1
|
Jeong KH, Zhu J, Park S, Kim WJ. Transient Receptor Potential Vanilloid 6 Modulates Aberrant Axonal Sprouting in a Mouse Model of Pilocarpine-Induced Epilepsy. Mol Neurobiol 2024; 61:2839-2853. [PMID: 37940780 DOI: 10.1007/s12035-023-03748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Transient receptor potential vanilloid 6 (TRPV6) is a highly selective calcium-ion channel that belongs to the TRPV family. TRPV6 is widely distributed in the brain, but its role in neurological diseases such as epilepsy remains unknown. Here, we report for the first time that TRPV6 expression is upregulated in the hippocampus of a pilocarpine-induced status epilepticus model, mainly in the suprapyramidal bundle of the mossy fiber (MF) projection of the hippocampal CA3 regions. We found that TRPV6 overexpression via viral vector transduction attenuated abnormal MF sprouting (MFS), whereas TRPV6 knockdown aggravated the development of MFS and the incidence of recurrent seizures during epileptogenic progression. In the in vitro experiments, our results showed that modulation of TRPV6 expression resulted in a change in axonal formation in cultured hippocampal neurons. In addition, we found that TRPV6 was implicated in the regulation of Akt-glycogen synthase kinase-3-β activity, which is closely related to the cellular mechanism of axonal outgrowth. Therefore, these findings suggest that TRPV6 may regulate the formation of aberrant synaptic circuits during epileptogenesis.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jing Zhu
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soojin Park
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Tan YT, Wang MJ, Li L, Huang JF, Wang SC. Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration. Front Aging Neurosci 2024; 16:1390324. [PMID: 38586827 PMCID: PMC10995293 DOI: 10.3389/fnagi.2024.1390324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism. Although several studies have shown that PTEN is involved in the development and degenerative processes of the nervous system, there is still a lack of in-depth studies that summarize and analyse patterns of cooperation between authors, institutions, countries, and journals, as well as research hotspots and trends in this important field. To identify and further visualize the cooperation and comprehend the development and trends of PTEN in the nervous system, especially in neural development and neurological diseases, we used a bibliometric analysis to identify relevant publications on this topic. We first found that the number of publications displayed a growing trend with time, but this was not stable. Universities, institutions, and authors from the United States are leading in this area of research. In addition, many cutting-edge research results have been discovered, such as key regulatory molecules and cellular mechanisms of PTEN in the nervous system, which may provide novel intervention targets and precise therapeutic strategies for related pathological injuries and diseases. Finally, the literature published within the last 5 years is discussed to identify future research trends regarding PTEN in the nervous system. Taken together, our findings, analysed using bibliometrics, may reflect research hotspots and trends, providing a reference for studying PTEN in the nervous system, especially in neural development and neurological diseases. These findings can assist new researchers in developing their research interests and gaining basic information. Moreover, our findings also may provide precise clinical guidelines and strategies for treating nervous system injuries and diseases caused by PTEN dysfunction.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ya-ting Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Xu Z, Angstmann CN, Wu Y, Stefen H, Parić E, Fath T, Curmi PM. Location of the axon initial segment assembly can be predicted from neuronal shape. iScience 2024; 27:109264. [PMID: 38450155 PMCID: PMC10915628 DOI: 10.1016/j.isci.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.
Collapse
Affiliation(s)
- Zhuang Xu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher N. Angstmann
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Esmeralda Parić
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M.G. Curmi
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Mora-Zenil J, Morán J. ROS produced by NOX promote the neurite growth in a PI3K/Akt independent manner. J Neurosci Res 2024; 102:e25259. [PMID: 37840360 DOI: 10.1002/jnr.25259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/17/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Reactive oxygen species (ROS) function as signaling molecules in several physiologic and pathologic processes. In central nervous system, ROS are critical for differentiation, migration, polarization, and neurite growth. These actions are mediated by reversible oxidation of target proteins. On the other hand, PI3K/Akt signaling pathway is susceptible to be modulated by ROS and it has been implicated in neurite growth. In this study, we evaluated the participation of ROS in the neurite growth of cultured rat cerebellar granule neurons (CGN), as well as the possible regulation of the PI3K/Akt pathway by ROS during neurite outgrowth. For this purpose, CGN were treated with cellular or mitochondrial antioxidants, or an NOX inhibitor and neurite growth was evaluated. Moreover, to assess the participation Akt in this process, the p-Akt levels were measured in CGN treated with antioxidants or a NOX inhibitor. The effect of antioxidants on the neurite growth in the presence of a PI3K inhibitor was also measured. We found that cellular antioxidants and the NOX inhibitor decreased the neurite growth, but not the mitochondrial antioxidant. Interestingly, the antioxidants increased the p-Akt levels; however, the effect of antioxidants on neurite growth was no dependent on the Akt activity since the inhibitor of PI3K did not modify the antioxidant action on neurite growth. Our results show that the PI3K/Akt pathway participates in neurite growth and that ROS produced by NOX could function as signals in this process; however, this action is not mediated by a redox regulation of Akt activity.
Collapse
Affiliation(s)
- Janeth Mora-Zenil
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
6
|
Ueda Y, Sugimoto N, Ozawa T. Increased spine PIP3 is sequestered from dendritic shafts. Mol Brain 2022; 15:59. [PMID: 35787719 PMCID: PMC9254409 DOI: 10.1186/s13041-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is a lipid second messenger that is crucial for the synaptic plasticity underlying learning and memory in pyramidal neurons in the brain. Our previous study uncovered PIP3 enrichment in the dendritic spines of hippocampal pyramidal neurons in the static state using a fluorescence lifetime-based PIP3 probe. However, the extent to which PIP3 enrichment is preserved in different states has not been fully investigated. Here, we revealed that PIP3 accumulation in dendritic spines is strictly controlled even in an active state in which PIP3 is increased by glutamate stimulation and high potassium-induced membrane depolarization. Time-course PIP3 analysis clarified the gradual PIP3 accumulation in dendritic spines over days during neuronal development. Collectively, these results deepen our understanding of PIP3 dynamics in dendritic spines, and the dysregulation of the PIP3 gradient between dendritic spines and shafts could cause neuronal diseases and mental disorders, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
8
|
Wei J, Su W, Zhao Y, Wei Z, Hua Y, Xue P, Zhu X, Chen Y, Chen G. Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury. J Neuroinflammation 2022; 19:32. [PMID: 35109876 PMCID: PMC8809034 DOI: 10.1186/s12974-022-02405-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a public health concern that results in sensory and motor disorders as well as neuropathic pain and secondary lesions. Currently, effective treatments for PNI are still limited. For example, while nerve growth factor (NGF) is widely used in the treatment of PNI to promote nerve regeneration, it also induces pain. Maresin 1 (MaR1) is an anti-inflammatory and proresolving mediator that has the potential to regenerate tissue. We determined whether MaR1 is able to promote nerve regeneration as well as alleviating neuropathic pain, and to be considered as a putative therapeutic agent for treating PNI. Methods PNI models were constructed with 8-week-old adult male ICR mice and treated with NGF, MaR1 or saline by local application, intrathecal injection or intraplantar injection. Behavioral analysis and muscle atrophy test were assessed after treatment. Immunofluorescence assay was performed to examine the expression of ATF-3, GFAP, IBA1, and NF200. The expression transcript levels of inflammatory factors IL1β, IL-6, and TNF-α were detected by quantitative real-time RT-PCR. AKT, ERK, mTOR, PI3K, phosphorylated AKT, phosphorylated ERK, phosphorylated mTOR, and phosphorylated PI3K levels were examined by western blot analysis. Whole-cell patch-clamp recordings were executed to detect transient receptor potential vanilloid 1 (TRPV1) currents. Results MaR1 demonstrated a more robust ability to promote sensory and motor function recovery in mice after sciatic nerve crush injury than NGF. Immunohistochemistry analyses showed that the administration of MaR1 to mice with nerve crush injury reduced the number of damaged DRG neurons, promoted injured nerve regeneration and inhibited gastrocnemius muscle atrophy. Western blot analysis of ND7/23 cells cultured with MaR1 or DRG neurons collected from MaR1 treated mice revealed that MaR1 regulated neurite outgrowth through the PI3K–AKT–mTOR signaling pathway. Moreover, MaR1 dose-dependently attenuated the mechanical allodynia and thermal hyperalgesia induced by nerve injury. Consistent with the analgesic effect, MaR1 inhibited capsaicin-elicited TRPV1 currents, repressed the nerve injury-induced activation of spinal microglia and astrocytes and reduced the production of proinflammatory cytokines in the spinal cord dorsal horn in PNI mice. Conclusions Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic pain, suggesting that MaR1 is a promising therapeutic agent for PNI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02405-1.
