1
|
Min Y, He S, Wang X, Hu H, Wei S, Ge A, Jiang L, Yang S, Guo Y, Liu Z, Chen M. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J Genet Genomics 2025; 52:650-665. [PMID: 39674274 DOI: 10.1016/j.jgg.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Appropriate flowering time in rapeseed (Brassica napus L.) is vital for preventing losses from weather, diseases, and pests. However, the molecular basis of its regulation remains largely unknown. Here, a genome-wide association study identifies BnaC09.FUL, a MADS-box transcription factor, as a promising candidate gene regulating flowering time in B. napus. BnaC09.FUL expression increases sharply in B. napus shoot apices near bolting. BnaC09.FUL overexpression results in early flowering, while BnaFUL mutation causes delayed flowering in B. napus. A zinc finger transcription factor, BnaC06.WIP2, is identified as an interaction partner of BnaC09.FUL, and BnaC06.WIP2 overexpression delays flowering in B. napus, with RNA sequencing revealing its influence on the expression of many flowering-associated genes. We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1, BnaC03.SOC1, BnaC04.SOC1, BnaC06.FT, BnaA06.LFY, BnaC07.FUL, BnaA08.CAL, and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes. Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B. napus through direct regulation of the expression of BnaC03.SOC1, BnaA08.CAL, and BnaC03.CAL. Overall, our findings provide a mechanism by which the BnaC09.FUL-BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B. napus.
Collapse
Affiliation(s)
- Yuanchang Min
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Ankang Ge
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixi Jiang
- Provincial Key Laboratory of Crop Gene Resource, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saiqi Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Li X, Bai Y, Wang N, Feng H. Identification and breeding exploitation of dBrGMSP related to early bolting in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109873. [PMID: 40203557 DOI: 10.1016/j.plaphy.2025.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Bolting is an important agronomic trait for stalk type of vegetable crops. Early bolting is a favorable characteristic for stalk type of Chinese cabbage variety, which has the advantage of early market supply. In the present study, we screened an EMS-mutagenized Chinese cabbage population and isolated a dominant gain-of-function early bolting mutant ebm16 which exhibited remarkable earlier bolting trait than its WT. BrGMSP, encoding a galactose mutarotase-like superfamily protein, was identified as the candidate gene via MutMap and KASP analysis. A C-T mutation existed in exon of BrGMSP in ebm16. Both transient overexpression in the WT and stable transgenic overexpression in Arabidopsis thaliana for the mutated gene dBrGMSP verified the function of BrGMSP in regulating early bolting. BrGMSP was localized in the nucleus. LCA proved that BrGMSP could interact with BrPGM1 controlling photosynthetic carbon flow. VIGS verified that BrPGM1 had the function on promoting bolting in Chinese cabbage. It was proved that dBrGMSP could be applied in breeding for stalk type of Chinese cabbage.
Collapse
Affiliation(s)
- Xue Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yuanzhi Bai
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Nan Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Shan C, Dong K, Wen D, Cui Z, Cao J. A review of m 6A modification in plant development and potential quality improvement. Int J Biol Macromol 2025; 308:142597. [PMID: 40157682 DOI: 10.1016/j.ijbiomac.2025.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal modification observed in eukaryotic mRNAs. As a pivotal regulator of gene expression, m6A exerts influence over a number of processes, including splicing, transport, translation, degradation, and the stability of mRNAs. It thus plays a crucial role in plant development and resistance to biotic and abiotic stressors. The writers, erasers, and readers of m6A, which deposit, eliminate and decode this modification, are also of critical importance and have been identified and characterized in multiple plant species. The advent of next-generation sequencing (NGS) and m6A detection technologies has precipitated a surge in research on m6A in recent years. Extensive research has elucidated the specific roles of m6A in plants and its underlying molecular mechanisms, indicating significant potential for crop improvement. This review presents a comprehensive overview of recent studies on m6A and its regulatory proteins in plant development and stress tolerance. It highlights the potential applications of this modification and its writers, erasers, and readers for plant improvement, with a particular focus on leaf development, floral transition, trichome morphogenesis, fruit ripening, and resilience to pests, diseases and abiotic stresses.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zifan Cui
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Gao X, Liu L, Wang T, Jiang C, Xue Y, Sun Y, Gu Z, Xu Y, Jiang CZ, Gao J, Hong B, Ma C. Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum. THE NEW PHYTOLOGIST 2025; 245:2309-2321. [PMID: 39821047 DOI: 10.1111/nph.20354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex. CiLDL1 and CiNF-YB8 interact with the classical histone-like fold domain (HFD) of CiNF-YC1 and CiNF-YA3, which form distinct heterotrimers binding to the 'CCAAT' box in the promoter region of cin-MIR156ab. CiLDL1 and CiNF-YB8 have opposing effects on cin-MIR156ab expression, with influencing histone 3 lysine 4 demethylation (H3K4me2) levels at the cin-MIR156ab locus. During aging, decreased CiNF-YB8 expression leads to a quantitative switch from the CiNF-YA3-CiNF-YC1-CiNF-YB8 heterotrimer to the CiNF-YA3-CiNF-YC1-CiLDL1 heterotrimer, which reduces H3K4me2 levels at the cin-MIR156ab locus, thus temporal silencing its expression. Our results thus reveal that the dynamic regulatory shift between CiLDL1 and CiNF-YB8 ensures proper aging-dependent flowering in chrysanthemum.
Collapse
Affiliation(s)
- Xuekai Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianle Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chuyan Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yujin Xue
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yahui Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - Junping Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Smoly I, Elbaz H, Engelen C, Wechsler T, Elbaz G, Ben-Ari G, Samach A, Friedlander T. A model estimating the level of floral transition in olive trees exposed to warm periods during winter. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1266-1284. [PMID: 39535233 DOI: 10.1093/jxb/erae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Rising winter temperatures jeopardize the fruit yield of trees that require a prolonged and sufficiently cold winter to flower. Predicting the exact risk to different crop varieties is the first step in mitigating the harmful effects of climate change. This work focused on olive (Olea europaea)-a traditional crop in the Mediterranean basin in which flowering depends on the sufficiency of cold periods and the lack of warm ones during the preceding winter. A satisfactory quantitative model forecasting its expected flowering under natural temperature conditions is still lacking. The effect of different temperature regimes on olive flowering level and flowering gene expression was tested empirically. A modified 'dynamic model' describing the response of a putative flowering factor to the temperature signal was constructed. The crucial component of the model was an unstable intermediate, produced and degraded at temperature-dependent rates. The model accounts for the number of both cold and warm hours and also for their sequence. Empirical flowering and temperature data were applied to fit the model parameters, using numerical constrained optimization techniques; the model outcomes were successfully validated. The model accurately predicted low-to-moderate flowering under winters with warm periods and properly accounted for the effects of warm periods during winter.
