliation(s)
- Koen A. E. Keijzer
- Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands
| | - Erika Tsingos
- Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, Netherlands
| | - Roeland M. H. Merks
- Mathematical Institute, Faculty of Science, Leiden University, Leiden, Netherlands
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, Netherlands
| |
Collapse
|
8
|
da Silva NNP, Palmeira-Mello MV, Acésio NO, Moraes CAF, Honorato J, Castellano EE, Tavares DC, Oliveira KM, Batista AA. Ru(II)-diphosphine/N,S-mercapto complexes and their anti-melanoma properties. Dalton Trans 2025; 54:605-615. [PMID: 39560113 DOI: 10.1039/d4dt02575j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We have synthesized and characterized a novel series of ruthenium complexes with formulas [RuCl(N-S)(dppm)2]PF6 (Ru1), [Ru(N-S)(dppm)2]PF6 (Ru2), [Ru(N-S)(dppe)2]PF6 (Ru3), [Ru(N-S)(dppen)2]PF6 (Ru4), [Ru(N-S)(bpy)2]PF6 (Ru5). In these formulas, N-S or S represents H2mq (2-mercapto-4(3H)-quinazoline); dppe (1,2'-bis(diphenylphosphine)ethane), dppm (1,1'-bis(diphenylphosphine)methane), or dppen (1,2'-bis(diphenylphosphine)ethene); and bpy refers to 2,2'-bipyridine. We have also compared the cytotoxicity of cisplatin with these ruthenium complexes to murine melanoma cells (B16-F10), human melanoma cells (A-375), and the non-tumoral human keratinocyte cell line (HaCat). All the ruthenium complexes inhibited melanoma cell growth in a dose-dependent manner. [Ru(2mq)(dppen)2]PF6 was four times more active toward A-375 cells than toward HaCat cells, inhibited colony formation in HaCat and A-375 cells (with a more pronounced effect on A-375 cells), altered A-375 cell morphology, and inhibited cell migration at 0.2 and 0.4 μM. In addition, we investigated how these ruthenium complexes interact with biomolecules such as DNA and Human Serum Albumin (HSA). All the ruthenium complexes interacted weakly with DNA, possibly through the grooves. Based on fluorescence assays, the ruthenium complexes interacted moderately with HSA. In light of these results, ruthenium complexes bearing phosphine and H2mq display promising cytotoxic properties against melanoma.
Collapse
Affiliation(s)
- Nádija N P da Silva
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - Marcos V Palmeira-Mello
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | | | - Carlos A F Moraes
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - João Honorato
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo E Castellano
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Denise C Tavares
- University of Franca - UNIFRAN, CEP 14404-600, Franca, SP, Brazil
| | - Katia M Oliveira
- Institute of Chemistry, University of Brasília - UnB, CEP 70910-900, Brasília, DF, Brazil.
| | - Alzir A Batista
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Shen B, Zhang Y. Factors influencing the stability of the motor-clutch model on compliant substrates under external load. Phys Rev E 2025; 111:014417. [PMID: 39972790 DOI: 10.1103/physreve.111.014417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Cellular migration is crucial for biological processes, including embryonic development, immune response, and wound healing. The myosin-clutch model is a framework that describes how cells control migration through the interactions between myosin, the clutch mechanism, and the substrate. This model is related to how cells regulate adhesion, generate traction forces, and move on compliant substrates. In this study, we present a five-dimensional nonlinear autonomous system to investigate the influences of myosin, clutches, substrate, and external load on the system's stability. Moreover, we analyze the effects of various parameters on fixed points and explore the frequency and amplitude of the limit cycle associated with oscillations. We discovered that the system demonstrates oscillatory behavior when the velocity of the myosin motor is relatively low or when the ratio of motor attachment rate to motor detachment rate is relatively high. The external load shares a fraction of the force exerted by myosin motors, thereby diminishing the force endured by the clutches. Within a specific range, an increase in external load not only diminishes and eventually eliminates the region lacking fixed points but also decelerates clutch detachment, enhancing clutch protein adherence.
Collapse
Affiliation(s)
- Beibei Shen
- Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Shanghai 200433, China
| | - Yunxin Zhang
- Fudan University, Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Shanghai 200433, China
| |
Collapse
|
10
|
Xue SL. Tissue stresses caused by invasive tumour: a biomechanical model. J R Soc Interface 2025; 22:20240797. [PMID: 39837483 PMCID: PMC11750364 DOI: 10.1098/rsif.2024.0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Malignant tumorigenesis is a complex process involving growth, invasion and mechanical deformation of a cancerous tissue. In this paper, a biomechanical model is proposed to couple the mechanical and biological mechanisms governing invasive tumour development. As an example, this model is applied to investigate the spatio-temporal evolution of tissue stresses in an invasive tumour spheroid and its host tissue. I show that cancer invasiveness lowers the compressive tissue stresses and blurs the stress distribution across the cancerous-normal tissue boundary, both consistent with experimental observations. Importantly, with the steady propagation of the cancerous region driven by persistent cancer invasion, tumour stresses are predicted to saturate rather than keep increasing as in benign tumour growth. The model is further used to analyse the deformation and stress state of a cancerous tissue being cut into two pieces, and reproduces the bulge of the cut surface observed in experiments. I hope this study can pave the way for the quantitative evaluation of mechanical states in cancer.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Department of Materials Science and Engineering, School of Engineering, Westlake University, Hangzhou, Zhejiang310030, People’s Republic of China
| |
Collapse
|
11
|
Basmaeil Y, Subayyil AA, Kulayb HB, Kondkar AA, Alrodayyan M, Khatlani T. Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro. Cells 2024; 13:2131. [PMID: 39768220 PMCID: PMC11674051 DOI: 10.3390/cells13242131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects. In this study, we analyzed the anti-cancer effects of DBMSCs on human breast cancer cell lines MDA231 and MCF7, with MCF 10A used as control. We also investigated how these cancer cells lines affect the functional competence of DBMSCs. By co-culturing DBMSCs with cancer cells, we analyzed changes in functions of both cell types, as well as alterations in their genomic and proteomic profile. Our results showed that treatment with DBMSCs significantly reduced the functionality of MDA231 and MCF7 cells, while MCF 10A cells remained unaffected. DBMSC treatment decreased epithelial-to-mesenchymal transition (EMT)-related protein levels in MDA231 cells and modulated expression of other cancer-related genes in MDA231 and MCF7 cells. Although cancer cells reduced DBMSC proliferation, they increased their expression of anti-apoptotic genes. These findings suggest that DBMSCs can inhibit EMT-related proteins and reduce the invasive characteristics of MDA231 and MCF7 breast cancer cells, highlighting their potential as candidates for cell-based cancer therapies.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Haya Bin Kulayb
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Maha Alrodayyan
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| |
Collapse
|
12
|
Adhikary S, Roy S, Budhathoki S, Chowdhury S, Stillwell A, Basnakian AG, Tackett A, Avaritt N, Milad M, Alam MA. Thiazole-fused androstenone and ethisterone derivatives: potent β- and γ-actin cytoskeleton inhibitors to treat melanoma tumors. RSC Med Chem 2024; 16:d4md00719k. [PMID: 39703801 PMCID: PMC11653411 DOI: 10.1039/d4md00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
Melanoma, the most fatal form of skin cancer, often becomes resistant to the current therapeutic approaches in most patients. To explore new treatment options, fused thiazole derivatives were synthesized, and several of these compounds demonstrated potent anti-melanoma activity both in vitro and in vivo. These compounds exhibited significant cytotoxicity against melanoma cell lines at low concentrations. The lead molecules induced apoptosis and caused G2/M phase cell cycle arrest to a lesser extent. These compounds also displayed remarkable antimetastatic activities in several cell-based and molecular assays, significantly inhibiting key processes of metastasis, such as cell migration and adhesion. mRNA sequencing revealed significant downregulation of β-actin (ACTB) and γ-actin (ACTG1) at the transcriptional level, and a similar effect was observed at the protein level by western immunoblotting and proteomics assays. Actin-rich membrane protrusions formation is crucial for facilitating metastasis by promoting cell migration. Fluorescence microscopy demonstrated that compounds E28 and E47 inhibited the formation of these membrane protrusions and impaired actin cytoskeleton dynamics. Docking studies suggested the lead compounds may suppress tumor proliferation and metastasis by targeting the mechanistic target of Rapamycin complex 2 (mTORC2). All these findings unanimously indicated the translational perspective of ethisterone and androstenone fused thiazole derivatives as potent antimetastatic and antimelanoma agents. In a preclinical mouse melanoma model, compounds E2 and E47 significantly reduced tumor growth and greatly improved overall mice survival, while showing a favorable safety profile based on a comprehensive blood plasma metabolite profile. These lead molecules also displayed promising physicochemical properties, making them strong candidates for further drug development studies.