Collapse
Affiliation(s)
- Jinhuan Wei
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuchen Hua
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peng Xue
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Chen
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China. .,Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
9
|
Chen H, Zhou C, Zheng J, Zhang Z, Deng Y, Cheng C, Guo Z, Huo G, Yin C, Sun X. PTEN and AKT/GSK-3β/CRMP-2 signaling pathway are involved in neuronal apoptosis and axonal injury in early brain injury after SAH in rats. Genes Dis 2022; 9:252-267. [PMID: 35005122 PMCID: PMC8720672 DOI: 10.1016/j.gendis.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022] Open
Abstract
In early brain injury (EBI) after subarachnoid hemorrhage (SAH), white matter (WM) axonal injury plays a key role in the prognosis of the disease. The purpose of this study was to investigate the effects of phosphatase and tensin homolog deleted on chromosome ten (PTEN) on axonal injury and neuronal apoptosis post-SAH in rats and to find its underlying mechanism. Adeno-associated virus was injected into the lateral ventricle to suppress or promote PTEN. Neural function post-SAH in animals was determined by the modified Garcia score, beam balance, and Rotarod test, and the blood–brain barrier disruption was assessed by the brain water content. Axonal injury post-SAH was observed by TEM and determined by IF, and neuron apoptosis was measured by TUNEL staining. The mechanism was analyzed by Western blot to detect p-PTEN/PTEN, p-AKT/AKT, p-GSK-3β/GSK-3β, p-CRMP-2/CRMP-2, axonal injury marker β-APP and pro- and anti-apoptosis proteins, including Bax and Bcl-2, expression. We found 1. After knocking down PTEN, neuronal apoptosis and axonal injury were alleviated, and nerve function and blood–brain barrier were protected; accordingly, after overexpression of PTEN, neuronal apoptosis and axon damage were aggravated, and nerve function damage and blood–brain barrier damage were increased. 2. PTEN and AKT/GSK-3β/CRMP-2 pathway were jointly involved in regulating neuronal apoptosis and WM axon injury after SAH. According to our research, PTEN was a negative factor of EBI, and together with the AKT/GSK-3β/CRMP-2 signaling pathway aggravates neuronal apoptosis and WM axon damage after SAH. Inhibition of PTEN expression may become a new target for SAH treatment.
Collapse
Affiliation(s)
- Hong Chen
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Zhou
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jianfeng Zheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaosi Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yongbing Deng
- Department of Neurosurgery of the Chongqing Emergency Medical Center, Chongqing 400014, PR China
| | - Chongjie Cheng
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zongduo Guo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Gang Huo
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Xiaochuan Sun
- Department of Neurosurgery of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| |
Collapse
|
10
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
11
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
12
|
Szczurkowska J, Lee SI, Guo A, Cwetsch AW, Khan T, Rao S, Walz G, Huber TB, Cancedda L, Pautot S, Shelly M. A Localized Scaffold for cGMP Increase Is Required for Apical Dendrite Development. Cell Rep 2021; 31:107519. [PMID: 32294442 PMCID: PMC7293895 DOI: 10.1016/j.celrep.2020.03.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 10/26/2022] Open
Abstract
Studies in cultured neurons have established that axon specification instructs neuronal polarization and is necessary for dendrite development. However, dendrite formation in vivo occurs when axon formation is prevented. The mechanisms promoting dendrite development remain elusive. We find that apical dendrite development is directed by a localized cyclic guanosine monophosphate (cGMP)-synthesizing complex. We show that the scaffolding protein Scribble associates with cGMP-synthesizing enzymes soluble-guanylate-cyclase (sGC) and neuronal nitric oxide synthase (nNOS). The Scribble scaffold is preferentially localized to and mediates cGMP increase in dendrites. These events are regulated by kinesin KifC2. Knockdown of Scribble, sGC-β1, or KifC2 or disrupting their associations prevents cGMP increase in dendrites and causes severe defects in apical dendrite development. Local cGMP elevation or sGC expression rescues the effects of Scribble knockdown on dendrite development, indicating that Scribble is an upstream regulator of cGMP. During neuronal polarization, dendrite development is directed by the Scribble scaffold that might link extracellular cues to localized cGMP increase.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Seong-Il Lee
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Alan Guo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Università degli Studi di Genova, Genova, Italy
| | - Tanvir Khan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Sneha Rao
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Gerd Walz
- Department of Medicine IV, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, Genova, Italy; Dulbecco Telethon Institute, Italy
| | | | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
13
|
Ferreira APA, Casamento A, Carrillo Roas S, Halff EF, Panambalana J, Subramaniam S, Schützenhofer K, Chan Wah Hak L, McGourty K, Thalassinos K, Kittler JT, Martinvalet D, Boucrot E. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat Commun 2021; 12:2424. [PMID: 33893293 PMCID: PMC8065113 DOI: 10.1038/s41467-021-22603-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Fast Endophilin-mediated endocytosis, FEME, is not constitutively active but triggered upon receptor activation. High levels of growth factors induce spontaneous FEME, which can be suppressed upon serum starvation. This suggested a role for protein kinases in this growth factor receptor-mediated regulation. Using chemical and genetic inhibition, we find that Cdk5 and GSK3β are negative regulators of FEME. They antagonize the binding of Endophilin to Dynamin-1 and to CRMP4, a Plexin A1 adaptor. This control is required for proper axon elongation, branching and growth cone formation in hippocampal neurons. The kinases also block the recruitment of Dynein onto FEME carriers by Bin1. As GSK3β binds to Endophilin, it imposes a local regulation of FEME. Thus, Cdk5 and GSK3β are key regulators of FEME, licensing cells for rapid uptake by the pathway only when their activity is low.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sara Carrillo Roas
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Els F Halff
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Panambalana
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Shaan Subramaniam
- Institute of Structural and Molecular Biology, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Kira Schützenhofer
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laura Chan Wah Hak
- Institute of Structural and Molecular Biology, University College London, London, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Kieran McGourty
- Institute of Structural and Molecular Biology, University College London, London, UK
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Josef T Kittler
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | | | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
14
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
15
|