Collapse
Affiliation(s)
- Ilan Smoly
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Haim Elbaz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Elbaz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Lawson TO, Selva JP, Carballo J, Caccamo M, Sargent DJ, Šurbanovski N. Developmental processes in the Rosaceae through the lens of DNA and RNA methylation. PLANTA 2025; 261:54. [PMID: 39921711 PMCID: PMC11807061 DOI: 10.1007/s00425-025-04623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/15/2025] [Indexed: 02/10/2025]
Abstract
MAIN CONCLUSION This review discusses the DNA and RNA methylation pathways and their biological roles in Rosaceae developmental processes relevant for breeding and production. The Rosaceae is a plant family of great importance for human nutrition and health. Many traits and developmental processes of the Rosaceae are influenced by epigenetic methylation, functions of which are now being unravelled in several important species of this family. Methylation of DNA at the 5th position of cytosine (5mC) is a well-established epigenetic mark that affects important cellular processes such as gene expression and genome stability and is involved in a wide range of plant biological functions. Further to this, recent technological advances have uncovered other naturally occurring chemical modifications of DNA and RNA as additional layers of regulatory epigenetic information in plants. In this review we give a comprehensive summary of plant 5-methylcytosine DNA methylation mechanisms and review their components identified in species of the Rosaceae family. We detail and discuss the role of 5mC DNA methylation dynamics in Rosaceae developmental processes, including phase transition, bud development, bud dormancy, plant architecture, plant regeneration, fruit development, ripening and senescence. We then review recent advances in understanding the newly identified nucleic acid modifications, N6-adenosine methylation of DNA (6mA) and RNA (m6A) as additional epigenetic mechanisms. We summarise identified components of adenosine methylation pathways in the Rosaceae and discuss the emerging roles of this modification in plant development including recent findings in Rosaceous species. Integrating epigenetic aspects of plant development with plant genetics and physiology is crucial for understanding biological processes in Rosaceous plants.
Collapse
Affiliation(s)
| | - Juan-Pablo Selva
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - José Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | |
Collapse
|
7
|
Yin X, Liu Y, Zhao H, Su Q, Zong J, Zhu X, Bao Y. GhCOL2 Positively Regulates Flowering by Activating the Transcription of GhHD3A in Upland Cotton (Gossypium hirsutum L.). Biochem Genet 2025; 63:298-314. [PMID: 38436815 DOI: 10.1007/s10528-024-10727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Plants have evolved sophisticated signaling networks to adjust flowering time, ensuring successful reproduction. Two crucial flowering regulators, FLOWERING LOCUS T (FT) and CONSTANS (CO), play pivotal roles in regulating flowering across various species. Previous studies have indicated that suppressing Gossypium hirsutum CONSTANS-LIKE 2 (GhCOL2), a homolog of Arabidopsis CO, leads to delayed flowering in cultivated cotton. However, the underlying regulatory mechanisms remain unknown. In this study, a yeast one-hybrid and dual-LUC expression assays were used to elucidate the molecular mechanism through which GhCOL2 regulates the transcription of GhHD3A. RT-qPCR was used to examine the expression of GhCOL2 and GhHD3A. Our findings reveal that GhCOL2 directly binds to CCACA cis-elements and atypical CORE (TGTGTATG) cis-elements in the promoter regions of HEADING DATE 3 A (HD3A), thereby activating GhHD3A transcription. Notably, GhCOL2 and GhHD3A exhibited high expression levels in the adult stage and low levels in the juvenile stage. Interestingly, the expression of GhCOL2 and GhHD3A varied significant between the two cotton varieties (Tx2094 and Maxxa). In summary, our study enhances the understanding of the molecular mechanism by which cotton GhCOL2-GhHD3A regulates flowering at the molecular level. Furthermore, it contributes to a broader comprehension of the GhCOL2-GhHD3A model in G. hirsutum.
Collapse
Affiliation(s)
- Xiaoyu Yin
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ye Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Hang Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Qi Su
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Juan Zong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xueying Zhu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ying Bao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
8
|
Xingzun Z, Hongtao W. Metabolite changes during developmental transitions in Adonis amurensis Regel et Radde flowers: Insights from HPLC-MS analysis. PLoS One 2025; 20:e0313337. [PMID: 39761237 PMCID: PMC11703111 DOI: 10.1371/journal.pone.0313337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2024] [Indexed: 04/03/2025] Open
Abstract
Adonis amurensis Regel et Radde is a remarkable and important spring ephemeral plant and gained considerable attention because of its remarkable medicinal properties. Extensive research has been conducted on its therapeutic applications, physical characteristics, flowering patterns, reproductive, cultural and molecular biology. However, there is a lack of comprehensive understanding regarding the metabolic changes associated with flower developmental stages. This study was designed to investigate the changes in metabolites and their interrelationships at five distinct developmental stages of A. amurensis flower: Flower Primordium (FP), Sepal Stage (SE), Perianth Primordium (PE), Stamens Stage (SE), and Pistil Stage (PI). High-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) was utilized to investigate and characterize the metabolites associated with specific flower developmental stages. The various stages of flower development exerted a substantial influence on both the quantity and composition of metabolites present, signifying significant changes in the types and quantities of metabolites throughout the developmental progression of the flower. Metabolite Set Enrichment Analysis (MSEA) and annotation via the KEGG database highlighted enriched pathways such as flavonoid biosynthesis and plant hormone signal transduction, which are crucial for flower maturation. The highest number of differentially expressed metabolites was identified between the SE and PI stages, emphasizing a marked appreciation in metabolite expression linked to the development of reproductive organs. Key pathways such as flavonoid biosynthesis and plant hormone signal transduction were markedly enriched, underscoring their roles in flower maturation and potential pharmacological applications. Our research not only helps us in understanding the metabolomic dynamics during the flower development of A. amurensis but also emphasizes the potential pharmacological implication of stage-specific metabolites. Identifying these metabolites can help targeted bioprospecting and optimization of extraction methods to tackle the plant's full therapeutic potential, particularly in the development of treatments for cardiac insufficiency, edema, and possibly cancer.
