1
|
Souza VGP, Benard KH, Stewart GL, Enfield KSS, Lam WL. Identification of Genomic Instability-Associated LncRNAs as Potential Therapeutic Targets in Lung Adenocarcinoma. Cancers (Basel) 2025; 17:996. [PMID: 40149330 PMCID: PMC11940503 DOI: 10.3390/cancers17060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Non-small cell lung cancer (NSCLC) is the most common type of cancer, with lung adenocarcinoma (LUAD) as the predominant subtype. Despite advancements in targeted therapies, many NSCLC patients still experience poor outcomes due to treatment resistance and disease progression. Genomic instability (GI), a hallmark of cancer, defined as the increased tendency of DNA mutations and alterations, is closely linked to cancer initiation, progression, and resistance to therapy. Emerging evidence suggests that long non-coding RNAs (lncRNAs)-molecules longer than 200 nucleotides that do not encode proteins but regulate gene expression-play critical roles in cancer biology and are associated with GI. However, the relationship between GI and lncRNA expression in LUAD remains poorly understood. METHODS In this study, we analyzed the transcript profiles of lncRNAs and mRNAs from LUAD samples in The Cancer Genome Atlas (TCGA) database and classified them based on their Homologous Recombination Deficiency (HRD) score. The HRD score is an unweighted sum of three independent DNA-based measures of genomic instability: loss of heterozygosity, telomeric allelic imbalance, and large-scale transitions. We then performed a differential gene expression analysis to identify lncRNAs and mRNAs that were either upregulated or downregulated in samples with high HRD scores compared to those with low HRD scores. Following this, we conducted a correlation analysis to assess the significance of the association between HRD scores and the expression of both lncRNAs and mRNAs. RESULTS We identified 30 differentially expressed lncRNAs and 200 mRNAs associated with genomic instability. Using an RNA interactome database from sequencing experiments, we found evidence of interactions between GI-associated lncRNAs (GI-lncRNAs) and GI-associated mRNAs (GI-mRNAs). Further investigation showed that some GI-lncRNAs play regulatory and functional roles in LUAD and other diseases. We also found that GI-lncRNAs have potential as prognostic biomarkers, particularly when integrated with HRD stratification. The expression of specific GI-lncRNAs was associated with primary therapy response and immune infiltration in LUAD. Additionally, we identified existing drugs that could modulate GI-lncRNAs, offering potential therapeutic strategies to address GI in LUAD. CONCLUSIONS Our findings suggest that GI-associated lncRNAs could serve as valuable biomarkers for LUAD prognosis and therapeutic response. Furthermore, modulating these lncRNAs presents potential treatment avenues to address genomic instability in LUAD.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Katya H. Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katey S. S. Enfield
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
2
|
Lin C, Kuzmanović A, Wang N, Liao L, Ernst S, Penners C, Jans A, Hammoor T, Stach PB, Peltzer M, Volkert I, Zechendorf E, Hassan R, Myllys M, Liedtke C, Herrmann A, Chakraborty G, Trautwein C, Hengstler J, Müller‐Newen G, Wang J, Ghallab A, Bartneck M. Exceptional Uptake, Limited Protein Expression: Liver Macrophages Lost in Translation of Synthetic mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409729. [PMID: 39792811 PMCID: PMC11884593 DOI: 10.1002/advs.202409729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging. Despite attempts such as inhibiting intracellular ribonuclease, substituting uridine bases in mRNA with pseudouridine, and using a different ionizable lipid in the LNP mixture, no substantial increase in Egfp translation by NPC is possible. The investigation reveals that hepatocytes, which are distinct from other liver cells due to their polyploidy, exhibit significantly elevated levels of total RNA and protein, along with a higher proportion of ribosomal protein per individual cell. Consequently, fundamental cellular differences account for the low mRNA translation observed in NPC. The findings therefore suggest that cellular biology imposes a natural limitation on synthetic mRNA translation that is strongly influenced by cellular ploidy.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of Rheumatology and Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Adrian Kuzmanović
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Liangliang Liao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Japan Union Hospital of Jilin University130033ChangchunChina
| | - Sabrina Ernst
- Confocal Microscopy FacilityInterdisciplinary Center for Clinical Research IZKFUniversity Hospital RWTH Aachen52074AachenGermany
| | - Christian Penners
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Thomas Hammoor
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Petra Bumnuri Stach
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Mona Peltzer
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Ines Volkert
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate CareUniversity Hospital RWTH Aachen52074AachenGermany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Christian Liedtke
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Gurudas Chakraborty
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Christian Trautwein
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Gerhard Müller‐Newen
- Institute of Biochemistry and Molecular BiologyRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Junqing Wang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
3
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. APL Bioeng 2025; 9:016105. [PMID: 39974511 PMCID: PMC11836873 DOI: 10.1063/5.0233329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
Affiliation(s)
- Satomi Hirose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tatsuya Osaki
- Authors to whom correspondence should be addressed: and
| | - Roger D. Kamm
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Curry RN, McDonald MF, He P, Lozzi B, Ko Y, O’Reilly I, Rosenbaum A, Kwon W, Fahim L, Marcus J, Powell N, Wang S, Ma J, Multani A, Choi DJ, Sardar D, Mohila C, Lee J, Gallo M, Harmanci A, Harmanci AS, Deneen B, Rao G. Mutant IDH impairs chromatin binding by PDGFB to promote chromosome instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639365. [PMID: 40060572 PMCID: PMC11888161 DOI: 10.1101/2025.02.20.639365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Non-canonical roles for growth factors in the nucleus have been previously described, but their mechanism of action and biological roles remain enigmatic. Platelet-derived growth factor B (PDGFB) can drive formation of low-grade glioma and here we show that it localizes to the nucleus of human glioma cells where it binds chromatin to preserve genome stability and cell lineage. Failure of PDGFB to localize to the nucleus leads to chromosomal abnormalities, aberrant heterochromatin architecture and accelerated tumorigenesis. Furthermore, nuclear localization of PDGFB is reliant upon the expression levels and mutation status of isocitrate dehydrogenase (IDH). Unexpectedly, we identified macrophages as the predominant source of PDGFB in human, finding that immune-derived PDGFB can localize to the nucleus of glioma cells. Collectively, these studies show that immune derived PDGFB enters the nucleus of glioma cells to maintain genomic stability, while identifying a new mechanism by which IDH mutations promote gliomagenesis.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Malcolm F. McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Isabella O’Reilly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Anna Rosenbaum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Leyla Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Joshua Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Noah Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jin Ma
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Asha Multani
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Debo Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Carrie Mohila
- Department of Neuropatholgy, Texas Children’s Hospital, Houston, TX
| | - Jason Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Marco Gallo
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
| | - Arif Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX
| | - Akdes Serin Harmanci
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Flashner S, Azizkhan-Clifford J. Emerging Roles for Transcription Factors During Mitosis. Cells 2025; 14:263. [PMID: 39996736 PMCID: PMC11853531 DOI: 10.3390/cells14040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The genome is dynamically reorganized, partitioned, and divided during mitosis. Despite their role in organizing interphase chromatin, transcription factors were largely believed to be mitotic spectators evicted from chromatin during mitosis, only able to reestablish their position on DNA upon entry into G1. However, a panoply of evidence now contradicts this early belief. Numerous transcription factors are now known to remain active during mitosis to achieve diverse purposes, including chromosome condensation, regulation of the centromere/kinetochore function, and control of centrosome homeostasis. Inactivation of transcription factors during mitosis results in chromosome segregation errors, key features of cancer. Moreover, active transcription and the production of centromere-derived transcripts during mitosis are also known to play key roles in maintaining chromosomal stability. Finally, many transcription factors are associated with chromosomal instability through poorly defined mechanisms. Herein, we will review the emerging roles of transcription factors and transcription during mitosis with a focus on their role in promoting the faithful segregation of sister chromatids.
