1
|
Cheng LS, Charng CC, Chen RH, Feng KL, Chiang AS, Lo CC, Lee TK. Hybrid neural networks in the mushroom body drive olfactory preference in Drosophila. SCIENCE ADVANCES 2025; 11:eadq9893. [PMID: 40446049 PMCID: PMC12124391 DOI: 10.1126/sciadv.adq9893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
In Drosophila melanogaster, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture-an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network's augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.
Collapse
Affiliation(s)
- Li-Shan Cheng
- Department of Physics, National Tsing Hua University, Hsinchu 300043, Taiwan
| | - Ching-Che Charng
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Huang Chen
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ann-Shyn Chiang
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093-0526, USA
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Kuo Lee
- Department of Physics, National Tsing Hua University, Hsinchu 300043, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. EMBO Rep 2025:10.1038/s44319-025-00476-8. [PMID: 40389758 DOI: 10.1038/s44319-025-00476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~50 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available information is limited by the incomplete data and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional, and evolutionary studies to generate an integrated dataset and associated visualizations of these sensory neuron pathways, creating an unprecedented resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. Such examples emphasize the power of this resource to promote further understanding of the construction, function, and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jérôme Mermet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Keita Endo
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Paddock KJ, Corcoran JA. Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore. G3 (BETHESDA, MD.) 2025; 15:jkaf041. [PMID: 39999386 PMCID: PMC12060231 DOI: 10.1093/g3journal/jkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Insects rely on the translation of environmental chemical cues into behaviors necessary for survival and reproduction. Specific chemosensory receptors belonging to the odorant and gustatory receptor groups detect odorant and gustatory cues, respectively, making them crucial to these processes. How odorant (OR) and gustatory (GR) receptor expression profiles change in combination with changing life strategies is not well understood. Using genomic and transcriptomic resources, we annotated the OR and GR expression profiles across all life stages of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, a major pest of corn in the United States and Europe. Genomic analyses identified 193 ORs and 189 GRs, of which 125 and 116 were found to be expressed, respectively, in one or more WCR life stages. WCR larvae are subterranean and feed on roots before emerging as adults aboveground. Expression profile analyses revealed first instar larvae possess a unique OR and GR repertoire distinct from other instars and adults, suggesting a role in host plant finding. Similarly, a subset of ORs and GRs differed in their expression levels between adult male and female antennae. By comparing the phylogenetic relationship of ORs and GRs, we identified several receptors with potentially important roles in WCR foraging and reproductive behavior. Together, this study provides support for future investigations into the ecology and evolution of chemoreception in insects.
Collapse
Affiliation(s)
- Kyle J Paddock
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Jacob A Corcoran
- United States Department of Agriculture, Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| |
Collapse
|
4
|
Persyn E, Duyck PF, François MC, Mille C, Jacob V, Jacquin-Joly E. Transcriptomic analyses in thirteen Tephritidae species provide insights into the ecological driving force behind odorant receptor evolution. Mol Phylogenet Evol 2025; 206:108322. [PMID: 40049262 DOI: 10.1016/j.ympev.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
The insect olfactory system has evolved while guiding species to specific mating partners, different food sources, and oviposition sites. How species repertoires of odorant receptors (ORs), responsible for the detection of volatile cues, have been shaped by ecologically driven forces remains poorly understood. Due to several host switches back and forth throughout their evolutionary history, fruit flies of the Tephritidae family (Diptera) show highly diverse host preferences, making them good models to address this question. For instance, a comparative analysis of genomic and transcriptomic resources on a large variety of fruit fly species could provide statistical conclusions. Here, we used a RNAseq approach to identify the OR repertoires of thirteen Tephritidae species with different host ranges, namely Bactrocera curvipennis, Bactrocera dorsalis, Bactrocera psidii, Bactrocera tryoni, Bactrocera umbrosa, Bactrocera zonata, Ceratitis capitata, Ceratitis catoirii, Ceratitis quilicii, Dacus ciliatus, Dacus demmerezi, Neoceratitis cyanescens, and Zeugodacus cucurbitae. Manual curation allowed us to annotate 60-80 OR transcripts per species, including the obligatory coreceptor Orco. In total, we reported 698 new OR sequences. Differential expression analyses between antennae and maxillary palps and between the two sexes, performed in three species, revealed some organ- and sex-biased OR expression. Moreover, after adjusting for phylogenetic distance, we found significant correlations between some characteristics of the OR repertoire and species host range: sequences and relative expression level of several ORs were more conserved in polyphagous than in oligophagous species and, in addition, other ORs were found specifically in polyphagous species. Our results provide molecular insights into the ecological driving forces behind Tephritidae OR evolution.
Collapse
Affiliation(s)
- Emma Persyn
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France; INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Pierre-François Duyck
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia; CIRAD, UMR PVBMT, F-98488 Nouméa, New Caledonia
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Christian Mille
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia
| | - Vincent Jacob
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
5
|
Manoim-Wolkovitz JE, Camchy T, Rozenfeld E, Chang HH, Lerner H, Chou YH, Darshan R, Parnas M. Nonlinear high-activity neuronal excitation enhances odor discrimination. Curr Biol 2025; 35:1521-1538.e5. [PMID: 40107267 PMCID: PMC11974548 DOI: 10.1016/j.cub.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Discrimination between different signals is crucial for animals' survival. Inhibition that suppresses weak neural activity is crucial for pattern decorrelation. Our understanding of alternative mechanics that allow efficient signal classification remains incomplete. We show that Drosophila olfactory receptor neurons (ORNs) have numerous intraglomerular axo-axonal connections mediated by the G protein-coupled receptor (GPCR), muscarinic type B receptor (mAChR-B). Contrary to its usual inhibitory role, mAChR-B participates in ORN excitation. The excitatory effect of mAChR-B only occurs at high ORN firing rates. A computational model demonstrates that nonlinear intraglomerular or global excitation decorrelates the activity patterns of ORNs of different types and improves odor classification and discrimination, while acting in concert with the previously known inhibition. Indeed, knocking down mAChR-B led to increased correlation in odor-induced ORN activity, which was associated with impaired odor discrimination, as shown in behavioral experiments. Furthermore, knockdown (KD) of mAChR-B and the GABAergic GPCR, GABAB-R, has an additive behavioral effect, causing reduced odor discrimination relative to single-KD flies. Together, this study unravels a novel mechanism for neuronal pattern decorrelation, which is based on nonlinear intraglomerular excitation.
Collapse
Affiliation(s)
- Julia E Manoim-Wolkovitz
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Camchy
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hao-Hsin Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 114201, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hadas Lerner
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ya-Hui Chou
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 114201, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Ran Darshan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Keesey IW, Doll G, Chakraborty SD, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson BS. Neuroecology of alcohol risk and reward: Methanol boosts pheromones and courtship success in Drosophila melanogaster. SCIENCE ADVANCES 2025; 11:eadi9683. [PMID: 40173238 PMCID: PMC11963984 DOI: 10.1126/sciadv.adi9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Attraction of Drosophila melanogaster toward by-products of alcoholic fermentation, especially ethanol, has been extensively studied. Previous research has provided several interpretations of this attraction, including potential drug abuse, or a self-medicating coping strategy after mate rejection. We posit that the ecologically adaptive value of alcohol attraction has not been fully explored. Here, we assert a simple yet vital biological rationale for this alcohol preference. Flies display attraction to fruits rich in alcohol, specifically ethanol and methanol, where contact results in a rapid amplification of fatty acid-derived pheromones that enhance courtship success. We also identify olfactory sensory neurons that detect these alcohols, where we reveal roles in both attraction and aversion, and show that valence is balanced around alcohol concentration. Moreover, we demonstrate that methanol can be deadly, and adult flies must therefore accurately weigh the trade-off between benefits and costs for exposure within their naturally fermented and alcohol-rich environments.