Collapse
Affiliation(s)
- Zun Xingzun
- College of Landscape Architecture, Changchun University, Chaoyang District, Changchun City, Jilin, China
| | - Wang Hongtao
- Changbiashan Key Laboratory of Biological Germplasm Resources Evaluation and Application, Tonghua Normal University, Dongchang District, Tonghua City, Jilin, China
| |
Collapse
|
9
|
Li Z, Yu L, Umar AW, Wang J, Zhang J, Wang N, Zhang M, Yao N, Ahmad N, Liu X. Safflower CtFT genes orchestrating flowering time and flavonoid biosynthesis. BMC PLANT BIOLOGY 2024; 24:1232. [PMID: 39710673 DOI: 10.1186/s12870-024-05943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway. However, their direct impact on flowering and flavonoid biosynthesis under different light duration is elusive. RESULTS Utilizing the genome sequencing of Safflower (Jihong NO.1), the current study identifies three specific genes (CtFT1, CtFT2, and CtFT3) that exhibit upregulation in response to long-day conditions. The overexpression of CtFT2, displayed an early, whereas CtFT1 and CtFT3 late flowering phenotype in Arabidopsis thaliana. Interestingly, the transient overexpression of CtFT1 in safflower leaves caused early flowering, while overexpressing CtFT2 and CtFT3 led to late flowering. Additionally, overexpressing CtFT3 in Arabidopsis and CtFT1, CtFT2, and CtFT3 in safflower leaves, significantly increased flavonoid synthesis. CONCLUSIONS These findings showed that overexpression of CtFT genes could affect the flowering time and significantly increase the flavonoid content of safflower. The function of CtFT gene is different in safflower and Arabidopsis. This study provides valuable insights into the role of CtFT genes in flower formation and flavonoid synthesis in safflower, which may help in improving safflower breeding quality and its adaptability to diverse environmental conditions.
Collapse
Affiliation(s)
- Zhiling Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China
| | - Lili Yu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai, 519087, China
| | - Jiaruo Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China
| | - Jian Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China
- Institute for Safflower Industry Research of Shihezi University, Pharmacy College of Shihezi University, Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832003, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China
| | - Min Zhang
- Ginseng and Antler Products Testing Center of the Ministry of Agriculture PRC Jilin Agricultural University, Changchun, 130118, China
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China.
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Changchun, 130118, China.
- Institute for Safflower Industry Research of Shihezi University, Pharmacy College of Shihezi University, Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832003, China.
| |
Collapse
|
10
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
Xiao J, Li Z, Song X, Xie M, Tang Y, Lai Y, Sun B, Huang Z, Zheng Y, Li H. Functional characterization of CaSOC1 at low temperatures and its role in low-temperature escape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109222. [PMID: 39437668 DOI: 10.1016/j.plaphy.2024.109222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Environmental factors such as light and temperature tightly regulate plant flowering time. Under stressful conditions, plants inhibit vegetative growth and accelerate flowering as an emergency response. This adaptive mechanism benefits the survival of species and enhances their reproductive success. This phenomenon is often referred to as stress escape. However, the signaling pathways between low-temperature signals and flowering time are poorly understood. In this study, the MIKC transcription factor, CaSOC1, was isolated from pepper (Capsicum annuum), which showed suppressed expression under low-temperature conditions. Silencing the expression of CaSOC1 in pepper plants resulted in reduced photosynthetic capacity, inhibited vegetative growth, and increased sensitivity to low temperatures. In contrast, overexpression of CaSOC1 increased the biomass of tomato plants under normal growth conditions but suppressed their antioxidant enzyme activity at low temperatures, which negatively regulated their cold tolerance. Furthermore, intermittent low-temperature treatment with CaSOC1 overexpression promoted early flowering in tomato plants. Our findings demonstrate that CaSOC1 reduced the cold tolerance of pepper plants under short term low-temperature conditions, whereas intermittent low-temperature treatment enhanced flower bud differentiation, enabling stress escape and adaptation to long low-temperature environments.
Collapse
Affiliation(s)
- Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zixuan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueping Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minghui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Ma H, Pei J, Zhuo J, Tang Q, Hou D, Lin X. The CONSTANS-LIKE gene PeCOL13 regulates flowering through intron-retained alternative splicing in Phyllostachys edulis. Int J Biol Macromol 2024; 274:133393. [PMID: 38917922 DOI: 10.1016/j.ijbiomac.2024.133393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Woody bamboo exhibits a unique flowering characteristic with a lengthy flowering cycle, often followed by death. In many plant species, alternative splicing (AS) is a common phenomenon involved in controlling flowering. In this study, a PeCOL13 gene in moso bamboo (Phyllostachys edulis) was characterized. It produced two isoforms: PeCOL13α and PeCOL13β, due to an intron-retained AS. The PeCOL13α expressed in the vegetative phase and the reproductive phase, but the PeCOL13β didn't express during the vegetative phase and showed only a weak expression from F1 to F3 during the reproductive phase. Overexpression of PeCOL13α in rice (Oryza sativa) resulted in a delayed heading time through inhibiting the expressions of Hd3a, OsFTL1, and Ehd1 and activating the expressions of Ghd7 and RCN1. However, the PeCOL13β-overexpressed rice didn't show any significant differences in flowering compared with wild-type (WT), and the expressions of downstream flowering genes had no notable changes. Further analysis revealed that both PeCOL13α and PeCOL13β can bind to the PeFT promoter. Meanwhile, PeCOL13α can inhibit the transcription of PeFT, but PeCOL13β showed no effect. When PeCOL13α and PeCOL13β coexist, the inhibitory effect of PeCOL13α on PeFT transcription was weakened by PeCOL13β. This study provides new insights into the mechanism of bamboo flowering research.
Collapse
Affiliation(s)
- Hongjia Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Juan Zhuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Qingyun Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin' an 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Lin' an 311300, China.
| |
Collapse
|
13
|
Satake A, Hagiwara T, Nagano AJ, Yamaguchi N, Sekimoto K, Shiojiri K, Sudo K. Plant Molecular Phenology and Climate Feedbacks Mediated by BVOCs. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:605-627. [PMID: 38382906 DOI: 10.1146/annurev-arplant-060223-032108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene-environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Tomika Hagiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan;
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kanako Sekimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | | | - Kengo Sudo
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
- Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| |
Collapse
|
14
|
Cai Y, Chen L, Liu X, Yao W, Hou W. GmNF-YC4 delays soybean flowering and maturation by directly repressing GmFT2a and GmFT5a expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1370-1384. [PMID: 38695656 DOI: 10.1111/jipb.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Flowering time and growth period are key agronomic traits which directly affect soybean (Glycine max (L.) Merr.) adaptation to diverse latitudes and farming systems. The FLOWERING LOCUS T (FT) homologs GmFT2a and GmFT5a integrate multiple flowering regulation pathways and significantly advance flowering and maturity in soybean. Pinpointing the genes responsible for regulating GmFT2a and GmFT5a will improve our understanding of the molecular mechanisms governing growth period in soybean. In this study, we identified the Nuclear Factor Y-C (NFY-C) protein GmNF-YC4 as a novel flowering suppressor in soybean under long-day (LD) conditions. GmNF-YC4 delays flowering and maturation by directly repressing the expression of GmFT2a and GmFT5a. In addition, we found that a strong selective sweep event occurred in the chromosomal region harboring the GmNF-YC4 gene during soybean domestication. The GmNF-YC4Hap3 allele was mainly found in wild soybean (Glycine soja Siebold & Zucc.) and has been eliminated from G. max landraces and improved cultivars, which predominantly contain the GmNF-YC4Hap1 allele. Furthermore, the Gmnf-yc4 mutants displayed notably accelerated flowering and maturation under LD conditions. These alleles may prove to be valuable genetic resources for enhancing soybean adaptability to higher latitudes.