Collapse
Affiliation(s)
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
6
|
Josephides JM, Chen CL. Unravelling single-cell DNA replication timing dynamics using machine learning reveals heterogeneity in cancer progression. Nat Commun 2025; 16:1472. [PMID: 39922809 PMCID: PMC11807193 DOI: 10.1038/s41467-025-56783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Genomic heterogeneity has largely been overlooked in single-cell replication timing (scRT) studies. Here, we develop MnM, an efficient machine learning-based tool that allows disentangling scRT profiles from heterogenous samples. We use single-cell copy number data to accurately perform missing value imputation, identify cell replication states, and detect genomic heterogeneity. This allows us to separate somatic copy number alterations from copy number changes resulting from DNA replication. Our methodology brings critical insights into chromosomal aberrations and highlights the ubiquitous aneuploidy process during tumorigenesis. The copy number and scRT profiles obtained by analysing >119,000 high-quality human single cells from different cell lines, patient tumours and patient-derived xenograft samples leads to a multi-sample heterogeneity-resolved scRT atlas. This atlas is an important resource for cancer research and demonstrates that scRT profiles can be used to study replication timing heterogeneity in cancer. Our findings also highlight the importance of studying cancer tissue samples to comprehensively grasp the complexities of DNA replication because cell lines, although convenient, lack dynamic environmental factors. These results facilitate future research at the interface of genomic instability and replication stress during cancer progression.
Collapse
Affiliation(s)
- Joseph M Josephides
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France.
| |
Collapse
|
7
|
Ishikawa Y, Fukue H, Iwakami R, Ikeda M, Iemura K, Tanaka K. Fibrous corona is reduced in cancer cell lines that attenuate microtubule nucleation from kinetochores. Cancer Sci 2025; 116:420-431. [PMID: 39604214 PMCID: PMC11786318 DOI: 10.1111/cas.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Most cancer cells show increased chromosome missegregation, known as chromosomal instability (CIN), which promotes cancer progression and drug resistance. The underlying causes of CIN in cancer cells are not fully understood. Here we found that breast cancer cell lines show a reduced kinetochore localization of ROD, ZW10, and Zwilch, components of the fibrous corona, compared with non-transformed breast epithelial cell lines. The fibrous corona is a structure formed on kinetochores before their end-on attachment to microtubules and plays a role in efficient kinetochore capture and the spindle assembly checkpoint. The reduction in the fibrous corona was not due to reduced expression levels of the fibrous corona components or to a reduction in outer kinetochore components. Kinetochore localization of Bub1 and CENP-E, which play a role in the recruitment of the fibrous corona to kinetochores, was reduced in cancer cell lines, presumably due to reduced activity of Mps1, which is required for their recruitment to kinetochores through phosphorylating KNL1. Increasing kinetochore localization of Bub1 and CENP-E in cancer cells restored the level of the fibrous corona. Cancer cell lines showed a reduced capacity to nucleate microtubules from kinetochores, which was recently shown to be dependent on the fibrous corona, and increasing kinetochore localization of Bub1 and CENP-E restored the microtubule nucleation capacity on kinetochores. Our study revealed a distinct feature of cancer cell lines that may be related to CIN.
Collapse
Grants
- 18H04896 Ministry of Education, Culture, Sports, Science and Technology
- 21H05738 Ministry of Education, Culture, Sports, Science and Technology
- 23H04272 Ministry of Education, Culture, Sports, Science and Technology
- Yamaguchi Educational and Scholarship Foundation
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- JPMJAX2112 Japan Science and Technology Agency
- Takeda Science Foundation
- The Pharmacological Research Foundation. Tokyo
- 15H04368 Japan Society for the Promotion of Science
- 16H06635 Japan Society for the Promotion of Science
- 16K14604 Japan Society for the Promotion of Science
- 18H02434 Japan Society for the Promotion of Science
- 18K15234 Japan Society for the Promotion of Science
- 22H02614 Japan Society for the Promotion of Science
- 23K05629 Japan Society for the Promotion of Science
- Ministry of Education, Culture, Sports, Science and Technology
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Japan Science and Technology Agency
- Takeda Science Foundation
- Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hirotaka Fukue
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Runa Iwakami
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
Bagde PH, Kandpal M, Rani A, Kumar S, Mishra A, Jha HC. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J Cell Biochem 2025; 126:e70000. [PMID: 39887732 DOI: 10.1002/jcb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Proteasomes are the catalytic complexes in eukaryotic cells that decide the fate of proteins involved in various cellular processes in an energy-dependent manner. The proteasomal system performs its function by selectively destroying the proteins labelled with the small protein ubiquitin. Dysfunctional proteasomal activity is allegedly involved in various clinical disorders such as cancer, neurodegenerative disorders, ageing, and so forth, making it an important therapeutic target. Notably, compared to healthy cells, cancer cells have a higher protein homeostasis requirement and a faster protein turnover rate. The ubiquitin-proteasome system (UPS) helps cancer cells increase rapidly and experience less apoptotic cell death. Therefore, understanding UPS is essential to design and discover some effective inhibitors for cancer therapy. Hereby, we have focused on the role of the 26S proteasome complex, mainly the UPS, in carcinogenesis and seeking potential therapeutic targets in treating numerous cancers.
