1
|
Hashemi M, Khoushab S, Aghmiuni MH, Anaraki SN, Alimohammadi M, Taheriazam A, Farahani N, Entezari M. Non-coding RNAs in oral cancer: Emerging biomarkers and therapeutic frontier. Heliyon 2024; 10:e40096. [PMID: 39583806 PMCID: PMC11582460 DOI: 10.1016/j.heliyon.2024.e40096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Around the world, oral cancer (OC) is a major public health problem, resulting in a significant number of deaths each year. Early detection and treatment are crucial for improving patient outcomes. Recent progress in DNA sequencing and transcriptome profiling has revealed extensive non-coding RNAs (ncRNAs) transcription, underscoring their regulatory importance. NcRNAs influence genomic transcription and translation and molecular signaling pathways, making them valuable for various clinical applications. Combining spatial transcriptomics (ST) and spatial metabolomics (SM) with single-cell RNA sequencing provides deeper insights into tumor microenvironments, enhancing diagnostic and therapeutic precision for OC. Additionally, the exploration of salivary biomarkers offers a non-invasive diagnostic avenue. This article explores the potential of ncRNAs as diagnostic and therapeutic tools for OC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeid Nemati Anaraki
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Operative, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University,Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Bellah SF, Xiong F, Dou Z, Yang F, Liu X, Yao X, Gao X, Zhang L. PLK1 phosphorylation of ZW10 guides accurate chromosome segregation in mitosis. J Mol Cell Biol 2024; 16:mjae008. [PMID: 38402459 PMCID: PMC11328731 DOI: 10.1093/jmcb/mjae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024] Open
Abstract
Stable transmission of genetic information during cell division requires faithful chromosome segregation. Mounting evidence has demonstrated that polo-like kinase 1 (PLK1) dynamics at kinetochores control correct kinetochore-microtubule attachments and subsequent silencing of the spindle assembly checkpoint. However, the mechanisms underlying PLK1-mediated silencing of the spindle checkpoint remain elusive. Here, we identified a regulatory mechanism by which PLK1-elicited zeste white 10 (ZW10) phosphorylation regulates spindle checkpoint silencing in mitosis. ZW10 is a cognate substrate of PLK1, and the phosphorylation of ZW10 at Ser12 enables dynamic ZW10-Zwint1 interactions. Inhibition of ZW10 phosphorylation resulted in misaligned chromosomes, while persistent expression of phospho-mimicking ZW10 mutant caused premature anaphase, in which sister chromatids entangled as cells entered anaphase. These findings reveal the previously uncharacterized PLK1-ZW10 interaction through which dynamic phosphorylation of ZW10 fine-tunes accurate chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Sm Faysal Bellah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xinjiao Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Liangyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| |
Collapse
|
3
|
Kubat Oktem E. Biomarkers of Alzheimer's Disease Associated with Programmed Cell Death Reveal Four Repurposed Drugs. J Mol Neurosci 2024; 74:51. [PMID: 38700745 DOI: 10.1007/s12031-024-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches. To this end, publicly available transcriptome data were examined using bioinformatic methods such as differential gene expression and weighted gene coexpression network analysis (WGCNA) to find PCD-related AD biomarkers. The diagnostic significance of these biomarkers was evaluated using a logistic regression-based predictive model. Using these biomarkers, a multifactorial regulatory network was developed. Last, a drug repositioning study was conducted to propose new drugs for the treatment of AD targeting PCD. The development of 3PM (predictive, preventive, and personalized) drugs for the treatment of AD would be enabled by additional research on the effects of these drugs on this disease.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, North Campus, Istanbul, 34700, Turkey.
| |
Collapse
|
4
|
Tuly KF, Hossen MB, Islam MA, Kibria MK, Alam MS, Harun-Or-Roshid M, Begum AA, Hasan S, Mahumud RA, Mollah MNH. Robust Identification of Differential Gene Expression Patterns from Multiple Transcriptomics Datasets for Early Diagnosis, Prognosis, and Therapies for Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1705. [PMID: 37893423 PMCID: PMC10608013 DOI: 10.3390/medicina59101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Breast cancer (BC) is one of the major causes of cancer-related death in women globally. Proper identification of BC-causing hub genes (HubGs) for prognosis, diagnosis, and therapies at an earlier stage may reduce such death rates. However, most of the previous studies detected HubGs through non-robust statistical approaches that are sensitive to outlying observations. Therefore, the main objectives of this study were to explore BC-causing potential HubGs from robustness viewpoints, highlighting their early prognostic, diagnostic, and therapeutic performance. Materials and Methods: Integrated robust statistics and bioinformatics methods and databases were used to obtain the required results. Results: We robustly identified 46 common differentially expressed genes (cDEGs) between BC and control samples from three microarrays (GSE26910, GSE42568, and GSE65194) and one scRNA-seq (GSE235168) dataset. Then, we identified eight cDEGs (COL11A1, COL10A1, CD36, ACACB, CD24, PLK1, UBE2C, and PDK4) as the BC-causing HubGs by the protein-protein interaction (PPI) network analysis of cDEGs. The performance of BC and survival probability prediction models with the expressions of HubGs from two independent datasets (GSE45827 and GSE54002) and the TCGA (The Cancer Genome Atlas) database showed that our proposed HubGs might be considered as diagnostic and prognostic biomarkers, where two genes, COL11A1 and CD24, exhibit better performance. The expression analysis of HubGs by Box plots with the TCGA database in different stages of BC progression indicated their early diagnosis and prognosis ability. The HubGs set enrichment analysis with GO (Gene ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways disclosed some BC-causing biological processes, molecular functions, and pathways. Finally, we suggested the top-ranked six drug molecules (Suramin, Rifaximin, Telmisartan, Tukysa Tucatinib, Lynparza Olaparib, and TG.02) for the treatment of BC by molecular docking analysis with the proposed HubGs-mediated receptors. Molecular docking analysis results also showed that these drug molecules may inhibit cancer-related post-translational modification (PTM) sites (Succinylation, phosphorylation, and ubiquitination) of hub proteins. Conclusions: This study's findings might be valuable resources for diagnosis, prognosis, and therapies at an earlier stage of BC.
Collapse
Affiliation(s)
- Khanis Farhana Tuly
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Bayazid Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Ariful Islam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Kaderi Kibria
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
- Department of Statistics, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200, Bangladesh
| | - Md. Shahin Alam
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Anjuman Ara Begum
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| | - Sohel Hasan
- Molecular and Biomedical Health Science Lab, Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashidul Alam Mahumud
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh; (K.F.T.); (M.B.H.); (M.A.I.); (M.K.K.); (M.S.A.); (M.H.-O.-R.); (A.A.B.)
| |
Collapse
|
5
|
Lashen AG, Toss MS, Wootton L, Green AR, Mongan NP, Madhusudan S, Rakha E. Characteristics and prognostic significance of polo-like kinase-1 (PLK1) expression in breast cancer. Histopathology 2023; 83:414-425. [PMID: 37222669 DOI: 10.1111/his.14960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
AIM Polo-like kinase-1 (PLK1) plays a crucial role in cell cycle progression, and it is considered a potential therapeutic target in many cancers. Although the role of PLK1 is well established in triple-negative breast cancer (TNBC) as an oncogene, its role in luminal BC is still controversial. In this study, we aimed to evaluate the prognostic and predictive role of PLK1 in BC and its molecular subtypes. METHODS A large BC cohort (n = 1208) were immunohistochemically stained for PLK1. The association with clinicopathological, molecular subtypes, and survival data was analysed. PLK1 mRNA was evaluated in the publicly available datasets (n = 6774), including The Cancer Genome Atlas and the Kaplan-Meier Plotter tool. RESULTS 20% of the study cohort showed high cytoplasmic PLK1 expression. High PLK1 expression was significantly associated with a better outcome in the whole cohort, luminal BC. In contrast, high PLK1 expression was associated with a poor outcome in TNBC. Multivariate analyses indicated that high PLK1 expression is independently associated with longer survival in luminal BC, and in poorer prognosis in TNBC. At the mRNA levels, PLK1 expression was associated with short survival in TNBC consistent with the protein expression. However, in luminal BC, its prognostic value significantly varies between cohorts. CONCLUSION The prognostic role of PLK1 in BC is molecular subtype-dependent. As PLK1 inhibitors are introduced to clinical trials for several cancer types, our study supports evaluation of the pharmacological inhibition of PLK1 as an attractive therapeutic target in TNBC. However, in luminal BC, PLK1 prognostic role remains controversial.
Collapse
Affiliation(s)
- Ayat G Lashen
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
- Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham, UK
- Department of Histopathology, Sheffield Teaching Hospitals NHS Foundation Trust Sheffield, Sheffield, UK
| | - Louisa Wootton
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Srinivasan Madhusudan
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Oncology, Nottingham University Hospitals, Nottingham, UK
| | - Emad Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Wang R, Wang D, Bai X, Guo J, Xia S, Cheng Y, Gu Y, Wang Q, Nie J, Chen D, Liu W, Liang J. Kinome-wide CRISPR-Cas9 knockout screens revealed PLK1 as a therapeutic target for osteosarcoma. Cell Death Discov 2023; 9:231. [PMID: 37419907 DOI: 10.1038/s41420-023-01526-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, tending to be aggressive and recurrent. The therapeutic development for treating osteosarcoma has been largely hampered by the lack of effective and specific targets. Using kinome-wide CRISPR-Cas9 knockout screens, we systematically revealed a cohort of kinases essential for the survival and growth of human osteosarcoma cells, in which Polo-like kinase 1 (PLK1) appeared as a specific prominent hit. PLK1 knockout substantially inhibited proliferation of osteosarcoma cells in vitro and the tumor growth of osteosarcoma xenograft in vivo. Volasertib, a potent experimental PLK1 inhibitor, can effectively inhibit the growth of the osteosarcoma cell lines in vitro. It can also disrupt the development of tumors in the patient-derived xenograft (PDX) models in vivo. Furthermore, we confirmed that the mode of action (MoA) of volasertib is primarily mediated by the cell-cycle arrest and apoptosis triggered by DNA damage. As PLK1 inhibitors are entering phase III clinical trials, our findings provide important insights into the efficacy and MoA of the relevant therapeutic approach for combating osteosarcoma.