Sayas CL, Ávila J. GSK-3 and Tau: A Key Duet in Alzheimer's Disease. Cells 2021; 10:721. [PMID: 33804962 PMCID: PMC8063930 DOI: 10.3390/cells10040721] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase with a plethora of substrates. As a modulator of several cellular processes, GSK-3 has a central position in cell metabolism and signaling, with important roles both in physiological and pathological conditions. GSK-3 has been associated with a number of human disorders, such as neurodegenerative diseases including Alzheimer's disease (AD). GSK-3 contributes to the hyperphosphorylation of tau protein, the main component of neurofibrillary tangles (NFTs), one of the hallmarks of AD. GSK-3 is further involved in the regulation of different neuronal processes that are dysregulated during AD pathogenesis, such as the generation of amyloid-β (Aβ) peptide or Aβ-induced cell death, axonal transport, cholinergic function, and adult neurogenesis or synaptic function. In this review, we will summarize recent data about GSK-3 involvement in these processes contributing to AD pathology, mostly focusing on the crucial interplay between GSK-3 and tau protein. We further discuss the current development of potential AD therapies targeting GSK-3 or GSK-3-phosphorylated tau.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
16
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
17
|
In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1. Proc Natl Acad Sci U S A 2021; 118:2010054118. [PMID: 33443153 PMCID: PMC7817218 DOI: 10.1073/pnas.2010054118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
Collapse
|
18
|
Zuo Y, Sun H, Song L, Hu Y, Guo F. LncRNA FTX Involves in the Nogo-66-Induced Inhibition of Neurite Outgrowth Through Regulating PDK1/PKB/GSK-3β Pathway. Cell Mol Neurobiol 2020; 40:1143-1153. [PMID: 32107749 PMCID: PMC11449032 DOI: 10.1007/s10571-020-00803-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 10/24/2022]
Abstract
Nogo-66 can inhibit neurite outgrowth, while its regulation mechanisms have not been fully elucidated. Recent studies prove that lncRNAs are involved in neurite outgrowth. This study was aimed to investigate whether lncRNA FTX was involved in Nogo-66-induced inhibition of neurite outgrowth and explore the potential mechanism. The expression of relative genes was detected by qRT-PCR and western blot. The function of FTX was determined by overexpression and knockdown techniques. The interaction between FTX and PDK1 was evaluated by RIP and RNA pull-down assays. FTX expression was downregulated by Nogo-66 in PC12 cells. Nogo-66-induced inhibition of neurite outgrowth was relieved by FTX overexpression. FTX bound to PDK1 protein to disturb the interaction between PDK1 and E3 ubiquitin ligase RNF126, thereby blocked the ubiquitination degradation of PDK1 and elevated PDK1 protein level. Mechanically, FTX involved in the Nogo-66-induced inhibition of neurite outgrowth through the PDK1/PKB/GSK-3β pathway. In SCI rats, FTX knockdown inhibited neurite outgrowth induced by the receptor antagonist of Nogo-66. The present results suggested that FTX took part in Nogo-66-inhibited neurite outgrowth, and FTX exerted its function through regulating PDK1/PKB/GSK-3β pathway.
Collapse
Affiliation(s)
- Yuchao Zuo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Rd, Zhengzhou, 450052, Henan, China.
| | - Hongwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Rd, Zhengzhou, 450052, Henan, China
| | - Laijun Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Rd, Zhengzhou, 450052, Henan, China
| | - Yan Hu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Rd, Zhengzhou, 450052, Henan, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Rd, Zhengzhou, 450052, Henan, China
| |
Collapse
|
19
|
Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2020; 10:brainsci10100675. [PMID: 32993098 PMCID: PMC7600609 DOI: 10.3390/brainsci10100675] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease characterized by progressive motor neuron degeneration. Although several studies on genes involved in ALS have substantially expanded and improved our understanding of ALS pathogenesis, the exact molecular mechanisms underlying this disease remain poorly understood. Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine-protein kinase that plays a critical role in the regulation of various cellular signaling pathways. Dysregulation of GSK3β activity in neuronal cells has been implicated in the pathogenesis of neurodegenerative diseases. Previous research indicates that GSK3β inactivation plays a neuroprotective role in ALS pathogenesis. GSK3β activity shows an increase in various ALS models and patients. Furthermore, GSK3β inhibition can suppress the defective phenotypes caused by SOD, TDP-43, and FUS expression in various models. This review focuses on the most recent studies related to the therapeutic effect of GSK3β in ALS and provides an overview of how the dysfunction of GSK3β activity contributes to ALS pathogenesis.
Collapse
|
20
|
Liu F, Tian N, Zhang HQ, Li SH, Zhou QZ, Yang Y, Zheng J, Wang JZ. GSK-3β activation accelerates early-stage consumption of Hippocampal Neurogenesis in senescent mice. Theranostics 2020; 10:9674-9685. [PMID: 32863953 PMCID: PMC7449917 DOI: 10.7150/thno.43829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) deficits contribute to the progression of cognitive impairments during accelerated senescence, with the mechanistic causes poorly understood. Glycogen synthase kinase-3β (GSK-3β) is a critical regulator in prenatal neurodevelopment. The present study aims to study whether and how GSK-3β regulates AHN during the accelerated senescence. Methods: AHN and AHN-dependent cognition and GSK-3β were evaluated in 3- and 6-month senescence-accelerated mice prone 8 (SAM-P8) and senescence resistant 1 (SAM-R1) mice, respectively. GSK-3β was selectively overexpressed in wild-type mice using adeno-associated virus, or knocked-out by crossbreeding with GSK-3β floxed mice in the neural stem cells (NSCs) of Nestin-Cre mice, or pharmacologically inhibited with SB216763 in SAM-P8 mice. AHN was evaluated by BrdU-, DCX-staining and retrovirus-labeling. Results: AHN transiently increased at 3-month, but dramatically dropped at 6-month of age in SAM-P8 mice with a simultaneous activation of GSK-3β at 3-month. Selective overexpression of GSK-3β in hippocampal NSCs of wildtype mice induced long-term AHN deficits due to an accelerated depletion of NSC pool, although it transiently increased the proliferation and survival of the newborn neurons. Pharmacologically inhibiting GSK-3β by SB216763 efficiently preserved AHN and improved contextual memory in 6-month SAM-P8 mice, while conditional knock-out of GSK-3β in NSCs impaired AHN. Conclusion: Early-stage activation of GSK-3β in NSCs impairs AHN by accelerating the depletion of NSC pool, and pharmacological inhibition of GSK-3β is efficient to preserve AHN during the accelerated aging. These results reveal novel mechanisms underlying the AHN impairments during accelerated senescence and provide new targets for pro-neurogenic therapies for related diseases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Human Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Na Tian
- Department of Histology and Embryology, Key Laboratory of Ministry of Education of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua-Qiu Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zheng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| |
Collapse
|
21
|