Collapse
Affiliation(s)
- Pranit Hemant Bagde
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Sachin Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
9
|
Hu H, Luo H, Deng Z. PCAT19: the role in cancer pathogenesis and beyond. Front Cell Dev Biol 2024; 12:1435717. [PMID: 39744012 PMCID: PMC11688190 DOI: 10.3389/fcell.2024.1435717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 01/04/2025] Open
Abstract
PCAT19, a long non-coding RNA, has attracted considerable attention due to its diverse roles in various malignancies. This work compiles current research on PCAT19's involvement in cancer pathogenesis and progression. Abnormal expression of PCAT19 has been observed in various cancers, and its correlation with clinical features and prognosis positions it as a promising prognostic biomarker. Additionally, its ability to effectively differentiate between tumor and normal tissues suggests significant diagnostic value. PCAT19 exhibits a dual nature, functioning either as an oncogene or a tumor suppressor, depending on the cancer type. It is implicated in a range of tumor-related activities, including cell proliferation, apoptosis, invasion, migration, metabolism, as well as tumor growth and metastasis. PCAT19 acts as a competing endogenous RNA (ceRNA) or interacts with proteins to regulate critical cancer-related pathways, such as MELK signaling, p53 signaling, and cell cycle pathways. Furthermore, emerging evidence suggests that PCAT19 plays a role in the modulation of neuropathic pain, adding complexity to its functional repertoire. By exploring the molecular mechanisms and pathways associated with PCAT19, we aim to provide a comprehensive understanding of its multifaceted roles in human health and disease, highlighting its potential as a therapeutic target for cancer and pain management.
Collapse
Affiliation(s)
- Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Siegelmann R, Siegelmann HT. Meta-Analytic Operation of Threshold-independent Filtering (MOTiF) reveals sub-threshold genomic robustness in trisomy: The Jörmungandr Effect. Biochem Biophys Res Commun 2024; 737:150802. [PMID: 39500042 DOI: 10.1016/j.bbrc.2024.150802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/13/2024]
Abstract
Trisomy, a form of aneuploidy wherein the cell possesses an additional copy of a specific chromosome, exhibits a high correlation with cancer. Studies from across different hosts, cell-lines, and labs into the cellular effects induced by aneuploidy have conflicted, ranging from small, chaotic global changes to large instances of either overexpression or underexpression throughout the trisomic chromosome. We ascertained that conflicting findings may be correct but miss the overarching ground truth due to injudicious use of thresholds. To correct this deficiency, we introduce the Meta-analytic Operation of Threshold-independent Filtering (MOTiF) method, which begins by providing a panoramic view of all thresholds, transforms the data to eliminate the effects accounted for by known mechanisms, and then reconstructs an explanation of the mechanisms that underly the difference between the baseline and the uncharacterized effects observed. As a proof of concept, we applied MOTiF to human colonic epithelial cells, discovering a uniform decrease in gene expression levels throughout the genome, which while significant, is beneath most common thresholds. Using Hi-C data we identified the structural correlate, wherein the physical genomic architecture condenses, compactifying in a uniform, genome-wide manner. This effect, which we dub the Jörmungandr Effect, is likely a robustness mechanism counteracting the addition of a chromosome. We were able to break down the gene expression alterations into three overlapping mechanisms: the raw chromosome content, the genomic compartmentalization, and the global structural condensation. While further studies must be conducted to corroborate the hypothesized Jörmungandr Effect, MOTiF presents a useful meta-analytic tool in the realm of gene expression and beyond.
Collapse
Affiliation(s)
- Roy Siegelmann
- Department of Applied Mathematics and Statistics Johns Hopkins University, Baltimore, MD 21218-2680, USA.
| | - Hava T Siegelmann
- Manning College of Information and Computer Sciences University of Massachusetts, Amherst Amherst, MA 01003-9264, USA.
