1
|
Chen S, Luo Y, Yu P, Yue X, Yang W. [Advances in the development of transient receptor potential melastatin 2 channel inhibitors]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:120-130. [PMID: 39909465 PMCID: PMC11956857 DOI: 10.3724/zdxbyxb-2024-0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
Studies on specific transient receptor potential melastatin 2 (TRPM2) channel inhibitors can deepen our understanding of the pathological mechanism of related diseases, and allow discovery of novel, effective targets and drugs for therapy. The development of TRPM2 channel inhibitors can be broadly classified into four categories with distinct characteristics: reutilization and structural modification of homologous ion channel modulators to produce a diverse array of TRPM2 channel inhibitors with strong inhibitory effects; TRPM2 channel inhibitors based on channel gating mechanism with high specificity; inhibitors identified through high-throughput screening with novel chemical structures; inhibitors developed from natural antioxidants with higher safety. In recent years, the application of computer-aided drug design has significantly accelerated the development of TRPM2 channel inhibitors. Several promising compounds such as ZA18, A1 and D9 have been discovered, and it is expected that more potent and selective TRPM2 channel inhibitor scaffolds will be discovered in the future. This article reviews the advances on the studies of TRPM2 channel inhibitors, aiming to provide insights for further research and clinical application of TRPM2 channel inhibitors.
Collapse
Affiliation(s)
- Shiyao Chen
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yanping Luo
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine , Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Wei Yang
- Department of Biophysics, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Toth AV, Bartok A. Direct Assessment of Temperature Sensitivity of the TRPM2 Channel with the Patch Clamp Technique. Methods Mol Biol 2025; 2908:163-170. [PMID: 40304909 DOI: 10.1007/978-1-0716-4434-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The transient receptor potential (TRP) family of ion channels contains a large array of receptors of pain, taste, or temperature. Thus far, several TRP channels have been confirmed as warm or cold sensors; however, the exact molecular mechanism of heat detection remains obscure. The methods of investigation of temperature sensitivity involve several different techniques, e.g., in vivo experiments, fluorescence-based Ca2+ measurements, and electrophysiology. Here we describe an electrophysiological configuration that allows the direct assessment of the temperature sensitivity of the TRPM2 channel by measuring the temperature dependence of microscopic and macroscopic currents, apparent ligand binding affinities, and the gating parameters of the channel under the precise control of temperature and activating ligand concentrations. The technique described here may be adapted to explore temperature sensitive behavior of various other ion channels.
Collapse
Affiliation(s)
- Adam V Toth
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- HUN-REN-SE Ion Channel Research Group, Budapest, Hungary
| | - Adam Bartok
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary.
- HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
| |
Collapse
|
3
|
Hu F, Lin C. TRPM2 knockdown attenuates myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice via regulating the MEK/ERK and mTORC1 signaling pathway. Mol Cell Biochem 2024; 479:3307-3328. [PMID: 38308007 PMCID: PMC11511773 DOI: 10.1007/s11010-024-04926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes. Transient receptor potential melastatin 2 (TRPM2) activity increases in diabetic oxidative stress state, and it is involved in myocardial damage and repair. We explore the protective effect of TRPM2 knockdown on the progression of DCM. A type 2 diabetes animal model was established in C57BL/6N mice by long-term high-fat diet (HFD) feeding combined with a single injection of 100-mg/kg streptozotocin (STZ). Genetic knockdown of TRPM2 in heart was accomplished by the intravenous injection via the tail vein of adeno-associated virus type 9 carrying TRPM2 shRNA. Neonatal rat ventricular myocytes was exposed to 45 mM of high-glucose (HG) stimulation for 72 h in vitro to mimic the in vivo conditions. Western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry and fluorescence, electron, CCK-8, and flow cytometry were used to evaluate the phenotype of cardiac inflammation, fibrosis, apoptosis, and autophagy. Mice with HFD/STZ-induced diabetes exhibited systolic and diastolic dysfunction, as demonstrated by increased myocardial apoptosis and autophagy inhibition in the heart. Compared to control group, the protein expression of TRPM2, bax, cleaved caspase-3, and P62 was significantly elevated, and the protein expression of bcl-2 and LC3-II was significantly decreased in the myocardial tissues of the HFD/STZ-induced diabetes group. Knockdown of TRPM2 significantly reversed the HFD/STZ-induced myocardial apoptosis and autophagy inhibition. TRPM2 silencing attenuated HG-induced apoptosis and autophagy inhibition in primary cardiomyocytes via regulating the MEK/ERK mTORC1 signaling pathway. TRPM2 knockdown attenuates hyperglycemia-induced myocardial apoptosis and promotes autophagy in HFD/STZ-induced diabetic mice or HG-stimulated cardiomyocytes via regulating the MEK/ERK and mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Chaoyang Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| |
Collapse
|
4
|
Gu Y, Liu M, Ma L, Quinn RJ. Identification of Ligands for Ion Channels: TRPM2. Chembiochem 2024; 25:e202300790. [PMID: 38242853 DOI: 10.1002/cbic.202300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, nonselective cation channel with a widespread distribution throughout the body. It is involved in many pathological and physiological processes, making it a potential therapeutic target for various diseases, including Alzheimer's disease, Parkinson's disease, and cancers. New analytical techniques are beneficial for gaining a deeper understanding of its involvement in disease pathogenesis and for advancing the drug discovery for TRPM2-related diseases. In this work, we present the application of collision-induced affinity selection mass spectrometry (CIAS-MS) for the direct identification of ligands binding to TRPM2. CIAS-MS circumvents the need for high mass detection typically associated with mass spectrometry of large membrane proteins. Instead, it focuses on the detection of small molecules dissociated from the ligand-protein-detergent complexes. This affinity selection approach consolidates all affinity selection steps within the mass spectrometer, resulting in a streamlined process. We showed the direct identification of a known TRPM2 ligand dissociated from the protein-ligand complex. We demonstrated that CIAS-MS can identify binding ligands from complex mixtures of compounds and screened a compound library against TRPM2. We investigated the impact of voltage increments and ligand concentrations on the dissociation behavior of the binding ligand, revealing a dose-dependent relationship.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, N34 1.29, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