Collapse
Affiliation(s)
- Sanjay Adhikary
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Subrata Roy
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Shailesh Budhathoki
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
| | - Siam Chowdhury
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Computer Science, The College of Engineering and Computer Science, Arkansas State University Jonesboro AR 72468 USA
| | - Abbey Stillwell
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences 4301 W. Markham St Little Rock AR 72205 USA
- Central Arkansas Veterans Healthcare System W. 7th St Little Rock AR 72205 USA
| | - Alan Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Nathan Avaritt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Mohamed Milad
- The Department of Mathematics and Statistics, Arkansas State University Jonesboro AR 72467 USA
| | - Mohammad Abrar Alam
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University Jonesboro Arkansas 72467 USA
- Enviromental Sciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Molecular Biosciences Program, College of Sciences and Mathematics, Arkansas State University Jonesboro AR 72467 USA
- Arkansas Biosciences Institute, Arkansas State University Jonesboro AR 72467 USA
| |
Collapse
|
13
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Murrey MW, Ng IT, Pixley FJ. The role of macrophage migratory behavior in development, homeostasis and tumor invasion. Front Immunol 2024; 15:1480084. [PMID: 39588367 PMCID: PMC11586339 DOI: 10.3389/fimmu.2024.1480084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Tumor-associated macrophages (TAMs) recapitulate the developmental and homeostatic behaviors of tissue resident macrophages (TRMs) to promote tumor growth, invasion and metastasis. TRMs arise in the embryo and colonize developing tissues, initially to guide tissue morphogenesis and then to form complex networks in adult tissues to constantly search for threats to homeostasis. The macrophage growth factor, colony-stimulating factor-1 (CSF-1), which is essential for TRM survival and differentiation, is also responsible for the development of the unique motility machinery of mature macrophages that underpins their ramified morphologies, migratory capacity and ability to degrade matrix. Two CSF-1-activated kinases, hematopoietic cell kinase and the p110δ catalytic isoform of phosphatidylinositol 3-kinase, regulate this machinery and selective inhibitors of these proteins completely block macrophage invasion. Considering tumors co-opt the invasive capacity of TAMs to promote their own invasion, these proteins are attractive targets for drug development to inhibit tumor progression to invasion and metastasis.
Collapse
Affiliation(s)
| | | | - Fiona J. Pixley
- Macrophage Biology and Cancer Laboratory, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
15
|
Friedrich LJ, Guthart A, Zhou M, Arimondo PB, Efferth T, Dawood M. Supercomputer-Based Virtual Screening for Deoxyribonucleic Acid Methyltransferase 1 Inhibitors as Novel Anticancer Agents. Int J Mol Sci 2024; 25:11870. [PMID: 39595939 PMCID: PMC11594074 DOI: 10.3390/ijms252211870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Targeting epigenetics is a new strategy to treat cancer and develop novel epigenetic drugs with anti-tumor activity. DNA methyltransferases transfer the methyl group from S-adenosyl-L-methionine (SAM) to the cytosine residue in a CpG island, leading to the transcription silencing of the gene. Hypermethylation can frequently be observed in several tumor types. Hence, the inhibition of DNMT1 has become a novel approach to cure cancer. In this study, virtual screening and molecular docking were performed for more than 11,000 ligands from the ZINC15 database to discover new hypomethylation agents. Four candidate compounds were further tested for their effects on DNMT1 in silico and in vitro. Compounds 2 and 4 showed the best DNMT1 inhibitory activity, but only compound 4 was able to inhibit the growth of several cancer cell lines. The hypomethylation of the luciferase gene by compound 4 was verified by a CMV- luciferase assay using KG-1 cells. Additionally, compound 4 suppressed cell migration in a dose- and time-dependent manner in the wound healing assay. Moreover, cell cycle analyses demonstrated that compound 4 arrested CCRF-CEM cells and MDA-MB-468 cells in the G0/G1 phase. Also, compound 4 significantly induced early and late apoptosis in a dose-dependent manner. In conclusion, we introduce compound 4 as a novel DNMT1 inhibitor with anticancer activity.
Collapse
Affiliation(s)
- Lara Johanna Friedrich
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (L.J.F.); (A.G.); (M.Z.); (T.E.)
| | - Axel Guthart
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (L.J.F.); (A.G.); (M.Z.); (T.E.)
| | - Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (L.J.F.); (A.G.); (M.Z.); (T.E.)
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Institute Pasteur, Université Paris Cité, CNRS UMR3523, 28 Rue du Docteur Roux, 75724 Paris, France;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (L.J.F.); (A.G.); (M.Z.); (T.E.)
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (L.J.F.); (A.G.); (M.Z.); (T.E.)
| |
Collapse
|
16
|
Andretta E, Costa A, Ventura E, Quintiliani M, Damiano S, Giordano A, Morrione A, Ciarcia R. Capsaicin Exerts Antitumor Activity in Mesothelioma Cells. Nutrients 2024; 16:3758. [PMID: 39519591 PMCID: PMC11547426 DOI: 10.3390/nu16213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mesothelioma is an aggressive cancer with limited treatment options. Mesothelioma therapy often involves a multimodal approach including surgery, radiotherapy and chemotherapy. However, the prognosis for patients remains poor. Difficult diagnosis, late symptoms when the tumor is in an advanced stage and the onset of chemotherapy resistance make mesothelioma difficult to treat. For this reason, it is essential to discover new pharmacological approaches. Capsaicin (CAPS) is the active compound of chili peppers. Based on CAPS's anticancer properties on various tumor lines and its chemo-sensitizing action on resistant cells, in this study, we evaluated the effects of CAPS on mesothelioma cells to assess its potential use in mesothelioma therapy. METHODS To evaluate antiproliferative effects of CAPS, we performed MTS assays on various mesothelioma cells, representative of all major mesothelioma subtypes. Transwell migration and wound-healing assays were used to examine the effect of CAPS on mesothelioma cell migration. We also determined the effects of CAPS on oncogenic signaling pathways by assessing the levels of AKT and MAPK activation. RESULTS In this study, we show that CAPS significantly reduces proliferation of both parental and cisplatin-resistant mesothelioma cells. CAPS promotes S-phase cell cycle arrest and inhibits lateral motility and migration of mesothelioma cells. Accordingly, CAPS suppresses AKT and ERK1/2 activation in MSTO-211H and NCI-H2052 cells. Our results support an antitumor effect of CAPS on cisplatin-resistant mesothelioma cells, suggesting that it may reduce resistance to cisplatin. CONCLUSIONS Our results could pave the way for further studies to evaluate the use of CAPS for mesothelioma treatment.