Collapse
Affiliation(s)
- Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dingding Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xueshan Bai
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Songxia Xia
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuning Cheng
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yani Gu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Junbo Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
8
|
Kong L, Liang C, Li P, Zhang Y, Feng S, Zhang D, Yao R, Yang L, Hao Z, Zhang H, Tian X, Guo C, Du B, Dong J, Zhang Y. Myotubularin‐Related Protein14 Prevents Neointima Formation and Vascular Smooth Muscle Cell Proliferation by Inhibiting Polo‐Like Kinase1. J Am Heart Assoc 2022; 11:e026174. [DOI: 10.1161/jaha.122.026174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background
Restenosis is one of the main bottlenecks in restricting the further development of cardiovascular interventional therapy. New signaling molecules involved in the progress have continuously been discovered; however, the specific molecular mechanisms remain unclear. MTMR14 (myotubularin‐related protein 14) is a novel phosphoinositide phosphatase that has a variety of biological functions and is involved in diverse biological processes. However, the role of MTMR14 in vascular biology remains unclear. Herein, we addressed the role of MTMR14 in neointima formation and vascular smooth muscle cell (VSMC) proliferation after vessel injury.
Methods and Results
Vessel injury models were established using SMC‐specific conditional MTMR14‐knockout and ‐transgenic mice. Neointima formation was assessed by histopathological methods, and VSMC proliferation and migration were assessed using fluorescence ubiquitination‐based cell cycle indicator, transwell, and scratch wound assay. Neointima formation and the expression of MTMR14 was increased after injury. MTMR14 deficiency accelerated neointima formation and promoted VSMC proliferation after injury, whereas MTMR14 overexpression remarkably attenuated this process. Mechanistically, we demonstrated that MTMR14 suppressed the activation of PLK1 (polo‐like kinase 1) by interacting with it, which further leads to the inhibition of the activation of MEK/ERK/AKT (mitogen‐activated protein kinase kinase/extracellular‐signal‐regulated kinase/protein kinase B), thereby inhibiting the proliferation of VSMC from the medial to the intima and thus preventing neointima formation.
Conclusions
MTMR14 prevents neointima formation and VSMC proliferation by inhibiting PLK1. Our findings reveal that MTMR14 serves as an inhibitor of VSMC proliferation and establish a link between MTMR14 and PLK1 in regulating VSMC proliferation. MTMR14 may become a novel potential therapeutic target in the treatment of restenosis.
Collapse
Affiliation(s)
- Ling‐Yao Kong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Peng‐Cheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yi‐Wei Zhang
- The Second School of Clinical Medicine Southern Medical University Guangzhou China
| | - Sheng‐Dong Feng
- Department of Cardiology The 7th People’s Hospital of Zhengzhou Zhengzhou China
| | - Dian‐Hong Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lu‐Lu Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zheng‐Yang Hao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Hao Zhang
- Department of Thoracic Surgery Union Hospital Wuhan China
- Department of Cardiovascular Surgery Union Hospital Wuhan China
| | - Xiao‐Xu Tian
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Chen‐Ran Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Bin‐Bin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Jian‐Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University National Clinical Research Centre for Cardiovascular Diseases Beijing China
| | - Yan‐Zhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| |
Collapse
|
9
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Ma Z, Wong S, Forgham H, Esser L, Lai M, Leiske M, Kempe K, Sharbeen G, Youkhana J, Mansfeld F, Quinn J, Phillips P, Davis T, Kavallaris M, McCarroll J. Aerosol delivery of star polymer-siRNA nanoparticles as a therapeutic strategy to inhibit lung tumor growth. Biomaterials 2022; 285:121539. [DOI: 10.1016/j.biomaterials.2022.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/12/2023]
|
11
|
Lee C, Kim J. Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 2022; 23:192. [PMID: 35527780 PMCID: PMC9073582 DOI: 10.3892/ol.2022.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
12
|
Hagege A, Ambrosetti D, Boyer J, Bozec A, Doyen J, Chamorey E, He X, Bourget I, Rousset J, Saada E, Rastoin O, Parola J, Luciano F, Cao Y, Pagès G, Dufies M. The Polo-like kinase 1 inhibitor onvansertib represents a relevant treatment for head and neck squamous cell carcinoma resistant to cisplatin and radiotherapy. Theranostics 2021; 11:9571-9586. [PMID: 34646387 PMCID: PMC8490521 DOI: 10.7150/thno.61711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/04/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale: Head and neck squamous cell carcinoma (HNSCC) represent the 4th most aggressive cancer. 50% of patients relapse to the current treatments combining surgery, radiotherapy and cisplatin and die two years after the diagnosis. Elevated expression of the polo-like kinase 1 (Plk1) correlated to a poor prognosis in epidermoid carcinomas. Methods: The molecular links between Plk1 and resistance to cisplatin/radiotherapy were investigated in patients and cell lines resistant to cisplatin and/or to radiotherapy. The therapeutic relevance of the Plk1 inhibitor onvansertib, alone or combined with cisplatin/radiotherapy, was evaluated on the proliferation/migration on HNSCC cell lines, in experimental HNSCC in mice, in a zebrafish metastasis model and on patient-derived 3D tumor sections. Results: Plk1 expression correlated to a bad prognosis in HNSCC and increased after relapse on cisplatin/radiotherapy. Onvansertib induced mitotic arrest, chromosomic abnormalities and polyploidy leading to apoptosis of sensitive and resistant HNSCC cells at nanomolar concentrations without any effects on normal cells. Onvansertib inhibited the growth of experimental HNSCC in mice and metastatic dissemination in zebrafishes. Moreover, onvansertib combined to cisplatin and/or radiotherapy resulted in a synergic induction of tumor cell death. The efficacy of onvansertib alone and in combination with reference treatments was confirmed on 3D viable sections of HNSCC surgical specimens. Conclusions: Targeting Plk1 by onvansertib represents a new strategy for HNSCC patients at the diagnosis in combination with reference treatments, or alone as a second line treatment for HNCSCC patients experiencing relapses.
Collapse
Affiliation(s)
- Anais Hagege
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Damien Ambrosetti
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- University Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, Hôpital Pasteur, Central laboratory of Pathology, 06000 Nice, France
| | | | | | | | | | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Isabelle Bourget
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
| | | | - Esma Saada
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Olivia Rastoin
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Julien Parola
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Antoine Lacassagne, 06189 Nice, France
| | - Frederic Luciano
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gilles Pagès
- University Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, 06189 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| | - Maeva Dufies
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
- Centre Scientifique de Monaco, Biomedical Department, 8 quai Antoine Premier, 98 000 Monaco, Principality of Monaco
| |
Collapse
|
13
|
Ma H, Nie C, Chen Y, Li J, Xie Y, Tang Z, Gao Y, Ai S, Mao Y, Sun Q, Lu R. Therapeutic Targeting PLK1 by ON-01910.Na Is Effective in Local Treatment of Retinoblastoma. Oncol Res 2021; 28:745-761. [PMID: 33573708 PMCID: PMC8420894 DOI: 10.3727/096504021x16130322409507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell cycle deregulation is involved in the pathogenesis of many cancers and is often associated with protein kinase aberrations, including the polo-like kinase 1 (PLK1). We used retinoblastoma, an intraocular malignancy that lacks targeted therapy, as a disease model and set out to reveal targetability of PLK1 with a small molecular inhibitor ON-01910.Na. First, transcriptomic analysis on patient retinoblastoma tissues suggested that cell cycle progression was deregulated and confirmed that PLK1 pathway was upregulated. Next, antitumor activity of ON-01910.Na was investigated in both cellular and animal levels. Cytotoxicity induced by ON-01910.Na was tumor specific and dose dependent in retinoblastoma cells, while nontumor cells were minimally affected. In three-dimensional culture, ON-01910.Na demonstrated efficient drug penetrability with multilayer cell death. Posttreatment transcriptomic findings revealed that cell cycle arrest and MAPK cascade activation were induced following PLK1 inhibition and eventually resulted in apoptotic cell death. In Balb/c nude mice, a safe threshold of 0.8 nmol intravitreal dosage of ON-01910.Na was established for intraocular safety, which was demonstrated by structural integrity and functional preservation. Furthermore, intraocular and subcutaneous xenograft were significantly reduced with ON-01910.Na treatments. For the first time, we demonstrated targetability of PLK1 in retinoblastoma by efficiently causing cell cycle arrest and apoptosis. Our study is supportive that local treatment of ON-01910.Na may be a novel, effective modality benefiting patients with PLK1-aberrant tumors.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Cong Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yanjie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zhixin Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qian Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Yang Z, Liang S, Saliakoura M, Yang H, Vassella E, Konstantinidou G, Tschan M, Hegedüs B, Zhao L, Gao Y, Xu D, Deng H, Marti TM, Kocher GJ, Wang W, Schmid RA, Peng R. Synergistic effects of FGFR1 and PLK1 inhibitors target a metabolic liability in KRAS-mutant cancer. EMBO Mol Med 2021; 13:e13193. [PMID: 34369083 PMCID: PMC8422071 DOI: 10.15252/emmm.202013193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
KRAS oncoprotein is commonly mutated in human cancer, but effective therapies specifically targeting KRAS-driven tumors remain elusive. Here, we show that combined treatment with fibroblast growth factor receptor 1 (FGFR1) and polo-like kinase 1 (PLK1) inhibitors evoke synergistic cytotoxicity in KRAS-mutant tumor models in vitro and in vivo. Pharmacological and genetic suppression of FGFR1 and PLK1 synergizes to enhance anti-proliferative effects and cell death in KRAS-mutant lung and pancreatic but not colon nor KRAS wild-type cancer cells. Mechanistically, co-targeting FGFR1 and PLK1 upregulates reactive oxygen species (ROS), leading to oxidative stress-activated c-Jun N-terminal kinase (JNK)/p38 pathway and E2F1-induced apoptosis. We further delineate that autophagy protects from PLK1/FGFR1 inhibitor cytotoxicity and that antagonizing the compensation mechanism by clinically approved chloroquine fully realizes the therapeutic potential of PLK1 and FGFR1 targeting therapy, producing potent and durable responses in KRAS-mutant patient-derived xenografts and a genetically engineered mouse model of Kras-induced lung adenocarcinoma. These results suggest a previously unappreciated role for FGFR1 and PLK1 in the surveillance of metabolic stress and demonstrate a synergistic drug combination for treating KRAS-mutant cancer.