5
|
Bartók Á, Csanády L. TRPM2 - An adjustable thermostat. Cell Calcium 2024; 118:102850. [PMID: 38237549 DOI: 10.1016/j.ceca.2024.102850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
The Transient Receptor Potential Melastatin 2 (TRPM2) channel is a homotetrameric ligand-gated cation channel opened by the binding of cytosolic ADP ribose (ADPR) and Ca2+. In addition, strong temperature dependence of its activity has lately become a center of attention for both physiological and biophysical studies. TRPM2 temperature sensitivity has been affirmed to play a role in central and peripheral thermosensation, pancreatic insulin secretion, and immune cell function. On the other hand, a number of different underlying mechanisms have been proposed from studies in intact cells. This review summarizes available information on TRPM2 temperature sensitivity, with a focus on recent mechanistic insight obtained in a cell-free system. Those biophysical results outline TRPM2 as a channel with an intrinsically endothermic opening transition, a temperature threshold strongly modulated by cytosolic agonist concentrations, and a response steepness greatly enhanced through a positive feedback loop generated by Ca2+ influx through the channel's pore. Complex observations in intact cells and apparent discrepancies between studies using in vivo and in vitro models are discussed and interpreted in light of the intrinsic biophysical properties of the channel protein.
Collapse
Affiliation(s)
- Ádám Bartók
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary; HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary; HUN-REN-SE Ion Channel Research Group, Budapest, Hungary.
| |
Collapse
|
6
|
Yan Q, Gao C, Li M, Lan R, Wei S, Fan R, Cheng W. TRP Ion Channels in Immune Cells and Their Implications for Inflammation. Int J Mol Sci 2024; 25:2719. [PMID: 38473965 DOI: 10.3390/ijms25052719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The transient receptor potential (TRP) ion channels act as cellular sensors and mediate a plethora of physiological processes, including somatosensation, proliferation, apoptosis, and metabolism. Under specific conditions, certain TRP channels are involved in inflammation and immune responses. Thus, focusing on the role of TRPs in immune system cells may contribute to resolving inflammation. In this review, we discuss the distribution of five subfamilies of mammalian TRP ion channels in immune system cells and how these ion channels function in inflammatory mechanisms. This review provides an overview of the current understanding of TRP ion channels in mediating inflammation and may offer potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qiyue Yan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Chuanzhou Gao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Mei Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Rui Lan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Shaohan Wei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Runsong Fan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
7
|
Benzi A, Heine M, Spinelli S, Salis A, Worthmann A, Diercks B, Astigiano C, Pérez Mato R, Memushaj A, Sturla L, Vellone V, Damonte G, Jaeckstein MY, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Heeren J, Bruzzone S. The TRPM2 ion channel regulates metabolic and thermogenic adaptations in adipose tissue of cold-exposed mice. Front Endocrinol (Lausanne) 2024; 14:1251351. [PMID: 38390373 PMCID: PMC10882718 DOI: 10.3389/fendo.2023.1251351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/16/2023] [Indexed: 02/24/2024] Open
Abstract
Introduction During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the β-adrenergic receptor agonist CL316,243. Results Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.
Collapse
Affiliation(s)
- Andrea Benzi
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Astigiano
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Raúl Pérez Mato
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Adela Memushaj
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Valerio Vellone
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy
- Pathology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio De Flora
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Santina Bruzzone
- Department of Experimental Medicine-Section of Biochemistry, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Pick J, Sander S, Etzold S, Rosche A, Tidow H, Guse AH, Fliegert R. 2'-deoxy-ADPR activates human TRPM2 faster than ADPR and thereby induces higher currents at physiological Ca 2+ concentrations. Front Immunol 2024; 15:1294357. [PMID: 38318185 PMCID: PMC10838996 DOI: 10.3389/fimmu.2024.1294357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
TRPM2 is a Ca2+ permeable, non-selective cation channel in the plasma membrane that is involved in the innate immune response regulating, for example, chemotaxis in neutrophils and cytokine secretion in monocytes and macrophages. The intracellular adenine nucleotides ADP-ribose (ADPR) and 2'-deoxy-ADPR (2dADPR) activate the channel, in combination with their co-agonist Ca2+. Interestingly, activation of human TRPM2 (hsTRPM2) by 2dADPR is much more effective than activation by ADPR. However, the underlying mechanism of the nucleotides' differential effect on the channel is not yet fully understood. In this study, we performed whole-cell patch clamp experiments with HEK293 cells heterologously expressing hsTRPM2. We show that 2dADPR has an approx. 4-fold higher Ca2+ sensitivity than ADPR (EC50 = 190 and 690 nM). This allows 2dADPR to activate the channel at lower and thus physiological intracellular Ca2+ concentrations. Kinetic analysis of our data reveals that activation by 2dADPR is faster than activation by ADPR. Mutation in a calmodulin binding N-terminal IQ-like motif in hsTRPM2 completely abrogated channel activation by both agonists. However, mutation of a single amino acid residue (W1355A) in the C-terminus of hsTRPM2, at a site of extensive inter-domain interaction, resulted in slower activation by 2dADPR and neutralized the difference in rate of activation between the two agonists. Taken together, we propose a mechanism by which 2dADPR induces higher hsTRPM2 currents than ADPR by means of faster channel activation. The finding that 2dADPR has a higher Ca2+ sensitivity than ADPR may indicate that 2dADPR rather than ADPR activates hsTRPM2 in physiological contexts such as the innate immune response.