| |
Collapse
|
11
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024; 56:2014-2026. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Cosper PF, Paracha M, Jones KM, Hrycyniak L, Henderson L, Bryan A, Eyzaguirre D, McCunn E, Boulanger E, Wan J, Nickel KP, Horner V, Hu R, Harari PM, Kimple RJ, Weaver BA. Chromosomal instability increases radiation sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612942. [PMID: 39345631 PMCID: PMC11429890 DOI: 10.1101/2024.09.13.612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Continuous chromosome missegregation over successive mitotic divisions, known as chromosomal instability (CIN), is common in cancer. Increasing CIN above a maximally tolerated threshold leads to cell death due to loss of essential chromosomes. Here, we show in two tissue contexts that otherwise isogenic cancer cells with higher levels of CIN are more sensitive to ionizing radiation, which itself induces CIN. CIN also sensitizes HPV-positive and HPV-negative head and neck cancer patient derived xenograft (PDX) tumors to radiation. Moreover, laryngeal cancers with higher CIN prior to treatment show improved response to radiation therapy. In addition, we reveal a novel mechanism of radiosensitization by docetaxel, a microtubule stabilizing drug commonly used in combination with radiation. Docetaxel causes cell death by inducing CIN due to abnormal multipolar spindles rather than causing mitotic arrest, as previously assumed. Docetaxel-induced CIN, rather than mitotic arrest, is responsible for the enhanced radiation sensitivity observed in vitro and in vivo, challenging the mechanistic dogma of the last 40 years. These results implicate CIN as a potential biomarker and inducer of radiation response, which could provide valuable cancer therapeutic opportunities. Statement of Significance Cancer cells and laryngeal tumors with higher chromosome missegregation rates are more sensitive to radiation therapy, supporting chromosomal instability as a promising biomarker of radiation response.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maha Paracha
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laura Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin, Madison, WI 53705, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Diego Eyzaguirre
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth Boulanger
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vanessa Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beth A. Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Chai C, Tang H, Miao X, Chen T, Su Y, Li L, Miao L, Zhang B, Wang Z, Luo W, Zhang H, Xu H, Zhou W. Establishment and characterization of a novel human gallbladder cancer cell line, GBC-X1. Sci Rep 2024; 14:21439. [PMID: 39271742 PMCID: PMC11399391 DOI: 10.1038/s41598-024-72830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, we successfully established a novel gallbladder cancer cell line, designated as GBC-X1, derived from a primary tumor of a gallbladder cancer patient. By comprehensively analyzing the cell line's phenotype, molecular characteristics, biomarkers, and histological characteristics, we confirmed that GBC-X1 serves as a valuable model for investigating the pathogenesis of gallbladder cancer and developing therapeutic agents. GBC-X1 has been continuously cultured for one year, with over 60 stable passages. Morphologically, GBC-X1 exhibits typical features of epithelial tumors. The population doubling time of GBC-X1 is 32 h. STR analysis validated a high consistency between GBC-X1 and the patient's primary tumor. Karyotype analysis revealed an abnormal hypertetraploid karyotype for GBC-X1, characterized by representative karyotypes of 98, XXXX del (4) p (12) del (5) p (21) der (10). Under suspension culture conditions, GBC-X1 efficiently forms tumor balls, while subcutaneous inoculation of GBC-X1 cells into NXG mice leads to xenograft formation with a rate of 80%. Drug sensitivity testing demonstrated that GBC-X1 is resistant to oxaliplatin and sensitive to 5-FU, gemcitabine, and paclitaxel. Immunohistochemistry revealed positive expression of CK7, CK19, E-cadherin, MMP-2, CD44, SOX2, and TP53 in GBC-X1 cells, weak positive expression of Vimentin, and a Ki67 positive rate of 35%. Our research highlights GBC-X1 as a novel gallbladder cancer cell line and emphasizes its potential as an effective experimental model for investigating the pathogenesis of gallbladder cancer and drug development.
Collapse
Affiliation(s)
- Changpeng Chai
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yuanhui Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Long Miao
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Bo Zhang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Zhengfeng Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wei Luo
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China
| | - Hui Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000, Gansu, China.
- First School of Clinical Medicine, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD20817
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Daniel R. Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX77030
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Dana-Farber Cancer Institute, Boston, MA02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Discovery Science, American Cancer Society, Atlanta, GA30144
| |
Collapse
|
16
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601261. [PMID: 39005381 PMCID: PMC11244921 DOI: 10.1101/2024.06.28.601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
|
17
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Schuyler SC, Chen HY, Chang KP. Suppressing Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 Activity to Enhance the Effectiveness of Anti-Cancer Drugs That Induce Multipolar Mitotic Spindles. Int J Mol Sci 2024; 25:6329. [PMID: 38928036 PMCID: PMC11203710 DOI: 10.3390/ijms25126329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel's anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
19
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Ya A, Deng C, Godek KM. Cell Competition Eliminates Aneuploid Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593217. [PMID: 38766106 PMCID: PMC11100710 DOI: 10.1101/2024.05.08.593217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Lead contact
| |
Collapse
|
21
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
22
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
23
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
24
|
Garrison Z, Clister T, Bleem E, Berry EG, Kulkarni RP. Comparison of Immunotherapy versus Targeted Therapy Effectiveness in BRAF-Mutant Melanoma Patients and Use of cGAS Expression and Aneuploidy as Potential Prognostic Biomarkers. Cancers (Basel) 2024; 16:1027. [PMID: 38473384 DOI: 10.3390/cancers16051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BRAF-mutant melanoma patients can be treated with targeted therapy or immunotherapies, and it is not clear which should be provided first. Targeted treatments do not work in up to one-third of cases, while immunotherapies may only be effective in up to 60% and come with a high risk of immune-related side effects. Determining which treatment to provide first is thus of critical importance. Recent studies suggest that chromosomal instability and aneuploidy and cyclic GMP-AMP synthase (cGAS) can act as biomarkers for cancer severity and patient outcome. Neither potential biomarker has been extensively studied in melanoma. We examined 20 BRAF-mutant melanomas treated with immunotherapy or targeted therapy and measured chromosomal aneuploidy and cGAS expression levels. Treatment type, aneuploidy, and cGAS expression were correlated with progression-free survival (PFS) in these patients. Those treated with immunotherapy first had significantly better outcomes than those treated with targeted therapy, suggesting immunotherapy should be strongly considered as the first-line therapy for patients bearing BRAF-mutant melanoma. We found that there was no correlation of aneuploidy with outcome while there was some positive correlation of cGAS levels with PFS. Further studies are needed to confirm these findings and to test other potential biomarkers.