Collapse
Affiliation(s)
- Ian W. Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Georg Doll
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sudeshna Das Chakraborty
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- European Neuroscience Institute (ENI), Neural Computation and Behavior, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Amelie Baschwitz
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Marion Lemoine
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
7
|
Meier CJ, Nguyen MN, Potter CJ. Making scents of mosquito repellents. Trends Parasitol 2025; 41:280-289. [PMID: 40068978 PMCID: PMC11968242 DOI: 10.1016/j.pt.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/05/2025]
Abstract
Mosquitoes transmit deadly diseases. Chemical repellents deter mosquitoes from approaching or biting a human host and are an effective behavior-based method of personal protection. However, the current standards for selecting repellents often disregard their mode of action. This has likely led many potential repellents to be overlooked. Here, we discuss the sensory systems that underlie host-seeking behavior and how such behaviors are interrupted by repellents. We explore the behavioral assays used to identify repellents and how these have led a handful of contact repellents (DEET, picaridin, IR3535) to dominate the field. Finally, we consider how the development of spatial repellents may further protect against mosquito-borne diseases.
Collapse
Affiliation(s)
- Cole J Meier
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minh N Nguyen
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Chi H, Wan J, Melin AD, DeCasien AR, Wang S, Zhang Y, Cui Y, Guo X, Zhao L, Williamson J, Zhang T, Li Q, Zhan Y, Li N, Guo J, Xu Z, Hou W, Cao Y, Yuan J, Zheng J, Shao Y, Wang J, Chen W, Song S, Lu X, Qi X, Zhang G, Rossiter SJ, Wu DD, Liu Y, Lu H, Li G. Genomic and phenotypic evidence support visual and olfactory shifts in primate evolution. Nat Ecol Evol 2025; 9:721-733. [PMID: 40021902 DOI: 10.1038/s41559-025-02651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Sensory trade-offs between vision and olfaction in the evolution and radiation of primates have long been debated. However, insights have been limited by a lack of sensory gene sequences and accompanying functional predictions. Here we conduct large-scale functional analyses of visual and olfactory receptors and related brain regions across extant primates. Our results reveal a visual shift from ultraviolet to violet colour sensitivity in early haplorrhine primates, followed by acceleration in the rhodopsin retinal release rates at the origin of anthropoids, both of which are expected to greatly enhance visual acuity under brighter light conditions. Additionally, we find that the sensitivity of olfactory receptors shifted from narrowly to broadly tuned early in anthropoid evolution. In contrast, strepsirrhines appear to have retained sensitive dim-light vision and underwent functional enhancement of narrowly tuned olfactory receptors. Our models indicate that this would have enhanced odorant discrimination and facilitated olfaction-mediated physiology and behaviour. These differences in tuning patterns of olfactory receptors between major primate lineages mirror well-established morphological differences in external anatomy and brain structures, revealing new mechanisms of olfactory adaptation and evolutionary plasticity. Our multisystem analyses reveal patterns of co-evolution in genomic, molecular and neuroanatomical traits that are consistent with a sensory 'reallocation' rather than strict trade-offs.
Collapse
Affiliation(s)
- Hai Chi
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahui Wan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alex R DeCasien
- Computational and Evolutionary Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yudan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yimeng Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Joseph Williamson
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qian Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yue Zhan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Na Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinqu Guo
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenhui Hou
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yumin Cao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiangmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong Shao
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shengjing Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoli Lu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaoguang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- BGI-Shenzhen, Shenzhen, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China.
| |
Collapse
|
9
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
10
|
Ellison L, Raiser G, Garrido-Peña A, Kemenes G, Nowotny T. SSSort 2.0: A semi-automated spike detection and sorting system for single sensillum recordings. J Neurosci Methods 2025; 415:110351. [PMID: 39709073 DOI: 10.1016/j.jneumeth.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Single-sensillum recordings are a valuable tool for sensory research which, by their nature, access extra-cellular signals typically reflecting the combined activity of several co-housed sensory neurons. However, isolating the contribution of an individual neuron through spike-sorting has remained a major challenge due to firing rate-dependent changes in spike shape and the overlap of co-occurring spikes from several neurons. These challenges have so far made it close to impossible to investigate the responses to more complex, mixed odour stimuli. NEW METHOD Here we present SSSort 2.0, a method and software addressing both problems through automated and semi-automated signal processing. We have also developed a method for more objective validation of spike sorting methods based on generating surrogate ground truth data and we have tested the practical effectiveness of our software in a user study. RESULTS We find that SSSort 2.0 typically matches or exceeds the performance of expert manual spike sorting. We further demonstrate that, for novices, accuracy is much better with SSSort 2.0 under most conditions. CONCLUSION Overall, we have demonstrated that spike-sorting with SSSort 2.0 software can automate data processing of SSRs with accuracy levels comparable to, or above, expert manual performance.
Collapse
Affiliation(s)
- Lydia Ellison
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | | | - Alicia Garrido-Peña
- Dpto. Ingenieria Informatica, Escuela Politecnica Superior, Universidad Autonoma de Madrid, Madrid, 28049, Spain.
| | - György Kemenes
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Thomas Nowotny
- Sussex AI, University of Sussex, Falmer, Brighton, BN1 9QJ, UK.
| |
Collapse
|
11
|
Johny J, Diallo S, Nadachowska-Brzyska K, Moliterno AAC, Roy A, Kalinová B, Große-Wilde E, Schlyter F. Not All Bark Beetles Smell the Same: Population-Level Functional Olfactory Polymorphisms in Ips typographus Pheromone Receptor ItypOR33. Mol Ecol 2025; 34:e17693. [PMID: 39985145 DOI: 10.1111/mec.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Eurasian spruce bark beetle Ips typographus, a natural part of forest ecosystems, is a major threat to Norway spruce forests during outbreaks. Olfaction plays a crucial role in the survival and range expansion of these beetles, amid forest disturbances and climate change. As the current management strategies are suboptimal for controlling outbreaks, the reverse chemical ecology approaches based on pheromone receptors offer promising alternatives. While the search for pheromone receptors is in progress, recently found chromosomal inversions indicates signs of adaptation in this species. Our attempts to characterise one of the highly expressed odorant receptors, ItypOR33, located in an inversion, led to the discovery of polymorphic variants distributed with similar frequency across 18 European populations. Deorphanizing ItypOR33 and its variant ItypOR33a using the Drosophila empty-neuron system (DeNS) revealed ItypOR33 tuned to amitinol, a heterospecific pheromone component in Ips spp., whereas its variant tuned to (S)-(-)-ipsenol, a conspecific pheromone component of I. typographus. The in silico approaches revealed the structural basis of variations by predicting putative ligand-binding sites, tunnels and ligand-receptor interactions. However, no sex-specific differences were found in the ItypOR33 expression, and its ligand amitinol elicited behavioural and electrophysiological responses. Reporting population-level functional olfactory polymorphisms for the first time in a non-model organism-bark beetles, provides key evidence for further exploring their survival and adaptation in forests. Additionally, these findings indicate potential long-term complexities of managing bark beetles in forests.