Collapse
Affiliation(s)
- Jelena Pick
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Sander
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Stefanie Etzold
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anette Rosche
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR) & Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Fliegert
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
10
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
11
|
Carvacrol protects the ARPE19 retinal pigment epithelial cells against high glucose-induced oxidative stress, apoptosis, and inflammation by suppressing the TRPM2 channel signaling pathways. Graefes Arch Clin Exp Ophthalmol 2022; 260:2567-2583. [PMID: 35704089 DOI: 10.1007/s00417-022-05731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE The concentration of plasma high glucose (HGu) in diabetes mellitus (DM) induces the retinal pigment epithelial cell (ARPE19) death via the increase of inflammation, cytosolic (cytROS), and mitochondrial (mitROS) free oxygen radical generations. Transient potential melastatin 2 (TRPM2) cation channel is stimulated by cytROS and mitROS. Hence, the cytROS and mitROS-mediated excessive Ca2+ influxes via the stimulation of TRPM2 channel cause to the induction of DM-mediated retina oxidative cytotoxicity. Because of the antioxidant role of carvacrol (CRV), it may modulate oxidative cytotoxicity via the attenuation of TRPM2 in the ARPE19. We aimed to investigate the modulator action of CRV treatment on the HGu-mediated TRPM2 stimulation, oxidative stress, and apoptosis in the ARPE19 cell model. MATERIAL AND METHODS The ARPE19 cells were divided into four groups as normal glucose (NGu), NGu + Carv, HGu, and HGu + CRV. RESULTS The levels of cell death (propidium iodide/Hoechst rate) and apoptosis markers (caspases 3, 8, and 9), cytokine generations (IL-1β and TNF-α), ROS productions (cytROS, mitROS, and lipid peroxidation), TRPM2 currents, and intracellular free Ca2+ (Fluo/3) were increased in the HGu group after the stimulations of hydrogen peroxide and ADP-ribose, although their levels were diminished via upregulation of glutathione and glutathione peroxidase by the treatments of CRV and TRPM2 blockers. CONCLUSION Current results confirmed that the HGu-induced overload Ca2+ influx and oxidative retinal toxicity in the ARPE19 cells were induced by the stimulation of TRPM2, although they were modulated via the inhibition of TRPM2 by CRV. CRV may be noted as a potential therapeutic antioxidant to the TRPM2 activation-mediated retinal oxidative injury.
Collapse
|
12
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
13
|
TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10081243. [PMID: 34439491 PMCID: PMC8389341 DOI: 10.3390/antiox10081243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.
Collapse
|
14
|
Ding R, Yin YL, Jiang LH. Reactive Oxygen Species-Induced TRPM2-Mediated Ca 2+ Signalling in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10050718. [PMID: 34063677 PMCID: PMC8147627 DOI: 10.3390/antiox10050718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells form the innermost layer of blood vessels with a fundamental role as the physical barrier. While regulation of endothelial cell function by reactive oxygen species (ROS) is critical in physiological processes such as angiogenesis, endothelial function is a major target for interruption by oxidative stress resulting from generation of high levels of ROS in endothelial cells by various pathological factors and also release of ROS by neutrophils. TRPM2 is a ROS-sensitive Ca2+-permeable channel expressed in endothelial cells of various vascular beds. In this review, we provide an overview of the TRPM2 channel and its role in mediating ROS-induced Ca2+ signaling in endothelial cells. We discuss the TRPM2-mediated Ca2+ signaling in vascular endothelial growth factor-induced angiogenesis and in post-ischemic neovascularization. In particular, we examine the accumulative evidence that supports the role of TRPM2-mediated Ca2+ signaling in endothelial cell dysfunction caused by various oxidative stress-inducing factors that are associated with tissue inflammation, obesity and diabetes, as well as air pollution. These findings provide new, mechanistic insights into ROS-mediated regulation of endothelial cells in physiology and diseases.
Collapse
Affiliation(s)
- Ran Ding
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
| | - Ya-Ling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-113-3434-231
| |
Collapse
|
15
|
TRPM2 channel in oxidative stress-induced mitochondrial dysfunction and apoptotic cell death. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:51-72. [PMID: 33931144 DOI: 10.1016/bs.apcsb.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitochondria, conserved intracellular organelles best known as the powerhouse of cells for generating ATP, play an important role in apoptosis. Oxidative stress can induce mitochondrial dysfunction and activate mitochondria-mediated apoptotic cell death. TRPM2 is a Ca2+-permeable cation channel that is activated by pathologically relevant concentrations of reactive oxygen species (ROS) and one of its well-recognized roles is to confer susceptibility to ROS-induced cell death. Increasing evidence from recent studies supports TRPM2 channel-mediated cell death as an important cellular mechanism linking miscellaneous oxidative stress-inducing pathological factors to associated diseased conditions. In this chapter, we will discuss the role of the TRPM2 channel in neurons in the brain and pancreatic β-cells in mediating mitochondrial dysfunction and cell death, focusing mainly on apoptotic cell death, that are induced by pathological stimuli implicated in the pathogenesis of neurodegenerative diseases, ischemic stroke and diabetes.