Collapse
Affiliation(s)
- Zachary Garrison
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Terri Clister
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Bleem
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elizabeth G Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
| |
Collapse
|
25
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
27
|
Xiao R, Xu D, Zhang M, Chen Z, Cheng L, Du S, Lu M, Zhou T, Li R, Bai F, Huang Y. Aneuploid embryonic stem cells drive teratoma metastasis. Nat Commun 2024; 15:1087. [PMID: 38316790 PMCID: PMC10844504 DOI: 10.1038/s41467-024-45265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Deshu Xu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Li Cheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Songjie Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingfei Lu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tonghai Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
28
|
Bertram CA, Bartel A, Donovan TA, Kiupel M. Atypical Mitotic Figures Are Prognostically Meaningful for Canine Cutaneous Mast Cell Tumors. Vet Sci 2023; 11:5. [PMID: 38275921 PMCID: PMC10821277 DOI: 10.3390/vetsci11010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cell division through mitosis (microscopically visible as mitotic figures, MFs) is a highly regulated process. However, neoplastic cells may exhibit errors in chromosome segregation (microscopically visible as atypical mitotic figures, AMFs) resulting in aberrant chromosome structures. AMFs have been shown to be of prognostic relevance for some neoplasms in humans but not in animals. In this study, the prognostic relevance of AMFs was evaluated for canine cutaneous mast cell tumors (ccMCT). Histological examination was conducted by one pathologist in whole slide images of 96 cases of ccMCT with a known survival time. Tumor-related death occurred in 11/18 high-grade and 2/78 low-grade cases (2011 two-tier system). The area under the curve (AUC) was 0.859 for the AMF count and 0.880 for the AMF to MF ratio with regard to tumor-related mortality. In comparison, the AUC for the mitotic count was 0.885. Based on our data, a prognostically meaningful threshold of ≥3 per 2.37 mm2 for the AMF count (sensitivity: 76.9%, specificity: 98.8%) and >7.5% for the AMF:MF ratio (sensitivity: 76.9%, specificity: 100%) is suggested. While the mitotic count of ≥ 6 resulted in six false positive cases, these could be eliminated when combined with the AMF to MF ratio. In conclusion, the results of this study suggests that AMF enumeration is a prognostically valuable test, particularly due to its high specificity with regard to tumor-related mortality. Additional validation and reproducibility studies are needed to further evaluate AMFs as a prognostic criterion for ccMCT and other tumor types.
Collapse
Affiliation(s)
- Christof A. Bertram
- Institute of Veterinary Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Taryn A. Donovan
- Department of Anatomic Pathology, The Schwarzman Animal Medical Center, New York, NY 10065, USA;
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI 48910, USA
| |
Collapse
|
29
|
Wilson SR, Duncan AW. The Ploidy State as a Determinant of Hepatocyte Proliferation. Semin Liver Dis 2023; 43:460-471. [PMID: 37967885 PMCID: PMC10862383 DOI: 10.1055/a-2211-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Byers HA, Brooks AN, Vangala JR, Grible JM, Feygin A, Clevenger CV, Harrell JC, Radhakrishnan SK. Evaluation of the NRF1-proteasome axis as a therapeutic target in breast cancer. Sci Rep 2023; 13:15843. [PMID: 37739987 PMCID: PMC10516926 DOI: 10.1038/s41598-023-43121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
Proteasomes are multi-subunit complexes that specialize in protein degradation. Cancer cells exhibit a heightened dependence on proteasome activity, presumably to support their enhanced proliferation and other cancer-related characteristics. Here, a systematic analysis of TCGA breast cancer datasets revealed that proteasome subunit transcript levels are elevated in all intrinsic subtypes (luminal, HER2-enriched, and basal-like/triple-negative) when compared to normal breast tissue. Although these observations suggest a pan-breast cancer utility for proteasome inhibitors, our further experiments with breast cancer cell lines and patient-derived xenografts (PDX) pointed to triple-negative breast cancer (TNBC) as the most sensitive subtype to proteasome inhibition. Finally, using TNBC cells, we extended our studies to in vivo xenograft experiments. Our previous work has firmly established a cytoprotective role for the transcription factor NRF1 via its ability to upregulate proteasome genes in response to proteasome inhibition. In further support of this notion, we show here that NRF1 depletion significantly reduced tumor burden in an MDA-MB-231 TNBC xenograft mouse model treated with carfilzomib. Taken together, our results point to TNBC as a particularly vulnerable breast cancer subtype to proteasome inhibition and provide a proof-of-principle for targeting NRF1 as a viable means to increase the efficacy of proteasome inhibitors in TNBC tumors.
Collapse
Affiliation(s)
- Holly A Byers
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy N Brooks
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Janakiram R Vangala
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jacqueline M Grible
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex Feygin
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles V Clevenger
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Senthil K Radhakrishnan
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
31
|
Duncan JL, Bloomfield M, Swami N, Cimini D, Davalos RV. High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume. MICROMACHINES 2023; 14:1723. [PMID: 37763886 PMCID: PMC10535145 DOI: 10.3390/mi14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression.
Collapse
Affiliation(s)
- Josie L. Duncan
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nathan Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
32
|
Truong MA, Cané-Gasull P, Lens SMA. Modeling specific aneuploidies: from karyotype manipulations to biological insights. Chromosome Res 2023; 31:25. [PMID: 37640903 PMCID: PMC10462580 DOI: 10.1007/s10577-023-09735-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
An abnormal chromosome number, or aneuploidy, underlies developmental disorders and is a common feature of cancer, with different cancer types exhibiting distinct patterns of chromosomal gains and losses. To understand how specific aneuploidies emerge in certain tissues and how they contribute to disease development, various methods have been developed to alter the karyotype of mammalian cells and mice. In this review, we provide an overview of both classic and novel strategies for inducing or selecting specific chromosomal gains and losses in human and murine cell systems. We highlight how these customized aneuploidy models helped expanding our knowledge of the consequences of specific aneuploidies to (cancer) cell physiology.
Collapse
Affiliation(s)
- My Anh Truong
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Paula Cané-Gasull
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands
| | - Susanne M A Lens
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
34
|
Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, Tetlak P, Hernandez B, Rhon-Calderon EA, Navarro-Sánchez L, García-Pascual CM, Bissiere S, Bartolomei MS, Sakkas D, Simón C, Plachta N. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 2023; 186:3166-3181.e18. [PMID: 37413989 PMCID: PMC11170958 DOI: 10.1016/j.cell.2023.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Igenomix Foundation and Carlos Simon Foundation, Spain
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University College London, London WC1E 6BT, UK
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Carlos Simón
- Igenomix Foundation and Carlos Simon Foundation, Spain; Department of Pediatrics Obstetrics & Gynecology, University of Valencia, Valencia 46010, Spain; INCLIVA Health Research Institute, Valencia 46010, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Cimini D. Twenty years of merotelic kinetochore attachments: a historical perspective. Chromosome Res 2023; 31:18. [PMID: 37466740 PMCID: PMC10411636 DOI: 10.1007/s10577-023-09727-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Micronuclei, small DNA-containing structures separate from the main nucleus, were used for decades as an indicator of genotoxic damage. Micronuclei containing whole chromosomes were considered a biomarker of aneuploidy and were believed to form, upon mitotic exit, from chromosomes that lagged behind in anaphase as all other chromosomes segregated to the poles of the mitotic spindle. However, the mechanism responsible for inducing anaphase lagging chromosomes remained unknown until just over twenty years ago. Here, I summarize what preceded and what followed this discovery, highlighting some of the open questions and opportunities for future investigation.