Collapse
Affiliation(s)
- Emanuela Andretta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, 80126 Naples, Italy
| | - Aurora Costa
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | | | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| |
Collapse
|
17
|
Dutt R, Thorpe C, Galileo DS. QSOX1 Modulates Glioblastoma Cell Proliferation and Migration In Vitro and Invasion In Vivo. Cancers (Basel) 2024; 16:3620. [PMID: 39518060 PMCID: PMC11545231 DOI: 10.3390/cancers16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment. Thus, there is a crucial need to understand the multiple mechanisms that facilitate GBM cell invasion and to determine if QSOX1 is involved. Methods and Results: Here, we investigated the function of QSOX1 in human glioblastoma cells using two cell lines derived from T98G cells, whose proliferation, motility, and invasiveness has been shown by us to be dependent on disulfide bond-containing adhesion and receptor proteins, such as L1CAM and the FGFR. We lentivirally introduced shRNA to attenuate the QSOX1 protein expression in one cell line, and a Western blot analysis confirmed the decreased QSOX1 expression. A DNA content/cell cycle analysis using flow cytometry revealed 27% fewer knockdown cells in the S-phase of the cell cycle, indicating a reduced proliferation. A cell motility analysis utilizing our highly quantitative SuperScratch time-lapse microscopy assay revealed that knockdown cells migrated more slowly, with a 45% decrease in migration velocity. Motility was partly rescued by the co-culture of knockdown cells with control cells, indicating a paracrine effect. Surprisingly, knockdown cells exhibited increased motility when assayed using a Transwell migration assay. Our novel chick embryo orthotopic xenograft model was used to assess the in vivo invasiveness of knockdown vs. control cells, and tumors developed from both cell types. However, fewer invasive knockdown cells were observed after about a week. Conclusions: Our results indicate that an experimental reduction in QSOX1 expression in GBM cells leads to decreased cell proliferation, altered in vitro migration, and decreased in vivo invasion.
Collapse
Affiliation(s)
- Reetika Dutt
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; (R.D.); (C.T.)
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
18
|
Gutierrez-Riquelme T, Karkossa I, Schubert K, Liebscher G, Packeiser EM, Nolte I, von Bergen M, Murua Escobar H, Aguilera-Rojas M, Einspanier R, Stein T. Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state. BMC Vet Res 2024; 20:488. [PMID: 39462388 PMCID: PMC11515202 DOI: 10.1186/s12917-024-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas. METHODS Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out. RESULTS WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs. CONCLUSIONS EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
Collapse
Affiliation(s)
- Tania Gutierrez-Riquelme
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Gudrun Liebscher
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
19
|
Zhang Y, Wu D, Yu T, Liu Y, Zhao C, Xue R. Prognostic value of TMTC1 in pan-cancer analysis. Heliyon 2024; 10:e38308. [PMID: 39397950 PMCID: PMC11471174 DOI: 10.1016/j.heliyon.2024.e38308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background Transmembrane and tetratricopeptide repeat containing 1 (TMTC1) is a recently discovered enzyme involved in the O-mannosylation of cadherins and protocadherins. It has been implicated in various types of cancer, but the overall prognostic significance of TMTC1 in pan-cancer and its potential as an immunotherapeutic target remain unclear. Methods We applied various bioinformatics methods to investigate the potential oncogenic roles of TMTC1 using public databases. This analysis involved examining the expression, prognosis, genetic alterations, immune infiltration, immunotherapy response, drug sensitivity, and regulatory mechanisms of the TMTC1 gene in diverse cancer types. Results In this study, we observed that TMTC1 expression is reduced in 19 types of cancer (ACC, BLCA, BRCA, CESC, COAD, ESCA, GBM, KICH, KIRC, KIRP, LAML, LUAD, LUSC, PRAD, READ, STAD, THCA, UCEC, and UCS) compared to normal tissues. Conversely, TMTC1 expression is elevated in OV and PAAD relative to normal tissues. Moreover, our analysis revealed that high expression of TMTC1 was associated with worse overall survival (OS) outcomes in patients with ACC, BLCA, COAD, GBM, KIRP, OV, STAD, and UCEC, but better OS outcomes in patients with CESC, KIRC, LUSC, and PAAD. Notably, patients with TMTC1 mutations or deep deletions demonstrated longer OS, while those with TMTC1 amplification showed shorter OS. There was a significant correlation between the expression level of TMTC1 and the infiltration of cancer-associated fibroblasts (CAFs) and endothelial cells. Using data from six real-world immunotherapy cohorts of BLCA, SKCM and RCC, we discovered that high TMTC1 expression was associated with better OS or progression-free survival (PFS). Lastly, through TMTC1-related gene enrichment analysis, some biological processes and pathways were found to be significantly enriched, such as vascular endothelial growth factor receptor signaling pathway and ECM-receptor interaction. Conclusions Our study demonstrates the prognostic significance of TMTC1 in pan-cancer and highlights its potential as an immunotherapeutic target.