Collapse
|
16
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
17
|
Structure-Function Relationship of TRPM2: Recent Advances, Contradictions, and Open Questions. Int J Mol Sci 2020; 21:ijms21186481. [PMID: 32899872 PMCID: PMC7555694 DOI: 10.3390/ijms21186481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
When in a particular scientific field, major progress is rapidly reached after a long period of relative stand-still, this is often achieved by the development or exploitation of new techniques and methods. A striking example is the new insights brought into the understanding of the gating mechanism of the transient receptor potential melastatin type 2 cation channel (TRPM2) by cryogenic electron microscopy structure analysis. When conventional methods are complemented by new ones, it is quite natural that established researchers are not fully familiar with the possibilities and limitations of the new method. On the other hand, newcomers may need some assistance in perceiving the previous knowledge in detail; they may not realize that some of their interpretations are at odds with previous results and need refinement. This may in turn trigger further studies with new and promising perspectives, combining the promises of several methodological approaches. With this review, I aim to give a comprehensive overview on functional data of several orthologous of TRPM2 that are nicely explained by structural studies. Moreover, I wish to point out some functional contradictions raised by the structural data. Finally, some open questions and some lines of possible future experimental approaches shall be discussed.
Collapse
|
18
|
Transient receptor potential melastatin 2 channels are overexpressed in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2019; 17:401. [PMID: 31796045 PMCID: PMC6891975 DOI: 10.1186/s12967-019-02155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is hallmarked by a significant reduction in natural killer (NK) cell cytotoxicity, a mechanism tightly regulated by calcium (Ca2+). Interestingly, interleukin-2 (IL-2) increases NK cell cytotoxicity. Transient receptor potential melastatin 2 (TRPM2) ion channels are fundamental for Ca2+ signalling in NK cells. This pilot investigation aimed to characterise TRPM2 and CD38 surface expression in vitro on NK cells in ME/CFS patients. This investigation furthermore examined the pharmaceutical effect of 8-bromoadenosine phosphoribose (8-Br-ADPR) and N6-Benzoyladenosine-3′,5′-cyclic monophosphate (N6-Bnz-cAMP) on TRPM2 and CD38 surface expression and NK cell cytotoxicity between ME/CFS and healthy control (HC) participants. Methods Ten ME/CFS patients (43.45 ± 12.36) and 10 HCs (43 ± 12.27) were age and sex-matched. Isolated NK cells were labelled with fluorescent antibodies to determine baseline and drug-treated TRPM2 and CD38 surface expression on NK cell subsets. Following IL-2 stimulation, NK cell cytotoxicity was measured following 8-Br-ADPR and N6-Bnz-cAMP drug treatments by flow cytometry. Results Baseline TRPM2 and CD38 surface expression was significantly higher on NK cell subsets in ME/CFS patients compared with HCs. Post IL-2 stimulation, TRPM2 and CD38 surface expression solely decreased on the CD56DimCD16+ subset. 8-Br-ADPR treatment significantly reduced TRPM2 surface expression on the CD56BrightCD16Dim/− subset within the ME/CFS group. Baseline cell cytotoxicity was significantly reduced in ME/CFS patients, however no changes were observed post drug treatment in either group. Conclusion Overexpression of TRPM2 on NK cells may function as a compensatory mechanism to alert a dysregulation in Ca2+ homeostasis to enhance NK cell function in ME/CFS, such as NK cell cytotoxicity. As no improvement in NK cell cytotoxicity was observed within the ME/CFS group, an impairment in the TRPM2 ion channel may be present in ME/CFS patients, resulting in alterations in [Ca2+]i mobilisation and influx, which is fundamental in driving NK cell cytotoxicity. Differential expression of TRPM2 between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in ME/CFS.
Collapse
|
19
|
Huang Y, Roth B, Lü W, Du J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. eLife 2019; 8:50175. [PMID: 31513012 PMCID: PMC6759353 DOI: 10.7554/elife.50175] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
TRPM2 is critically involved in diverse physiological processes including core temperature sensing, apoptosis, and immune response. TRPM2’s activation by Ca2+ and ADP ribose (ADPR), an NAD+-metabolite produced under oxidative stress and neurodegenerative conditions, suggests a role in neurological disorders. We provide a central concept between triple-site ligand binding and the channel gating of human TRPM2. We show consecutive structural rearrangements and channel activation of TRPM2 induced by binding of ADPR in two indispensable locations, and the binding of Ca2+ in the transmembrane domain. The 8-Br-cADPR—an antagonist of cADPR—binds only to the MHR1/2 domain and inhibits TRPM2 by stabilizing the channel in an apo-like conformation. We conclude that MHR1/2 acts as a orthostatic ligand-binding site for TRPM2. The NUDT9-H domain binds to a second ADPR to assist channel activation in vertebrates, but not necessary in invertebrates. Our work provides insights into the gating mechanism of human TRPM2 and its pharmacology.
Collapse
Affiliation(s)
- Yihe Huang
- Van Andel Institute, Grand Rapids, United States
| | - Becca Roth
- Van Andel Institute, Grand Rapids, United States
| | - Wei Lü
- Van Andel Institute, Grand Rapids, United States
| | - Juan Du
- Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
20
|
Xia S, Wang L, Fu TM, Wu H. Mechanism of TRPM2 channel gating revealed by cryo-EM. FEBS J 2019; 286:3333-3339. [PMID: 31144442 DOI: 10.1111/febs.14939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that allows Ca2+ influx across the plasma membrane and efflux from lysosomes upon opening. TRPM2 is best known as a biosensor of reactive oxygen species (ROS), which mediates some of the body's responses to oxidative stress. As such, TRPM2 is involved in a plethora of biological processes including immune response, insulin secretion, body temperature control and neuronal cell death, and represents an emerging therapeutic target for many human diseases, from diabetes to inflammatory and neurodegenerative diseases. A direct ligand of TRPM2 is ADP-ribose (ADPR), which accumulates in cells at high levels of ROS, and activates TRPM2 synergistically with intracellular calcium (Ca2+ ). Here, we describe recent cryo-electron microscopy (cryo-EM) structures of TRPM2 and summarize the insights they provided into the gating mechanism of the channel.