Collapse
Affiliation(s)
- Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
36
|
Shih J, Sarmashghi S, Zhakula-Kostadinova N, Zhang S, Georgis Y, Hoyt SH, Cuoco MS, Gao GF, Spurr LF, Berger AC, Ha G, Rendo V, Shen H, Meyerson M, Cherniack AD, Taylor AM, Beroukhim R. Cancer aneuploidies are shaped primarily by effects on tumour fitness. Nature 2023; 619:793-800. [PMID: 37380777 PMCID: PMC10529820 DOI: 10.1038/s41586-023-06266-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV, USA
| | - Shahab Sarmashghi
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadja Zhakula-Kostadinova
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohanna Georgis
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stephanie H Hoyt
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Galen F Gao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam F Spurr
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashton C Berger
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gavin Ha
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Veronica Rendo
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison M Taylor
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
37
|
Alfieri F, Caravagna G, Schaefer MH. Cancer genomes tolerate deleterious coding mutations through somatic copy number amplifications of wild-type regions. Nat Commun 2023; 14:3594. [PMID: 37328455 PMCID: PMC10276008 DOI: 10.1038/s41467-023-39313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
Cancers evolve under the accumulation of thousands of somatic mutations and chromosomal aberrations. While most coding mutations are deleterious, almost all protein-coding genes lack detectable signals of negative selection. This raises the question of how tumors tolerate such large amounts of deleterious mutations. Using 8,690 tumor samples from The Cancer Genome Atlas, we demonstrate that copy number amplifications frequently cover haploinsufficient genes in mutation-prone regions. This could increase tolerance towards the deleterious impact of mutations by creating safe copies of wild-type regions and, hence, protecting the genes therein. Our findings demonstrate that these potential buffering events are highly influenced by gene functions, essentiality, and mutation impact and that they occur early during tumor evolution. We show how cancer type-specific mutation landscapes drive copy number alteration patterns across cancer types. Ultimately, our work paves the way for the detection of novel cancer vulnerabilities by revealing genes that fall within amplifications likely selected during evolution to mitigate the effect of mutations.
Collapse
Affiliation(s)
- Fabio Alfieri
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, 34127, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy.
| |
Collapse
|
38
|
Keller A, Gao LL, Witten D, Dunham MJ. Condition-dependent fitness effects of large synthetic chromosome amplifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544269. [PMID: 37333112 PMCID: PMC10274924 DOI: 10.1101/2023.06.08.544269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Whole-chromosome aneuploidy and large segmental amplifications can have devastating effects in multicellular organisms, from developmental disorders and miscarriage to cancer. Aneuploidy in single-celled organisms such as yeast also results in proliferative defects and reduced viability. Yet, paradoxically, CNVs are routinely observed in laboratory evolution experiments with microbes grown in stressful conditions. The defects associated with aneuploidy are often attributed to the imbalance of many differentially expressed genes on the affected chromosomes, with many genes each contributing incremental effects. An alternate hypothesis is that a small number of individual genes are large effect 'drivers' of these fitness changes when present in an altered copy number. To test these two views, we have employed a collection of strains bearing large chromosomal amplifications that we previously assayed in nutrient-limited chemostat competitions. In this study, we focus on conditions known to be poorly tolerated by aneuploid yeast-high temperature, treatment with the Hsp90 inhibitor radicicol, and growth in extended stationary phase. To identify potential genes with a large impact on fitness, we fit a piecewise constant model to fitness data across chromosome arms, filtering breakpoints in this model by magnitude to focus on regions with a large impact on fitness in each condition. While fitness generally decreased as the length of the amplification increased, we were able to identify 91 candidate regions that disproportionately impacted fitness when amplified. Consistent with our previous work with this strain collection, nearly all candidate regions were condition specific, with only five regions impacting fitness in multiple conditions.
Collapse
Affiliation(s)
- Abigail Keller
- Molecular Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| | - Lucy L. Gao
- Statistics Department and Biostatistics Department, University of Washington, Seattle, WA 98195, USA
| | - Daniela Witten
- Statistics Department and Biostatistics Department, University of Washington, Seattle, WA 98195, USA
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
39
|
Dhital B, Rodriguez-Bravo V. Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos. Chromosome Res 2023; 31:15. [PMID: 37058263 PMCID: PMC10104937 DOI: 10.1007/s10577-023-09724-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.
Collapse
Affiliation(s)
- Brittiny Dhital
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Thomas Jefferson University Graduate School, Philadelphia, PA, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Veronica Rodriguez-Bravo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Adell MAY, Klockner TC, Höfler R, Wallner L, Schmid J, Markovic A, Martyniak A, Campbell CS. Adaptation to spindle assembly checkpoint inhibition through the selection of specific aneuploidies. Genes Dev 2023; 37:171-190. [PMID: 36859339 PMCID: PMC10111865 DOI: 10.1101/gad.350182.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Both the presence of an abnormal complement of chromosomes (aneuploidy) and an increased frequency of chromosome missegregation (chromosomal instability) are hallmarks of cancer. Analyses of cancer genome data have identified certain aneuploidy patterns in tumors; however, the bases behind their selection are largely unexplored. By establishing time-resolved long-term adaptation protocols, we found that human cells adapt to persistent spindle assembly checkpoint (SAC) inhibition by acquiring specific chromosome arm gains and losses. Independently adapted populations converge on complex karyotypes, which over time are refined to contain ever smaller chromosomal changes. Of note, the frequencies of chromosome arm gains in adapted cells correlate with those detected in cancers, suggesting that our cellular adaptation approach recapitulates selective traits that dictate the selection of aneuploidies frequently observed across many cancer types. We further engineered specific aneuploidies to determine the genetic basis behind the observed karyotype patterns. These experiments demonstrated that the adapted and engineered aneuploid cell lines limit CIN by extending mitotic duration. Heterozygous deletions of key SAC and APC/C genes recapitulated the rescue phenotypes of the monosomic chromosomes. We conclude that aneuploidy-induced gene dosage imbalances of individual mitotic regulators are sufficient for altering mitotic timing to reduce CIN.