Collapse
Affiliation(s)
- Yupeng Cai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Yao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
15
|
Maldonado-Taipe N, Rey E, Tester M, Jung C, Emrani N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. PLANT, CELL & ENVIRONMENT 2024; 47:2027-2043. [PMID: 38391415 DOI: 10.1111/pce.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Elodie Rey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Liu J, Bennett D, Demuth M, Burchard E, Artlip T, Dardick C, Liu Z. euAP2a, a key gene that regulates flowering time in peach ( Prunus persica) by modulating thermo-responsive transcription programming. HORTICULTURE RESEARCH 2024; 11:uhae076. [PMID: 38752224 PMCID: PMC11091482 DOI: 10.1093/hr/uhae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Frequent spring frost damage threatens temperate fruit production, and breeding of late-flowering cultivars is an effective strategy for preventing such damage. However, this effort is often hampered by the lack of specific genes and markers and a lack of understanding of the mechanisms. We examined a Late-Flowering Peach (LFP) germplasm and found that its floral buds require a longer chilling period to release from their dormancy and a longer warming period to bloom than the control cultivar, two key characteristics associated with flowering time. We discovered that a 983-bp deletion in euAP2a, an APETALA2 (AP2)-related gene with known roles in regulating floral organ identity and flowering time, was primarily responsible for late flowering in LFP. This deletion disrupts an miR172 binding site, resulting in a gain-of-function mutation in euAP2a. Transcriptomic analyses revealed that at different stages of floral development, two chilling-responsive modules and four warm-responsive modules, comprising approximately 600 genes, were sequentially activated, forming a unique transcription programming. Furthermore, we found that euAP2a was transiently downregulated during the activation of these thermal-responsive modules at various stages. However, the loss of such transient, stage-specific downregulation of euAP2a caused by the deletion of miR172 binding sites resulted in the deactivation or delay of these modules in the LFP flower buds, suggesting that euAP2a acts as a transcription repressor to control floral developmental pace in peaches by modulating the thermo-responsive transcription programming. The findings shed light on the mechanisms behind late flowering in deciduous fruit trees, which is instrumental for breeding frost-tolerant cultivars.
Collapse
Affiliation(s)
- Jianyang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Dennis Bennett
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Mark Demuth
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Erik Burchard
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Tim Artlip
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zongrang Liu
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| |
Collapse
|
17
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
18
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
19
|
Ma X, Wang J, Su Z, Ma H. Developmentally dependent reprogramming of the Arabidopsis floral transcriptome under sufficient and limited water availability. BMC PLANT BIOLOGY 2024; 24:273. [PMID: 38605371 PMCID: PMC11007919 DOI: 10.1186/s12870-024-04916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Wang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhao Su
- Laboratory of Plant Stress and Development, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
21
|
Petrakis T, Ioannou P, Kitsiou F, Kavga A, Grammatikopoulos G, Karamanos N. Growth and Physiological Characteristics of Strawberry Plants Cultivated under Greenhouse-Integrated Semi-Transparent Photovoltaics. PLANTS (BASEL, SWITZERLAND) 2024; 13:768. [PMID: 38592777 PMCID: PMC10975373 DOI: 10.3390/plants13060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The integration of semi-transparent photovoltaics into the roof of greenhouses is an emerging technique used in recent years, due to the simultaneous energy and food production from the same piece of land. Although shading in many cases is a solution to maintain the desired microclimate, in the case of photovoltaic installations, the permanent shading of the crop is a challenge, due to the importance of light to the growth, morphogenesis, and other critical physiological processes. In this study, the effect of shade from semi-transparent photovoltaics on a strawberry crop (Fragaria x ananassa Duch.) was examined, in terms of growth and quality (phenolic and flavonoid concentration of fruits). According to the results, in non-shaded plants, there was a trend of larger plants, but without a significant change in leaf number, while the total number of flowers was slightly higher at the end of the cultivation period. Moreover, it was found that the percentage change between the number of ripe fruits was smaller than that of the corresponding change in fruit weight, implying the increased size of the fruits in non-shaded plants. Finally, regarding the antioxidant capacity, it was clearly demonstrated that shading increased the total phenolic content, as well as the free-radical-scavenging activity of the harvested fruits. Although the shading from the semi-transparent photovoltaics did not assist the production of large fruits, it did not affect their number and increased some of their quality characteristics. In addition, the advantageous impact of the semi-transparent photovoltaics in the energy part must not be neglected.
Collapse
Affiliation(s)
| | - Paraskevi Ioannou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.I.); (N.K.)
| | - Foteini Kitsiou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece; (F.K.); (G.G.)
| | - Angeliki Kavga
- Department of Agriculture, University of Patras, 26504 Patras, Greece;
| | - George Grammatikopoulos
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece; (F.K.); (G.G.)
| | - Nikos Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (P.I.); (N.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece
| |
Collapse
|
22
|
Lawrence-Paul EH, Lasky JR. Ontogenetic changes in ecophysiology are an understudied yet important component of plant adaptation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16294. [PMID: 38384001 PMCID: PMC10965374 DOI: 10.1002/ajb2.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Plants rely on adjustments in growth and development to respond to environmental stimuli. Developmental transitions, including germination, vegetative phase change, reproductive transition, and senescence, modify the growth patterns of plants and their requirements for survival. Consequently, the timing of developmental transitions and the developmental stage at which a plant encounters environmental stress hold significant implications for the performance of individuals, population dynamics, and community dynamics. If developmental phases, and the timing of transitions between them, are key to plant success in fluctuating environments, then understanding ontogenetic changes in plant environmental interactions is necessary to predict how plants will react to environmental stress and novel environments. Geneticists and molecular biologists have discovered many mechanisms governing developmental transitions, while developmental biologists have studied how plant form changes across ontogeny and ecologists have studied how plant form alters organismal interactions. However, there has been insufficient integration of these fields of study, hindering a comprehensive understanding of how plant development contributes to environmental adaptation and acclimation.