Collapse
Affiliation(s)
- Zhang Yang
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department of Thoracic SurgeryFujian Medical University Union HospitalFuzhouChina
| | - Shun‐Qing Liang
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | | | - Haitang Yang
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Eric Vassella
- Institute of PathologyUniversity of BernBernSwitzerland
| | | | - Mario Tschan
- Institute of PathologyUniversity of BernBernSwitzerland
| | - Balazs Hegedüs
- Department of Thoracic SurgeryUniversity Medicine Essen ‐ RuhrlandklinikUniversity Duisburg‐EssenEssenGermany
| | - Liang Zhao
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Yanyun Gao
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Duo Xu
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Haibin Deng
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Thomas M Marti
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Gregor J Kocher
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Wenxiang Wang
- The Second Thoracic Surgery DepartmentHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Ralph A Schmid
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Ren‐Wang Peng
- Division of General Thoracic SurgeryDepartment for BioMedical Research (DBMR)InselspitalBern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
15
|
Gao X, Herrero S, Wernet V, Erhardt S, Valerius O, Braus GH, Fischer R. The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control. J Cell Sci 2021; 134:271867. [PMID: 34328180 DOI: 10.1242/jcs.256537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Valentin Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT) - South Campus, Zoological Institute, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Oliver Valerius
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Dept. of Microbiology, Justus-von-Liebig-Weg 11 37077 Göttingen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Yamanaka Z, Sasaki T, Yamanaka A, Kato K, Nishi H. Circulating and tissue miR-100 acts as a potential diagnostic biomarker for cervical cancer. Cancer Biomark 2021; 32:551-558. [PMID: 34334379 DOI: 10.3233/cbm-201021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are promising biomarkers for cancer diagnosis and prognosis; miR-100 expression is decreased in cervical cancer tissues. OBJECTIVE To determine whether miR-100 is a useful biomarker for early cervical cancer diagnosis. METHODS Total RNA was extracted from the sera of 34 healthy controls (HC), 64 cervical intraepithelial neoplasia patients (CIN), and 46 cervical cancer patients (CC). miR-100 expression levels were measured with quantitative real-time PCR. Correlations between clinicopathological factors and miR-100 expression levels were also assessed. The cut-off value for miR-100 was calculated from the Receiver Operating Characteristic (ROC) curve. RESULTS Relative expression levels of miR-100 in serum were 1.84 ± 1.72, 3.93 ± 2.52, and 5.32 ± 3.39 in CC, CIN, and HC, respectively; it was significantly lower in CC (p< 0.001). The area under the ROC curve was 0.879 and the cut-off value was 2.451. miR-100 expression levels were significantly higher in metastasis cases that were lymph node negative than positive (p< 0.05). CC patients with miR-100 expression levels below the cut-off value tended to have a poor prognosis. CONCLUSIONS Serum miR-100 may be a useful diagnostic biomarker for CC, and for predicting lymph node metastasis and disease free survival in CC patients.
Collapse
|
17
|
Yang Z, Liang SQ, Yang H, Xu D, Bruggmann R, Gao Y, Deng H, Berezowska S, Hall SRR, Marti TM, Kocher GJ, Zhou Q, Schmid RA, Peng RW. CRISPR-Mediated Kinome Editing Prioritizes a Synergistic Combination Therapy for FGFR1-Amplified Lung Cancer. Cancer Res 2021; 81:3121-3133. [PMID: 33685992 DOI: 10.1158/0008-5472.can-20-2276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
Oncogenic activation of the FGFR pathway is frequent in lung and other cancers. However, due to drug resistance, pharmacological blockage of aberrant FGFR signaling has provided little clinical benefit in patients with FGFR-amplified tumors. The determining factors for the limited efficacy of FGFR-targeted therapy remain incompletely understood. In this study, we performed kinome-wide CRISPR/Cas9 loss-of-function screens in FGFR1-amplified lung cancer cells treated with an FGFR inhibitor. These screens identified PLK1 as a potent synthetic lethal target that mediates a resistance mechanism by overriding DNA damage and cell-cycle arrest upon FGFR1 inhibition. Genetic and pharmacological antagonism of PLK1 in combination with FGFR inhibitor therapy synergized to enhance antiproliferative effects and drove cancer cell death in vitro and in vivo through activation of the γH2AX-CHK-E2F1 axis. These findings suggest a previously unappreciated role for PLK1 in modulating FGFR1 inhibitor sensitivity and demonstrate a synergistic drug combination for treating FGFR1-amplified lung cancer. SIGNIFICANCE: The identification of PLK1 as a potent synthetic lethal target for FGFR-targeted therapy provides an innovative rationale for the treatment of lung and other FGFR1-amplified cancers.
Collapse
Affiliation(s)
- Zhang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Shun-Qing Liang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Haibin Deng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Sean R R Hall
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Thomas M Marti
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Gregor J Kocher
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland.
- Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
18
|
Chan KK, Abdul-Sater Z, Sheth A, Mitchell DK, Sharma R, Edwards DM, He Y, Nalepa G, Rhodes SD, Clapp DW, Sierra Potchanant EA. SIK2 kinase synthetic lethality is driven by spindle assembly defects in FANCA-deficient cells. Mol Oncol 2021; 16:860-884. [PMID: 34058059 PMCID: PMC8847993 DOI: 10.1002/1878-0261.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
The Fanconi anemia (FA) pathway safeguards genomic stability through cell cycle regulation and DNA damage repair. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established, but their function in mitosis is incompletely understood. Here, we performed a kinome-wide synthetic lethality screen in FANCA-/- fibroblasts, which revealed multiple mitotic kinases as necessary for survival of FANCA-deficient cells. Among these kinases, we identified the depletion of the centrosome kinase SIK2 as synthetic lethal upon loss of FANCA. We found that FANCA colocalizes with SIK2 at multiple mitotic structures and regulates the activity of SIK2 at centrosomes. Furthermore, we found that loss of FANCA exacerbates cell cycle defects induced by pharmacological inhibition of SIK2, including impaired G2-M transition, delayed mitotic progression, and cytokinesis failure. In addition, we showed that inhibition of SIK2 abrogates nocodazole-induced prometaphase arrest, suggesting a novel role for SIK2 in the spindle assembly checkpoint. Together, these findings demonstrate that FANCA-deficient cells are dependent upon SIK2 for survival, supporting a preclinical rationale for targeting of SIK2 in FA-disrupted cancers.
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zahi Abdul-Sater
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditya Sheth
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K Mitchell
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richa Sharma
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donna M Edwards
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying He
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grzegorz Nalepa
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven D Rhodes
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
19
|
MRE11 as a molecular signature and therapeutic target for cancer treatment with radiotherapy. Cancer Lett 2021; 514:1-11. [PMID: 34022282 DOI: 10.1016/j.canlet.2021.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023]
Abstract
MRE11, the core of the MRE11/RAD50/NBS1 complex, is one of key DNA damage response proteins. Increasing evidence suggests that its expression in cancer cells is critical to developing radioresistance; as such, MRE11 is an emerging marker for targeted radiosensitization strategies. Elevated MRE11 in tumor tissues has been associated with poor survival in patients undergoing radiotherapy, although in some cancer types, the opposite has been noted. The recent discovery of ionizing radiation-induced truncation of MRE11, which decreases its efficacy, may explain some of these paradoxical findings. The progress of research on the biological modulation of MRE11 expression is also discussed, with the potential application of small molecule or large molecule inhibitors of MRE11 for enhancing radiosensitivity. Current research has further highlighted both nuclease and non-nuclease activities of MRE11 in cancer cells treated with ionizing radiation, and differentiation between these is essential to verify the targeting effects of radiosensitizing agents. These updates clarify our understanding of how MRE11 expression may be utilized in future stratification of cancer patients for radiotherapy, and how it may be leveraged in shaping novel radiosensitization strategies.