Ito A, Wang T, Nakahara R, Kawai H, Nishitani K, Aoyama T, Kuroki H. Ultrasound therapy with optimal intensity facilitates peripheral nerve regeneration in rats through suppression of pro-inflammatory and nerve growth inhibitor gene expression. PLoS One 2020; 15:e0234691. [PMID: 32555658 PMCID: PMC7299378 DOI: 10.1371/journal.pone.0234691] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic ultrasound (US) is a promising physical therapy modality for peripheral nerve regeneration. However, it is necessary to identify the most effective US parameters and clarify the underlying mechanisms before its clinical application. The intensity of US is one of the most important parameters. However, the optimum intensity for the promotion of peripheral nerve regeneration has yet to be determined. Objectives To identify the optimum intensity of US necessary for the promotion of peripheral nerve regeneration after crush injuries in rats and to clarify the underlying mechanisms of US by mRNA expression analysis. Methods We inflicted sciatic nerve crush injuries on adult Lewis rats and performed ultrasound irradiation using 4 different US intensities: 0 (sham stimulation), 30, 140, and 250 mW/cm2 with frequency (5 days/week) and duration (5 min/day). We evaluated peripheral nerve regeneration by quantitative real-time PCR one week after injury. Histomorphometric analyses and motor function analysis were evaluated 3 weeks after injury. Results US stimulation enhanced re-myelination as well as sprouting of axons, especially at an intensity of 140 mW/cm2. mRNA expression revealed that US suppressed the expression of the inflammatory cytokines TNF and IL-6 and the axonal growth inhibitors SEMA3A and GSK3β. Conclusions An intensity of 140 mW/cm2 was optimal to support regeneration of the sciatic nerve after a crush injury in rats by, in part, the suppression of pro-inflammatory and nerve growth inhibitor gene expression.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Wang L, Zhou Y, Chen D, Lee TH. Peptidyl-Prolyl Cis/Trans Isomerase Pin1 and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:355. [PMID: 32500074 PMCID: PMC7243138 DOI: 10.3389/fcell.2020.00355] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia with cognitive decline. The neuropathology of AD is characterized by intracellular aggregation of neurofibrillary tangles consisting of hyperphosphorylated tau and extracellular deposition of senile plaques composed of beta-amyloid peptides derived from amyloid precursor protein (APP). The peptidyl-prolyl cis/trans isomerase Pin1 binds to phosphorylated serine or threonine residues preceding proline and regulates the biological functions of its substrates. Although Pin1 is tightly regulated under physiological conditions, Pin1 deregulation in the brain contributes to the development of neurodegenerative diseases, including AD. In this review, we discuss the expression and regulatory mechanisms of Pin1 in AD. We also focus on the molecular mechanisms by which Pin1 controls two major proteins, tau and APP, after phosphorylation and their signaling cascades. Moreover, the major impact of Pin1 deregulation on the progression of AD in animal models is discussed. This information will lead to a better understanding of Pin1 signaling pathways in the brain and may provide therapeutic options for the treatment of AD.
Collapse
Affiliation(s)
- Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Zhou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Provincial Universities and Colleges, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Astrocyte-Derived Small Extracellular Vesicles Regulate Dendritic Complexity through miR-26a-5p Activity. Cells 2020; 9:cells9040930. [PMID: 32290095 PMCID: PMC7226994 DOI: 10.3390/cells9040930] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, it has been established that astrocytes play key roles in the regulation of neuronal morphology. However, the contribution of astrocyte-derived small extracellular vesicles (sEVs) to morphological differentiation of neurons has only recently been addressed. Here, we showed that cultured astrocytes expressing a GFP-tagged version of the stress-regulated astrocytic enzyme Aldolase C (Aldo C-GFP) release small extracellular vesicles (sEVs) that are transferred into cultured hippocampal neurons. Surprisingly, Aldo C-GFP-containing sEVs (Aldo C-GFP sEVs) displayed an exacerbated capacity to reduce the dendritic complexity in developing hippocampal neurons compared to sEVs derived from control (i.e., GFP-expressing) astrocytes. Using bioinformatics and biochemical tools, we found that the total content of overexpressed Aldo C-GFP correlates with an increased content of endogenous miRNA-26a-5p in both total astrocyte homogenates and sEVs. Notably, neurons magnetofected with a nucleotide sequence that mimics endogenous miRNA-26a-5p (mimic 26a-5p) not only decreased the levels of neuronal proteins associated to morphogenesis regulation, but also reproduced morphological changes induced by Aldo-C-GFP sEVs. Furthermore, neurons magnetofected with a sequence targeting miRNA-26a-5p (antago 26a-5p) were largely resistant to Aldo C-GFP sEVs. Our results support a novel and complex level of astrocyte-to-neuron communication mediated by astrocyte-derived sEVs and the activity of their miRNA content.
Collapse
|
24
|
Lucci C, Mesquita-Ribeiro R, Rathbone A, Dajas-Bailador F. Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development 2020; 147:dev.180232. [PMID: 31964775 PMCID: PMC7033742 DOI: 10.1242/dev.180232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Both the establishment of neuronal polarity and axonal growth are crucial steps in the development of the nervous system. The local translation of mRNAs in the axon provides precise regulation of protein expression, and is now known to participate in axon development, pathfinding and synaptic formation and function. We have investigated the role of miR-26a in early stage mouse primary cortical neuron development. We show that micro-RNA-26a-5p (miR-26a) is highly expressed in neuronal cultures, and regulates both neuronal polarity and axon growth. Using compartmentalised microfluidic neuronal cultures, we identified a local role for miR-26a in the axon, where the repression of local synthesis of GSK3β controls axon development and growth. Removal of this repression in the axon triggers local translation of GSK3β protein and subsequent transport to the soma, where it can impact axonal growth. These results demonstrate how the axonal miR-26a can regulate local protein translation in the axon to facilitate retrograde communication to the soma and amplify neuronal responses, in a mechanism that influences axon development. Highlighted Article: Axonal miR-26a can regulate GSK3β translation in the axon to promote retrograde communication to the soma in a mechanism that modulates axon development.
Collapse
Affiliation(s)
- Cristiano Lucci
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Raquel Mesquita-Ribeiro
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Alex Rathbone
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, NG7 2UH Nottingham, UK
| |
Collapse
|
25
|
PKCγ promotes axonal remodeling in the cortico-spinal tract via GSK3β/β-catenin signaling after traumatic brain injury. Sci Rep 2019; 9:17078. [PMID: 31745212 PMCID: PMC6863826 DOI: 10.1038/s41598-019-53225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability. Enhancing the midline-crossing of the contralateral corticospinal tract (CST) to the denervated side of spinal cord facilitates functional recovery after TBI. Activation of the gamma isoform of PKC (PKCγ) in contralateral CST implicates its roles in promoting CST remodeling after TBI. In this study, we deployed loss and gain of function strategies in N2a cells and primary cortical neurons in vitro, and demonstrated that PKCγ is not only important but necessary for neuronal differentiation, neurite outgrowth and axonal branching but not for axonal extension. Mechanically, through the phosphorylation of GSK3β, PKCγ stabilizes the expression of cytosolic β-catenin and increase GAP43 expression, thus promoting axonal outgrowth. Further, rAAV2/9-mediated delivery of constitutive PKCγ in the corticospinal tract after unilateral TBI in vivo additionally showed that specifically delivery of active PKCγ mutant to cortical neuron promotes midline crossing of corticospinal fibers from the uninjured side to the denervated cervical spinal cord. This PKCγ-mediated injury response promoted sensorimotor functional recovery. In conclusion, PKCγ mediates stability of β-catenin through the phosphorylation of GSK3β to facilitate neuronal differentiation, neurite outgrowth and axonal branching, and PKCγ maybe a novel therapeutic target for physiological and functional recovery after TBI.