Collapse
Affiliation(s)
- Erica H Lawrence-Paul
- Pennsylvania State University, Department of Biology, University Park, Pennsylvania, 16802, USA
| | - Jesse R Lasky
- Pennsylvania State University, Department of Biology, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
23
|
Kaur H, Manchanda P, Sidhu GS, Chhuneja P. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina. BMC Genom Data 2024; 25:20. [PMID: 38378481 PMCID: PMC10880302 DOI: 10.1186/s12863-024-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India.
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| |
Collapse
|
24
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
25
|
Lei Y, Yu Y, Fu W, Zhu T, Wu C, Zhang Z, Yu Z, Song X, Xu J, Liang Z, Lü P, Li C. BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants. Nat Commun 2024; 15:935. [PMID: 38296999 PMCID: PMC10830565 DOI: 10.1038/s41467-024-45250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machineries that establish and maintain chromatin accessibility and gene expression by regulating chromatin structure. However, how the remodeling activities of SWI/SNF complexes are regulated in eukaryotes remains elusive. B-cell lymphoma/leukemia protein 7 A/B/C (BCL7A/B/C) have been reported as subunits of SWI/SNF complexes for decades in animals and recently in plants; however, the role of BCL7 subunits in SWI/SNF function remains undefined. Here, we identify a unique role for plant BCL7A and BCL7B homologous subunits in potentiating the genome-wide chromatin remodeling activities of SWI/SNF complexes in plants. BCL7A/B require the catalytic ATPase BRAHMA (BRM) to assemble with the signature subunits of the BRM-Associated SWI/SNF complexes (BAS) and for genomic binding at a subset of target genes. Loss of BCL7A and BCL7B diminishes BAS-mediated genome-wide chromatin accessibility without changing the stability and genomic targeting of the BAS complex, highlighting the specialized role of BCL7A/B in regulating remodeling activity. We further show that BCL7A/B fine-tune the remodeling activity of BAS complexes to generate accessible chromatin at the juvenility resetting region (JRR) of the microRNAs MIR156A/C for plant juvenile identity maintenance. In summary, our work uncovers the function of previously elusive SWI/SNF subunits in multicellular eukaryotes and provides insights into the mechanisms whereby plants memorize the juvenile identity through SWI/SNF-mediated control of chromatin accessibility.
Collapse
Affiliation(s)
- Yawen Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zewang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
26
|
Xue G, Wu W, Fan Y, Ma C, Xiong R, Bai Q, Yao X, Weng W, Cheng J, Ruan J. Genome-wide identification, evolution, and role of SPL gene family in beet (Beta vulgaris L.) under cold stress. BMC Genomics 2024; 25:101. [PMID: 38262939 PMCID: PMC10804631 DOI: 10.1186/s12864-024-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843199, Aksu, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Ruiqi Xiong
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
27
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
28
|
Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, Kajita Y, Toyama H, Satake A. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. PLANT, CELL & ENVIRONMENT 2024; 47:174-186. [PMID: 37691326 DOI: 10.1111/pce.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Climate warming is causing shifts in key life-history events, including flowering time. To assess the impacts of increasing temperature on flowering phenology, it is crucial to understand the transcriptional changes of genes underlying the phenological shifts. Here, we conducted a comprehensive investigation of genes contributing to the flowering phenology shifts in response to increasing temperature by monitoring the seasonal expression dynamics of 293 flowering-time genes along latitudinal gradients in the perennial herb, Arabidopsis halleri. Through transplant experiments at northern, southern and subtropical study sites in Japan, we demonstrated that the flowering period was shortened as latitude decreased, ultimately resulting in the loss of flowering opportunity in subtropical climates. The key transcriptional changes underlying the shortening of the flowering period and the loss of flowering opportunity were the diminished expression of floral pathway integrator genes and genes in the gibberellin synthesis and aging pathways, all of which are suppressed by increased expression of FLOWERING LOCUS C, a central repressor of flowering. These results suggest that the upper-temperature limit of reproduction is governed by a relatively small number of genes that suppress reproduction in the absence of winter cold.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ai Nagahama
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yui Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hironori Toyama
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Yuan C, He RR, Zhao WL, Chen YQ, Zhang YC. Insights into the roles of long noncoding RNAs in the communication between plants and the environment. THE PLANT GENOME 2023; 16:e20277. [PMID: 36345558 DOI: 10.1002/tpg2.20277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses. In this review, we examine the classification, mechanisms, and functions of lncRNAs and then emphasize the roles played by these lncRNAs in the communication between plants and the environment mainly with respect to the following environmental factors: temperature, light, water, salt stress, and nutrient deficiencies. We also discuss the consensus among researchers and the remaining challenges and underscore the exciting ways lncRNAs may affect the biology of plants.
Collapse
Affiliation(s)
- Chao Yuan
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Wen-Long Zhao
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen Univ., Guangzhou, 510275, P. R. China
- MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen Univ., Guangzhou, 510275, China
| |
Collapse
|
30
|
Zhou D, Zhao S, Zhou H, Chen J, Huang L. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111889. [PMID: 37805055 DOI: 10.1016/j.plantsci.2023.111889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are important regulators in plant growth and development. Here the function of a lncRNA fragment was studied, which was predicted as an endogenous target mimic (eTM) of miR156 in Brassica campesrtis. Unexpectedly, the transformation of this lncRNA into Arabidopsis thaliana neither inhibited the expression of miR156a nor resulted in any phenotypes that differed from the control plants (CK). The full-length sequence of the lncRNA (named bra-miR156HG) was then obtained using RACE and transferred into A. thaliana. The transgenic plants displayed a delay in flowering time, an increasing number of rosette leaves, and a changed morphology of cauline leaves, which was similar to the plants that expressed bra-miR156a. In contrast, the overexpression of bra-miR156HG in B. campestris resulted in an increased tip angle of leaves and changed the length-width ratio of leaves at different nodes, suggesting that bra-miR156HG may be involved in regulating the leaf morphology. Collectively, our study showed that bra-miR156HG functions as a precursor of bra-miR156a involved in regulating plant flowering time and leaf development under different biological backgrounds. The secondary structure of lncRNA is essential not only for the normal roles that it plays but also for expanding the functional diversities.