Collapse
Affiliation(s)
- Jibin Johny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Souleymane Diallo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Ewald Große-Wilde
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
| | - Fredrik Schlyter
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Czech Republic
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
12
|
Zhang S, Yan S, Mei X, Wang G, Liu Y. Identification of a new lineage of pheromone receptors in mirid bugs (Heteroptera: Miridae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106277. [PMID: 40015869 DOI: 10.1016/j.pestbp.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 03/01/2025]
Abstract
Sex pheromones, typically released by females are crucial signals for the reductive biology of insects, primarily detected by sex pheromone receptors (PRs). A clade of PRs in three mirid bugs, Apolygus lucorum, Adelphocoris lineolatus, and Adelphocoris suturalis, has been found to respond to pheromones, (E)-2-hexenyl butyrate (E2HB) and hexyl butyrate (HB), with higher sensitivity to E2HB. In this study, we aimed to identify PRs responsible for the other two pheromone components, HB and (E)-4-oxo-2-hexenal (4-OHE), by using a combination of phylogenetic analyses, sequence similarity analyses, and in vitro functional studies. As a result, five new candidate PRs (AlucOR34, AlinOR9, AlinOR10, AsutOR9, and AsutOR10) positioned outside of the previously known PR clade were identified. All five PRs were found to respond to both E2HB and HB, with some PRs exhibiting a significant and sensitive binding to HB. However, PRs for 4-OHE remains unidentified. Overall, our study suggests that mirid bugs have evolved two distinct lineages of PRs with similar response profiles. This research offers valuable insights into sex pheromone recognition within the peripheral olfactory system and contributes to the identification of PRs in mirid bugs, providing new targets for developing the behavioral regulators for these insects.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
13
|
Lüdke A, Kumaraswamy A, Galizia C. Olfactory Receptor Responses to Pure Odorants in Drosophila melanogaster. Eur J Neurosci 2025; 61:e70036. [PMID: 40062376 PMCID: PMC11891828 DOI: 10.1111/ejn.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 05/13/2025]
Abstract
Olfactory coding relies on primary information from olfactory receptor cells that respond to volatile airborne substances. Despite extensive efforts, our understanding of odor-response profiles across receptors is still poor, because of the vast number of possible ligands (odorants), the high sensitivity even to trace compounds (creating false positive responses), and the diversity of olfactory receptors. Here, we linked chemical purification with a gas chromatograph to single-receptor type recording with transgenic flies using calcium imaging to record olfactory responses to a large panel of chemicals in seven Drosophila ORs: Or10a, Or13a, Or22a, Or42b, Or47a, Or56a, and Or92a. We analyze the data using linear-nonlinear modeling and reveal that most receptors have "simple" response types (mostly positive: Or10a, Or13a, Or22a, Or47a, and Or56a). However, two receptors (Or42b and Or92a) have, in addition to "simple" responses, "complex" response types to some ligands, either positive with a negative second phase or negative with a positive second phase, suggesting the presence of multiple binding sites and/or transduction cascades. We show that some ligands reported in the literature are false positives, because of contaminations in the stimulus. We recorded all stimuli across concentrations, showing that at different concentrations, different substances appear as best ligands. Our data show that studying combinatorial olfactory coding must consider temporal response properties and odorant concentration and, in addition, is strongly influenced by the presence of trace amounts of ligands (contaminations) in the samples. These observations have important repercussions for our thinking about how animals navigate their olfactory environment.
Collapse
|
14
|
Patel H, Garrido Portilla V, Shneidman AV, Movilli J, Alvarenga J, Dupré C, Aizenberg M, Murthy VN, Tropsha A, Aizenberg J. Design Principles From Natural Olfaction for Electronic Noses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412669. [PMID: 39835449 PMCID: PMC11948017 DOI: 10.1002/advs.202412669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Indexed: 01/22/2025]
Abstract
Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures. The topics examined herein include the fluid dynamics of odorants in natural channels; specificity and kinetics of odorant interactions with olfactory receptors and mucus linings; complex signal processing that spatiotemporally encodes physicochemical properties of odorants; active sampling techniques, like biological sniffing and nose repositioning; biological priming; and molecular chaperoning. Each of these components of natural olfactory systems are systmatically investigated, as to how they have been or can be applied to electronic noses. While not all artificial sensors can employ these strategies simultaneously, integrating a subset of bioinspired principles can address issues like sensitivity, drift, and poor selectivity, offering advancements in many sectors such as environmental monitoring, industrial safety, and disease diagnostics.
Collapse
Affiliation(s)
- Haritosh Patel
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Vicente Garrido Portilla
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Anna V. Shneidman
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Jacopo Movilli
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
- Department of Chemical SciencesUniversity of PadovaPadova35131Italy
| | - Jack Alvarenga
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Christophe Dupré
- Department of Molecular & Cellular BiologyHarvard UniversityCambridgeMA02138USA
| | - Michael Aizenberg
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
| | - Venkatesh N. Murthy
- Department of Molecular & Cellular BiologyHarvard UniversityCambridgeMA02138USA
- Center for Brain ScienceHarvard UniversityCambridgeMA02138USA
- Kempner InstituteHarvard UniversityBostonMA02134USA
| | - Alexander Tropsha
- Department of ChemistryThe University of North Carolina at Chapel HillChapel HillNC27516USA
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityBostonMA02134USA
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
15
|
Xue Q, Hasan KS, Dweck O, Ebrahim SAM, Dweck HKM. Functional characterization and evolution of olfactory responses in coeloconic sensilla of the global fruit pest Drosophila suzukii. BMC Biol 2025; 23:50. [PMID: 39985002 PMCID: PMC11846463 DOI: 10.1186/s12915-025-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND When a species changes its host preference, it often requires modifications in its sensory systems. Many of these changes remain largely uninvestigated in the global fruit pest Drosophila suzukii (also known as spotted wing Drosophila, SWD). This species, which shares a last common ancestor with the model organism D. melanogaster-a species that prefers overripe fruits- ~ 15 million years ago, has shifted its preference from overripe to ripe, soft-skinned fruits, causing significant damage to fruit industries worldwide. RESULTS Here, we functionally characterized the coeloconic sensilla in D. suzukii and compared their responses to those of its close relatives, D. biarmipes and D. melanogaster. We find that D. suzukii's responses are grouped into four functional types. These responses are consistent across sexes and reproductive status. The odorant receptor co-receptor Orco is required for certain responses. Comparative analysis across these species revealed evolutionary changes in physiological and behavioral responses to specific odorants, such as acetic acid, a key indicator of microbial fermentation, and phenylacetaldehyde, an aromatic compound found in a diverse range of fruits. Phenylacetaldehyde produced lower electrophysiological responses in D. suzukii compared to D. melanogaster and elicited strong attraction in D. suzukii but not in any of the other tested species. CONCLUSIONS The olfactory changes identified in this study likely play a significant role in the novel behavior of D. suzukii. This work also identifies phenylacetaldehyde as a potent attractant for D. suzukii, which can be used to develop targeted management strategies to mitigate the serious impact of this pest.