Collapse
Affiliation(s)
- Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
21
|
Redox TRPs in diabetes and diabetic complications: Mechanisms and pharmacological modulation. Pharmacol Res 2019; 146:104271. [PMID: 31096011 DOI: 10.1016/j.phrs.2019.104271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels have shown to be involved in a wide variety of physiological functions and pathophysiological conditions. Modulation of TRP channels reported to play a major role in number of disorders starting from central nervous system related disorders to cardiovascular, inflammatory, cancer, gastrointestinal and metabolic diseases. Recently, a subset of TRP ion channels called redox TRPs gained importance on account of their ability to sense the cellular redox environment and respond accordingly to such redox stimuli. Diabetes, the silent epidemic of the world is increasing at an alarming rate in spite of novel therapeutic interventions. Moreover, diabetes and its associated complications are reported to arise due to a change in oxidative status of cell induced by hyperglycemia. Such a change in cellular oxidative status can modulate the activities of various redox TRP channels (TRPA1, TRPC5, TRPMs and TRPV1). Targeting redox TRPs have potential in diabetes and diabetic complications like neuropathy, cardiomyopathy, retinopathy, cystopathy, and encephalopathy. Thus in this review, we have discussed the activities of different redox sensing TRPs in diabetes and diabetic complications and how they can be modulated pharmacologically, so as to consider them a potential novel therapeutic target in treating diabetes and its comorbidity.
Collapse
|
22
|
Balinas C, Cabanas H, Staines D, Marshall-Gradisnik S. Identification and characterisation of transient receptor potential melastatin 2 and CD38 channels on natural killer cells using the novel application of flow cytometry. BMC Immunol 2019; 20:14. [PMID: 31077146 PMCID: PMC6509826 DOI: 10.1186/s12865-019-0293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural Killer (NK) cells are effector lymphocytes of the innate immune system and are subclassed into CD56BrightCD16Dim/- and CD56DimCD16+ NK cells. Intracellular calcium (Ca2+) is fundamental to regulate a number of intracellular signalling pathways and functions in NK cells, which are essential in mediating their natural cytotoxic function. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable non-selective cation channel that possesses a critical role in calcium-dependent cell signalling to maintain cellular homeostasis. TRPM2 and CD38 protein surface expression has yet to be determined on NK cells using flow cytometry. Characterisation of TRPM2 has been previously identified by in vivo models, primarily using methods such as genetic remodification, immunohistochemistry and whole cell electrophysiology. The aim of this study was to develop an in vitro methodology to characterise TRPM2 and CD38 surface expression on NK cell subsets using an antibody that has not been previously applied using flow cytometry. RESULTS At 2 h/1 h, TRPM2 (Fig. 2 A, B, p < 0.05) and TRPM2/CD38 (Fig. 3A, B, p < 0.05) surface expression significantly increased between 1:300 and 1:50 at 2 h/1 h. TRPM2/CD38 surface expression furthermore increased between 1:100 and 1:50 at 2 h/1 h (Fig. 3A, p < 0.05). Interestingly, TRPM2/CD38 surface expression significantly decreased from 1:50 to 1:5 on CD56BrightCD16Dim/- NK cells. These consistent findings highlight that 1:50 is the optimal antibody dilution and threshold to measure TRPM2 and TRPM2/CD38 surface expression on NK subsets. 2 h/1 h was determined as the optimal incubation period to ensure a sufficient timeframe for maximal antibody binding and surface expression. CONCLUSION For the first time, we describe an in vitro methodology to characterise TRPM2 and CD38 surface expression on NK cells in healthy participants. Finally, using an antibody that has not been previously applied in flow cytometry, we determined an antibody concentration and incubation time that is robust, rapid and sensitive for the application of flow cytometry.
Collapse
Affiliation(s)
- Cassandra Balinas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia. .,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia.
| | - Helene Cabanas
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia
| | - Donald Staines
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia
| | - Sonya Marshall-Gradisnik
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, QLD, 4222, Australia
| |
Collapse
|
23
|
An incretin-based tri-agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cell Signal 2018; 51:13-22. [DOI: 10.1016/j.cellsig.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
24
|
Tan CH, McNaughton PA. TRPM2 and warmth sensation. Pflugers Arch 2018; 470:787-798. [PMID: 29552700 PMCID: PMC5942353 DOI: 10.1007/s00424-018-2139-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023]
Abstract
The abilities to detect warmth and heat are critical for the survival of all animals, both in order to be able to identify suitable thermal environments for the many different activities essential for life and to avoid damage caused by extremes of temperature. Several ion channels belonging to the TRP family are activated by non-noxious warmth or by heat and are therefore plausible candidates for thermal detectors, but identifying those that actually regulate warmth and heat detection in intact animals has proven problematic. TRPM2 has recently emerged as a likely candidate for the detector of non-noxious warmth, as it is expressed in sensory neurons, and mice show deficits in the detection of warmth when TRPM2 is genetically deleted. TRPM2 is a chanzyme, containing a thermally activated TRP ion channel domain attached to a C-terminal motif, derived from a mitochondrial ADP ribose pyrophosphatase, that confers on the channel sensitivity to ADP ribose and reactive oxygen species such as hydrogen peroxide. Several open questions remain. Male mammals prefer cooler environments than female, but the molecular basis of this sex difference is unknown. TRPM2 plays a role in regulating body temperature, but are other warmth-detecting mechanisms also involved? TRPM2 is expressed in autonomic neurons, but does it confer a sensory function in addition to the well-known motor functions of autonomic neurons? TRPM2 is thought to play important roles in the immune system, in pain and in insulin secretion, but the mechanisms are unclear. TRPM2 has to date received less attention than many other members of the TRP family but is rapidly assuming importance both in normal physiology and as a key target in disease pathology.