Collapse
Affiliation(s)
- Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Shengke Zhao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Jingwen Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
31
|
Wei Y, Jin J, Lin Z, Lu C, Gao J, Li J, Xie Q, Zhu W, Zhu G, Yang F. Genome-Wide Identification, Expression, and Molecular Characterization of the CONSTANS-like Gene Family in Seven Orchid Species. Int J Mol Sci 2023; 24:16825. [PMID: 38069148 PMCID: PMC10706594 DOI: 10.3390/ijms242316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The orchid is one of the most distinctive and highly valued flowering plants. Nevertheless, the CONSTANS-like (COL) gene family plays significant roles in the control of flowering, and its functions in Orchidaceae have been minimally explored. This research identified 68 potential COL genes within seven orchids' complete genome, divided into three groups (groups I, II, and III) via a phylogenetic tree. The modeled three-dimensional structure and the conserved domains exhibited a high degree of similarity among the orchid COL proteins. The selection pressure analysis showed that all orchid COLs suffered a strong purifying selection. Furthermore, the orchid COL genes exhibited functional and structural heterogeneity in terms of collinearity, gene structure, cis-acting elements within their promoters, and expression patterns. Moreover, we identified 50 genes in orchids with a homology to those involved in the COL transcriptional regulatory network in Arabidopsis. Additionally, the first overexpression of CsiCOL05 and CsiCOL09 in Cymbidium sinense protoplasts suggests that they may antagonize the regulation of flowering time and gynostemium development. Our study will undoubtedly provide new resources, ideas, and values for the modern breeding of orchids and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.J.); (Z.L.); (C.L.); (J.G.); (J.L.); (Q.X.); (W.Z.); (G.Z.)
| |
Collapse
|
32
|
DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. THE NEW PHYTOLOGIST 2023; 240:80-91. [PMID: 37507820 DOI: 10.1111/nph.19131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Age-related resistance to microbe invasion is a commonly accepted concept in plant pathology. However, the impact of such age-dependent interactive phenomena is perhaps not yet sufficiently recognized by the broader plant science community. Toward cataloging an understanding of underlying mechanisms, this review explores recent molecular studies and their relevance to the concept. Examples describe differences in genetic background, transcriptomics, hormonal balances, protein-mediated events, and the contribution by short RNA-controlled gene silencing events. Throughout, recent findings with viral systems are highlighted as an illustration of the complexity of the interactions. It will become apparent that instead of uncovering a unifying explanation, we unveiled only trends. Nevertheless, with a degree of confidence, we propose that the process of plant age-related defenses is actively regulated at multiple levels. The overarching goal of this control for plants is to avoid a constitutive waste of resources, especially at crucial metabolically draining early developmental stages.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Veria Alvarado
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
33
|
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 2023; 42:112729. [PMID: 37405922 DOI: 10.1016/j.celrep.2023.112729] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.
Collapse
Affiliation(s)
- Wen Jie Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yewei Zhou
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
34
|
Xu H, Wang X, Wei J, Zuo Y, Wang L. The Regulatory Networks of the Circadian Clock Involved in Plant Adaptation and Crop Yield. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091897. [PMID: 37176955 PMCID: PMC10181312 DOI: 10.3390/plants12091897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Global climatic change increasingly threatens plant adaptation and crop yields. By synchronizing internal biological processes, including photosynthesis, metabolism, and responses to biotic and abiotic stress, with external environmental cures, such as light and temperature, the circadian clock benefits plant adaptation and crop yield. In this review, we focus on the multiple levels of interaction between the plant circadian clock and environmental factors, and we summarize recent progresses on how the circadian clock affects yield. In addition, we propose potential strategies for better utilizing the current knowledge of circadian biology in crop production in the future.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wei
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Siqueira JA, Batista-Silva W, Zsögön A, Fernie AR, Araújo WL, Nunes-Nesi A. Plant domestication: setting biological clocks. TRENDS IN PLANT SCIENCE 2023; 28:597-608. [PMID: 36822959 DOI: 10.1016/j.tplants.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 05/22/2023]
Abstract
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Willian Batista-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
36
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
37
|
Li Y, Chen T, Khan WU, An X. Regulatory roles of miRNAs associated with the aging pathway in tree vegetative phase changes. FORESTRY RESEARCH 2023; 3:9. [PMID: 39526265 PMCID: PMC11524259 DOI: 10.48130/fr-2023-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 11/16/2024]
Abstract
The transition from the vegetative juvenile phase to the adult phase is a crucial event in the life cycle of flowering plants, with flowering being the most important milestone. While the regulatory pathways of flowering have been well established in model plants such as Arabidopsis and a few crops, the flowering regulation pathways in perennial forest trees remain poorly understood. This paper summarizes the regulation of flowering time by miR156 and miR172, which are the main members of the aging pathway, and also presents new information on the role of miR159 and miR169. These two microRNAs interact with miR156 and miR172 to jointly regulate flowering time in forest trees. Overall, this review sheds light on the complex regulatory mechanisms underlying flowering time in forest trees and provides insights into potential targets for manipulating the flowering time of these economically and ecologically important species.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tingting Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wasif Ullah Khan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
38
|
Cheng H, Zhang J, Zhang Y, Si C, Wang J, Gao Z, Cao P, Cheng P, He Y, Chen S, Chen F, Jiang J. The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad130. [PMID: 37018757 DOI: 10.1093/jxb/erad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 06/19/2023]
Abstract
Floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa) as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein delays flowering in rice and an orthologous gene CmNRRa inhibits flowering in chrysanthemum; however, the mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 family member Cm14-3-3µ as a CmNRRa-interacting protein. Biochemical assays using a combination of bimolecular fluorescence complementation (BiFC), pull-down, and Co-immunoprecipitation (Co-IP) were performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ in chrysanthemum. In addition, expression analysis showed that CmNRRa, but not Cm14-3-3µ, responded to the diurnal rhythm, whereas both genes were highly expressed in the leaves. Moreover, the function in flowering time regulation of Cm14-3-3µ is similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1), but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaona Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juanjuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Gao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Peipei Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Ramazan S, Jan N, John R. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature. BMC PLANT BIOLOGY 2023; 23:183. [PMID: 37020183 PMCID: PMC10074880 DOI: 10.1186/s12870-023-04198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Low temperature (LT) stress is one of the major environmental stress factors affecting the growth and yield of maize (Zea mays L.). Hence, it is important to unravel the molecular mechanisms behind LT stress tolerance to improve molecular breeding in LT tolerant genotypes. In the present study, two maize genotypes viz. Gurez local from Kashmir Himalaya and tropical grown GM6, were dissected for their LT stress response in terms of accumulation of differentially regulated proteins (DRPs). Leaf proteome analysis at three-leaf stage of maize seedlings subjected to LT stress of 6 °C for a total of 12 h duration was performed using two dimensional gel electrophoresis (2D-PAGE) followed by subsequent identification of the proteins involved. RESULTS After MALDI-TOF (Matrix-assisted laser desorption/ionization-time of flight) and bioinformatics analysis, 19 proteins were successfully identified in Gurez local, while as 10 proteins were found to get successful identification in GM6. The interesting observations from the present investigation is the identification of three novel proteins viz. threonine dehydratase biosynthetic chloroplastic, thylakoidal processing peptidase 1 chloroplastic, and nodulin-like protein, whose role in abiotic stress tolerance, in general, and LT stress, in particular, has not been reported so far. It is important to highlight here that most of LT responsive proteins including the three novel proteins were identified from Gurez local only, owing to its exceptional LT tolerance. From the protein profiles, obtained in both genotypes immediately after LT stress perception, it was inferred that stress responsive protein accumulation and their expression fashion help the Gurez local in seedling establishment and withstand unfavorable conditions as compared to GM6. This was inferred from the findings of pathway enrichment analysis like regulation of seed growth, timing of floral transition, lipid glycosylation, and aspartate family amino acid catabolic processes, besides other key stress defense mechanisms. However, in GM6, metabolic pathways enriched were found to be involved in more general processes including cell cycle DNA replication and regulation of phenylpropanoid metabolism. Furthermore, majority of the qRT-PCR results of the selected proteins demonstrated positive correlation between protein levels and transcript abundance, thereby strengthening our findings. CONCLUSIONS In conclusion, our findings reported majority of the identified proteins in Gurez local exhibiting up-regulated pattern under LT stress as compared to GM6. Furthermore, three novel proteins induced by LT stress were found in Gurez local, requiring further functional validation. Therefore, our results offer more insights for elucidating the molecular networks mediating LT stress tolerance in maize.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Nelofer Jan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190 006, India.