Collapse
|
20
|
Yu L, Han S, Lang L, Song H, Zhang C, Dong L, Jia S, Zhang Y, Xiao D, Liu J, Xu Y, Zhang X. Oxocrebanine: A Novel Dual Topoisomerase inhibitor, Suppressed the Proliferation of Breast Cancer Cells MCF-7 by Inducing DNA Damage and Mitotic Arrest. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153504. [PMID: 33611211 DOI: 10.1016/j.phymed.2021.153504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND DNA topoisomerase (Topo) inhibition plays key role in breast cancer treatment. Stephania hainanensis H. S. Lo et Y. Tsoong (S. hainanensis), a Li nationality plant that has abundant aporphine alkaloids, can inhibit Topo. PURPOSE To identify a dual Topo inhibitor, a deep and systematic study of active aporphine alkaloids in S. hainanensis and their mechanisms of inhibiting breast cancer proliferation and Topo activity are essential. STUDY DESIGN This study aimed to assess the anti-breast cancer and Topo inhibitory activities of oxocrebanine and explore the underlying mechanisms. METHODS The growth inhibitory activities of 12 compounds in S. hainanensis were screened by MTT assay in MCF-7, SGC-7901, HepG-2 cells, and compared with the effects on human normal mammary epithelial MCF-10A cells as non cancer control cells. The Topo inhibitory activity was assessed by DNA relaxation and unwinding assays, kDNA decatenation assay and western blot. Cell cycle and autophagy analyses were carried out with flow cytometry and staining. Acridine orange staining and α-tubulin morphology were observed by fluorescence microscopy. Western blot was used to examine microtubule assembly dynamics and the expression levels of key proteins associated with DNA damage, autophagy and mitotic arrest. RESULTS Oxocrebanine was the anti-breast cancer active alkaloid in S. hainanensis. It exhibited the best inhibitory effect on MCF-7 cells with an IC50 of 16.66 μmol/l, and had only weak effect on the proliferation of MCF-10A cells. Oxocrebanine inhibited Topo I and II α in a cell-free system and in MCF-7 cells. The DNA unwinding assay suggested that oxocrebanine intercalated with DNA as a catalytic inhibitor. Oxocrebanine regulated the levels of Topo I and IIα and DNA damage-related proteins. Oxocrebanine led to the mitotic arrest, and these effects occurred through both p53-dependent and p53-independent pathways. Oxocrebanine induced autophagy, abnormal α-tubulin morphology and stimulated enhanced microtubule dynamics. CONCLUSION Oxocrebanine was the anti-breast cancer active aporphine alkaloid in S. hainanensis. Oxocrebanine was a Topo I/IIα dual inhibitor, catalytic inhibitor and DNA intercalator. Oxocrebanine caused DNA damage, autophagy, and mitotic arrest in MCF-7 cells. Oxocrebanine also disrupted tubulin polymerization. Accordingly, oxocrebanine held a great potential for development as a novel dual Topo inhibitor for effective breast cancer treatment.
Collapse
Affiliation(s)
- Lei Yu
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Shuang Han
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, 150076, China
| | - Lang Lang
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Hui Song
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - CaiYun Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 57199, China
| | - Lin Dong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 57199, China
| | - ShaoHua Jia
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ying Zhang
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, 150076, China
| | - Di Xiao
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin, 150076, China
| | - Jun Liu
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ying Xu
- College of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China.
| | - XiaoPo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 57199, China.
| |
Collapse
|
21
|
Zhang C, Wang X, Fang D, Xu P, Mo X, Hu C, Abdelatty A, Wang M, Xu H, Sun Q, Zhou G, She J, Xia J, Hui KM, Xia H. STK39 is a novel kinase contributing to the progression of hepatocellular carcinoma by the PLK1/ERK signaling pathway. Theranostics 2021; 11:2108-2122. [PMID: 33500714 PMCID: PMC7797677 DOI: 10.7150/thno.48112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Protein kinases are critical therapeutic targets for curing hepatocellular carcinoma (HCC). As a serine/threonine kinase, the potential roles of serine/threonine kinase 39 (STK39) in HCC remain to be explored. Methods: The expression of STK39 was examined by RT-qPCR, western blotting and immunohistochemistry. Cell proliferation and apoptosis were detected by CCK8 and TUNEL kit. Cell migration and invasion assays were performed using a transwell system with or without Matrigel. RNA-seq, mass spectrometry and luciferase reporter assays were used to identify STK39 binding proteins. Results: Here, we firstly report that STK39 was highly overexpressed in clinical HCC tissues compared with adjacent tissues, high expression of STK39 was induced by transcription factor SP1 and correlated with poor patient survival. Gain and loss of function assays revealed that overexpression of STK39 promoted HCC cell proliferation, migration and invasion. In contrast, the depletion of STK39 attenuated the growth and metastasis of HCC cells. Moreover, knockdown of STK39 induced the HCC cell cycle arrested in the G2/M phase and promoted apoptosis. In mechanistic studies, RNA-seq revealed that STK39 positively regulated the ERK signaling pathway. Mass spectrometry identified that STK39 bound to PLK1 and STK39 promoted HCC progression and activated ERK signaling pathway dependent on PLK1. Conclusions: Thus, our study uncovers a novel role of STK39/PLK1/ERK signaling axis in the progress of HCC and suggests STK39 as an indicator for prognosis and a potential drug target of HCC.
Collapse
Affiliation(s)
- Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Dan Fang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ping Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiao Mo
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chao Hu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Alaa Abdelatty
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mei Wang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haojun Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Junjun She
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Jinglin Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kam Man Hui
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
22
|
Yu R, Wu H, Ismail H, Du S, Cao J, Wang J, Ward T, Yang F, Gui P, Ali M, Chu L, Mo F, Wang Q, Chu Y, Zang J, Zhao Y, Ye M, Fang G, Chen PR, Dou Z, Gao X, Wang W, Liu X, Yao X. Methylation of PLK1 by SET7/9 ensures accurate kinetochore-microtubule dynamics. J Mol Cell Biol 2020; 12:462-476. [PMID: 31863092 PMCID: PMC7333475 DOI: 10.1093/jmcb/mjz107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Faithful segregation of mitotic chromosomes requires bi-orientation of sister chromatids, which relies on the sensing of correct attachments between spindle microtubules and kinetochores. Although the mechanisms underlying PLK1 activation have been extensively studied, the regulatory mechanisms that couple PLK1 activity to accurate chromosome segregation are not well understood. In particular, PLK1 is implicated in stabilizing kinetochore-microtubule attachments, but how kinetochore PLK1 activity is regulated to avoid hyperstabilized kinetochore-microtubules in mitosis remains elusive. Here, we show that kinetochore PLK1 kinase activity is modulated by SET7/9 via lysine methylation during early mitosis. The SET7/9-elicited dimethylation occurs at the Lys191 of PLK1, which tunes down its activity by limiting ATP utilization. Overexpression of the non-methylatable PLK1 mutant or chemical inhibition of SET7/9 methyltransferase activity resulted in mitotic arrest due to destabilized kinetochore-microtubule attachments. These data suggest that kinetochore PLK1 is essential for stable kinetochore-microtubule attachments and methylation by SET7/9 promotes dynamic kinetochore-microtubule attachments for accurate error correction. Our findings define a novel homeostatic regulation at the kinetochore that integrates protein phosphorylation and methylation with accurate chromosome segregation for maintenance of genomic stability.
Collapse
Affiliation(s)
- Ruoying Yu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Huihui Wu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shihao Du
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Jianyu Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Tarsha Ward
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Fengrui Yang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Gui
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- BUCM-MSM-USTC Joint Program on Global Health Equity, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingluo Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Fei Mo
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Harvard Medical School, Boston, MA 02115, USA
| | - Qi Wang
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Youjun Chu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Yun Zhao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingliang Ye
- Dalian Institute for Physical Chemistry, Dalian 116023, China
| | - Guowei Fang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Peng R Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science, Hefei National Science Center for Physical Sciences at Microscale & University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
23
|
Parrilla A, Barber M, Majem B, Castellví J, Morote J, Sánchez JL, Pérez-Benavente A, Segura MF, Gil-Moreno A, Santamaria A. Aurora Borealis (Bora), Which Promotes Plk1 Activation by Aurora A, Has an Oncogenic Role in Ovarian Cancer. Cancers (Basel) 2020; 12:E886. [PMID: 32268485 PMCID: PMC7226261 DOI: 10.3390/cancers12040886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying novel actionable factors that critically contribute to tumorigenesis is essential in ovarian cancer, an aggressive and disseminative tumor, with limited therapeutic options available. Here we show that Aurora Borealis (BORA), a mitotic protein that plays a key role in activating the master mitotic kinase polo-like kinase 1 (PLK1), has an oncogenic role in ovarian cancer. Gain and loss of function assays on mouse models and ex vivo patient-derived ascites cultures revealed an oncogenic role of BORA in tumor development and a transcriptome-analysis in clinically representative models depicted BORA's role in survival, dissemination and inflammatory cancer related-pathways. Importantly, combinatory treatments of FDA-approved inhibitors against oncogenic downstream effectors of BORA displayed synergistic effect in ovarian cancer models, offering promising therapeutic value. Altogether, our findings uncovered for the first time a critical role of BORA in the viability of human cancer cells providing potential novel therapeutic opportunities for ovarian cancer management.
Collapse
Affiliation(s)
- Alfonso Parrilla
- Group of Biomedical Research in Urology, Cell Cycle and Cancer Laboratory, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (A.P.); (M.B.); (B.M.); (J.M.)
| | - Marta Barber
- Group of Biomedical Research in Urology, Cell Cycle and Cancer Laboratory, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (A.P.); (M.B.); (B.M.); (J.M.)
| | - Blanca Majem
- Group of Biomedical Research in Urology, Cell Cycle and Cancer Laboratory, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (A.P.); (M.B.); (B.M.); (J.M.)
| | - Josep Castellví
- Department of Pathology, Vall Hebron University Hospital, 08035 Barcelona, Spain;
| | - Juan Morote
- Group of Biomedical Research in Urology, Cell Cycle and Cancer Laboratory, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (A.P.); (M.B.); (B.M.); (J.M.)
- Department of Urology, Vall Hebron University Hospital, 08035 Barcelona, Spain
| | - José Luis Sánchez
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), CIBERONC, 08035 Barcelona, Spain; (J.L.S.); (A.P.-B.); (A.G.-M.)
- Department of Gynecology, Vall Hebron University Hospital, 08035 Barcelona, Spain
| | - Asunción Pérez-Benavente
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), CIBERONC, 08035 Barcelona, Spain; (J.L.S.); (A.P.-B.); (A.G.-M.)
- Department of Gynecology, Vall Hebron University Hospital, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
| | - Antonio Gil-Moreno
- Group of Biomedical Research in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), CIBERONC, 08035 Barcelona, Spain; (J.L.S.); (A.P.-B.); (A.G.-M.)