Collapse
Affiliation(s)
- Manuel Alonso Y Adell
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Tamara C Klockner
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Rudolf Höfler
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Lea Wallner
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Julia Schmid
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Ana Markovic
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Anastasiia Martyniak
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Christopher S Campbell
- Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| |
Collapse
|
41
|
Ban I, Tomašić L, Trakala M, Tolić IM, Pavin N. Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes. Biophys J 2023; 122:632-645. [PMID: 36654508 PMCID: PMC9989886 DOI: 10.1016/j.bpj.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Most tumors have abnormal karyotypes, which arise from mistakes during mitotic division of healthy euploid cells and evolve through numerous complex mechanisms. In a recent mouse model with increased chromosome missegregation, chromosome gains dominate over losses both in pretumor and tumor tissues, whereas T-cell lymphomas are characterized by gains of chromosomes 14 and 15. However, the quantitative understanding of clonal selection leading to tumor karyotype evolution remains unknown. Here we show, by introducing a mathematical model based on a concept of a macro-karyotype, that tumor karyotypes can be explained by proliferation-driven evolution of aneuploid cells. In pretumor cells, increased apoptosis and slower proliferation of cells with monosomies lead to predominant chromosome gains over losses. Tumor karyotypes with gain of one chromosome can be explained by karyotype-dependent proliferation, whereas, for those with two chromosomes, an interplay with karyotype-dependent apoptosis is an additional possible pathway. Thus, evolution of tumor-specific karyotypes requires proliferative advantage of specific aneuploid karyotypes.
Collapse
Affiliation(s)
- Ivana Ban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Lucija Tomašić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia
| | - Marianna Trakala
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| |
Collapse
|
42
|
Xiao H, Wang S, Tang Y, Li S, Jiang Y, Yang Y, Zhang Y, Han Y, Wu X, Zheng L, Li Y, Gao Y. Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance. Int J Cancer 2023; 152:2383-2395. [PMID: 36757202 DOI: 10.1002/ijc.34465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a template-independent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT- have a worse prognosis. However, how TDT- promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT- patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT- T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Siqi Wang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yuejia Tang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yufeng Jiang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yi Yang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yinwen Zhang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yali Han
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaoyu Wu
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Liang Zheng
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| |
Collapse
|
43
|
Tandon V, Moreno R, Allmeroth K, Quinn J, Wiley S, Nicely L, Denzel M, Edwards J, de la Vega L, Banerjee S. Dual inhibition of HSF1 and DYRK2 impedes cancer progression. Biosci Rep 2023; 43:BSR20222102. [PMID: 36622366 PMCID: PMC9894012 DOI: 10.1042/bsr20222102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Preserving proteostasis is a major survival mechanism for cancer. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a key oncogenic kinase that directly activates the transcription factor heat-shock factor 1 (HSF1) and the 26S proteasome. Targeting DYRK2 has proven to be a tractable strategy to target cancers sensitive to proteotoxic stress; however, the development of HSF1 inhibitors remains in its infancy. Importantly, multiple other kinases have been shown to redundantly activate HSF1 that promoted ideas to directly target HSF1. The eventual development of direct HSF1 inhibitor KRIBB11 suggests that the transcription factor is indeed a druggable target. The current study establishes that concurrent targeting of HSF1 and DYRK2 can indeed impede cancer by inducing apoptosis faster than individual targetting. Furthermore, targeting the DYRK2-HSF1 axis induces death in proteasome inhibitor-resistant cells and reduces triple-negative breast cancer (TNBC) burden in ectopic and orthotopic xenograft models. Together the data indicate that cotargeting of kinase DYRK2 and its substrate HSF1 could prove to be a beneficial strategy in perturbing neoplastic malignancies.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Rita Moreno
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Sandra E. Wiley
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, U.S.A
| | - Lynden G. Nicely
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Martin S. Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
- Altos Labs, Cambridge Institute of Science, Granta Park, Great Abington, Cambridge CB21 6GP, U.K
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Laureano de la Vega
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Sourav Banerjee
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| |
Collapse
|
44
|
Girish V, Lakhani AA, Scaduto CM, Thompson SL, Brown LM, Hagenson RA, Sausville EL, Mendelson BE, Lukow DA, Yuan ML, Kandikuppa PK, Stevens EC, Lee SN, Salovska B, Li W, Smith JC, Taylor AM, Martienssen RA, Liu Y, Sun R, Sheltzer JM. Oncogene-like addiction to aneuploidy in human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523344. [PMID: 36711674 PMCID: PMC9882055 DOI: 10.1101/2023.01.09.523344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.
Collapse
Affiliation(s)
- Vishruth Girish
- Yale University School of Medicine, New Haven, CT 06511
- Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | | | | | | | | | | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Sophia N. Lee
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Wenxue Li
- Yale University School of Medicine, New Haven, CT 06511
| | - Joan C. Smith
- Yale University School of Medicine, New Haven, CT 06511
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yansheng Liu
- Yale University School of Medicine, New Haven, CT 06511
| | - Ruping Sun
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
45
|
Martín A, Epifano C, Vilaplana-Marti B, Hernández I, Macías RIR, Martínez-Ramírez Á, Cerezo A, Cabezas-Sainz P, Garranzo-Asensio M, Amarilla-Quintana S, Gómez-Domínguez D, Caleiras E, Camps J, Gómez-López G, Gómez de Cedrón M, Ramírez de Molina A, Barderas R, Sánchez L, Velasco-Miguel S, Pérez de Castro I. Mitochondrial RNA methyltransferase TRMT61B is a new, potential biomarker and therapeutic target for highly aneuploid cancers. Cell Death Differ 2023; 30:37-53. [PMID: 35869285 PMCID: PMC9883398 DOI: 10.1038/s41418-022-01044-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults. However, whether aneuploidy is associated with such RNA modifying pathways remains to be determined. Through an in silico search for aneuploidy biomarkers in cancer cells, we found TRMT61B, a mitochondrial RNA methyltransferase enzyme, to be associated with high levels of aneuploidy. Accordingly, TRMT61B protein levels are increased in tumor cell lines with an imbalanced karyotype as well as in different tumor types when compared to control tissues. Interestingly, while TRMT61B depletion induces senescence in melanoma cell lines with low levels of aneuploidy, it leads to apoptosis in cells with high levels. The therapeutic potential of these results was further validated by targeting TRMT61B in transwell and xenografts assays. We show that TRM61B depletion reduces the expression of several mitochondrial encoded proteins and limits mitochondrial function. Taken together, these results identify a new biomarker of aneuploidy in cancer cells that could potentially be used to selectively target highly aneuploid tumors.