Collapse
Affiliation(s)
- Qi Xue
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Kazi Sifat Hasan
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Omar Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
- Wilbur Cross High School, 181 Mitchell Dr, New Haven, CT, 06511, USA
| | - Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Hany K M Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| |
Collapse
|
16
|
Ma B, Chang H, Guo M, Ai D, Wang J, Chen R, Liu X, Ren B, Hansson BS, Wang G. Yeast-derived volatiles orchestrate an insect-yeast mutualism with oriental armyworm moths. Nat Commun 2025; 16:1479. [PMID: 39929802 PMCID: PMC11811291 DOI: 10.1038/s41467-025-56354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Interactions among insects, plants, and microorganisms are fundamental to ecosystem dynamics, with floral nectar and pollen serving as key resources for various organisms. Yeasts, such as Metschnikowia reukaufii, commonly found in nectar, influence nectarial attraction through volatile compounds (VOCs), yet the underlying biological mechanisms remain elusive. Here, we show that isoamyl alcohol, a prominent yeast VOC, attracts oriental armyworm moths (Mythimna separata) to pollen-rich, yeast-fermented nectar. In a series of electrophysiological and behavioral assays, we show that isoamyl alcohol activates a single class of highly specific olfactory sensory neurons expressing the olfactory receptor MsepOR8. In the moth antennal lobe, these neurons target the AM2 glomerulus, which responds to isoamyl alcohol. Genetic disruption of MsepOR8 leads to complete abolition of both physiological and behavioral responses to isoamyl alcohol, resulting in an impaired ability to locate nectar sources. Moreover, we show that isoamyl alcohol-induced foraging behavior fosters a mutualistic relationship between yeast and moths to some extent, enhancing yeast dispersal and increasing moth reproductive success. Our results unveil a highly specific mechanism by which a yeast-derived VOC facilitates insect-yeast mutualism, providing insights into insect-microbe interactions within pollination ecosystems.
Collapse
Affiliation(s)
- Baiwei Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hetan Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengbo Guo
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects; Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
17
|
Yoshida K, Toyoizumi T. A biological model of nonlinear dimensionality reduction. SCIENCE ADVANCES 2025; 11:eadp9048. [PMID: 39908371 PMCID: PMC11801247 DOI: 10.1126/sciadv.adp9048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Obtaining appropriate low-dimensional representations from high-dimensional sensory inputs in an unsupervised manner is essential for straightforward downstream processing. Although nonlinear dimensionality reduction methods such as t-distributed stochastic neighbor embedding (t-SNE) have been developed, their implementation in simple biological circuits remains unclear. Here, we develop a biologically plausible dimensionality reduction algorithm compatible with t-SNE, which uses a simple three-layer feedforward network mimicking the Drosophila olfactory circuit. The proposed learning rule, described as three-factor Hebbian plasticity, is effective for datasets such as entangled rings and MNIST, comparable to t-SNE. We further show that the algorithm could be working in olfactory circuits in Drosophila by analyzing the multiple experimental data in previous studies. We lastly suggest that the algorithm is also beneficial for association learning between inputs and rewards, allowing the generalization of these associations to other inputs not yet associated with rewards.
Collapse
Affiliation(s)
- Kensuke Yoshida
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Yan H. Insect olfactory neurons: receptors, development, and function. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101288. [PMID: 39490981 DOI: 10.1016/j.cois.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Insects represent the most diverse group of animals in the world. While the olfactory systems of different species share general principles of organization, they also exhibit a wide range of structural and functional diversity. Scientists have gained tremendous insight into olfactory neural development and function, notably in Drosophila, but also in other insect species (see reviews by Benton, 2022; Robertson, 2019; Yan et al., 2020). In the last few years, new evidence has steadily mounted, for example, the stoichiometry of odorant receptor and co-receptor (OR-Orco) complex. This review aims to highlight the recent progress on four aspects: (1) the structure and function of the OR-Orco complex, (2) chemosensory gene co-expression, (3) diverse neural developmental processes, and (4) the role of genes and neurons in olfactory development and olfactory-mediated behavior.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
19
|
Fernández-Chiappe F, Ocker GK, Younger MA. Prospects on non-canonical olfaction in the mosquito and other organisms: why co-express? CURRENT OPINION IN INSECT SCIENCE 2025; 67:101291. [PMID: 39471910 DOI: 10.1016/j.cois.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The Aedes aegypti mosquito utilizes olfaction during the search for humans to bite. The attraction to human body odor is an innate behavior for this disease-vector mosquito. Many well-studied model species have olfactory systems that conform to a particular organization that is sometimes referred to as the 'one-receptor-to-one-neuron' organization because each sensory neuron expresses only a single type of olfactory receptor that imparts the neuron's chemical selectivity. This sensory architecture has become the canon in the field. This review will focus on the recent finding that the olfactory system of Ae. aegypti has a different organization, with multiple olfactory receptors co-expressed in many of its olfactory sensory neurons. We will discuss the canonical organization and how this differs from the non-canonical organization, examine examples of non-canonical olfactory systems in other species, and discuss the possible roles of receptor co-expression in odor coding in the mosquito and other organisms.
Collapse
Affiliation(s)
- Florencia Fernández-Chiappe
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA
| | - Gabriel K Ocker
- Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02143, USA
| | - Meg A Younger
- Department of Biology, Boston University, Boston, MA 02143, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02143, USA.
| |
Collapse
|
20
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Van der Linden Costello P, Vanderzalm PJ, Coutinho-Budd J, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. eLife 2025; 13:RP100989. [PMID: 39883485 PMCID: PMC11781797 DOI: 10.7554/elife.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here, we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first 2 days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post- synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll UniversityUniversity HeightsUnited States
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of MedicineClevelandUnited States
| |
Collapse
|
21
|
Pal Mahadevan V, Galagovsky D, Knaden M, Hansson BS. Preference for and resistance to a toxic sulfur volatile opens up a unique niche in Drosophila busckii. Nat Commun 2025; 16:767. [PMID: 39824833 PMCID: PMC11742422 DOI: 10.1038/s41467-025-55971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The ability to tolerate otherwise toxic compounds can open up unique niches in nature. Among drosophilid flies, few examples of such adaptations are known and those which are known are typically from highly host-specific species. Here we show that the human commensal species Drosophila busckii uses dimethyldisulfide (DMDS) as a key mediator in its host selection. Despite DMDS's neurotoxic properties, D. busckii has evolved tolerance towards high concentrations and uses the compound as an olfactory cue to pinpoint food and oviposition sites. This adaptability is likely linked to insensitivity of the enzyme complex cytochrome c oxidase (COX), which is a DMDS target in other insects. Our findings position D. busckii as a potential model for studying resistance to toxic gases affecting COX and offers insight into evolutionary adaptations within specific ecological contexts.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Diego Galagovsky
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
22
|
Dumenil C, Yildirim G, Haase A. Differential Coding of Fruit, Leaf, and Microbial Odours in the Brains of Drosophila suzukii and Drosophila melanogaster. INSECTS 2025; 16:84. [PMID: 39859665 PMCID: PMC11766258 DOI: 10.3390/insects16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Drosophila suzukii severely damages the production of berry and stone fruits in large parts of the world. Unlike D. melanogaster, which reproduces on overripe and fermenting fruits on the ground, D. suzukii prefers to lay its eggs in ripening fruits still on the plants. Flies locate fruit hosts by their odorant volatiles, which are detected and encoded by a highly specialised olfactory system before being translated into behaviour. The exact information-processing pathway is not yet fully understood, especially the evaluation of odour attractiveness. It is also unclear what differentiates the brains of D. suzukii and D. melanogaster to cause the crucial difference in host selection. We hypothesised that the basis for different behaviours is already formed at the level of the antennal lobe of D. suzukii and D. melanogaster by different neuronal responses to volatiles associated with ripe and fermenting fruit. We thus investigated by 3D in vivo two-photon calcium imaging how both species encoded odours from ripe fruits, leaves, fermented fruits, bacteria, and their mixtures in the antennal lobe. We then assessed their behavioural responses to mixtures of ripe and fermenting odours. The neural responses reflect species-dependent shifts in the odour code. In addition to this, morphological differences were also observed. However, this was not directly reflected in different behavioural responses to the odours tested.