- Department of Gynecology, Vall Hebron University Hospital, 08035 Barcelona, Spain
| | - Anna Santamaria
- Group of Biomedical Research in Urology, Cell Cycle and Cancer Laboratory, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (A.P.); (M.B.); (B.M.); (J.M.)
| |
Collapse
|
24
|
Kohansal M, Tang H, Xie X, Taghinezhad A, Ghanbariasad A. Circular RNAs as miRNA sponges in triple-negative breast cancer: a systematic review. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Cytokinesis in Eukaryotic Cells: The Furrow Complexity at a Glance. Cells 2020; 9:cells9020271. [PMID: 31979090 PMCID: PMC7072619 DOI: 10.3390/cells9020271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
The duplication cycle is the fascinating process that, starting from a cell, results in the formation of two daughter cells and it is essential for life. Cytokinesis is the final step of the cell cycle, it is a very complex phase, and is a concert of forces, remodeling, trafficking, and cell signaling. All of the steps of cell division must be properly coordinated with each other to faithfully segregate the genetic material and this task is fundamental for generating viable cells. Given the importance of this process, molecular pathways and proteins that are involved in cytokinesis are conserved from yeast to humans. In this review, we describe symmetric and asymmetric cell division in animal cell and in a model organism, budding yeast. In addition, we illustrate the surveillance mechanisms that ensure a proper cell division and discuss the connections with normal cell proliferation and organs development and with the occurrence of human diseases.
Collapse
|
26
|
Doz F, Locatelli F, Baruchel A, Blin N, De Moerloose B, Frappaz D, Dworzak M, Fischer M, Stary J, Fuertig R, Riemann K, Taube T, Reinhardt D. Phase I dose-escalation study of volasertib in pediatric patients with acute leukemia or advanced solid tumors. Pediatr Blood Cancer 2019; 66:e27900. [PMID: 31276318 DOI: 10.1002/pbc.27900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Volasertib induces mitotic arrest and apoptosis by targeting Polo-like kinases. In this phase I dose-escalation study, the maximum tolerated dose (MTD), pharmacokinetics (PK), and preliminary efficacy of volasertib were determined in pediatric patients. METHODS Patients aged 2 to <18 years with relapsed/refractory acute leukemia/advanced solid tumors (ST) without available effective treatments were enrolled-cohort C1 (aged 2 to <12 years); cohort C2 (aged 12 to <18 years). The patients received volasertib intravenously (starting dose: 200 mg/m2 body surface area on day 1, every 14 days). The primary endpoint was the pediatric MTD for further development. RESULTS Twenty-two patients received treatment (C1: leukemia, n = 4; ST, n = 8; C2: leukemia, n = 3; ST, n = 7). No dose-limiting toxicities (DLTs) occurred up to 300 mg/m2 volasertib in C1; two patients in C2, at 250 mg/m2 volasertib, had DLTs in cycle 1, one of which led to death; therefore, the MTD of volasertib in C2 was 200 mg/m2 . The most common grade 3/4 adverse events (all patients) were febrile neutropenia, thrombocytopenia, and neutropenia (41% each). Stable disease (SD) was the best objective response (leukemia, n = 5; ST, n = 2); the duration of SD was short in all patients, except in one with an ST. PK profiles were generally comparable across dose groups and were consistent with those in adults. CONCLUSION The pediatric MTD/dose for further development was identified. There were no unexpected safety or PK findings; limited antitumor/antileukemic activity was demonstrated.
Collapse
Affiliation(s)
- François Doz
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie and University Paris Descartes, Paris, France
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, IRCCS (Istituto di Recovero e Cura a Carattere Scientifico), Bambino Gesù Children's Hospital, Sapienza University of Rome, Rome, Italy
| | - André Baruchel
- Department of Paediatric Haemato-immunology, Hôpital Robert Debré (APHP), University Paris Diderot, Paris, France
| | - Nicolas Blin
- Paediatric Haematology and Oncology, Hôpital Mère-Enfant, CHU de Nantes, Nantes, France
| | - Barbara De Moerloose
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Didier Frappaz
- Paediatric Oncology Department, Léon Bérard Centre, Lyon, France
| | - Michael Dworzak
- St. Anna Children's Hospital, Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Matthias Fischer
- Department of Experimental Paediatric Oncology, University Children's Hospital Cologne, Centre of Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Rene Fuertig
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kathrin Riemann
- Clinical Operations, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Tillmann Taube
- Medical Oncology, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Dirk Reinhardt
- Department of Paediatrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
27
|
Jia Z, Nie Y, Yue F, Kong Y, Gu L, Gavin TP, Liu X, Kuang S. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration. eLife 2019; 8:e47097. [PMID: 31393265 PMCID: PMC6687435 DOI: 10.7554/elife.47097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023] Open
Abstract
Muscle development and regeneration require delicate cell cycle regulation of embryonic myoblasts and adult muscle satellite cells (MuSCs). Through analysis of the Polo-like kinase (Plk) family cell-cycle regulators in mice, we show that Plk1's expression closely mirrors myoblast dynamics during embryonic and postnatal myogenesis. Cell-specific deletion of Plk1 in embryonic myoblasts leads to depletion of myoblasts, developmental failure and prenatal lethality. Postnatal deletion of Plk1 in MuSCs does not perturb their quiescence but depletes activated MuSCs as they enter the cell cycle, leading to regenerative failure. The Plk1-null MuSCs are arrested at the M-phase, accumulate DNA damage, and apoptose. Mechanistically, Plk1 deletion upregulates p53, and inhibition of p53 promotes survival of the Plk1-null myoblasts. Pharmacological inhibition of Plk1 similarly inhibits proliferation but promotes differentiation of myoblasts in vitro, and blocks muscle regeneration in vivo. These results reveal for the first time an indispensable role of Plk1 in developmental and regenerative myogenesis.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Yaohui Nie
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
- Department of Health and KinesiologyPurdue UniversityWest LafayetteUnited States
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Yifan Kong
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Lijie Gu
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
| | - Timothy P Gavin
- Department of Health and KinesiologyPurdue UniversityWest LafayetteUnited States
| | - Xiaoqi Liu
- Department of BiochemistryPurdue UniversityWest LafayetteUnited States
- Center for Cancer ResearchPurdue UniversityWest LafayetteUnited States
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteUnited States
- Center for Cancer ResearchPurdue UniversityWest LafayetteUnited States
| |
Collapse
|
28
|
Kong Y, Yang L, Wei W, Lyu N, Zou Y, Gao G, Ou X, Xie X, Tang H. CircPLK1 sponges miR-296-5p to facilitate triple-negative breast cancer progression. Epigenomics 2019; 11:1163-1176. [PMID: 31337246 DOI: 10.2217/epi-2019-0093] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Aim: To investigate the role of circRNAs in triple-negative breast cancer (TNBC) and the underlying mechanisms. Materials & methods: We performed circRNA microarrays to explore the expression profiles of TNBC cell lines. Experiments in vitro and in vivo were conducted to explore the effects of circPLK1 on tumor proliferation and metastasis as well as the interaction between circPLK1, miR-296-5p and PLK1 in TNBC. Results & conclusion: CircPLK1 was significantly upregulated in TNBC and associated with poor survivals. CircPLK1 knockdown inhibited cell growth and invasion in vitro as well as tumor occurrence and metastasis in vivo. CircPLK1-miR-296-5p-PLK1 axis regulates tumor progression by ceRNA mechanism in TNBC, indicating that circPLK1 may serve as a prognostic factor and novel therapeutic target for TNBC.
Collapse
Affiliation(s)
- Yanan Kong
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Weidong Wei
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Xueqi Ou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Address: 651 East Dongfeng Road, Guangzhou, PR China
| |
Collapse
|
29
|
Li W, Wang HY, Zhao X, Duan H, Cheng B, Liu Y, Zhao M, Shu W, Mei Y, Wen Z, Tang M, Guo L, Li G, Chen Q, Liu X, Du HN. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. SCIENCE ADVANCES 2019; 5:eaau7566. [PMID: 30854428 PMCID: PMC6402851 DOI: 10.1126/sciadv.aau7566] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Polo-like kinase 1 (Plk1) is a crucial regulator of cell cycle progression; but the mechanism of regulation of Plk1 activity is not well understood. We present evidence that Plk1 activity is controlled by a balanced methylation and phosphorylation switch. The methyltransferase G9a monomethylates Plk1 at Lys209, which antagonizes phosphorylation of T210 to inhibit Plk1 activity. We found that the methyl-deficient Plk1 mutant K209A affects DNA replication, whereas the methyl-mimetic Plk1 mutant K209M prolongs metaphase-to-anaphase duration through the inability of sister chromatids separation. We detected accumulation of Plk1 K209me1 when cells were challenged with DNA damage stresses. Ablation of K209me1 delays the timely removal of RPA2 and RAD51 from DNA damage sites, indicating the critical role of K209me1 in guiding the machinery of DNA damage repair. Thus, our study highlights the importance of a methylation-phosphorylation switch of Plk1 in determining its kinase activity and functioning in DNA damage repair.