| |
Collapse
|
40
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
41
|
Paliocha M, Schubert M, Preston JC, Fjellheim S. Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Mol Phylogenet Evol 2023; 179:107678. [PMID: 36535518 DOI: 10.1016/j.ympev.2022.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.
Collapse
Affiliation(s)
- Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Jill Christine Preston
- Department of Plant Biology, College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| |
Collapse
|
42
|
Tang Q, Zhao YN, Luo S, Lu S. AKR2A is involved in the flowering process of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2022; 17:2100685. [PMID: 35867124 PMCID: PMC9311315 DOI: 10.1080/15592324.2022.2100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Flowering at an appropriate time is crucial for plant development and reproduction. In Arabidopsis, the flowering process is managed by a regulatory network composed of at least 6 independent pathways. As a core protein in flowering regulation, FLOWERING LOCUS T (FT) participates in almost all these pathways. ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) was initially discovered as a 14-3-3-interacting protein. It was then found to be involved in the transportation of chloroplast outer membrane proteins and the resistance to low-temperature stress. Here, we identified an akr2a null mutant with a delayed flowering phenotype. Through the quantitative real-time PCR (qRT-PCR) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that AKR2A modulates the flowering process through its interaction with FT.
Collapse
Affiliation(s)
- Qian Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Liu J, Zhang Z, Li Y, Han J, Si H, Mi Y, Wang S, Wei X, Yang H, Sun Y, Li Y. Effects of the vegetative propagation method on juvenility in Robinia pseudoacacia L .. FORESTRY RESEARCH 2022; 2:17. [PMID: 39525420 PMCID: PMC11524284 DOI: 10.48130/fr-2022-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/20/2022] [Indexed: 11/16/2024]
Abstract
Vegetative propagation is an important method of reproduction and rejuvenation in forestry. The growth and development of asexually propagated trees are influenced by the age and position of the propagule on the plant, effects referred to as cyclophysis and topophysis, respectively. Due to the long lifespans and large body sizes of woody trees, the selection of propagules is critically important. Here, we used three vegetative propagation methods (shoot cutting, root sprouting, and root cutting) to study the effect of different regeneration methods on juvenility of the resulting black locust plants, with seed-derived seedlings used as a control. Most characteristics of plantlets generated by root-sprouting were similar to those of seed-derived seedlings, including leaf traits and leaf anatomical structure. However, there were significant differences between the plantlets derived from shoot-cuttings and seedlings from seeds. Furthermore, the data showed that some of these age-related small RNAs and genes differed in expression among propagation methods and between plantlets/seedlings and mature trees. These age-related small RNAs, genes, and transcription factors may be used as molecular markers of juvenility and phase transitions in black locust. Our results provide useful information for the optimal propagation of woody trees and for further research into the mechanisms of root regeneration.
Collapse
Affiliation(s)
- Jie Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Zijie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yapeng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Juan Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Huayu Si
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yueqi Mi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Shaoming Wang
- State-Owned Quanbaoshan Forestry Station in Luoning County of He’nan Province, Luoyang, People's Republic of China
| | - Xiaoning Wei
- State-Owned Lvcun Forestry Farm in Luoning County of He’nan Province, Luoyang, People’s Republic of China
| | - Hao Yang
- Xiaoxian Forestry Development Center of An’hui Province, Suzhou, People's Republic of China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
44
|
Yao W, Li C, Fu H, Yang M, Wu H, Ding Y, Li L, Lin S. Genome-Wide Analysis of SQUAMOSA-Promoter-Binding Protein-like Family in Flowering Pleioblastus pygmaeus. Int J Mol Sci 2022; 23:ijms232214035. [PMID: 36430513 PMCID: PMC9695801 DOI: 10.3390/ijms232214035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL genes in reproductive growth are undisclosed in bamboo plants. In the study, a total of 28 SPLs were screened from an ornamental dwarf bamboo species, Pleioblastus pygmaeus. Phylogenetic analysis indicates that 183 SPLs from eight plant species can be classified into nine subfamilies, and the 28 PpSPLs are distributed among eight subfamilies. Homologous analysis shows that as many as 32 pairs of homologous genes were found between P. pygmaeus and rice, and 83 pairs were found between P. pygmaeus and Moso bamboo, whose Ka/Ks values are all <1. MiRNA target prediction reveals that 13 out of the 28 PpSPLs have recognition sites complementary to miRNA156. To screen the SPLs involved in the reproductive growth of bamboo plants, the mRNA abundance of the 28 PpSPLs was profiled in the different tissues of flowering P. pygmaeus and non-flowering plants by RNA-Seq. Moreover, the relative expression level of eight PpSPLs is significantly higher in flowering P. pygmaeus than that in non-flowering plants, which was also validated by RT-qPCR. Combined with phylogenetic analysis and homologous analysis, the eight significant, differentially expressed PpSPLs were identified to be associated with the reproductive process and flower organ development. Among them, there are four potential miRNA156-targeting PpSPLs involved in the flowering process. Of significant interest in the study is the identification of 28 SPLs and the exploration of four key flowering-related SPLs from P. pygmaeus, which provides a theoretic basis for revealing the underlying functions of SPLs in the reproductive growth of bamboo plants.