Collapse
Affiliation(s)
- Ying Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Labouratory of Embryo Original Diseases, 200030, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Dan Wu
- Department of Obstrics and Gynecology, The First People's Hospital of Jiande, Hangzhou, China
| | - Tiantian Yu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Labouratory of Embryo Original Diseases, 200030, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yao Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Labouratory of Embryo Original Diseases, 200030, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Chunbo Zhao
- Department of Obstrics and Gynecology, The First People's Hospital of Jiande, Hangzhou, China
| | - Ruihong Xue
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Labouratory of Embryo Original Diseases, 200030, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| |
Collapse
|
20
|
Camacho-Gomez D, Movilla N, Borau C, Martin A, Oñate Salafranca C, Pardo J, Gomez-Benito MJ, Garcia-Aznar JM. An agent-based method to estimate 3D cell migration trajectories from 2D measurements: Quantifying and comparing T vs CAR-T 3D cell migration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108331. [PMID: 39068872 DOI: 10.1016/j.cmpb.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVE Immune cell migration is one of the key features that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors. Chimeric antigen receptor (CAR) T-cell therapy is a novel strategy in the battle against various cancers. It has been successful in treating hematological tumors, yet it still faces many challenges in the case of solid tumors. In this work, we evaluate the three-dimensional (3D) migration capacity of T and CAR-T cells within dense collagen-based hydrogels. Quantifying three-dimensional (3D) cell migration requires microscopy techniques that may not be readily accessible. Thus, we introduce a straightforward mathematical model designed to infer 3D trajectories of cells from two-dimensional (2D) cell trajectories. METHODS We develop a 3D agent-based model (ABM) that simulates the temporal changes in the direction of migration with an inverse transform sampling method. Then, we propose an optimization procedure to accurately orient cell migration over time to reproduce cell migration from 2D experimental cell trajectories. With this model, we simulate cell migration assays of T and CAR-T cells in microfluidic devices conducted under hydrogels with different concentrations of type I collagen and validate our 3D cell migration predictions with light-sheet microscopy. RESULTS Our findings indicate that CAR-T cell migration is more sensitive to collagen concentration increases than T cells, resulting in a more pronounced reduction in their invasiveness. Moreover, our computational model reveals significant differences in 3D movement patterns between T and CAR-T cells. T cells exhibit migratory behavior in 3D whereas that CAR-T cells predominantly move within the XY plane, with limited movement in the Z direction. However, upon the introduction of a CXCL12 chemical gradient, CAR-T cells present migration patterns that closely resemble those of T cells. CONCLUSIONS This framework demonstrates that 2D projections of 3D trajectories may not accurately represent real migration patterns. Moreover, it offers a tool to estimate 3D migration patterns from 2D experimental data, which can be easily obtained with automatic quantification algorithms. This approach helps reduce the need for sophisticated and expensive microscopy equipment required in laboratories, as well as the computational burden involved in producing and analyzing 3D experimental data.
Collapse
Affiliation(s)
- Daniel Camacho-Gomez
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Nieves Movilla
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| | - Alejandro Martin
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Julian Pardo
- Faculty of Medicine, University of Zaragoza/IIS Aragon, Spain; CIBER of Infectious diseases, IS Carlos III, Madrid, Spain
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
21
|
Pracharova J, Cyrikova T, Berecka M, Biersack B, Kasparkova J, Brabec V. Antimetastatic activity of (arene)ruthenium(II) complex of 4-aryl-4H-naphthopyran. Chem Biol Interact 2024; 400:111180. [PMID: 39089413 DOI: 10.1016/j.cbi.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Metastatic cancer remains a formidable challenge in anticancer therapy. Despite efforts to develop effective antimetastasis drugs over the past half-century, currently approved treatments fall short of expectations. This report highlights the promising antiproliferative activity of a ruthenium-based therapeutic agent, namely dichlorido(p-cymene)[2-amino-4-(pyridin-3-yl)-4H-benzo[h]-chromene-3-carbonitrile]ruthenium(II) (complex 1) against metastatic cell lines. Complex 1 shows significant efficacy in metastatic LoVo and Du-145 cell lines at nanomolar concentrations, being markedly more active than clinically used anticancer cisplatin. Studies on the MDA-MB-231 cell line, which displays invasive characteristics, demonstrated that 1 significantly reduces cell invasion. This efficacy was confirmed by its impact on matrix metalloproteinase production in MDA-MB-231 cells. Given that cell migration drives cancer invasion and metastasis, complex 1's effect on MDA-MB-231 cell migration was evaluated via wound healing assay and vimentin network analysis. Results indicated a strong reduction in migration. A re-adhesion assay further demonstrated that 1 significantly lowers the re-adhesion ability of MDA-MB-231 cells compared to cisplatin. To better simulate the human body environment, a 3D spheroid invasion assay was used. This method showed that 1 effectively inhibits tumor spheroids from infiltrating the surrounding extracellular matrix. This study underscores the potential of (arene)ruthenium(II) complexes with naphthopyran ligands as potent antimetastatic agents for chemotherapy.
Collapse
Affiliation(s)
- Jitka Pracharova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Tereza Cyrikova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Michal Berecka
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, 95440, Bayreuth, Germany
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic; Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, CZ-77900, Olomouc, Czech Republic; Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
22
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
23
|
Elias MG, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Anticancer Effect of Pt IIPHEN SS, Pt II5ME SS, Pt II56ME SS and Their Platinum(IV)-Dihydroxy Derivatives against Triple-Negative Breast Cancer and Cisplatin-Resistant Colorectal Cancer. Cancers (Basel) 2024; 16:2544. [PMID: 39061185 PMCID: PMC11274883 DOI: 10.3390/cancers16142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Development of resistance to cisplatin, oxaliplatin and carboplatin remains a challenge for their use as chemotherapies, particularly in breast and colorectal cancer. Here, we compare the anticancer effect of novel complexes [Pt(1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtIIPHENSS), [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII5MESS) and [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII56MESS) and their platinum(IV)-dihydroxy derivatives with cisplatin. Complexes are greater than 11-fold more potent than cisplatin in both 2D and 3D cell line cultures with increased selectivity for cancer cells over genetically stable cells. ICP-MS studies showed cellular uptake occurred through an active transport mechanism with considerably altered platinum concentrations found in the cytoskeleton across all complexes after 24 h. Significant reactive oxygen species generation was observed, with reduced mitochondrial membrane potential at 72 h of treatment. Late apoptosis/necrosis was shown by Annexin V-FITC/PI flow cytometry assay, accompanied by increased sub-G0/G1 cells compared with untreated cells. An increase in S and G2+M cells was seen with all complexes. Treatment resulted in significant changes in actin and tubulin staining. Intrinsic and extrinsic apoptosis markers, MAPK/ERK and PI3K/AKT activation markers, together with autophagy markers showed significant activation of these pathways by Western blot. The proteomic profile investigated post-72 h of treatment identified 1597 MDA-MB-231 and 1859 HT29 proteins quantified by mass spectroscopy, with several differentially expressed proteins relative to no treatment. GO enrichment analysis revealed a statistically significant enrichment of RNA/DNA-associated proteins in both the cell lines and specific additional processes for individual drugs. This study shows that these novel agents function as multi-mechanistic chemotherapeutics, offering promising anticancer potential, and thereby supporting further research into their application as cancer therapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Meena Mikhael
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| |
Collapse
|
24
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Biophysical modeling identifies an optimal hybrid amoeboid-mesenchymal phenotype for maximal T cell migration speeds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564655. [PMID: 39026744 PMCID: PMC11257493 DOI: 10.1101/2023.10.29.564655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite recent experimental progress in characterizing cell migration mechanics, our understanding of the mechanisms governing rapid cell movement remains limited. To effectively limit tumor growth, antitumoral T cells need to rapidly migrate to find and kill cancer cells. To investigate the upper limits of cell speed, we developed a new hybrid stochastic-mean field model of bleb-based cell motility. We first examined the potential for adhesion-free bleb-based migration and show that cells migrate inefficiently in the absence of adhesion-based forces, i.e., cell swimming. While no cortical contractility oscillations are needed for cells to swim in viscoelastic media, high-to-low cortical contractility oscillations are necessary for cell swimming in viscous media. This involves a high cortical contractility phase with multiple bleb nucleation events, followed by an intracellular pressure buildup recovery phase at low cortical tensions, resulting in modest net cell motion. However, our model suggests that cells can employ a hybrid bleb- and adhesion-based migration mechanism for rapid cell motility and identifies conditions for optimality. The model provides a momentum-conserving mechanism underlying rapid single-cell migration and identifies factors as design criteria for engineering T cell therapies to improve movement in mechanically complex environments.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, USA
- Stem Cell Institute, University of Minnesota, USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, MN, USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, USA
| |
Collapse
|
25
|
Gong H, Zhang Y, Xue Y, Fang B, Li Y, Zhu X, Du Y, Peng P. NETosis-Inspired Cell Surface-Constrained Framework Nucleic Acids Traps (FNATs) for Cascaded Extracellular Recognition and Cellular Behavior Modulation. Angew Chem Int Ed Engl 2024; 63:e202319908. [PMID: 38693057 DOI: 10.1002/anie.202319908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.