Collapse
Affiliation(s)
- Alberto Martín
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Carolina Epifano
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Borja Vilaplana-Marti
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Iván Hernández
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rocío I R Macías
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, Madrid, Spain
| | - Ángel Martínez-Ramírez
- Department of Molecular Cytogenetics, MD Anderson Cancer Center, Madrid, Spain
- Oncohematology Cytogenetics Laboratory, Eurofins-Megalab, Madrid, Spain
| | - Ana Cerezo
- Lilly Cell Signaling and Immunometabolism Section, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Maria Garranzo-Asensio
- Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), E-28220, Madrid, Spain
| | - Sandra Amarilla-Quintana
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Programa de Doctorado UNED-ISCIII Ciencias Biomédicas y Salud Pública, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Déborah Gómez-Domínguez
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigacio´ Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Cancer Program, IMDEA FOOD, CEI UAM+CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Cancer Program, IMDEA FOOD, CEI UAM+CSIC, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), E-28220, Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Susana Velasco-Miguel
- Lilly Cell Signaling and Immunometabolism Section, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Pérez de Castro
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
46
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
47
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Ploidy Status of Ovarian Cancer Cell Lines and Their Association with Gene Expression Profiles. Biomolecules 2023; 13:biom13010092. [PMID: 36671477 PMCID: PMC9855421 DOI: 10.3390/biom13010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
As a cancer type potentially dominated by copy number variations, ovarian cancer shows hyperploid karyotypes and large-scale chromosome alterations, which might be promising biomarkers correlated with tumor metastasis and chemoresistance. Experimental studies have provided more information about the roles of aneuploids and polyploids in ovarian cancer. However, ploidy evaluation of ovarian cancer cell lines is still limited, even in some ploidy-related research. Herein, the ploidy landscape of 51 ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were analyzed, and the ploidy statuses of 13 human ovarian cancer cell lines and 2 murine cell lines were evaluated using G-banding and flow cytometry. Most human ovarian cancer cell lines were aneuploid, with modal numbers of 52-86 and numerical complexity ranging from 5 to 12. A2780, COV434 and TOV21G were screened as diploid cell lines, with a modal number of 46, a low aneuploid score and a near-diploid ploidy value. Two murine cell lines, both OV2944-HM1 and ID-8, were near-tetraploid. Integrated information on karyotypes, aneuploid score and ploidy value supplied references for a nondiploid model construction and a parallel analysis of diploid versus aneuploid. Moreover, the gene expression profiles were compared between diploid and aneuploid cell lines. The functions of differentially expressed genes were mainly enriched in terms of protein function regulation, TGF-β signaling and cell adhesion molecules. Genes downregulated in the aneuploid group were mainly related to metabolism and protein function regulation, and genes upregulated in the aneuploid group were mainly involved in immune regulation. Differentially expressed genes were randomly distributed on all chromosomes, while chromosome 1 alteration might contribute to immune-related alterations in aneuploid cell lines. Chromosome 19 alteration might be potentially significant for aneuploid ovarian cancer cell lines and patients, which needs further verification in ploidy research.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
- Correspondence: (C.X.); (X.Z.)
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
- Correspondence: (C.X.); (X.Z.)
| |
Collapse
|
48
|
Hatakeyama K, Nagashima T, Ohshima K, Ohnami S, Ohnami S, Shimoda Y, Naruoka A, Maruyama K, Iizuka A, Ashizawa T, Kenmotsu H, Mochizuki T, Urakami K, Akiyama Y, Yamaguchi K. Impact of somatic mutations and transcriptomic alterations on cancer aneuploidy. Biomed Res 2023; 44:187-197. [PMID: 37779031 DOI: 10.2220/biomedres.44.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Aneuploidy has been recognized as one of hallmark of tumorigenesis since the early 20th century. Recent developments in structural variation analysis in the human genome have revealed the diversity of aneuploidy in cancer. However, the effects of gene mutation and expression in tumors on aneuploidy remain poorly understood. Here, we performed whole exome analysis of over 5,000 Japanese cancer cases and investigated the impact of somatic mutations and gene expression alterations on aneuploidy. First, we evaluated tumor content and genomic alterations that could influence aneuploidy. Next, we compared the aneuploidy frequency in 18 cancer types and observed that TP53 mutations were associated with the aneuploidy on specific chromosomes in colorectal and gastric cancers. Finally, we used expression analysis to isolate pathways involved in aneuploidy accumulation from tumors without TP53 mutations. Chromosomal instability and cell cycle aberration were associated with aneuploidy in TP53 wild-type tumors, and 26 commonly upregulated genes were identified in aneuploidy-high solid tumors without TP53 mutations. Among them, two cancer-related genes (CENPA and PBK) were involved in aneuploidy. Our integrated analysis revealed that both TP53 mutations and transcriptomic alterations independent of somatic mutations affect aneuploidy accumulation. Our findings will facilitate further understanding of diverse aneuploidies in the tumorigenesis.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
- SRL Inc., Shinjuku-ku, Tokyo 163-0409 Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Akira Iizuka
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Tadashi Ashizawa
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center Hos- pital, Sunto-gun, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka 411-8777 Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka 411-8777 Japan
| |
Collapse
|
49
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
50
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|