Collapse
Affiliation(s)
- Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
25
|
Zhang H, Liu H, Luo X, Wang Y, Liu Y, Jin H, Liu Z, Yang W, Yu P, Zhang L, Zhang L. Design, synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors. Eur J Med Chem 2018; 152:235-252. [PMID: 29723786 DOI: 10.1016/j.ejmech.2018.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/21/2018] [Indexed: 12/26/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable cationic channel, plays critical roles in insulin release, cytokine production, body temperature regulation and cell death as a reactive oxygen species (ROS) and temperature sensor. However, few TRPM2 inhibitors have been reported, especially TRP-subtype selective inhibitors, which hampers the investigation and validation of TRPM2 as a drug target. To discover novel TRPM2 inhibitors, 3D similarity-based virtual screening method was employed, by which 2,3-dihydroquinazolin-4(1H)-one derivative H1 was identified as a TRPM2 inhibitor. A series of novel 2,3-dihydroquinazolin-4(1H)-one derivatives were subsequently synthesized and characterized. Their inhibitory activities against the TRPM2 channel were evaluated by calcium imaging and electrophysiology approaches. Some of the compounds exhibited significant inhibitory activity, especially D9 which showed an IC50 of 3.7 μM against TRPM2 and did not affect the TRPM8 channel. The summarized structure-activity relationship (SAR) provides valuable insights for further development of specific TRPM2 targeted inhibitors.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Huan Liu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, PR China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yuan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, PR China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| |
Collapse
|
26
|
Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M, Yada T, Tominaga M, Iwasaki Y. Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci 2017; 67:549-560. [PMID: 28656459 PMCID: PMC10717017 DOI: 10.1007/s12576-017-0552-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
To date, 11 thermosensitive transient receptor potential (thermo-TRP) channels have been identified. Recent studies have characterized the mechanism of thermosensing by thermo-TRPs and the physiological role of thermo-TRPs in energy metabolism. In this review, we highlight the role of various thermo-TRPs in energy metabolism and hormone secretion. In the pancreas, TRPM2 and other TRPs regulate insulin secretion. TRPV2 expressed in brown adipocytes contributes to differentiation and/or thermogenesis. Sensory nerves that express TRPV1 promote increased energy expenditure by activating sympathetic nerves and adrenaline secretion. Here, we first show that capsaicin-induced adrenaline secretion is completely impaired in TRPV1 knockout mice. The thermogenic effects of TRPV1 agonists are attributable to brown adipose tissue (BAT) activation in mice and humans. Moreover, TRPA1- and TRPM8-expressing sensory nerves also contribute to potentiation of BAT thermogenesis and energy expenditure in mice. Together, thermo-TRPs are promising targets for combating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Biosciences (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Physiological Sciences, SOKENDAI (The University of Advanced Studies), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, Fukuoka, 814-0193, Japan.
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA, 94143-0669, USA
| | - Tatsuo Watanabe
- Faculty of Future Industry, Happy Science University, 4427-1 Hitotsumatsu-hei, Chosei-mura, Chiba, 299-4325, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, Fukuoka, 814-0193, Japan
| | - Masayuki Saito
- Hokkaido University, Kita18-Nishi9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Biosciences (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The University of Advanced Studies), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| |
Collapse
|
27
|
Ito K, Dezaki K, Yoshida M, Yamada H, Miura R, Rita RS, Ookawara S, Tabei K, Kawakami M, Hara K, Morishita Y, Yada T, Kakei M. Endogenous α2A-Adrenoceptor-Operated Sympathoadrenergic Tones Attenuate Insulin Secretion via cAMP/TRPM2 Signaling. Diabetes 2017; 66:699-709. [PMID: 28028077 DOI: 10.2337/db16-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 11/13/2022]
Abstract
In pancreatic β-cells, pharmacological concentrations of catecholamines, including adrenaline, have been used to inhibit insulin release and explore the multiple mechanisms involved. However, the significance of these signaling pathways for physiological adrenergic functions in β-cells is largely unknown. In the process of glucose-induced insulin secretion, opening of background current through nonselective cation channels (NSCCs) might facilitate membrane depolarization by closure of the ATP-sensitive K+ channels. Here, we examined whether physiological insulinostatic adrenaline action is mediated via the transient receptor potential melastatin 2 (TRPM2) channel, a type of NSCC, in β-cells. Results showed that physiological concentrations of adrenaline strongly suppressed glucose-induced and incretin-potentiated cAMP production and insulin secretion and inhibited NSCCs current and membrane excitability via the α2A-adrenoceptor in wild-type mice; however, insulin secretion was not attenuated in TRPM2-knockout (KO) mice. Administration of yohimbine, an α2-adrenoceptor antagonist, failed to affect glucose tolerance in TRPM2-KO mice, in contrast to an improved glucose tolerance in wild-type mice receiving the antagonist. The current study demonstrated that a physiological concentration of adrenaline attenuates insulin release via coupling of α2A-adrenoceptor to cAMP/TRPM2 signaling, thereby providing a potential therapeutic tool to treat patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kiyonori Ito
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masashi Yoshida
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hodaka Yamada
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Rina Miura
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Rauza Sukma Rita
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Susumu Ookawara
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kaoru Tabei
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Minamiuonuma City Hospital, Niigata, Japan
| | - Masanobu Kawakami
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Kazuo Hara
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masafumi Kakei
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Saitama Citizens Medical Center, Saitama, Japan
| |
Collapse
|
28
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
29
|
Matsumoto K, Takagi K, Kato A, Ishibashi T, Mori Y, Tashima K, Mitsumoto A, Kato S, Horie S. Role of transient receptor potential melastatin 2 (TRPM2) channels in visceral nociception and hypersensitivity. Exp Neurol 2016; 285:41-50. [DOI: 10.1016/j.expneurol.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
30
|
Kakei M, Yoshida M, Dezaki K, Ito K, Yamada H, Funazaki S, Kawakami M, Sugawara H, Yada T. Glucose and GTP-binding protein-coupled receptor cooperatively regulate transient receptor potential-channels to stimulate insulin secretion [Review]. Endocr J 2016; 63:867-876. [PMID: 27321586 DOI: 10.1507/endocrj.ej16-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In pancreatic β-cells, glucose-induced closure of the ATP-sensitive K+ (KATP) channel is an initial process triggering glucose-stimulated insulin secretion (GSIS). This KATP-channel dependent pathway has been believed to be a central mechanism for GSIS. However, since the resting membrane potential of cells is determined by the balance of the net result of current amplitudes in outward and inward directions, it must be taken into consideration that not only KATP channel inhibition but also inward current via the basal opening of non-selective cation channels (NSCCs) plays a crucial role in membrane potential regulation. The basal activity of NSCCs is essential to effectively evoke depolarization in concert with KATP channel closure that is dependent on glucose metabolism. The present study summarizes recent findings regarding the roles of NSCCs in GSIS and GTP-binding protein coupled receptor-(GPCR) operated potentiation of GSIS.