Collapse
Affiliation(s)
- Hangsheng Gong
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yihan Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuan Xue
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Bowen Fang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuting Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xudong Zhu
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Du
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Pai Peng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
26
|
Dindo M, Bevilacqua A, Soligo G, Calabrese V, Monti A, Shen AQ, Rosti ME, Laurino P. Chemotactic Interactions Drive Migration of Membraneless Active Droplets. J Am Chem Soc 2024; 146:15965-15976. [PMID: 38620052 DOI: 10.1021/jacs.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner. The enzyme within the droplets generates a pH gradient that extends outside the edge of the droplets. We discovered that the external pH gradient triggers droplet migration and controls its directionality, which is selectively toward the neighboring droplets. Hence, by changing the enzyme activity inside the droplet, we tuned the droplet migration speed. Furthermore, we showed that these cellular-like features can facilitate the reconstitution of a simple and linear protometabolic pathway and increase the final reaction product generation. Our work suggests that simple and stable membraneless droplets can reproduce complex biological phenomena, opening new perspectives as bioinspired materials and synthetic biology tools.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Bevilacqua
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Giovanni Soligo
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
27
|
Wu Y, Shi XJ, Dai XY, Song TS, Li XL, Xie JJ. Biogated mesoporous silica nanoagents for inhibition of cell migration and combined cancer therapy. Mikrochim Acta 2024; 191:326. [PMID: 38740583 DOI: 10.1007/s00604-024-06401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.
Collapse
Affiliation(s)
- Yu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Jie Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xin-Yi Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tian Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiang-Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jing Jing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
28
|
Choi HS, Jang HJ, Kristensen MK, Kwon TH. TAZ is involved in breast cancer cell migration via regulating actin dynamics. Front Oncol 2024; 14:1376831. [PMID: 38774409 PMCID: PMC11106448 DOI: 10.3389/fonc.2024.1376831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Background Cancer metastasis is dependent on cell migration. Several mechanisms, including epithelial-to-mesenchymal transition (EMT) and actin fiber formation, could be involved in cancer cell migration. As a downstream effector of the Hippo signaling pathway, transcriptional coactivator with PDZ-binding motif (TAZ) is recognized as a key mediator of the metastatic ability of breast cancer cells. We aimed to examine whether TAZ affects the migration of breast cancer cells through the regulation of EMT or actin cytoskeleton. Methods MCF-7 and MDA-MB-231 cells were treated with siRNA to attenuate TAZ abundance. Transwell migration assay and scratch wound healing assay were performed to study the effects of TAZ knockdown on cancer cell migration. Fluorescence microscopy was conducted to examine the vinculin and phalloidin. Semiquantitative immunoblotting and quantitative real-time PCR were performed to study the expression of small GTPases and kinases. Changes in the expression of genes associated with cell migration were examined through next-generation sequencing. Results TAZ-siRNA treatment reduced TAZ abundance in MCF-7 and MDA-MB-231 breast cancer cells, which was associated with a significant decrease in cell migration. TAZ knockdown increased the expression of fibronectin, but it did not exhibit the typical pattern of EMT progression. TGF-β treatment in MDA-MB-231 cells resulted in a reduction in TAZ and an increase in fibronectin levels. However, it paradoxically promoted cell migration, suggesting that EMT is unlikely to be involved in the decreased migration of breast cancer cells in response to TAZ suppression. RhoA, a small Rho GTPase protein, was significantly reduced in response to TAZ knockdown. This caused a decrease in the expression of the Rho-dependent downstream pathway, i.e., LIM kinase 1 (LIMK1), phosphorylated LIMK1/2, and phosphorylated cofilin, leading to actin depolymerization. Furthermore, myosin light chain kinase (MLCK) and phosphorylated MLC2 were significantly decreased in MDA-MB-231 cells with TAZ knockdown, inhibiting the assembly of stress fibers and focal adhesions. Conclusion TAZ knockdown inhibits the migration of breast cancer cells by regulating the intracellular actin cytoskeletal organization. This is achieved, in part, by reducing the abundance of RhoA and Rho-dependent downstream kinase proteins, which results in actin depolymerization and the disassembly of stress fibers and focal adhesions.
Collapse
Affiliation(s)
- Hong Seok Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| | - Mathilde K. Kristensen
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- Faculty of Health, Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Republic of Korea
| |
Collapse
|
29
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. Acta Biomater 2024; 179:192-206. [PMID: 38490482 PMCID: PMC11263001 DOI: 10.1016/j.actbio.2024.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA.
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
31
|
Sun J, Jiao Y, Pan F, Cheng SH, Sun D. A High-Throughput Microdroplet-Based Single Cell Transfection Method for Gene Knockout Based on the CRISPR/Cas9 System. IEEE Trans Nanobioscience 2024; 23:378-388. [PMID: 38442045 DOI: 10.1109/tnb.2024.3373597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The efficient application of the newly developed gene-editing method CRISPR/Cas9 requires more accurate intracellular gene delivery. Traditional delivery approaches, such as lipotransfection and non-viral delivery methods, must contend with major problems to overcome the drawbacks of low efficiency, high toxicity, and cell-type dependency. The high-throughput microdroplet-based single-cell transfection method presented herein provides an alternative method for delivering genome-editing reagents into single living cells. By accurately controlling the number of exogenous plasmids in microdroplets, this method can achieve high-efficiency delivery of nucleic acids to different types of single cells. This paper presents a high-throughput quantitative DNA transfection method for single cells and explores the optimal DNA transfection conditions for specific cell lines. The transfection efficiency of cells at different concentrations of DNA in microdroplets is measured. Under the optimized transfection conditions, the method is used to construct gene-knockout cancer cell lines to determine specific gene functions through the CRISPR/Cas9 knockout system. In a case study, the migration ability of TRIM72 knockout cancer cells is inhibited, and the tumorigenicity of cells in a zebrafish tumor model is reduced. A single-cell microfluidic chip is designed to achieve CRISPR/Cas9 DNA transfection, dramatically improving the transfection efficiency of difficult-to-transfect cells. This research demonstrates that the microdroplet method developed herein has a unique advantage in CRISPR/Cas9 gene-editing applications.
Collapse
|
32
|
Nair PR, Danilova L, Gómez-de-Mariscal E, Kim D, Fan R, Muñoz-Barrutia A, Fertig EJ, Wirtz D. MLL1 regulates cytokine-driven cell migration and metastasis. SCIENCE ADVANCES 2024; 10:eadk0785. [PMID: 38478601 PMCID: PMC10936879 DOI: 10.1126/sciadv.adk0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-β1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-β1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.