Collapse
|
26
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
27
|
Wang W, Halasz E, Townes-Anderson E. Actin Dynamics, Regulated by RhoA-LIMK-Cofilin Signaling, Mediates Rod Photoreceptor Axonal Retraction After Retinal Injury. Invest Ophthalmol Vis Sci 2019; 60:2274-2285. [PMID: 31112612 PMCID: PMC6530517 DOI: 10.1167/iovs.18-26077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose Retraction of the axon terminals of rod photoreceptors after retinal detachment breaks the first synapse in the visual pathway, resulting in visual impairment. Previous work showed that the mechanism of axonal retraction involves RhoA signaling and its downstream effector LIM Kinase (LIMK) activation. We examined the response of the downstream component cofilin, a direct binding protein of actin filaments, as well as the regulation by RhoA-LIMK-Cofilin signaling of actin assembly/disassembly, in the presynaptic ribbon terminal of injured rod cells. Methods Injury was produced by retinal detachment or rod cell isolation. Detached porcine retina was probed for levels and localization of phosphorylated cofilin with Western blots and confocal microscopy, whereas rod cell cultures of dissociated salamander retina were examined for filamentous actin assembly/disassembly with a barbed end assay and phalloidin staining. Results A detachment increased phosphorylation of cofilin in retinal explants; phosphorylation occurred in rod terminals in sections of detached retina. Isolation of rod cells resulted in axon retraction accompanied by an increase in actin barbed ends and a decrease in net filament labeling. All changes were significantly reduced by either Rho kinase (ROCK) or LIMK inhibition, using Y27632 or BMS-5, respectively. Cytochalasin D also reduced retraction and stabilized filaments in isolated rod cells. Conclusions These results indicate that actin depolymerization via activation of RhoA downstream kinases and cofilin contributes to axon retraction. Preventing depolymerization, in addition to actomyosin contraction, may stabilize ribbon synapses after trauma.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Eva Halasz
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States
| |
Collapse
|
28
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
29
|
Liu S, Jia J, Zhou H, Zhang C, Liu L, Liu J, Lu L, Li X, Kang Y, Lou Y, Cai Z, Ren Y, Kong X, Feng S. PTEN modulates neurites outgrowth and neuron apoptosis involving the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2019; 20:4059-4066. [PMID: 31702028 PMCID: PMC6797942 DOI: 10.3892/mmr.2019.10670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of the PTEN/Akt/mTOR signaling pathway in the neurite outgrowth and apoptosis of cortical neurons. Cortical neurons were seeded on or adjacent to chondroitin sulfate proteoglycans. The length, number and crossing behavior of the neurites were calculated. Immunohistochemical staining and TUNEL data were analyzed. Neurites treated with PTEN inhibitor exhibited significant enhancements in elongation, initiation and crossing abilities when they encountered chondroitin sulfate proteoglycans in vitro. These effects disappeared when the PTEN/Akt/mTOR signaling pathway was blocked. Neurons exhibited significant enhancements in survival ability following PTEN inhibition. The present study demonstrated that PTEN inhibition can promote axonal elongation and initiation in cerebral cortical neurons, as well as the ability to cross the chondroitin sulfate proteoglycan border. In addition, PTEN inhibition is useful for protecting the neuron from apoptosis. The PTEN/Akt/mTOR signaling pathway is an important signaling pathway.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Jia
- Department of Trauma Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Kang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhiwei Cai
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yiming Ren
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Li S, You M, Chai W, Xu Y, Wang Y. Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitro. Arch Toxicol 2019; 93:2673-2687. [PMID: 31456014 DOI: 10.1007/s00204-019-02536-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Increasing evidence indicates that developmental exposure to nonylphenol (NP) causes damage to the central nervous system (CNS). As the most unique and primary component of neuron, axon is an essential structure for the CNS function. Here, we investigated whether developmental exposure to NP affected rat axonal development in vivo and in vitro. Our results showed that developmental exposure to NP 10, 50, and 100 mg/(kg day) caused an obvious decrease in axonal length and density in the hippocampus. Developmental exposure to NP also altered the expression of CRMP-2 and p-CRMP-2, and activated Wnt-Dvl-GSK-3β cascade in the hippocampus, the crucial signaling that regulates axonal development. Even months after the exposure, impairment of axonal growth and alteration of this cascade were not fully restored. In the primary cultured neurons, 30, 50, and 70 μM NP treatment decreased axonal length and impaired axonal function. Similar to in vivo results, it also activated Wnt-Dvl-GSK-3β cascade in cultured neurons. SB-216763, a specific GSK-3β inhibitor, recovered the shortening of axon and the impairment of axonal function induced by NP. Taken together, our results support the idea that exposure to NP induces axonal injury in the developing neurons. Furthermore, the activation of Wnt-Dvl-GSK-3β cascade contributes to the axonal injury induced by NP.