Collapse
Affiliation(s)
- Weizhe Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong-Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Binghua Cheng
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mengjie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Qiang Chen
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
30
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
31
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
32
|
Shi J, Ye G, Zhao G, Wang X, Ye C, Thammavong K, Xu J, Dong J. Coordinative control of G2/M phase of the cell cycle by non-coding RNAs in hepatocellular carcinoma. PeerJ 2018; 6:e5787. [PMID: 30364632 PMCID: PMC6197396 DOI: 10.7717/peerj.5787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the interaction of non-coding RNAs (ncRNAs) in hepatocellular carcinoma. Methods We compared the ncRNAs and mRNAs expression profiles of hepatocellular carcinoma and adjacent tissue by microarray and RT-PCR. The relationship between different ncRNAs and mRNA was analyzed using bioinformatics tools. A regulatory model of ncRNAs in hepatocellular carcinoma cells was developed. Results A total of 1,704 differentially expressed lncRNAs, 57 miRNAs, and 2,093 mRNAs were identified by microarray analyses. There is a co-expression relationship between two ncRNAs (miRNA-125b-2-3p and lncRNA P26302). Bioinformatics analysis demonstrated cyclin-dependent kinases 1 and CyclinA2 as potential targets of miR-125b-2-3p and Polo-like kinase 1 as potential target of lncRNAP26302. All three gene are important components in the G2/M phase of cell cycle. Subsequently real-time polymerase chain reaction (PCR) studies confirmed these microarray results. Conclusion MiR-125b-2-3p and lncRNAP26302 may affect the G2/M phase of the cell cycle through the regulation of their respective target genes. This study shows a role of ncRNAs in pathogenesis of hepatocellular carcinoma at molecular level, providing a basis for the future investigation aiming at early diagnosis and novel treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jun Shi
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changguang Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guangqiang Ye
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Guoliang Zhao
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Xuedong Wang
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changguang Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chunhui Ye
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Keooudone Thammavong
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jing Xu
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changguang Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Dang SC, Fan YY, Cui L, Chen JX, Qu JG, Gu M. PLK1 as a potential prognostic marker of gastric cancer through MEK-ERK pathway on PDTX models. Onco Targets Ther 2018; 11:6239-6247. [PMID: 30288059 PMCID: PMC6163028 DOI: 10.2147/ott.s169880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background PLK1 has been identified as having a great effect on cell division and maintaining genomic stability in mitosis, spindle assembly, and DNA damage response by current studies. Materials and methods We assessed PLK1 expression in cervical cancer tissues and cells. We have also evaluated the effects of PLK1 on gastric cancer cell proliferation, migration, and apoptosis both in vitro and in vivo. Results Our results show that PLK1 is overexpressed in gastric cancer tissues and cells. Inhibition of PLK1 contributes cell cycle G2-phase arrest and inhibits the proliferation, migration, and apoptosis of gastric cancer (GC) cells, whereas its overexpression promotes proliferation, migration, and apoptosis in these cells. Moreover, PLK1 inhibition reduces expression of pMEK and pERK. More importantly, in vivo by analyzing tumorigenesis in patient-derived tumor xenograft (PDTX) models, the inhibition of PLK1 activity by BI6727 significantly decreased the volume and weight of the tumors compared with control group (P<0.01). Conclusion Our results found that PLK1 has a significant impact on the survival of GC cells; it may become a prognostic judge, a potential therapeutic target, and a preventative biomarker of GC.
Collapse
Affiliation(s)
- Sheng-Chun Dang
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yi-Yi Fan
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Lei Cui
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Ji-Xiang Chen
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Jian-Guo Qu
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Min Gu
- Zhenjiang Integrative Medicine Hospital, Zhenjiang, Jiangsu Province, People's Republic of China,
| |
Collapse
|
34
|
Liu TT, Yang KX, Yu J, Cao YY, Ren JS, Hao JJ, Pan BQ, Ma S, Yang LY, Cai Y, Wang MR, Zhang Y. Co-targeting PLK1 and mTOR induces synergistic inhibitory effects against esophageal squamous cell carcinoma. J Mol Med (Berl) 2018; 96:807-817. [PMID: 29959473 DOI: 10.1007/s00109-018-1663-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Both polo-like kinase 1 (PLK1) and mammalian/mechanistic target of rapamycin (mTOR) are attractive therapeutic targets for cancer therapy. However, the efficacy of the combined inhibition of both pathways for treating esophageal squamous cell carcinoma (ESCC), an aggressive malignancy with poor prognosis, remains unknown. In this study, we found that suppression of PLK1 by specific siRNA or inhibitor attenuated mTOR activity in ESCC cells. Phosphorylated S6, a downstream effector of mTOR signaling, was significantly correlated with overexpression of PLK1 in a subset of ESCC. These data suggest that PLK1 activates mTOR signaling in vitro and in vivo. More importantly, the mTOR inhibitor rapamycin synergized with PLK1 inhibitor BI 2536 to inhibit ESCC cell proliferation in culture and in mice. Notably, combined treatment with BI 2536 and rapamycin produced more potent inhibitory effects on the activation of S6 and AKT than either alone. Further analysis reveals that PLK1 modulates both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) cascades. Therefore, dual inhibition of PLK1 and mTOR yields stronger antitumor effects, at least partially due to synergistic abrogated the activation of S6, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AKT by cooperatively blocking mTORC1 and mTORC2 cascades. These results provide evidence that the mTOR inhibitor rapamycin synergistically enhances the antitumor effect of PLK1 inhibitor BI 2536 in ESCC cells. Simultaneous targeting of PLK1 and mTOR may thus be a novel and promising therapeutic strategy for ESCC. KEY MESSAGES PLK1 potentiates both mTORC1 and mTORC2 activities in ESCC cells. PLK1 expression positively correlated with mTOR activity in a subset of ESCC. Co-targeting of PLK1 and mTOR produced stronger antitumor effects partially due to synergistic inhibition of AKT, 4E-BP1 and S6 through cooperatively blocking mTORC2 and mTORC1 cascades. Combination targeting of PLK1 and mTOR may be a novel and promising therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Ting-Ting Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Kai-Xia Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ying-Ya Cao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jian-Song Ren
- Program Office for Cancer Screening in Urban China, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bei-Qing Pan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
35
|
Jacquet K, Banerjee SL, Chartier FJM, Elowe S, Bisson N. Proteomic Analysis of NCK1/2 Adaptors Uncovers Paralog-specific Interactions That Reveal a New Role for NCK2 in Cell Abscission During Cytokinesis. Mol Cell Proteomics 2018; 17:1979-1990. [PMID: 30002203 DOI: 10.1074/mcp.ra118.000689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Signals from cell surface receptors are often relayed via adaptor proteins. NCK1 and NCK2 are Src-Homology (SH) 2 and 3 domain adaptors that regulate processes requiring a remodeling of the actin cytoskeleton. Evidence from gene inactivation in mouse suggests that NCK1 and NCK2 are functionally redundant, although recent reports support the idea of unique functions for NCK1 and NCK2. We sought to examine this question further by delineating NCK1- and NCK2-specific signaling networks. We used both affinity purification-mass spectrometry and BioID proximity labeling to identify NCK1/2 signaling networks comprised of 98 proteins. Strikingly, we found 30 proteins restricted to NCK1 and 28 proteins specifically associated with NCK2, suggesting differences in their function. We report that Nck2 -/-, but not Nck1 -/- mouse embryo fibroblasts (MEFs) are multinucleated and display extended protrusions reminiscent of intercellular bridges, which correlate with an extended time spent in cytokinesis as well as a failure of a significant proportion of cells to complete abscission. Our data also show that the midbody of NCK2-deficient cells is not only increased in length, but also altered in composition, as judged by the mislocalization of AURKB, PLK1 and ECT2. Finally, we show that NCK2 function during cytokinesis requires its SH2 domain. Taken together, our data delineate the first high-confidence interactome for NCK1/2 adaptors and highlight several proteins specifically associated with either protein. Thus, contrary to what is generally accepted, we demonstrate that NCK1 and NCK2 are not completely redundant, and shed light on a previously uncharacterized function for the NCK2 adaptor protein in cell division.
Collapse
Affiliation(s)
- Kévin Jacquet
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - Sara L Banerjee
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - François J M Chartier
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada.,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada
| | - Sabine Elowe
- §Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada.,‖Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Reproduction, santé de la mère et de l'enfant, Québec G1V 4G2, QC, Canada.,**Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Nicolas Bisson
- From the ‡Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec G1R 2J6, QC, Canada; .,§Centre de recherche sur le cancer de l'Université Laval, Québec G1R 2J6, QC, Canada.,¶PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec G1V 0A6, QC, Canada.,‡‡Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec G1V 0A6, QC, Canada
| |
Collapse
|
36
|
Gu MM, Li M, Gao D, Liu LH, Lang Y, Yang SM, Ou H, Huang B, Zhou PK, Shang ZF. The vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde induces aberrant mitotic progression and enhances radio-sensitivity accompanying suppression the expression of PLK1 in esophageal squamous cell carcinoma. Toxicol Appl Pharmacol 2018; 348:76-84. [PMID: 29679654 DOI: 10.1016/j.taap.2018.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common form of esophageal cancer in China. Since chemotherapy is the standard clinical intervention for advanced ESCC, the development of highly effective and minimal/non-toxic drugs is essential to improve the clinical outcome and prognosis of the patients. A novel derivative of vanillin, 6-bromine-5-hydroxy-4-methoxybenzaldehyde (BVAN08), has been recently reported to activate different cell death pathways in cancer cells. In this study, we demonstrate that BVAN08 exhibits a potent anti-proliferation effect on ESCC cells (TE-1 and ECA-109) by inhibiting the expression of PLK1, an important mitotic kinase. Consistent with this, BVAN08 induces mitotic arrest and chromosomal misalignment in ESCC cells. The disruption of microtubule nucleation around centrosomes is also observed in BVAN08 treated ESCC cells. Furthermore, BVAN08 enhances radio-sensitivity of ESCC cells by prolonging DNA damage repair. These findings underscore the potential value of BVAN08 in cancer therapeutics and demonstrate the underlying mechanism by which BVAN08 induces mitotic catastrophe and enhances radio-sensitivity in ESCC cells.