Collapse
Affiliation(s)
- Masafumi Kakei
- Internal Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
TRP Channels as Therapeutic Targets in Diabetes and Obesity. Pharmaceuticals (Basel) 2016; 9:ph9030050. [PMID: 27548188 PMCID: PMC5039503 DOI: 10.3390/ph9030050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP) channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms.
Collapse
|
32
|
Higashida H. Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory. J Physiol Sci 2016; 66:275-82. [PMID: 26586001 PMCID: PMC4893072 DOI: 10.1007/s12576-015-0425-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023]
Abstract
Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca(2+)) concentrations [(Ca(2+)) i ] in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca(2+)] i via Ca(2+) mobilization through ryanodine receptors on intracellular Ca(2+) pools that are sensitive to both Ca(2+) and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca(2+)] i increases by Ca(2+) influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca(2+) signal amplifiers. Thus, OT release is not simply due to depolarization-secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca(2+)] i elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition, Research Center for Child Mental Development, Kanazawa University, Kanazawa, 920-8640, Japan.
- Division of Socio-Cognitive-Neuroscience, Osaka University United Graduate School for Child, The Kanazawa Branchi, Takara-machi 13-1, Kanazawa, 920-8640, Japan.
| |
Collapse
|
33
|
Yamada H, Yoshida M, Ito K, Dezaki K, Yada T, Ishikawa SE, Kakei M. Potentiation of Glucose-stimulated Insulin Secretion by the GPR40-PLC-TRPC Pathway in Pancreatic β-Cells. Sci Rep 2016; 6:25912. [PMID: 27180622 PMCID: PMC4867641 DOI: 10.1038/srep25912] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/25/2016] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are expressed in pancreatic beta-cells. G protein-coupled receptor 40 (GPR40) contributes to medium- or long-chain fatty acid-induced amplification of glucose-stimulated insulin secretion (GSIS), and GPR40 agonists are promising therapeutic targets in type 2 diabetes. Recently, we demonstrated that glucagon-like peptide 1, a ligand of pancreatic GPCR, activates a class of nonselective cation channels (NSCCs) and enhances GSIS. The aim of the current study was to determine whether the GPR40 signal interacts with NSCCs. A GPR40 agonist (fasiglifam) potentiated GSIS at 8.3 and 16.7 mM glucose but not 2.8 mM glucose. The NSCC current was activated by fasiglifam at 5.6 mM glucose with 100 μM tolbutamide (−70 mV), and this activation was prevented by the presence of pyrazole-3 (transient receptor potential canonical; a TRPC3 channel blocker). Inhibitors of phospholipase C or protein kinase C (PKC) inhibited the increases in GSIS and the NSCC current induced by GPR40 stimulation. The present study demonstrates a novel mechanism for the regulation of insulin secretion by GPR40 agonist in pancreatic beta-cells. The stimulation of the GPR40–PLC/PKC–TRPC3 channel pathway potentiates GSIS by the depolarization of the plasma membrane in pancreatic beta-cell.