Collapse
Affiliation(s)
- Claire Dumenil
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Gülsüm Yildirim
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
| | - Albrecht Haase
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (C.D.); (G.Y.)
- Department of Physics, University of Trento, 38123 Trento, Italy
| |
Collapse
|
23
|
Comte A, Fiorucci S, Jacquin-Joly E. Combining Machine Learning and Electrophysiology for Insect Odorant Receptor Studies. Methods Mol Biol 2025; 2915:101-116. [PMID: 40249485 DOI: 10.1007/978-1-0716-4466-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Insects rely on olfaction in many aspects of their life, and odorant receptors are key proteins in this process. Whereas a plethora of insect odorant receptor sequences is available, most of them are still orphan or uncompletely characterized, since their functional studies are usually limited by restricted odorant panels. With joint approaches that combine computational methods like machine learning and electrophysiology measurements, researchers can expand the chemical space of insect odorant receptors and speed up the discovery of new active ligands. This chapter details the methodology for setting up a quantitative structure-activity relationship (QSAR) predictive model for identifying odorant receptor agonists and for conducting single sensillum recordings to validate the predictions.
Collapse
Affiliation(s)
- Arthur Comte
- INRAE, Sorbonne Université, CNRS, IRD, Université Paris Cité, Université Paris-Est Créteil Val de Marne, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) , Versailles, France
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | | | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, Université Paris Cité, Université Paris-Est Créteil Val de Marne, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris) , Versailles, France.
| |
Collapse
|
24
|
Tom MT, Brand P, Bucks S, Zhang J, Escobar Huezo ME, Hansson BS, Bisch-Knaden S. Gene expansion in the hawkmoth Manduca sexta drives evolution of food-associated odorant receptors. iScience 2024; 27:111317. [PMID: 39640564 PMCID: PMC11617253 DOI: 10.1016/j.isci.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In insects, odorant receptors (ORs) are required for the detection of most olfactory cues. We investigated the function of a clade of four duplicated ORs in the hawkmoth Manduca sexta and found that these paralogs encode broadly tuned receptors with overlapping but distinct response spectra. Two paralogs, which arose after divergence from a related lineage, show high sensitivity to floral esters released by a nectar-rich plant frequently visited by M. sexta. Functional imaging in mutant moths lacking one of the paralogs suggests that olfactory sensory neurons expressing this OR target a previously identified feeding-associated glomerulus in the primary olfactory center of the brain. However, only the response of this glomerulus to the single ligand unique to the now mutated OR disappeared, suggesting neuronal coexpression of the paralogs. Our results suggest a link between the studied OR expansion and enhanced detection of odors emitted by valuable nectar sources in M. sexta.
Collapse
Affiliation(s)
- Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Brand
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
25
|
Yuvaraj JK, Kandasamy D, Roberts RE, Hansson BS, Gershenzon J, Andersson MN. Eurasian spruce bark beetle detects lanierone using a highly expressed specialist odorant receptor, present in several functional sensillum types. BMC Biol 2024; 22:266. [PMID: 39568015 PMCID: PMC11577813 DOI: 10.1186/s12915-024-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Insects detect odours using odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) in the antennae. Ecologically important odours are often detected by selective and abundant OSNs; hence, ORs with high antennal expression. However, little is known about the function of highly expressed ORs in beetles, since few ORs have been functionally characterized. Here, we functionally characterized the most highly expressed OR (ItypOR36) in the bark beetle Ips typographus L. (Coleoptera, Curculionidae, Scolytinae), a major pest of spruce. We hypothesized that this OR would detect a compound important to beetle fitness, such as a pheromone component. We next investigated the antennal distribution of this OR using single sensillum recordings (SSR) and in situ hybridization, followed by field- and laboratory experiments to evaluate the behavioural effects of the discovered ligand. RESULTS We expressed ItypOR36 in HEK293 cells and challenged it with 64 ecologically relevant odours. The OR responded exclusively to the monoterpene-derived ketone lanierone with high sensitivity. Lanierone is used in chemical communication in North American Ips species, but it has never been shown to be produced by I. typographus, nor has it been studied in relation to this species' sensory physiology. Single sensillum recordings revealed a novel and abundant lanierone-responsive OSN class with the same specific response as ItypOR36. Strikingly, these OSNs were co-localized in sensilla together with seven different previously described OSN classes. Field experiments revealed that low release rates of lanierone inhibited beetle attraction to traps baited with aggregation pheromone, with strongest effects on males. Female beetles were attracted to lanierone in laboratory walking bioassays. CONCLUSIONS Our study highlights the importance of the so-called 'reverse chemical ecology' approach to identify novel semiochemicals for ecologically important insect species. Our discovery of the co-localization pattern involving the lanierone OSN class suggests organizational differences in the peripheral olfactory sense between insect orders. Our behavioural experiments show that lanierone elicits different responses in the two sexes, which also depend on whether beetles are walking in the laboratory or flying in the field. Unravelling the source of lanierone in the natural environment of I. typographus is required to understand these context-dependent behaviours.
Collapse
Affiliation(s)
- Jothi Kumar Yuvaraj
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| | - Dineshkumar Kandasamy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
- Max Planck Center Next Generation Insect Chemical Ecology, Lund, Sweden
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rebecca E Roberts
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center Next Generation Insect Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
- Max Planck Center Next Generation Insect Chemical Ecology, Lund, Sweden.
| |
Collapse
|
26
|
Pal Mahadevan V, Stieber-Rödiger R, Knaden M, Hansson BS. Phenolics as ecologically relevant cues for slime flux breeding Drosophila virilis. iScience 2024; 27:111180. [PMID: 39555411 PMCID: PMC11567934 DOI: 10.1016/j.isci.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Drosophila species belonging to the virilis group offer a unique opportunity for studying olfactory adaptations necessary for survival within forest ecosystems as many of these species breed within decaying plant vascular tissues. However, the knowledge regarding olfactory preferences within their ecological niche is extremely limited. Here, we focus on Drosophila virilis and identify over 120 distinct odors from a natural slime flux source. We identify lignin as an attractant and a positive oviposition cue for D. virilis. Furthermore, lignin-derived guaiacol is highlighted as a robust attractant for D. virilis. We demonstrate that guaiacol is detected by the DvirOr49b receptor, which exhibits a narrow sensitivity to methylphenols, including o-cresol. D. virilis and D. ezoana, both belonging to the virilis group, exhibit strong attraction to o-cresol. In summary, our research offers a comprehensive analysis of the diverse array of odorants encountered by D. virilis within its natural habitat and their behavioral significance.