Collapse
Affiliation(s)
- Praful R. Nair
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Optical Cell Biology Group, Instituto Gulbenkian de Ciência, R. Q.ta Grande 6 2780, 2780-156 Oeiras, Portugal
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, and Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Elana J. Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
33
|
Flommersfeld J, Stöberl S, Shah O, Rädler JO, Broedersz CP. Geometry-Sensitive Protrusion Growth Directs Confined Cell Migration. PHYSICAL REVIEW LETTERS 2024; 132:098401. [PMID: 38489624 DOI: 10.1103/physrevlett.132.098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
The migratory dynamics of cells can be influenced by the complex microenvironment through which they move. It remains unclear how the motility machinery of confined cells responds and adapts to their microenvironment. Here, we propose a biophysical mechanism for a geometry-dependent coupling between cellular protrusions and the nucleus that leads to directed migration. We apply our model to geometry-guided cell migration to obtain insights into the origin of directed migration on asymmetric adhesive micropatterns and the polarization enhancement of cells observed under strong confinement. Remarkably, for cells that can choose between channels of different size, our model predicts an intricate dependence for cellular decision making as a function of the two channel widths, which we confirm experimentally.
Collapse
Affiliation(s)
- Johannes Flommersfeld
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| | - Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Omar Shah
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilian-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstraße 37, D-80333 Munich, Germany
| |
Collapse
|
34
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549940. [PMID: 37546827 PMCID: PMC10401934 DOI: 10.1101/2023.07.23.549940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C. Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Allen P. Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Bhuia MS, Chowdhury R, Sonia FA, Biswas S, Ferdous J, El-Nashar HAS, El-Shazly M, Islam MT. Efficacy of Rotundic Acid and Its Derivatives as Promising Natural Anticancer Triterpenoids: A Literature-Based Study. Chem Biodivers 2024; 21:e202301492. [PMID: 38150556 DOI: 10.1002/cbdv.202301492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Rotundic acid (RA) is a naturally occurring pentacyclic triterpene with a multitude of pharmacological activities. The primary emphasis of this study is on summarizing the anticancer properties with the underlying mechanisms of RA and its derivatives, as well as the pharmacokinetic features. Data was collected (up to date as of November 10, 2023) from various reliable and authentic literatures by searching in different academic search engines, including PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings imply that RA and its synthetic derivatives possess promising anti-cancer properties against breast, colorectal, liver, and cervical cancers in various preclinical pharmacological test systems. The results also indicate that RA and its derivatives demonstrated anticancer effects via a number of cellular mechanisms, including apoptotic cell death, inhibition of oxidative stress, anti-inflammatory effect, cytotoxicity, cell cycle arrest, anti-proliferative effect, anti-angiogenic effect, and inhibition of cancer cell migration and invasion. It has been proposed that RA and its derived compounds have the capability to serve as a hopeful chemotherapeutic agent, so further extensive clinical research is necessary.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shrabonti Biswas
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
36
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
37
|
Garczorz W, Kosowska A, Francuz T. Antidiabetic Drugs in Breast Cancer Patients. Cancers (Basel) 2024; 16:299. [PMID: 38254789 PMCID: PMC10813754 DOI: 10.3390/cancers16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is one of the leading chronic conditions worldwide, and breast cancer is the most prevalent cancer in women worldwide. The linkage between diabetes and its ability to increase the risk of breast cancer should always be analyzed in patients. This review focuses on the impact of antihyperglycemic therapy in breast cancer patients. Patients with diabetes have a higher risk of developing cancer than the general population. Moreover, diabetes patients have a higher incidence and mortality of breast cancer. In this review, we describe the influence of antidiabetic drugs from insulin and metformin to the current and emerging therapies, incretins and SGLT-2 inhibitors, on breast cancer prognosis. We also emphasize the role of obesity and the metastasis process in breast cancer patients who are treated with antidiabetic drugs.
Collapse
Affiliation(s)
- Wojciech Garczorz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-055 Katowice, Poland; (A.K.); (T.F.)
| | | | | |
Collapse
|
38
|
Wu X, Li D, Chen Y, Wang L, Xu LY, Li EM, Dong G. Fascin - F-actin interaction studied by molecular dynamics simulation and protein network analysis. J Biomol Struct Dyn 2024; 42:435-444. [PMID: 37029713 DOI: 10.1080/07391102.2023.2199083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Dajia Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Yang Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Department of Pathology, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Liangdong Wang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, PR China
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, PR China
- Medical Informatics Research Center, Shantou University Medical College, Shantou, PR China
| |
Collapse
|
39
|
Hong P, Wu M, Wei X, Xu X, Wu P, Gan L, Wu R, Jin J, Zhang K, Li D, Chen M, Wong W, Liu W, Zheng X. Inhibitory effect of liriopesides B in combination with gemcitabine on human pancreatic cancer cells. Bioorg Chem 2024; 142:106937. [PMID: 37913583 DOI: 10.1016/j.bioorg.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Mengshuo Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingchuan Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Wingleung Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
40
|
Bachari A, Nassar N, Schanknecht E, Telukutla S, Piva TJ, Mantri N. Rationalizing a prospective coupling effect of cannabinoids with the current pharmacotherapy for melanoma treatment. WIREs Mech Dis 2024; 16:e1633. [PMID: 37920964 DOI: 10.1002/wsbm.1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
| | | | - Terrence Jerald Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, Victoria, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
41
|
Wang Y, Wang J, Chen L, Chen Z, Wang T, Xiong S, Zhou T, Wu G, He L, Cao J, Liu M, Li H, Gu H. PRRG4 regulates mitochondrial function and promotes migratory behaviors of breast cancer cells through the Src-STAT3-POLG axis. Cancer Cell Int 2023; 23:323. [PMID: 38102641 PMCID: PMC10724894 DOI: 10.1186/s12935-023-03178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer death for women worldwide. Most of the breast cancer death are due to disease recurrence and metastasis. Increasingly accumulating evidence indicates that mitochondria play key roles in cancer progression and metastasis. Our recent study revealed that transmembrane protein PRRG4 promotes the metastasis of breast cancer. However, it is not clear whether PRRG4 can affect the migration and invasion of breast cancer cells through regulating mitochondria function. METHODS RNA-seq analyses were performed on breast cancer cells expressing control and PRRG4 shRNAs. Quantitative PCR analysis and measurements of mitochondrial ATP content and oxygen consumption were carried out to explore the roles of PRRG4 in regulating mitochondrial function. Luciferase reporter plasmids containing different lengths of promoter fragments were constructed. Luciferase activities in breast cancer cells transiently transfected with these reporter plasmids were analyzed to examine the effects of PRRG4 overexpression on promoter activity. Transwell assays were performed to determine the effects of PRRG4-regulated pathway on migratory behaviors of breast cancer cells. RESULTS Analysis of the RNA-seq data revealed that PRRG4 knockdown decreased the transcript levels of all the mitochondrial protein-encoding genes. Subsequently, studies with PRRG4 knockdown and overexpression showed that PRRG4 expression increased mitochondrial DNA (mtDNA) content. Mechanistically, PRRG4 via Src activated STAT3 in breast cancer cells. Activated STAT3 in turn promoted the transcription of mtDNA polymerase POLG through a STAT3 DNA binding site present in the POLG promoter region, and increased mtDNA content as well as mitochondrial ATP production and oxygen consumption. In addition, PRRG4-mediated activation of STAT3 also enhanced filopodia formation, migration, and invasion of breast cancer cells. Moreover, PRRG4 elevated migratory behaviors and mitochondrial function of breast cancer cells through POLG. CONCLUSION Our results indicate that PRRG4 via the Src-STAT3-POLG axis enhances mitochondrial function and promotes migratory behaviors of breast cancer cells.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jieyi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuo Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tong Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuting Xiong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tong Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Min Liu