Collapse
Affiliation(s)
- Meng-Meng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Dexuan Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Lang-Huan Liu
- School of Public Heath, Central South University, Changsha 410078, PR China
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Si-Ming Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Hongling Ou
- Department of Clinical Laboratory, The General Hospital of the PLA Rocket Force, Beijing 100088, PR China
| | - Bo Huang
- School of Public Heath, Central South University, Changsha 410078, PR China
| | - Ping-Kun Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China; Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
37
|
Rogne M, Svaerd O, Madsen-Østerbye J, Hashim A, Tjønnfjord GE, Staerk J. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia. J Cell Mol Med 2018. [PMID: 29516674 PMCID: PMC5908127 DOI: 10.1111/jcmm.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Oksana Svaerd
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Adnan Hashim
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Botchkarev VV, Haber JE. Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 2018; 64:87-96. [PMID: 28770345 PMCID: PMC6249032 DOI: 10.1007/s00294-017-0727-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Polo-like kinases are essential cell cycle regulators that are conserved from yeast to humans. Unlike higher eukaryotes, who express multiple Polo-like kinase family members that perform many important functions, budding yeast express only a single Polo-like kinase, Cdc5, which is the homolog of mammalian cell cycle master regulator Polo-like kinase 1. Cdc5 is a fascinating multifaceted protein that is programmed to target its many substrates in a timely, sequential manner to ensure proper cell cycle progression. Over the years, many lessons about Polo-like kinase 1 have been learned by studying Cdc5 in budding yeast. Cdc5 has been well documented in regulating mitotic entry, chromosome segregation, mitotic exit, and cytokinesis. Cdc5 also plays important roles during cell division after DNA damage. Here, we briefly review the many functions of Cdc5 and its regulation in the absence and presence of DNA damage.
Collapse
Affiliation(s)
- Vladimir V Botchkarev
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
39
|
Comparative evaluation of three proliferation markers, Ki-67, TOP2A, and RacGAP1, in bronchopulmonary neuroendocrine neoplasms: Issues and prospects. Oncotarget 2018; 7:41959-41973. [PMID: 27259241 PMCID: PMC5173108 DOI: 10.18632/oncotarget.9747] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
The classification of bronchopulmonary neuroendocrine neoplasms (BP-NEN) into four tumor entities (typical carcinoids (TC), atypical carcinoids (AC), small cell lung cancers (SCLC), large cell neuroendocrine lung carcinomas (LCNEC)) is difficult to perform accurately, but important for prognostic statements and therapeutic management decisions. In this regard, we compared the expression of three proliferation markers, Ki-67, Topoisomerase II alpha (TOP2A), and RacGAP1, in a series of tumor samples from 104 BP-NEN patients (24 TC, 21 AC, 52 SCLC, 7 LCNEC) using different evaluation methods (immunohistochemistry (IHC): Average evaluation, Hotspot evaluation, digital image analysis; RT-qPCR). The results indicated that all three markers had increased protein and mRNA expression with poorer differentiation and correlated well with each other, as well as with grading, staging, and poor survival. Compared with Ki-67 and TOP2A, RacGAP1 allowed for a clearer prognostic statement. The cut-off limits obtained for Ki-67-Average (IHC) were TC-AC 1.5, AC-SCLC 19, and AC-LCNEC 23.5. The Hotspot evaluation generated equal to higher, the digital image analysis generally lower between-entity cut-off limits. All three markers enabled a clear-cut differentiation between the BP-NEN entities, and all methods evaluated were suitable for marker assessment. However, to define optimal cut-off limits, the Ki-67 evaluation methods should be standardized. RacGAP1 appeared to be a new marker with great potential.
Collapse
|
40
|
Pan Y, Liu G, Yuan Y, Zhao J, Yang Y, Li Y. Analysis of differential gene expression profile identifies novel biomarkers for breast cancer. Oncotarget 2017; 8:114613-114625. [PMID: 29383106 PMCID: PMC5777718 DOI: 10.18632/oncotarget.23061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
Breast cancer is the most prevalent cancer diagnosis in women. We aimed to identify biomarkers for breast cancer prognosis. mRNA expression profiling was performed using Gene Chip Human Transcriptome Array 2.0. Microarray analysis and series test of cluster (STC) analysis were used to screen the differential expressed mRNAs and the expression trend of genes. Immumohistochemical staining with 100 clinical specimens was used to validate two differentially expressed genes, ITGA11 and Jab1. In the present study, significantly enriched Gene Ontology (GO) terms and pathways were identified. 26 model profiles were used to summarize the expression pattern of differentially expressed genes. Results of immunohistochemistry were consistent with those of the microarray, in that ITGA11 and Jab1 were differentially expressed with the same trend. Survival analyses using the Kaplan-Meier method demonstrated that breast cancer patients with high levels of either ITGA11 or Jab1 had a significant association with worse prognosis. Our study identified ITGA11 and Jab1 as novel biomarkers for breast cancer.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- School of Materials Science and Engineering and School of Electronics and Information technology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yufen Yuan
- Department of Pathology, Anyang Tumor Hospital, Anyang, Henan, China
| | - Jin Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yong Yang
- Key Laboratory Zoonsis Research Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
41
|
Dufies M, Ambrosetti D, Boulakirba S, Calleja A, Savy C, Furstoss N, Zerhouni M, Parola J, Aira-Diaz L, Marchetti S, Orange F, Lacas-Gervais S, Luciano F, Jacquel A, Robert G, Pagès G, Auberger P. ATP-competitive Plk1 inhibitors induce caspase 3-mediated Plk1 cleavage and activation in hematopoietic cell lines. Oncotarget 2017. [PMID: 29541386 PMCID: PMC5834281 DOI: 10.18632/oncotarget.23650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polo-like kinases (Plks) define a highly conserved family of Ser/Thr kinases with crucial roles in the regulation of cell division. Here we show that Plk1 is cleaved by caspase 3, but not by other caspases in different hematopoietic cell lines treated with competitive inhibitors of the ATP-binding pocket of Plk1. Intriguingly, Plk1 was not cleaved in cells treated with Rigosertib, a non-competitive inhibitor of Plk1, suggesting that binding of the inhibitor to the ATP binding pocket of Plk1 triggers a conformational change and unmasks a cryptic caspase 3 cleavage site on the protein. Cleavage occurs after Asp-404 in a DYSD/K sequence and separates the kinase domain from the two PBDs of Plk1. All Plk1 inhibitors triggered G2/M arrest, activation of caspases 2 and 3, polyploidy, multiple nuclei and mitotic catastrophe, albeit at higher concentrations in the case of Rigosertib. Upon BI-2536 treatment, Plk1 cleavage occurred only in the cytosolic fraction and cleaved Plk1 accumulated in this subcellular compartment. Importantly, the cleaved N-Terminal fragment of Plk1 exhibited a higher enzymatic activity than its non-cleaved counterpart and accumulated into the cytoplasm conversely to the full length and the C-Terminal Plk1 fragments that were found essentially into the nucleus. Finally, the DYSD/K cleavage site was highly conserved during evolution from c. elegans to human. In conclusion, we described herein for the first time a specific cleavage of Plk1 by caspase 3 following treatment of cancer cells with ATP-competitive inhibitors of Plk1.
Collapse
Affiliation(s)
- Maeva Dufies
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | - Damien Ambrosetti
- Université Côte d'Azur, CHU Nice, Department of Pathology, Nice, France
| | - Sonia Boulakirba
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Anne Calleja
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Coline Savy
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | | | | | - Julien Parola
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | | | | | | | | | - Frederic Luciano
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Arnaud Jacquel
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Guillaume Robert
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Gilles Pagès
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | - Patrick Auberger
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| |
Collapse
|
42
|
Li Z, Cui Q, Xu J, Cheng D, Wang X, Li B, Lee JM, Xia Q, Kusakabe T, Zhao P. SUMOylation regulates the localization and activity of Polo-like kinase 1 during cell cycle in the silkworm, Bombyx mori. Sci Rep 2017; 7:15536. [PMID: 29138491 PMCID: PMC5686133 DOI: 10.1038/s41598-017-15884-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a crucial cell cycle regulator by its specific localization and activity during cell cycle. It has been shown that the phosphorylation and ubiquitylation of Plk1 are required for its own activation and localization. Here, we report that SUMOylation regulates the activity of Plk1 in the lepidopteran insect of Bombyx mori. In the absence of SUMOylation, it causes the lost localization of Plk1 on centrosomes and kinetochores, as well as an uneven distribution in midzone. We further identify that the putative SUMOylation site of Bombyx Plk1 at lysine 466 is required for its localization on centrosomes, and K466 mutation in Plk1 could influence its interaction with Smt3/Ubc9 complex. These findings are also confirmed by Drosophila Polo and human Plk1, which together reveals a conserved role of Plk1 SUMOylation in mammals. Moreover, conjugation of Smt3 to Plk1 SUMOylation mutant promotes its localization on centrosomes and kinetochores, and rescues functional defects of chromosome alignment in cells depleted of endogenous Plk1. Altogether, the present data indicate that the SUMOylation of Plk1 could participate in proper chromosome alignment and segregation during mitosis, and provides a novel layer for the regulation of Plk1 localization and activity throughout cell cycle.