Collapse
Affiliation(s)
- Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Wenjie Chai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
31
|
Wang Y, Jiang HF, Ni J, Guo L. Pharmacological stimulation of sigma-1 receptor promotes activation of astrocyte via ERK1/2 and GSK3β signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:801-812. [PMID: 30798370 DOI: 10.1007/s00210-019-01632-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
Astrocyte is considered to be a type of passive supportive cells that preserves neuronal activity and survival. The dysfunction of astrocytes is involved in the pathological processes of major depression. Recent studies implicate sigma-1 receptors as putative therapeutic targets for current available antidepressant drugs. However, it is absent of direct evidences whether sigma-1 receptor could promote activation of astrocyte. In the present study, we took advantage of primary astrocyte culture and a highly selective agonist of sigma-1 receptor, (+)SKF-10047 to determine the effect of sigma-1 receptor on Brdu (bromodeoxyuridine) labeling positive cells, migration as well as GFAP (glial fibrillary acidic protein) expression of astrocyte. The results showed that (+)SKF-10047 notably increased the number of Brdu labeling positive cells, migration, and the expression of GFAP in primary astrocytes, which were blocked by antagonist of sigma-1 receptor. Moreover, we also found that (+)SKF-10047 increased the phosphorylation of ERK1/2 (extracellular signal-regulated kinases 1/2) and GSK3β (glycogen synthase kinase 3β) (ser 9) in the primary astrocytes. In addition, pharmacological inhibition of ERK1/2 and GSK3β (ser 9) abolished sigma-1 receptor-promoted activation of astrocyte. Therefore, sigma-1 receptor could be considerate as a new pattern for modulating astrocytic function might emerge as therapeutic strategies.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hua-Feng Jiang
- Department of Pharmacy, Huzhou Maternity and Child Health Care Hospital, Zhejiang, China
| | - Jing Ni
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Pharmacology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
32
|
Duthie A, van Aalten L, MacDonald C, McNeilly A, Gallagher J, Geddes J, Lovestone S, Sutherland C. Recruitment, Retainment, and Biomarkers of Response; A Pilot Trial of Lithium in Humans With Mild Cognitive Impairment. Front Mol Neurosci 2019; 12:163. [PMID: 31316348 PMCID: PMC6610581 DOI: 10.3389/fnmol.2019.00163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
Lithium has been used for decades to treat Bipolar Disorder. Some of its therapeutic benefits may be through inhibition of Glycogen Synthase Kinase (GSK)-3. Enhanced GSK3 activity associates with development of Alzheimer’s disease (AD), therefore lithium is a currently used therapeutic with potential to be repurposed for prevention of Dementia. An important step toward a clinical trial for AD prevention using lithium is to establish the dose of lithium that blocks GSK3 in Mild Cognitive Impairment (MCI), a high-risk condition for progression to AD. We investigated volunteer recruitment, retention, and tolerance in this population, and assessed biomarkers of GSK3 in MCI compared to control and after lithium treatment. Recruitment was close to target, with higher than anticipated interest. Drop out was not related to lithium blood concentration. Indeed, 33% of the withdrawals were in the first week of very low dose lithium. Most made it through to the highest dose of lithium with no adverse events. We analyzed 18 potential biomarkers of GSK3 biology in rat PBMCs, but only four of these gave a robust reproducible baseline signal. The only biomarker that was modified by acute lithium injection in the rat was the inhibitory phosphorylation of Ser9 of GSK3beta (enhanced in PBMCs) and this associated with reduced activity of GSK3beta. In contrast to the rat PBMC preparations the protein quality of the human PBMC preparations was extremely variable. There was no difference between GSK3 biomarkers in MCI and control PBMC preparations and no significant effect of chronic lithium on the robust GSK3 biomarkers, indicating that the dose reached may not be sufficient to modify these markers. In summary, the high interest from the MCI population, and the lack of any adverse events, suggest that it would be relatively straightforward and safe to recruit to a larger clinical trial within this dosing regimen. However, it is clear that we will need an improved PBMC isolation process along with more robust, sensitive, and validated biomarkers of GSK3 function, in order to use GSK3 pathway regulation in human PBMC preparations as a biomarker of GSK3 inhibitor efficacy, within a clinical trial setting.
Collapse
Affiliation(s)
- Ashleigh Duthie
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Lidy van Aalten
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Cara MacDonald
- Ninewells Hospital and Medical School, NHS Tayside, Dundee, United Kingdom
| | - Alison McNeilly
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - Jennifer Gallagher
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| | - John Geddes
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Calum Sutherland
- Division of Cellular Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
GSK-3 β at the Intersection of Neuronal Plasticity and Neurodegeneration. Neural Plast 2019; 2019:4209475. [PMID: 31191636 PMCID: PMC6525914 DOI: 10.1155/2019/4209475] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
In neurons, Glycogen Synthase Kinase-3β (GSK-3β) has been shown to regulate various critical processes underlying structural and functional synaptic plasticity. Mouse models with neuron-selective expression or deletion of GSK-3β present behavioral and cognitive abnormalities, positioning this protein kinase as a key signaling molecule in normal brain functioning. Furthermore, mouse models with defective GSK-3β activity display distinct structural and behavioral abnormalities, which model some aspects of different neurological and neuropsychiatric disorders. Equalizing GSK-3β activity in these mouse models by genetic or pharmacological interventions is able to rescue some of these abnormalities. Thus, GSK-3β is a relevant therapeutic target for the treatment of many brain disorders. Here, we provide an overview of how GSK-3β is regulated in physiological synaptic plasticity and how aberrant GSK-3β activity contributes to the development of dysfunctional synaptic plasticity in neuropsychiatric and neurodegenerative disorders.
Collapse
|
34
|
Takano T, Funahashi Y, Kaibuchi K. Neuronal Polarity: Positive and Negative Feedback Signals. Front Cell Dev Biol 2019; 7:69. [PMID: 31069225 PMCID: PMC6491837 DOI: 10.3389/fcell.2019.00069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Establishment and maintenance of neuronal polarity are critical for neuronal development and function. One of the fundamental questions in neurodevelopment is how neurons generate only one axon and several dendrites from multiple minor neurites. Over the past few decades, molecular and cell biological approaches have unveiled a large number of signaling networks regulating neuronal polarity in cultured hippocampal neurons and the developing cortex. Emerging evidence reveals that positive and negative feedback signals play a crucial role in axon and dendrite specification. Positive feedback signals are continuously activated in one of minor neurites and result in axon specification and elongation, whereas negative feedback signals are propagated from a nascent axon terminal to all minor neurites and inhibit the formation of multiple axon, thereby leading to dendrite specification, and maintaining neuronal polarity. This current insight provides a holistic picture of the signaling mechanisms underlying neuronal polarization during neuronal development. Here, our review highlights recent advancements in this fascinating field, with a focus on the positive, and negative feedback signals as key regulatory mechanisms underlying neuronal polarization.
Collapse
Affiliation(s)
- Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cell Biology, Duke University Medical School, Durham, NC, United States
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Kato Y, Yokoyama U, Fujita T, Umemura M, Kubota T, Ishikawa Y. Epac1 deficiency inhibits basic fibroblast growth factor-mediated vascular smooth muscle cell migration. J Physiol Sci 2019; 69:175-184. [PMID: 30084082 PMCID: PMC11117070 DOI: 10.1007/s12576-018-0631-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/24/2018] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cell (VSMC) migration and the subsequent intimal thickening play roles in vascular restenosis. We previously reported that an exchange protein activated by cAMP 1 (Epac1) promotes platelet-derived growth factor (PDGF)-induced VSMC migration and intimal thickening. Because basic fibroblast growth factor (bFGF) also plays a pivotal role in restenosis, we examined whether Epac1 was involved in bFGF-mediated VSMC migration. bFGF-induced lamellipodia formation and migration were significantly decreased in VSMCs obtained from Epac1-/- mice compared to those in Epac1+/+-VSMCs. The bFGF-induced phosphorylation of Akt and glycogen synthase kinase 3β (GSK3β), which play a role in bFGF-induced cell migration, was attenuated in Epac1-/--VSMCs. Intimal thickening induced by the insertion of a large wire was attenuated in Epac1-/- mice, and was accompanied by the decreased phosphorylation of GSK3β. These data suggest that Epac1 deficiency attenuates bFGF-induced VSMC migration, possibly via Akt/GSK3β pathways.
Collapse
Affiliation(s)
- Yuko Kato
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Immunopathology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Tetsuo Kubota
- Department of Immunopathology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
37
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
38
|
Lactate transport facilitates neurite outgrowth. Biosci Rep 2018; 38:BSR20180157. [PMID: 30143583 PMCID: PMC6167502 DOI: 10.1042/bsr20180157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
How glia affect neurite outgrowth during neural development has not been well elucidated. In the present study, we found that disruption of lactate production using 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and isofagomine significantly interfered with neurite outgrowth and that exogenous application of L-lactate rescued neurite growth failure. Monocarboxylate transporter-2-knockout, which blocked the lactate shuttle in neurons, showed a remarkable decrease in the length of axons and dendrites. We further demonstrated that Akt activity was decreased while glycogen synthase kinase 3β (GSK3β) activity was increased after astrocytic glycogen phosphorylase blockade. Additionally, GSK3βSer9 mutation reversed neurite growth failure caused by DAB and isofagomine. Our results suggested that lactate transportation played a critical role in neural development and disruption of the lactate shuttle in quiescent condition also affected neurite outgrowth in the central nervous system.