- Department of Orthopedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Room 903 and 904, Biomedical Research Building-South, Chashan University Town, Wenzhou, 325035, Zhejiang, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Room 903 and 904, Biomedical Research Building-South, Chashan University Town, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
42
|
Poyraz FS, Ugraskan V, Mansuroglu B, Yazici O. Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells. Mol Biol Rep 2023; 50:10257-10270. [PMID: 37934369 DOI: 10.1007/s11033-023-08862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The effects of nanosized boron phosphate-filled sodium alginate composite gel (SA/BP) on the biological characteristics of three types of glioblastoma multiforme (GBM) cells (C6, U87MG and T98G) were examined in this study. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine the cytotoxicity of the composite gel on GBM, which was then compared to L929 healthy cells. Furthermore, wound healing, apoptosis, and colony formation capacities were evaluated. The investigation revealed that the SA/BP composite gel was successful in all GBM cells and could be used as a treatment agent for GBM and/or other invasive cancer types. METHODS AND RESULTS According to the results, the SA/BP composite gel had no effect on healthy fibroblast cells but had a lethal effect on all glioblastoma cells. Additionally, the wound healing method was used to examine the effect of the SA/BP composite gel on cell migration. It was discovered that the wound closed in 24 h in untreated control group cells, while the SA/BP composite gel closed up to 29.62%, 26.77% and 11.31% of the wound for C6, U87MG and T98G cell lines respectively. SA/BP significantly reduced cell migration in cancer cells. The effect of the generated SA/BP composite gel on cell colony development was assessed using a colony formation assay, and the cells reduced colony formation for all GBMs. It was roughly 45% for 24 h and 30% for 48 h when compared to the control group for C6 cells, 33%(24 h) and 40%(48 h) for U87MG cells, 40%(24 h) and 43%(48 h) for T98G cells. DAPI(4',6-Diamidino-2-phenylindole) and JC-1(5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide) staining to evaluate apoptosis revealed that the SA/BP composite gel dramatically enhanced the frequency of all GBMs undergoing apoptosis. CONCLUSIONS In line with experimental findings, it was observed that the SA/BP composite gel system did not affect healthy fibroblast cells but had a cytotoxic effect on glioblastoma cells, significantly reduced cell migration and colony-forming capacity of cells, and significantly increased apoptosis and depolarization of cell membranes. Based on all these findings, it can be said that SA/BP composite gel has cytotoxic, antiproliferative and antiapoptotic effects on different glioblastoma cells.
Collapse
Affiliation(s)
- Fatma Sayan Poyraz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye.
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| |
Collapse
|
43
|
Migliaccio G, Ferraro R, Wang Z, Cristini V, Dogra P, Caserta S. Exploring Cell Migration Mechanisms in Cancer: From Wound Healing Assays to Cellular Automata Models. Cancers (Basel) 2023; 15:5284. [PMID: 37958456 PMCID: PMC10647277 DOI: 10.3390/cancers15215284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Cell migration is a critical driver of metastatic tumor spread, contributing significantly to cancer-related mortality. Yet, our understanding of the underlying mechanisms remains incomplete. METHODS In this study, a wound healing assay was employed to investigate cancer cell migratory behavior, with the aim of utilizing migration as a biomarker for invasiveness. To gain a comprehensive understanding of this complex system, we developed a computational model based on cellular automata (CA) and rigorously calibrated and validated it using in vitro data, including both tumoral and non-tumoral cell lines. Harnessing this CA-based framework, extensive numerical experiments were conducted and supported by local and global sensitivity analyses in order to identify the key biological parameters governing this process. RESULTS Our analyses led to the formulation of a power law equation derived from just a few input parameters that accurately describes the governing mechanism of wound healing. This groundbreaking research provides a powerful tool for the pharmaceutical industry. In fact, this approach proves invaluable for the discovery of novel compounds aimed at disrupting cell migration, assessing the efficacy of prospective drugs designed to impede cancer invasion, and evaluating the immune system's responses.
Collapse
Affiliation(s)
- Giorgia Migliaccio
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
| | - Rosalia Ferraro
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 80145 Naples, Italy
| | - Zhihui Wang
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (Z.W.); (V.C.); (P.D.)
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, 80125 Naples, Italy; (G.M.); (R.F.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 80145 Naples, Italy
| |
Collapse
|
44
|
Ameri A, Ahmed HM, Pecho RDC, Arabnozari H, Sarabadani H, Esbati R, Mirabdali S, Yazdani O. Diverse activity of miR-150 in Tumor development: shedding light on the potential mechanisms. Cancer Cell Int 2023; 23:261. [PMID: 37924077 PMCID: PMC10625198 DOI: 10.1186/s12935-023-03105-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
There is a growing interest to understand the role and mechanism of action of microRNAs (miRNAs) in cancer. The miRNAs are defined as short non-coding RNAs (18-22nt) that regulate fundamental cellular processes through mRNA targeting in multicellular organisms. The miR-150 is one of the miRNAs that have a crucial role during tumor cell progression and metastasis. Based on accumulated evidence, miR-150 acts as a double-edged sword in malignant cells, leading to either tumor-suppressive or oncogenic function. An overview of miR-150 function and interactions with regulatory and signaling pathways helps to elucidate these inconsistent effects in metastatic cells. Aberrant levels of miR-150 are detectable in metastatic cells that are closely related to cancer cell migration, invasion, and angiogenesis. The ability of miR-150 in regulating of epithelial-mesenchymal transition (EMT) process, a critical stage in tumor cell migration and metastasis, has been highlighted. Depending on the cancer cells type and gene expression profile, levels of miR-150 and potential target genes in the fundamental cellular process can be different. Interaction between miR-150 and other non-coding RNAs, such as long non-coding RNAs and circular RNAs, can have a profound effect on the behavior of metastatic cells. MiR-150 plays a significant role in cancer metastasis and may be a potential therapeutic target for preventing or treating metastatic cancer.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
45
|
Qiu Y, Wang H, Guo Q, Liu Y, He Y, Zhang G, Yang C, Du Y, Gao F. CD44s-activated tPA/LRP1-NFκB pathway drives lamellipodia outgrowth in luminal-type breast cancer cells. Front Cell Dev Biol 2023; 11:1224827. [PMID: 37842093 PMCID: PMC10569302 DOI: 10.3389/fcell.2023.1224827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Some cancer cells migration and metastasis are characterized by the outgrowth of lamellipodia protrusions in which the underlying mechanism remains unclear. Evidence has confirmed that lamellipodia formation could be regulated by various adhesion molecules, such as CD44, and we previously reported that lamellipodia at the leading edge of luminal type breast cancer (BrCa) were enriched with high expression of CD44. In this study, we found that the overexpression of CD44s could promote lamellipodia formation in BrCa cells through inducing tissue type plasminogen activator (tPA) upregulation, which was achieved by PI3K/Akt signaling pathway activation. Moreover, we revealed that tPA could interact with LDL receptor related protein 1 (LRP1) to activate the downstream NFκB signaling pathway, which in turn facilitate lamellipodia formation. Notably, inhibition of the tPA/LRP1-NFkB signaling cascade could attenuate the CD44s-induced lamellipodia formation. Thus, our findings uncover a novel role of CD44s in driving lamellipodia outgrowth through tPA/LRP1-NFkB axis in luminal BrCa cells that may be helpful for seeking potential therapeutic targets.