Collapse
Affiliation(s)
- Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Regina Stieber-Rödiger
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Max Planck Center next Generation Insect Chemical Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
27
|
Mallick A, Tan HL, Epstein JM, Jing Ng CM, Cook OM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. iScience 2024; 27:111083. [PMID: 39524339 PMCID: PMC11550141 DOI: 10.1016/j.isci.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/11/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Serotonin (5-HT) modulates early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we investigate the cellular mechanisms by which 5-HT modulates critical period plasticity (CPP) in the olfactory system of Drosophila. We first demonstrate that 5-HT is necessary for experience-dependent structural plasticity in response to chronic CO2 exposure and can re-open the critical period long after it normally closes. Knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by CO2-sensing olfactory sensory neurons (OSNs). Furthermore, direct modulation of OSNs via 5-HT2B receptors in CO2-sensing OSNs and autoreceptor expression by serotonergic neurons was also required for CPP. Thus, 5-HT targets individual neuron types in the olfactory system via distinct receptors to enable sensory driven plasticity.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | - Oliver Mason Cook
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M. Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Li H, Covington JA, Tian F, Wu Z, Liu Y, Hu L. Development and analysis of an artificial olfactory bulb. Talanta 2024; 279:126551. [PMID: 39018948 DOI: 10.1016/j.talanta.2024.126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
This article presents the development of an artificial olfactory bulb (OB) using an electronic nose with thermally modulated metal-oxide sensors. Inspired by animal OBs, our approach employs thermal modulation to replicate the spatial encoding patterns of glomeruli clusters and subclusters. This new approach enhances the classification capabilities of traditional electronic noses and offers new insights for biomimetic olfaction. Molecular receptive range (MRR) analysis confirms that our artificial OB effectively mimics the glomerular distribution of animal OBs. Additionally, the incorporation of a short axon cell (SAC) network, inspired by the animal olfactory system, significantly improves lifetime sparseness and qualitative ability of the artificial OB through extensive lateral inhibition, providing a theoretical framework for enhanced olfactory performance.
Collapse
Affiliation(s)
- Hantao Li
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| | | | - Fengchun Tian
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China; Chongqing Key Laboratory of Bio-perception and Intelligent Information Processing, 400044, Chongqing, China.
| | - Zhiyuan Wu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China; School of Engineering, University of Warwick, CV47AL, Coventry, UK
| | - Yue Liu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| | - Li Hu
- School of Microelectronic and Communication Engineering, Chongqing University, 400044, Chongqing, China
| |
Collapse
|
29
|
Leier HC, Foden AJ, Jindal DA, Wilkov AJ, Costello PVDL, Vanderzalm PJ, Coutinho-Budd JC, Tabuchi M, Broihier HT. Glia control experience-dependent plasticity in an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602232. [PMID: 39005309 PMCID: PMC11245089 DOI: 10.1101/2024.07.05.602232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first two days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post-synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.
Collapse
Affiliation(s)
- Hans C Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Alexander J Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Darren A Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Abigail J Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | | | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, United States
| | - Jaeda C Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States
| |
Collapse
|
30
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
31
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
32
|
Prelic S, Keesey IW, Lavista-Llanos S, Hansson BS, Wicher D. Innexin expression and localization in the Drosophila antenna indicate gap junction or hemichannel involvement in antennal chemosensory sensilla. Cell Tissue Res 2024; 398:35-62. [PMID: 39174822 PMCID: PMC11424723 DOI: 10.1007/s00441-024-03909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems. For instance, it is not known whether cell-cell coupling via gap junctions between OSNs and neighboring cells exists, or whether hemichannels interconnect cellular and extracellular sensillum compartments. Here, we show that innexins, which form hemichannels and gap junctions in invertebrates, are abundantly expressed in adult drosophilid antennae. By surveying antennal transcriptomes and performing various immunohistochemical stainings in antennal tissues, we discover innexin-specific patterns of expression and localization, with a majority of innexins strongly localizing to glial and non-neuronal cells, likely support and epithelial cells. Finally, by injecting gap junction-permeable dye into a pre-identified sensillum, we observe no dye coupling between neuronal and non-neuronal cells. Together with evidence of non-neuronal innexin localization, we conclude that innexins likely do not conjoin neurons to support cells, but that junctions and hemichannels may instead couple support cells among each other or to their shared sensillum lymph to achieve synchronous activity. We discuss how coupling of sensillum microenvironments or compartments may potentially contribute to facilitate chemosensory functions of odor sensing and sensillum homeostasis.
Collapse
Affiliation(s)
- Sinisa Prelic
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
33
|
Rokni D, Ben-Shaul Y. Object-oriented olfaction: challenges for chemosensation and for chemosensory research. Trends Neurosci 2024; 47:834-848. [PMID: 39245626 DOI: 10.1016/j.tins.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many animal species use olfaction to extract information about objects in their environment. Yet, the specific molecular signature that any given object emits varies due to various factors. Here, we detail why such variability makes chemosensory-mediated object recognition such a hard problem, and we propose that a major function of the elaborate chemosensory network is to overcome it. We describe previous work addressing different elements of the problem and outline future research directions that we consider essential for a full understanding of object-oriented olfaction. In particular, we call for extensive representation of olfactory object variability in chemical, behavioral, and electrophysiological analyses. While written with an emphasis on macrosmatic mammalian species, our arguments apply to all organisms that employ chemosensation to navigate complex environments.
Collapse
Affiliation(s)
- Dan Rokni
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Hebrew University Faculty of Medicine, Institute for Medical Research, Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
34
|
Rajak P, Ganguly A, Adhikary S, Bhattacharya S. Smart technology for mosquito control: Recent developments, challenges, and future prospects. Acta Trop 2024; 258:107348. [PMID: 39098749 DOI: 10.1016/j.actatropica.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Smart technology coupled with digital sensors and deep learning networks have emerging scopes in various fields, including surveillance of mosquitoes. Several studies have been conducted to examine the efficacy of such technologies in the differential identification of mosquitoes with high accuracy. Some smart trap uses computer vision technology and deep learning networks to identify live Aedes aegypti and Culex quinquefasciatus in real time. Implementing such tools integrated with a reliable capture mechanism can be beneficial in identifying live mosquitoes without destroying their morphological features. Such smart traps can correctly differentiates between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak. Smart devices embedded with YOLO V4 Deep Neural Network algorithm has been designed with a differential drive mechanism and a mosquito trapping module to attract mosquitoes in the environment. The use of acoustic and optical sensors in combination with machine learning techniques have escalated the automatic classification of mosquitoes based on their flight characteristics, including wing-beat frequency. Thus, such Artificial Intelligence-based tools have promising scopes for surveillance of mosquitoes to control vector-borne diseases. However working efficiency of such technologies requires further evaluation for implementation on a global scale.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | |
Collapse
|
35
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
36
|
Fung W, Kolotuev I, Heiman MG. Specialized structure and function of the apical extracellular matrix at sense organs. Cells Dev 2024; 179:203942. [PMID: 39067521 PMCID: PMC11346620 DOI: 10.1016/j.cdev.2024.203942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Apical extracellular matrix (aECM) covers every surface of the body and exhibits tissue-specific structures that carry out specialized functions. This is particularly striking at sense organs, where aECM forms the interface between sensory neurons and the environment, and thus plays critical roles in how sensory stimuli are received. Here, we review the extraordinary adaptations of aECM across sense organs and discuss how differences in protein composition and matrix structure assist in sensing mechanical forces (tactile hairs, campaniform sensilla, and the tectorial membrane of the cochlea); tastes and smells (uniporous gustatory sensilla and multiporous olfactory sensilla in insects, and salivary and olfactory mucus in vertebrates); and light (cuticle-derived lenses in arthropods and mollusks). We summarize the power of using C. elegans, in which defined sense organs associate with distinct aECM, as a model for understanding the tissue-specific structural and functional specializations of aECM. Finally, we synthesize results from recent studies in C. elegans and Drosophila into a conceptual framework for aECM patterning, including mechanisms that involve transient cellular or matrix scaffolds, mechanical pulling or pushing forces, and localized secretion or endocytosis.