Collapse
|
39
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
40
|
Pletto D, Capra S, Finardi A, Colciaghi F, Nobili P, Battaglia GS, Locatelli D, Cagnoli C. Axon outgrowth and neuronal differentiation defects after a-SMN and FL-SMN silencing in primary hippocampal cultures. PLoS One 2018; 13:e0199105. [PMID: 29902268 PMCID: PMC6001960 DOI: 10.1371/journal.pone.0199105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.
Collapse
Affiliation(s)
- Daniela Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Paola Nobili
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Cinzia Cagnoli
- Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII—Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
41
|
Zhang YM, Zimmer MA, Guardia T, Callahan SJ, Mondal C, Di Martino J, Takagi T, Fennell M, Garippa R, Campbell NR, Bravo-Cordero JJ, White RM. Distant Insulin Signaling Regulates Vertebrate Pigmentation through the Sheddase Bace2. Dev Cell 2018; 45:580-594.e7. [PMID: 29804876 PMCID: PMC5991976 DOI: 10.1016/j.devcel.2018.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 11/15/2022]
Abstract
Patterning of vertebrate melanophores is essential for mate selection and protection from UV-induced damage. Patterning can be influenced by circulating long-range factors, such as hormones, but it is unclear how their activity is controlled in recipient cells to prevent excesses in cell number and migration. The zebrafish wanderlust mutant harbors a mutation in the sheddase bace2 and exhibits hyperdendritic and hyperproliferative melanophores that localize to aberrant sites. We performed a chemical screen to identify suppressors of the wanderlust phenotype and found that inhibition of insulin/PI3Kγ/mTOR signaling rescues the defect. In normal physiology, Bace2 cleaves the insulin receptor, whereas its loss results in hyperactive insulin/PI3K/mTOR signaling. Insulin B, an isoform enriched in the head, drives the melanophore defect. These results suggest that insulin signaling is negatively regulated by melanophore-specific expression of a sheddase, highlighting how long-distance factors can be regulated in a cell-type-specific manner.
Collapse
Affiliation(s)
- Yan M Zhang
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Milena A Zimmer
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Talia Guardia
- University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Scott J Callahan
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA; Memorial Sloan Kettering Cancer Center, Gerstner Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julie Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Toshimitsu Takagi
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Myles Fennell
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Ralph Garippa
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & Genetics, New York, NY 10065, USA.
| |
Collapse
|
42
|
Kath C, Goni-Oliver P, Müller R, Schultz C, Haucke V, Eickholt B, Schmoranzer J. PTEN suppresses axon outgrowth by down-regulating the level of detyrosinated microtubules. PLoS One 2018; 13:e0193257. [PMID: 29617365 PMCID: PMC5884485 DOI: 10.1371/journal.pone.0193257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022] Open
Abstract
Inhibition of the phospholipid phosphatase and tumor suppressor PTEN leads to excessive polarized cell growth during directed cell migration and neurite outgrowth. These processes require the precise regulation of both the actin and microtubule cytoskeleton. While PTEN is known to regulate actin dynamics through phospholipid modulation, whether and how PTEN regulates microtubule dynamics is unknown. Here, we show that depletion of PTEN leads to elevated levels of stable and post-translationally modified (detyrosinated) microtubules in fibroblasts and developing neurons. Further, PTEN depletion enhanced axon outgrowth, which was rescued by reducing the level of detyrosinated microtubules. These data demonstrate a novel role of PTEN in regulating the microtubule cytoskeleton. They further show a novel function of detyrosinated microtubules in axon outgrowth. Specifically, PTEN suppresses axon outgrowth by down-regulating the level of detyrosinated microtubules. Our results suggest that PTEN's role in preventing excessive cell growth in cancerous and neurodevelopmental phenotypes is partially exerted by stabilization and detyrosination of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Christina Kath
- Charité –Universtiätsmedizin, Virchowweg 6, Berlin, Germany
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Strasse 10, Berlin, Germany
| | | | - Rainer Müller
- European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, Germany
| | - Volker Haucke
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Strasse 10, Berlin, Germany
| | | | - Jan Schmoranzer
- Charité –Universtiätsmedizin, Virchowweg 6, Berlin, Germany
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle-Strasse 10, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Jin EJ, Ko HR, Hwang I, Kim BS, Choi JY, Park KW, Cho SW, Ahn JY. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation. Sci Rep 2018; 8:2557. [PMID: 29416050 PMCID: PMC5803261 DOI: 10.1038/s41598-018-20755-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Neurite growth is controlled by a complex molecular signaling network that regulates filamentous actin (F-actin) dynamics at the growth cone. The evolutionarily conserved ezrin, radixin, and moesin family of proteins tether F-actin to the cell membrane when phosphorylated at a conserved threonine residue and modulate neurite outgrowth. Here we show that Akt binds to and phosphorylates a threonine 573 residue on radixin. Akt-mediated phosphorylation protects radixin from ubiquitin-dependent proteasomal degradation, thereby enhancing radixin protein stability, which permits proper neurite outgrowth and growth cone formation. Conversely, the inhibition of Akt kinase or disruption of Akt-dependent phosphorylation reduces the binding affinity of radixin to F-actin as well as lowers radixin protein levels, resulting in decreased neurite outgrowth and growth cone formation. Our findings suggest that Akt signaling regulates neurite outgrowth by stabilizing radixin interactions with F-actin, thus facilitating local F-actin dynamics.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Jeong-Yun Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Samsung Medical Center, Seoul, 06351, Korea.
| |
Collapse
|
44
|
Kim S, Lim J, Bang Y, Moon J, Kwon MS, Hong JT, Jeon J, Seo H, Choi HJ. Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway. Mol Neurobiol 2018; 55:1607-1619. [PMID: 28190238 DOI: 10.1007/s12035-016-0370-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022]
Abstract
Alpha-synuclein (α-SYN) is expressed during neuronal development and is mainly involved in the modulation of synaptic transmission. Missense mutations and amplifications of this gene have been associated with the pathogenesis of Parkinson's disease. Here, we evaluate whether α-SYN plays a detrimental role in the phenotypic and morphological regulation of neurons. We also identify the underlying mechanisms of this process in all-trans-retinoic acid (RA)-induced differentiated SH-SY5Y cells, which represents dopaminergic (DAergic) phenotype. Our results indicate that overexpression of wild-type or mutant A53T α-SYN attenuated the RA-induced upregulation of tyrosine hydroxylase and dopamine transporter as well as neurite outgrowth in SH-SY5Y cells. In addition, GSK-3β inactivation and downstream β-catenin stabilization were associated with RA-induced differentiation, which was attenuated by α-SYN. Moreover, protein phosphatase 2A was positively regulated by α-SYN and was implicated in the α-SYN-mediated interference with RA signaling. The results obtained from SH-SY5Y cells were verified in primary cultures of mesencephalic DAergic neurons from A53T α-SYN transgenic mice, which represent high levels of α-SYN and protein phosphatase 2A in the midbrain. The number and length of neurites in tyrosine hydroxylase-positive as well as Tau-positive cells from A53T α-SYN transgenic mice were significantly lower than those in littermate controls. The current results provide novel insight into the role of α-SYN in the regulation of neuronal differentiation, including DAergic neurons. Identifying the signaling pathway involved in the α-SYN-mediated dysregulation of neuronal differentiation could lead to a better understanding of the developmental processes underlying α-SYN-related pathologies and facilitate the discovery of specifically targeted therapeutics.