Collapse
Affiliation(s)
- Yaqi Qiu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Lee S, Lee W, Ren S, Park B, Han K. Constructing Integrative ceRNA Networks and Finding Prognostic Biomarkers in Renal Cell Carcinoma. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2671-2680. [PMID: 36227824 DOI: 10.1109/tcbb.2022.3214190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inspired by a newly discovered gene regulation mechanism known as competing endogenous RNA (ceRNA) interactions, several computational methods have been proposed to generate ceRNA networks. However, most of these methods have focused on deriving restricted types of ceRNA interactions such as lncRNA-miRNA-mRNA interactions. Competition for miRNA-binding occurs not only between lncRNAs and mRNAs but also between lncRNAs or between mRNAs. Furthermore, a large number of pseudogenes also act as ceRNAs, thereby regulate other genes. In this study, we developed a general method for constructing integrative networks of all possible interactions of ceRNAs in renal cell carcinoma (RCC). From the ceRNA networks we derived potential prognostic biomarkers, each of which is a triplet of two ceRNAs and miRNA (i.e., ceRNA-miRNA-ceRNA). Interestingly, some prognostic ceRNA triplets do not include mRNA at all, and consist of two non-coding RNAs and miRNA, which have been rarely known so far. Comparison of the prognostic ceRNA triplets to known prognostic genes in RCC showed that the triplets have a better predictive power of survival rates than the known prognostic genes. Our approach will help us construct integrative networks of ceRNAs of all types and find new potential prognostic biomarkers in cancer.
Collapse
|
47
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|
48
|
Izadi A, Soukhtanloo M, Mirzavi F, Jalili-Nik M, Sadeghi A. Alpha-Lipoic Acid, Auraptene, and Particularly Their Combination Prevent the Metastasis of U87 Human Glioblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8618575. [PMID: 37496822 PMCID: PMC10368506 DOI: 10.1155/2023/8618575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Background The primary malignant brain tumor glioblastoma multiforme (GBM) is most commonly detected in individuals over 60 years old. The standard therapeutic approach for GBM is radiotherapy combined with temozolomide. Recently, herbal products, such as alpha-lipoic acid (ALA) and auraptene (AUR), have shown promising anticancer effects on various cancer cells and animal models. However, it is not well understood how ALA, AUR, and their combination in GBM work to combat cancer. Thus, the purpose of this study was to investigate the antimetastatic effects of the ALA-AUR combination on U87 human glioblastoma cells. Methods The inhibitory effects of ALA, AUR, and the ALA/AUR combination on the migration and metastasis of U87 cells were evaluated using a wound healing test and gelatin zymography. The expression levels of matrix metalloproteinase MMP-2 and MMP-9 were assessed at the transcriptional and translational levels using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Results Our findings revealed that combination therapy reduced cell migration and metastasis, which was indicated by the reduction in MMP-2/-9 expression both at mRNA and protein levels, as well as their enzymatic activity in U87 cells. Conclusion This study demonstrated that the combination of ALA and AUR effectively inhibited the migration and metastasis of U87 cells. Thus, given their safety and favorable specifications, the combination of these drugs can be a promising candidate for GBM treatment as primary or adjuvant therapy.
Collapse
Affiliation(s)
- Azam Izadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Soukhtanloo
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
49
|
Zhao P, Sun L, Zhao C. TCF1/LEF1 triggers Wnt-dependent chemokine/cytokine-induced inflammation and cadherin pathways to drive T-ALL cell migration. Biochem Biophys Rep 2023; 34:101457. [PMID: 36942321 PMCID: PMC10024088 DOI: 10.1016/j.bbrep.2023.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive hematologic malignancy. It progresses quickly and it is likely to be fatal within a few months without treatment. Despite the limitations of current clinical therapies, there is an urgent need for novel and targeted therapies. To explore potential targeted therapies, molecular genetic mechanisms of T-ALL metastasis must be uncovered. However, the genes and mechanisms that mediate T-ALL metastasis are largely unknown. Recent insights into T-ALL biology have identified several genes that can be grouped into several targetable signaling pathways. The Wnt/β-catenin signaling pathway is one of the most important pathways. Our work investigated the functions of TCF1 and LEF1 in cell growth and migration mediated by the Wnt signaling pathway. We found that TCF1 and LEF1 knockdown weakly repressed T-ALL cell proliferation but distinctly impaired cell migration. T-ALL metastasis is dependent on cell migration and invasion. Our results displayed that TCF1 and LEF1 regulated T-ALL cell migration by the Wnt-dependent chemokine and cytokine-induced inflammation and cadherin signaling pathways. By transcriptionally regulating these pathways-associated genes, TCF1 and LEF1 inhibited cell adhesion and promoted cell migration and invasion.
Collapse
Affiliation(s)
- Pin Zhao
- Department of Clinical Laboratory, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, 29th Bulan Road, Longgang District, Shenzhen, 518112, China
- Corresponding author.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, 100068, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, 100068, China
| |
Collapse
|
50
|
Mandal D, Sahu BR, Parija T. Combination of tamoxifen and D-limonene enhances therapeutic efficacy in breast cancer cells. Med Oncol 2023; 40:216. [PMID: 37391551 DOI: 10.1007/s12032-023-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/02/2023]
Abstract
Breast cancer one of the most common diseases in women, has a high death and morbidity rate. Tamoxifen being very much effective in the chemoprevention of breast cancer has been shown to develop resistance during the course of treatment making it difficult for patient's survival. By combining tamoxifen with naturally occurring substances having similar activities, might control the toxicity and increase the susceptibility towards the treatment. As a natural compound, D-limonene has been reported to inhibit the growth of certain malignancies significantly. The main goal of our work is to investigate the combinatorial antitumor effects of D-limonene and tamoxifen in MCF-7 cells, as well as understand the potential underlying anticancer mechanism. MTT assays, colony formation assays, DAPI and Annexin V-FITC labeling, flow cytometer analysis, and western blot analysis were used to explore the details of anticancer mechanism. The combined effects of tamoxifen with D-limonene have shown significant decrease in the cell viability of MCF 7 cells. According to flow cytometer analyses and Annexin V/PI staining, D-limonene has been found to increase tamoxifen-mediated apoptosis as compared to the treatment alone in these cells. Additionally, cell growth has been found to be arrested at G1 phase by regulating cyclin D1 and cyclin B1. Our research consequently provided the first evidence that combining D-limonene and tamoxifen might increase the anticancer efficacy by inducing apoptosis in MCF 7 breast cancer cells. This combinatorial treatment strategy demands more research which might fulfill the need for improved treatment efficacy in controlling breast cancer.
Collapse
Affiliation(s)
- Deepa Mandal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Bikash Ranjan Sahu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Tithi Parija
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|