Collapse
Affiliation(s)
- Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Qixin Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Xiaoyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingqian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China.
| |
Collapse
|
43
|
Kolosenko I, Edsbäcker E, Björklund AC, Hamil AS, Goroshchuk O, Grandér D, Dowdy SF, Palm-Apergi C. RNAi prodrugs targeting Plk1 induce specific gene silencing in primary cells from pediatric T-acute lymphoblastic leukemia patients. J Control Release 2017; 261:199-206. [PMID: 28684168 DOI: 10.1016/j.jconrel.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
Epidemiological studies of childhood leukemia survivors reveal an alarmingly high incidence of chronic health disabilities after treatment, therefore, more specific therapies need to be developed. Polo-like kinase 1 (Plk1) is a key player in mitosis and a target for drug development as it is upregulated in multiple cancer types. Small molecules targeting Plk1 are mainly ATP-competitors and, therefore, are known to elicit side effects due to lack of specificity. RNA interference (RNAi) is known for its high catalytic activity and target selectivity; however, the biggest barrier for its introduction into clinical use is its delivery. RNAi prodrugs are modified, self-delivering short interfering Ribonucleic Neutrals (siRNNs), cleaved by cytoplasmic enzymes into short interfering Ribonucleic Acids (siRNAs) once inside cells. In this study we aimed to investigate the potential of siRNNs as therapeutic tools in T-acute lymphoblastic leukemia (T-ALL) using T-ALL cell lines and patient-derived samples. We demonstrate for the first time that RNAi prodrugs (siRNNs) targeting Plk1, can enter pediatric T-ALL patient cells without a transfection reagent and induce Plk1 knockdown on both protein and mRNA levels resulting in G2/M-arrest and apoptosis. We also show that siRNNs targeting Plk1 generate less toxicity in normal cells compared to the small molecule Plk1 inhibitor, BI6727, suggesting a potentially good therapeutic index.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Elin Edsbäcker
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Ann-Charlotte Björklund
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Alexander S Hamil
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Oksana Goroshchuk
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden
| | - Dan Grandér
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden
| | - Steven F Dowdy
- Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Caroline Palm-Apergi
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Sweden; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Sweden.
| |
Collapse
|
44
|
Zhang Z, Zhang G, Kong C. Targeted inhibition of Polo-like kinase 1 by a novel small-molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells. J Cell Mol Med 2017; 21:758-767. [PMID: 27878946 PMCID: PMC5345669 DOI: 10.1111/jcmm.13018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/24/2016] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti-tumour activities of a novel Polo-like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony-formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real-time RT-PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP-ribose polymerase) and caspase-3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre-clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of UrologyThe First Hospital of China Medical UniversityShenyang CityChina
| | - Guojun Zhang
- Department of HematologyShengjing Hospital of China Medical UniversityShenyang CityChina
| | - Chuize Kong
- Department of UrologyThe First Hospital of China Medical UniversityShenyang CityChina
| |
Collapse
|
45
|
Guo P, Xiong X, Zhang S, Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep 2016; 36:3552-3558. [PMID: 27748936 DOI: 10.3892/or.2016.5140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the malignant tumors that seriously affects women's health and chemotherapy resistance is an important reason for the poor prognosis. The present study was conducted to investigate whether microRNA-100 (miR-100) can be used to modulate the tolerance to cisplatin in EOC. Expression of miR-100 was compared between ovarian cancer cells tolerant and not tolerant to cisplatin. Mimic and antisense were used to study the roles and related mechanisms of miR-100 in cisplatin sensitivity in EOC. The alternation in the cisplatin sensitivity was investigated using grafted tumors derived from SKOV3/DDP cells with upregulated or downregulated miR-100 expression. miR-100 was lower in cisplatin resistant cell line SKOV3/DDP than in cisplatin sensitive cell line SKOV3. miR-100 might increase cisplatin sensitivity by inhibiting cell proliferation and conversion from G1 to S phase and increasing apoptosis. We showed that mTOR and PLK1 are targets of miR-100 and the cells were resensitized probably due to targeted downregulation of mTOR and PLK1 by miR-100. In vivo study with nude mice showed that tumors derived from miR-100 mimic-transfected cells were more sensitive to cisplatin and had reduced expression of mTOR and PLK1. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin probably by inhibiting cell proliferation, inducing apoptosis and arresting cell cycle and by targeted downregulation of mTOR and PLK1 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Obstetrics and Gynecology, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Xiangpeng Xiong
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sainan Zhang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongxian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
46
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
47
|
Wang XH, Lu Y, Liang JJ, Cao JX, Jin YQ, An GS, Ni JH, Jia HT, Li SY. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells. Biochem Biophys Res Commun 2016; 478:676-82. [PMID: 27498003 DOI: 10.1016/j.bbrc.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3'-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53(-/-) cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage.
Collapse
Affiliation(s)
- Xian-Hui Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yao Lu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jing-Jing Liang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ji-Xiang Cao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ya-Qiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, PR China
| | - Guo-Shun An
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ju-Hua Ni
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Shu-Yan Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
48
|
Donizy P, Halon A, Surowiak P, Kaczorowski M, Kozyra C, Matkowski R. Augmented expression of Polo-like kinase 1 is a strong predictor of shorter cancer-specific overall survival in early stage breast cancer at 15-year follow-up. Oncol Lett 2016; 12:1667-1674. [PMID: 27602103 PMCID: PMC4998224 DOI: 10.3892/ol.2016.4890] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine-threonine kinase that plays a crucial role in the regulation of cell division. In addition, it acts as a modulator of the DNA damage response and as a novel factor in the maintenance of genome stability during DNA replication. The present study aimed to reveal the associations between PLK1 expression and clinicopathological features of patients with breast cancer (BC), particularly patient survival at 5-, 10- and 15-year follow-up. PLK1 expression was evaluated immunohistochemically in routine diagnostic tissue specimens from 83 patients treated radically for stage II BC. Kaplan-Meier analysis revealed a correlation between PLK1 overexpression and long-term survival. High PLK1 immunoreactivity was associated with shorter cancer-specific overall survival (CSOS) and disease-free survival (P=0.00001 and 0.00013, respectively). Multivariate analysis confirmed the negative prognostic significance of PLK1 overexpression for CSOS in all 83 patients (P=0.00030). Furthermore, analogous correlations were observed in both subgroups with and without nodal metastases (P=0.01400 and 0.01200, respectively). The present results indicate that PLK1 expression has a prognostic role in early BC. Immunohistochemical assessment of PLK1 reactivity may potentially become a qualifier for inclusion of PLK1 inhibitor therapy.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Cyprian Kozyra
- Department of Statistics, Wroclaw University of Economics, Wroclaw 53-345, Poland
| | - Rafal Matkowski
- Department of Oncology and Surgical Oncology, Wroclaw Medical University, Wroclaw 50-556, Poland; Lower Silesian Oncology Centre, Breast Unit, Wroclaw 53-413, Poland
| |
Collapse
|
49
|
Gutteridge REA, Ndiaye MA, Liu X, Ahmad N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer Ther 2016; 15:1427-35. [PMID: 27330107 PMCID: PMC4936921 DOI: 10.1158/1535-7163.mct-15-0897] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
Polo-like kinase 1 (Plk1) overexpression has been shown to occur in a wide range of tumors, prompting research and development of Plk1 inhibitors as a means of cancer treatment. This review discusses recent advances in the development of Plk1 inhibitors for cancer management. Plk1 inhibition has been shown to cause mitotic block and apoptosis of cells with higher mitotic index and therefore higher Plk1 expression. The potential of Plk1 inhibitors as cancer therapeutics has been widely investigated. However, a complete understanding of Plk1 biology/mechanism is yet to be fully achieved. Resistance to certain chemotherapeutic drugs has been linked to Plk1 overexpression, and Plk1-mediated mitotic events such as microtubule rearrangement have been found to reduce the efficacy of chemotherapeutic agents. The Plk1 inhibitor volasertib has shown considerable promise in clinical studies, having reached phase III trials. However, preclinical success with Plk1 inhibitors has not translated well into clinical success. In our view, combined therapies targeting other relevant pathways together with Plk1 may be vital to combat issues observed with monotherapy, especially resistance. In addition, research should also be directed toward understanding the mechanisms of Plk1 and designing additional next generations of specific, potent Plk1 inhibitors to target cancer. Mol Cancer Ther; 15(7); 1427-35. ©2016 AACR.
Collapse
Affiliation(s)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin. William S. Middleton Memorial VA Hospital, Madison, Wisconsin.
| |
Collapse
|
50
|
Ferrarotto R, Goonatilake R, Yoo SY, Tong P, Giri U, Peng S, Minna J, Girard L, Wang Y, Wang L, Li L, Diao L, Peng DH, Gibbons DL, Glisson BS, Heymach JV, Wang J, Byers LA, Johnson FM. Epithelial-Mesenchymal Transition Predicts Polo-Like Kinase 1 Inhibitor-Mediated Apoptosis in Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 22:1674-1686. [PMID: 26597303 PMCID: PMC4818738 DOI: 10.1158/1078-0432.ccr-14-2890] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 11/01/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE To identify new therapeutic targets for non-small cell lung cancer (NSCLC), we systematically searched two cancer cell line databases for sensitivity data on a broad range of drugs. We identified polo-like kinase 1 (PLK1) as the most promising target for further investigation based on a subset of sensitive NSCLC cell lines and inhibitors that were in advanced clinical development. EXPERIMENTAL DESIGN To identify potential biomarkers of response of NSCLC to PLK1 inhibition and mechanisms of PLK1 inhibitor-induced apoptosis, integrated analysis of gene and protein expression, gene mutations, and drug sensitivity was performed using three PLK1 inhibitors (volasertib, BI2536, and GSK461364) with a large panel of NSCLC cell lines. RESULTS The NSCLC cell lines had different sensitivities to PLK1 inhibition, with a minority demonstrating sensitivity to all three inhibitors. PLK1 inhibition led to G2-M arrest, but only treatment-sensitive cell lines underwent substantial apoptosis following PLK1 inhibition. NSCLC lines with high epithelial-mesenchymal transition (EMT) gene signature scores (mesenchymal cell lines) were more sensitive to PLK1 inhibition than epithelial lines (P< 0.02). Likewise, proteomic profiling demonstrated that E-cadherin expression was higher in the resistant cell lines than in the sensitive ones (P< 0.01). Induction of an epithelial phenotype by expression of the miRNA miR-200 increased cellular resistance to PLK1 inhibition. Also, KRAS mutation and alterations in the tight-junction, ErbB, and Rho signaling pathways correlated with drug response of NSCLC. CONCLUSIONS In this first reported large-scale integrated analysis of PLK1 inhibitor sensitivity, we demonstrated that EMT leads to PLK1 inhibition sensitivity of NSCLC cells. Our findings have important clinical implications for mesenchymal NSCLC, a significant subtype of the disease that is associated with resistance to currently approved targeted therapies.
Collapse
Affiliation(s)
- Renata Ferrarotto
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruchitha Goonatilake
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Suk Young Yoo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaohua Peng
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John Minna
- Hamon Cancer Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Cancer Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuehong Wang
- Department of Respiratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liguang Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, China
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David H. Peng
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Don L. Gibbons
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bonnie S. Glisson
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V. Heymach
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A. Byers
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Faye M. Johnson
- Departments of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|