Collapse
Affiliation(s)
- Wendy Fung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Zhang R, Ng R, Wu ST, Su CY. Targeted deletion of olfactory receptors in D. melanogaster via CRISPR/Cas9-mediated LexA knock-in. J Neurogenet 2024; 38:122-133. [PMID: 39529229 PMCID: PMC11617259 DOI: 10.1080/01677063.2024.2426014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The study of olfaction in Drosophila melanogaster has greatly benefited from genetic reagents such as olfactory receptor mutant lines and GAL4 reporter lines. The CRISPR/Cas9 gene-editing system has been increasingly used to create null receptor mutants or replace coding regions with GAL4 reporters. To further expand this toolkit for manipulating fly olfactory receptor neurons (ORNs), we generated null alleles for 11 different olfactory receptors by using CRISPR/Cas9 to knock in LexA drivers, including multiple lines for receptors which have thus far lacked knock-in mutants. The targeted neuronal types represent a broad range of antennal ORNs from all four morphological sensillum classes. Additionally, we confirmed their loss-of-function phenotypes, assessed receptor haploinsufficiency, and evaluated the specificity of the LexA knock-in drivers. These receptor mutant lines have been deposited at the Bloomington Drosophila Stock Center for use by the broader scientific community.
Collapse
Affiliation(s)
- Runqi Zhang
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Renny Ng
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Shiuan-Tze Wu
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| | - Chih-Ying Su
- Department of Neurobiology, University of California San Diego, La Jolla, USA
| |
Collapse
|
38
|
Ma Y, Si YX, Guo JM, Yang TT, Li Y, Zhang J, Dong SL, Yan Q. Functional Characterization of Odorant Receptors for Sex Pheromone (Z)-11-Hexadecenol in Orthaga achatina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18864-18871. [PMID: 39153187 DOI: 10.1021/acs.jafc.4c05108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.
Collapse
Affiliation(s)
- Yu Ma
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Xiao Si
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting-Ting Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Li
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Xiang F, Zhang S, Tang M, Li P, Zhang H, Xiong J, Zhang Q, Li X. Optogenetics Neuromodulation of the Nose. Behav Neurol 2024; 2024:2627406. [PMID: 39165250 PMCID: PMC11335419 DOI: 10.1155/2024/2627406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Recently developed optogenetic technology, which allows high-fidelity control of neuronal activity, has been applied to investigate the neural circuits underlying sensory processing and behavior. The nasal cavity is innervated by the olfactory nerve and trigeminal nerve, which are closely related to common symptoms of rhinitis, such as impairment of smell, itching, and sneezing. The olfactory system has an amazing ability to distinguish thousands of odorant molecules at trace levels. However, there are many issues in olfactory sensing mechanisms that need to be addressed. Optogenetics offers a novel technical approach to solve this dilemma. Therefore, we review the recent advances in olfactory optogenetics to clarify the mechanisms of chemical sensing, which may help identify the mechanism of dysfunction and suggest possible treatments for impaired smell. Additionally, in rhinitis patients, alterations in the other nerve (trigeminal nerve) that innervates the nasal cavity can lead to hyperresponsiveness to various nociceptive stimuli and central sensitization, causing frequent and persistent itching and sneezing. In the last several years, the application of optogenetics in regulating nociceptive receptors, which are distributed in sensory nerve endings, and amino acid receptors, which are distributed in vital brain regions, to alleviate overreaction to nociceptive stimuli, has gained significant attention. Therefore, we focus on the progress in optogenetics and its application in neuromodulation of nociceptive stimuli and discuss the potential clinical translation for treating rhinitis in the future.
Collapse
Affiliation(s)
- Feng Xiang
- TCM DepartmentChongqing University Cancer HospitalChongqing Cancer Hospital, Chongqing, China
| | - Shipeng Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mi Tang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijia Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Xiong
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinxiu Zhang
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- E.N.T. DepartmentChengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinrong Li
- E.N.T. DepartmentHospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Biswas T, Vogel H, Biedermann PHW, Lehenberger M, Yuvaraj JK, Andersson MN. Few chemoreceptor genes in the ambrosia beetle Trypodendron lineatum may reflect its specialized ecology. BMC Genomics 2024; 25:764. [PMID: 39107741 PMCID: PMC11302349 DOI: 10.1186/s12864-024-10678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species. RESULTS We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum ('Tlin'). Across gene families, T. lineatum has fewer chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabripennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage radiations, especially among the bitter taste GRs and the 'divergent' IRs, and the absence of alternatively spliced GR genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we found no orthologue in the 'GR215 clade', which is widely conserved across Coleoptera. Two TlinORs are orthologous to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf volatiles (GLVs), respectively. CONCLUSIONS Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obligate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy correlates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors is a general trait in this specialized group of beetles.
Collapse
Affiliation(s)
- Twinkle Biswas
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Stegen-Wittental, Germany
| | | | | | - Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
| |
Collapse
|
41
|
Ali MZ, Anushree, Ahsan A, Ola MS, Haque R, Ahsan J. Ionotropic receptors mediate olfactory learning and memory in Drosophila. INSECT SCIENCE 2024; 31:1249-1269. [PMID: 38114448 DOI: 10.1111/1744-7917.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1, Ir84aMI00501, and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.
Collapse
Affiliation(s)
- Md Zeeshan Ali
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Anushree
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Aarif Ahsan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Jawaid Ahsan
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
42
|
Jiang X, Dimitriou E, Grabe V, Sun R, Chang H, Zhang Y, Gershenzon J, Rybak J, Hansson BS, Sachse S. Ring-shaped odor coding in the antennal lobe of migratory locusts. Cell 2024; 187:3973-3991.e24. [PMID: 38897195 DOI: 10.1016/j.cell.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.