Collapse
Affiliation(s)
- Sasuk Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Jisook Moon
- Department of Bioengineering, College of Life Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeha Jeon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
45
|
Guo Y, Liu Z, Chen YK, Chai Z, Zhou C, Zhang Y. Neurons with Multiple Axons Have Functional Axon Initial Segments. Neurosci Bull 2017; 33:641-652. [PMID: 28828584 DOI: 10.1007/s12264-017-0169-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/11/2017] [Indexed: 12/30/2022] Open
Abstract
Neurons grow multiple axons after treatment with glycogen synthase kinase-3 (GSK-3) inhibitors. However, whether they are electrically active is not known. Here, we examined the role of multiple axons as electrophysiological components during neuronal firing. Combining pharmacological, immunofluorescence, and electrophysiological methods, we found that more neurons had multiple axon initial segments (AISs) after inhibition of GSK-3 activity with SB415286. The multiple AISs induced by GSK-3 inhibition were enriched with voltage-gated sodium channels. The depolarization rate of the multiple-AIS neurons was increased, but their action potential threshold and half-width were normal. By calculating derivatives of the action-potential rising phase, an extra d2 V/dt 2 peak from the extra AIS was distinguished; this indicated that the extra AIS fired ahead of the soma and increased the rate of depolarization. Our study demonstrates that the multiple axons induced by GSK-3 inhibition have AIS structures that are electrically active, and provides insight for axon and AIS studies.
Collapse
Affiliation(s)
- Yu Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Zhuo Liu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.,Department of Forensic Science, People's Public Security University of China, Beijing, 100038, China
| | - Yi-Kun Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Zhen Chai
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Chen Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
46
|
Yang K, Yu B, Cheng C, Cheng T, Yuan B, Li K, Xiao J, Qiu Z, Zhou Y. Mir505-3p regulates axonal development via inhibiting the autophagy pathway by targeting Atg12. Autophagy 2017; 13:1679-1696. [PMID: 28820282 DOI: 10.1080/15548627.2017.1353841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In addition to the canonical role in protein homeostasis, autophagy has recently been found to be involved in axonal dystrophy and neurodegeneration. Whether autophagy may also be involved in neural development remains largely unclear. Here we report that Mir505-3p is a crucial regulator for axonal elongation and branching in vitro and in vivo, through modulating autophagy in neurons. We identify that the key target gene of Mir505-3p in neurons is Atg12, encoding ATG12 (autophagy-related 12) which is an essential component of the autophagy machinery during the initiation and expansion steps of autophagosome formation. Importantly, axonal development is compromised in brains of mir505 knockout mice, in which autophagy signaling and formation of autophagosomes are consistently enhanced. These results define Mir505-3p-ATG12 as a vital signaling cascade for axonal development via the autophagy pathway, further suggesting the critical role of autophagy in neural development.
Collapse
Affiliation(s)
- Kan Yang
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China.,b Department of Environmental Science and Engineering, College of Environmental Science & Engineering , Donghua University , Shanghai , China.,c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Bin Yu
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Cheng Cheng
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Tianlin Cheng
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Bo Yuan
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Kai Li
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China
| | - Junhua Xiao
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China.,b Department of Environmental Science and Engineering, College of Environmental Science & Engineering , Donghua University , Shanghai , China
| | - Zilong Qiu
- c Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China
| | - Yuxun Zhou
- a Department of Biological Engineering, College of Chemistry, Chemical Engineering & Biotechnology , Donghua University , Shanghai , China
| |
Collapse
|
47
|
Liu E, Xie AJ, Zhou Q, Li M, Zhang S, Li S, Wang W, Wang X, Wang Q, Wang JZ. GSK-3β deletion in dentate gyrus excitatory neuron impairs synaptic plasticity and memory. Sci Rep 2017; 7:5781. [PMID: 28720858 PMCID: PMC5515925 DOI: 10.1038/s41598-017-06173-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence suggests that glycogen synthase kinase-3β (GSK-3β) plays a crucial role in neurodegenerative/psychiatric disorders, while pan-neural knockout of GSK-3β also shows detrimental effects. Currently, the function of GSK-3β in specific type of neurons is elusive. Here, we infused AAV-CaMKII-Cre-2A-eGFP into GSK-3βlox/lox mice to selectively delete the kinase in excitatory neurons of hippocampal dentate gyrus (DG), and studied the effects on cognitive/psychiatric behaviors and the molecular mechanisms. We found that mice with GSK-3β deletion in DG excitatory neurons displayed spatial and fear memory defects with an anti-anxiety behavior. Further studies demonstrated that GSK-3β deletion in DG subset inhibited hippocampal synaptic transmission and reduced levels of GluN1, GluN2A and GluN2B (NMDAR subunits), GluA1 (AMPAR subunit), PSD93 and drebrin (postsynaptic structural proteins), and synaptophysin (presynaptic protein). GSK-3β deletion also suppressed the activity-dependent neural activation and calcium/calmodulin-dependent protein kinase II (CaMKII)/CaMKIV-cAMP response element binding protein (CREB) signaling. Our data suggest that GSK-3β in hippocampal DG excitatory neurons is essential for maintaining synaptic plasticity and memory.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ao-Ji Xie
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Mengzhu Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shujuan Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Weijin Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China. .,Co-innovation Center of Neuroregeneration, Nantong, 226000, PR China.
| |
Collapse
|
48
|
Kumamoto K, Iguchi T, Ishida R, Uemura T, Sato M, Hirotsune S. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning. Biol Open 2017. [PMID: 28630356 PMCID: PMC5550919 DOI: 10.1242/bio.025999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits. Summary: Developmental downregulation of LIS1 coordinates the balance between axonal elongation and pruning, which is essential for proper neuronal circuit formation but limits nerve regeneration.
Collapse
Affiliation(s)
- Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
49
|
Hansen AH, Duellberg C, Mieck C, Loose M, Hippenmeyer S. Cell Polarity in Cerebral Cortex Development-Cellular Architecture Shaped by Biochemical Networks. Front Cell Neurosci 2017; 11:176. [PMID: 28701923 PMCID: PMC5487411 DOI: 10.3389/fncel.2017.00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 11/15/2022] Open
Abstract
The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review article we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | | - Christine Mieck
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | |
Collapse
|
50
|
AKT/PKB Signaling: Navigating the Network. Cell 2017; 169:381-405. [PMID: 28431241 DOI: 10.1016/j.cell.2017.04.001] [Citation(s) in RCA: 2600] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Collapse
|