Collapse
Affiliation(s)
- Hodaka Yamada
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, Amanuma, Omiya 1-847, Saitama 330-8503, Japan
| | - Masashi Yoshida
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, Amanuma, Omiya 1-847, Saitama 330-8503, Japan
| | - Kiyonori Ito
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, Amanuma, Omiya 1-847, Saitama 330-8503, Japan
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - San-E Ishikawa
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, Amanuma, Omiya 1-847, Saitama 330-8503, Japan
| | - Masafumi Kakei
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, Amanuma, Omiya 1-847, Saitama 330-8503, Japan
| |
Collapse
|
34
|
Sözbir E, Nazıroğlu M. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 2016; 31:385-93. [PMID: 26612073 DOI: 10.1007/s11011-015-9769-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
N-acetylcysteine (NAC) is a sulfhydryl donor antioxidant that contributes to the regeneration of glutathione (GSH) and also scavengers via a direct reaction with free oxygen radicals. Recently, we observed a modulatory role of NAC on GSH-depleted dorsal root ganglion (DRG) cells in rats. NAC may have a protective role on oxidative stress and calcium influx through regulation of the TRPM2 channel in diabetic neurons. Therefore, we investigated the effects of NAC on DRG TRPM2 channel currents and brain oxidative stress in streptozotocin (STZ)-induced diabetic rats. Thirty-six rats divided into four groups: control, STZ, NAC and STZ + NAC. Diabetes was induced in the STZ and STZ + NAC groups by intraperitoneal STZ (65 mg/kg) administration. After the induction of diabetes, rats in the NAC and STZ + NAC groups received NAC (150 mg/kg) via gastric gavage. After 2 weeks, DRG neurons and the brain cortex were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM2 currents in the DRG following diabetes induction with STZ were gated by H2O2. TRPM2 channel current densities in the DRG and lipid peroxidation levels in the DRG and brain were higher in the STZ groups than in controls; however, brain GSH, GSH peroxidase (GSH-Px), vitamin C and vitamin E concentrations and DRG GSH-Px activity were decreased by diabetes. STZ + H2O2-induced TRPM2 gating was totally inhibited by NAC and partially inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2-APB). GSH-Px activity and lipid peroxidation levels were also attenuated by NAC treatment. In conclusion, we observed a modulatory role of NAC on oxidative stress and Ca(2+) entry through the TRPM2 channel in the diabetic DRG and brain. Since excessive oxidative stress and overload Ca(2+) entry are common features of neuropathic pain, our findings are relevant to the etiology and treatment of pain neuropathology in DRG neurons.
Collapse
Affiliation(s)
- Ercan Sözbir
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
35
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
36
|
Xiong X, Wang G, Tao R, Wu P, Kono T, Li K, Ding WX, Tong X, Tersey SA, Harris RA, Mirmira RG, Evans-Molina C, Dong XC. Sirtuin 6 regulates glucose-stimulated insulin secretion in mouse pancreatic beta cells. Diabetologia 2016; 59:151-160. [PMID: 26471901 PMCID: PMC4792692 DOI: 10.1007/s00125-015-3778-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Sirtuin 6 (SIRT6) has been implicated in ageing, DNA repair and metabolism; however, its function in pancreatic beta cells is unclear. The aim of this study is to elucidate the role of SIRT6 in pancreatic beta cells. METHODS To investigate the function of SIRT6 in pancreatic beta cells, we performed Sirt6 gene knockdown in MIN6 cells and generated pancreatic- and beta cell-specific Sirt6 knockout mice. Islet morphology and glucose-stimulated insulin secretion (GSIS) were analysed. Glycolysis and oxygen consumption rates in SIRT6-deficient beta cells were measured. Cytosolic calcium was monitored using the Fura-2-AM fluorescent probe (Invitrogen, Grand Island, NY, USA). Mitochondria were analysed by immunoblots and electron microscopy. RESULTS Sirt6 knockdown in MIN6 beta cells led to a significant decrease in GSIS. Pancreatic beta cell Sirt6 knockout mice showed a ~50% decrease in GSIS. The knockout mouse islets had lower ATP levels compared with the wild-type controls. Mitochondrial oxygen consumption rates were significantly decreased in the SIRT6-deficient beta cells. Cytosolic calcium dynamics in response to glucose or potassium chloride were attenuated in the Sirt6 knockout islets. Numbers of damaged mitochondria were increased and mitochondrial complex levels were decreased in the SIRT6-deficient islets. CONCLUSIONS/INTERPRETATION These data suggest that SIRT6 is important for GSIS from pancreatic beta cells and activation of SIRT6 may be useful to improve insulin secretion in diabetes.
Collapse
Affiliation(s)
- Xiwen Xiong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Gaihong Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Rongya Tao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
| | - Pengfei Wu
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xin Tong
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah A Tersey
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Richard Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1021D, Indianapolis, IN, 46202, USA.
| |
Collapse
|
37
|
Kashio M, Tominaga M. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets. J Biol Chem 2015; 290:12435-42. [PMID: 25817999 DOI: 10.1074/jbc.m115.649913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/08/2023] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals.
Collapse
Affiliation(s)
- Makiko Kashio
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan and
| | - Makoto Tominaga
- From the Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki 444-8787, Japan and the Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| |
Collapse
|
38
|
Lee CR, Patel JC, O'Neill B, Rice ME. Inhibitory and excitatory neuromodulation by hydrogen peroxide: translating energetics to information. J Physiol 2015; 593:3431-46. [PMID: 25605547 DOI: 10.1113/jphysiol.2014.273839] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Abstract
Historically, brain neurochemicals have been broadly classified as energetic or informational. However, increasing evidence implicates metabolic substrates and byproducts as signalling agents, which blurs the boundary between energy and information, and suggests the introduction of a new category for 'translational' substances that convey changes in energy state to information. One intriguing example is hydrogen peroxide (H2 O2 ), which is a small, readily diffusible molecule. Produced during mitochondrial respiration, this reactive oxygen species, can mediate dynamic regulation of neuronal activity and transmitter release by activating inhibitory ATP-sensitive K(+) (KATP ) channels, as well as a class of excitatory non-selective cation channels, TRPM2. Studies using ex vivo guinea pig brain slices have revealed that activity-generated H2 O2 can act via KATP channels to inhibit dopamine release in dorsal striatum and dopamine neuron activity in the substantia nigra pars compacta. In sharp contrast, endogenously generated H2 O2 enhances the excitability of GABAergic projection neurons in the dorsal striatum and substantia nigra pars reticulata by activating TRPM2 channels. These studies suggest that the balance of excitation vs. inhibition produced in a given cell by metabolically generated H2 O2 will be dictated by the relative abundance of H2 O2 -sensitive ion channel targets that receive this translational signal.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian O'Neill
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|