Collapse
Affiliation(s)
- Xingcong Jiang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Eleftherios Dimitriou
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Veit Grabe
- Microscopic Service Group, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ruo Sun
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Hetan Chang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yifu Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
43
|
Moore JP, Kamino K, Kottou R, Shimizu TS, Emonet T. Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis. Cell Syst 2024; 15:628-638.e8. [PMID: 38981486 PMCID: PMC11307269 DOI: 10.1016/j.cels.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
In uncertain environments, phenotypic diversity can be advantageous for survival. However, as the environmental uncertainty decreases, the relative advantage of having diverse phenotypes decreases. Here, we show how populations of E. coli integrate multiple chemical signals to adjust sensory diversity in response to changes in the prevalence of each ligand in the environment. Measuring kinase activity in single cells, we quantified the sensitivity distribution to various chemoattractants in different mixtures of background stimuli. We found that when ligands bind uncompetitively, the population tunes sensory diversity to each signal independently, decreasing diversity when the signal's ambient concentration increases. However, among competitive ligands, the population can only decrease sensory diversity one ligand at a time. Mathematical modeling suggests that sensory diversity tuning benefits E. coli populations by modulating how many cells are committed to tracking each signal proportionally as their prevalence changes.
Collapse
Affiliation(s)
- Jeremy Philippe Moore
- Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA
| | - Keita Kamino
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Rafaela Kottou
- Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA
| | | | - Thierry Emonet
- Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
44
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
45
|
Zhang T, Jing H, Wang J, Zhao L, Liu Y, Rossiter SJ, Lu H, Li G. Evolution of olfactory receptor superfamily in bats based on high throughput molecular modelling. Mol Ecol Resour 2024; 24:e13958. [PMID: 38567648 DOI: 10.1111/1755-0998.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The origin of flight and laryngeal echolocation in bats is likely to have been accompanied by evolutionary changes in other aspects of their sensory biology. Of all sensory modalities in bats, olfaction is perhaps the least well understood. Olfactory receptors (ORs) function in recognizing odour molecules, with crucial roles in evaluating food, as well as in processing social information. Here we compare OR repertoire sizes across taxa and apply a new pipeline that integrates comparative genome data with protein structure modelling and then we employ molecular docking techniques with small molecules to analyse OR functionality based on binding energies. Our results suggest a sharp contraction in odorant recognition of the functional OR repertoire during the origin of bats, consistent with a reduced dependence on olfaction. We also compared bat lineages with contrasting different ecological characteristics and found evidence of differences in OR gene expansion and contraction, and in the composition of ORs with different tuning breadths. The strongest binding energies of ORs in non-echolocating fruit-eating bats were seen to correspond to ester odorants, although we did not detect a quantitative advantage of functional OR repertoires in these bats compared with echolocating insectivorous species. Overall, our findings based on molecular modelling and computational docking suggest that bats have undergone olfactory evolution linked to dietary adaptation. Our results from extant and ancestral bats help to lay the groundwork for targeted experimental functional tests in the future.
Collapse
Affiliation(s)
- Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Le Zhao
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, UK
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
46
|
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int J Mol Sci 2024; 25:7125. [PMID: 39000230 PMCID: PMC11241008 DOI: 10.3390/ijms25137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.
Collapse
Affiliation(s)
| | | | - Eric Wiesel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
47
|
Zhao J, Chen AQ, Ryu J, del Mármol J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science 2024; 384:1460-1467. [PMID: 38870275 PMCID: PMC11235583 DOI: 10.1126/science.adn6384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Most insects, including human-targeting mosquitoes, detect odors through odorant-activated ion channel complexes consisting of a divergent odorant-binding subunit (OR) and a conserved co-receptor subunit (Orco). As a basis for understanding how odorants activate these heteromeric receptors, we report here cryo-electron microscopy structures of two different heteromeric odorant receptor complexes containing ORs from disease-vector mosquitos Aedes aegypti or Anopheles gambiae. These structures reveal an unexpected stoichiometry of one OR to three Orco subunits. Comparison of structures in odorant-bound and unbound states indicates that odorant binding to the sole OR subunit is sufficient to open the channel pore, suggesting a mechanism of OR activation and a conceptual framework for understanding evolution of insect odorant receptor sensitivity.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Andy Q. Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Jaewook Ryu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
| | - Josefina del Mármol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Boston, 02115, USA
- Howard Hughes Medical Institute; Boston, 02115, USA
| |
Collapse
|
48
|
Nanami T, Yamada D, Someya M, Hige T, Kazama H, Kohno T. A lightweight data-driven spiking neuronal network model of Drosophila olfactory nervous system with dedicated hardware support. Front Neurosci 2024; 18:1384336. [PMID: 38994271 PMCID: PMC11238178 DOI: 10.3389/fnins.2024.1384336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Data-driven spiking neuronal network (SNN) models enable in-silico analysis of the nervous system at the cellular and synaptic level. Therefore, they are a key tool for elucidating the information processing principles of the brain. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand huge computing facilities and their simulation speed is considerably slower than real-time. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. The model is built using a qualitative modeling approach that can reproduce key dynamics of neuronal activity. We target the Drosophila olfactory nervous system, extracting its network topology from connectome data. The model was successfully implemented on a small entry-level field-programmable gate array and simulated the activity of a network in real-time. In addition, the model reproduced olfactory associative learning, the primary function of the olfactory system, and characteristic spiking activities of different neuron types. In sum, this paper propose a method for building data-driven SNN models from biological data. Our approach reproduces the function and neuronal activities of the nervous system and is lightweight, acceleratable with dedicated hardware, making it scalable to large-scale networks. Therefore, our approach is expected to play an important role in elucidating the brain's information processing at the cellular and synaptic level through an analysis-by-construction approach. In addition, it may be applicable to edge artificial intelligence systems in the future.
Collapse
Affiliation(s)
- Takuya Nanami
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Makoto Someya
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hokto Kazama
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takashi Kohno
- Institute of Industrial Science, The University of Tokyo, Meguro Ku, Tokyo, Japan
| |
Collapse
|
49
|
Moore JP, Kamino K, Kottou R, Shimizu TS, Emonet T. Signal Integration and Adaptive Sensory Diversity Tuning in Escherichia coli Chemotaxis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.08.527720. [PMID: 36798398 PMCID: PMC9934624 DOI: 10.1101/2023.02.08.527720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In uncertain environments, phenotypic diversity can be advantageous for survival. However, as the environmental uncertainty decreases, the relative advantage of having diverse phenotypes decreases. Here, we show how populations of E. coli integrate multiple chemical signals to adjust sensory diversity in response to changes in the prevalence of each ligand in the environment. Measuring kinase activity in single cells, we quantified the sensitivity distribution to various chemoattractants in different mixtures of background stimuli. We found that when ligands bind uncompetitively, the population tunes sensory diversity to each signal independently, decreasing diversity when the signal ambient concentration increases. However, amongst competitive ligands the population can only decrease sensory diversity one ligand at a time. Mathematical modeling suggests that sensory diversity tuning benefits E. coli populations by modulating how many cells are committed to tracking each signal proportionally as their prevalence changes.
Collapse
|
50
|
Ellis KE, Bervoets S, Smihula H, Ganguly I, Vigato E, Auer TO, Benton R, Litwin-Kumar A, Caron SJC. Evolution of connectivity architecture in the Drosophila mushroom body. Nat Commun 2024; 15:4872. [PMID: 38849331 PMCID: PMC11161526 DOI: 10.1038/s41467-024-48839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species-the connections between projection neurons and the Kenyon cells of the mushroom body-and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.
Collapse
Affiliation(s)
| | - Sven Bervoets
- School of Biological Sciences, University of Utah, Salt Lake City, USA
| | - Hayley Smihula
- School of Biological Sciences, University of Utah, Salt Lake City, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, New York, USA
| | - Eva Vigato
- School of Biological Sciences, University of Utah, Salt Lake City, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|