Collapse
Affiliation(s)
- Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chuanzhe Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Huajun Fu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Meng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| |
Collapse
|
45
|
Liu X, Zhao D, Ou C, Hao W, Zhao Z, Zhuang F. Genome-wide identification and characterization profile of phosphatidy ethanolamine-binding protein family genes in carrot. Front Genet 2022; 13:1047890. [PMID: 36437940 PMCID: PMC9696379 DOI: 10.3389/fgene.2022.1047890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2023] Open
Abstract
Members of the family of Phosphatidy Ethanolamine-Binding Protein (PEBP) have been shown to be key regulators of the transition of plants from vegetative to reproductive phases. Here, a total of 12 PEBP proteins were identified in the carrot (Daucus carota L.) genome and classified into FT-like (4), TFL1-like (6), and MFT-like 2) subfamilies, that had different lengths (110-267 aa) and were distributed unevenly across seven chromosomes. Moreover, 13 and 31 PEBP proteins were identified in other two Apiaceae species, celery (Apium graveolens L.) and coriander (Coriandrum sativum L.). The phylogenetic and evolutionary results of these PEBP family proteins were obtained based on the protein sequences. In the three Apiaceae species, purifying selection was the main evolutionary force, and WGD, segmental duplication, and dispersed duplication have played key roles in the PEBP family expansion. The expression analysis showed that carrot PEBP genes exhibited relatively broad expression patterns across various tissues. In the period of bolting to flowering, the carrot FT-like subfamily genes were upregulated as positive regulators, and TFL1-like subfamily genes remained at lower expression levels as inhibitors. More interestingly, the members of carrot FT-like genes had different temporal-spatial expression characteristics, suggesting that they have different regulatory functions in the carrot reproductive phase. In summary, this study contributes to our understanding of the PEBP family proteins and provides a foundation for exploring the mechanism of carrot bolting and flowering for the breeding of cultivars with bolting resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Feiyun Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
46
|
Gafni I, Rai AC, Halon E, Zviran T, Sisai I, Samach A, Irihimovitch V. Expression Profiling of Four Mango FT/TFL1-Encoding Genes under Different Fruit Load Conditions, and Their Involvement in Flowering Regulation. PLANTS 2022; 11:plants11182409. [PMID: 36145810 PMCID: PMC9506463 DOI: 10.3390/plants11182409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Plant flowering is antagonistically modulated by similar FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) proteins. In mango (Mangifera indica L.), flowering is induced by cold temperatures, unless the tree is juvenile or the adult tree had a high fruit load (HFL) in the summer. Here, we studied the effects of juvenility and fruit load on the expression of four MiFT/TFL1 genes cloned from the mango ‘Shelly’ cultivar. Ectopic expression of MiFT1 in Arabidopsis resulted in early flowering, whereas over-expression of MiFT2 and the two cloned MiTFL1 genes repressed flowering. Moreover, juvenility was positively correlated with higher transcript levels of MiFT2 and both MiTFL1s. In trees with a low fruit load, leaf MiFT1 expression increased in winter, whereas HFL delayed its upregulation. MiFT2 expression was upregulated in both leaves and buds under both fruit load conditions. Downregulation of both MITFL1s in buds was associated with a decrease in regional temperatures under both conditions; nevertheless, HFL delayed the decrease in their accumulation. Our results suggest that cold temperature has opposite effects on the expression of MiFT1 and the MiTFL1s, thereby inducing flowering, whereas HFL represses flowering by both suppressing MiFT1 upregulation and delaying MiTFL1s downregulation. The apparent flowering-inhibitory functions of MiFT2 are discussed.
Collapse
Affiliation(s)
- Itamar Gafni
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Eyal Halon
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Tali Zviran
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Isaac Sisai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vered Irihimovitch
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
- Correspondence: ; Tel.: +972-3-9683965; Fax: +972-3-9669583
| |
Collapse
|
47
|
Mattioli R, Francioso A, Trovato M. Proline Affects Flowering Time in Arabidopsis by Modulating FLC Expression: A Clue of Epigenetic Regulation? PLANTS 2022; 11:plants11182348. [PMID: 36145748 PMCID: PMC9505445 DOI: 10.3390/plants11182348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as FLOWERING LOCUS C (FLC). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in p5cs1 p5cs2/P5CS2 proline-deficient mutants and found a significant upregulation of FLC expression. Moreover, proline-deficient mutants exhibited an adult vegetative phase shorter than wild-type samples, with a trichome distribution reminiscent of plants with high FLC expression. In addition, the vernalization-induced downregulation of FLC abolished the flowering delay of p5cs1 p5cs2/P5CS2, and mutants homozygous for p5cs1 and flc-7 and heterozygous for P5CS2 flowered as early as the flc-7 parental mutant, indicating that FLC acts downstream of P5CS1/P5CS2 and is necessary for proline-modulated flowering. The overall data indicate that the effects of proline on flowering time are mediated by FLC.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Francioso
- Instituto Universitario de Bio-Orgánica Antonio González, 38200 San Cristóbal de La Laguna, Spain
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2411
| |
Collapse
|
48
|
BnGF14-2c Positively Regulates Flowering via the Vernalization Pathway in Semi-Winter Rapeseed. PLANTS 2022; 11:plants11172312. [PMID: 36079694 PMCID: PMC9460199 DOI: 10.3390/plants11172312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
14-3-3s are general regulatory factors (GF14s or GRFs) involved in a variety of physiological regulations in plants, including the control of flowering time. However, there are poorly relevant reports in rapeseed so far. In this study, we identified a homologous 14-3-3 gene BnGF14-2c (AtGRF2_Like in Brassica napus) in rapeseed based on bioinformatic analysis by using the sequences of the flowering-related 14-3-3s in other plant species. Then, we found that overexpression of BnGF14-2c in the semi-winter rapeseed “93275” promoted flowering without vernalization. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation analysis indicated that BnGF14-2c may interact with two vernalization-related flowering regulators BnFT.A02 and BnFLC.A10., respectively. qPCR analysis showed that the expression of BnFT (AtFT_Like) was increased and the expression of two selected vernalization-related genes were reduced in the overexpression transgenic plants. Further investigation on subcellular localization demonstrated that BnGF14-2c localized in the nucleus and cytoplasm. The results of RNA-seq analysis and GUS staining indicated that BnGF14-2c is ubiquitously expressed except for mature seed coat. In general, the interaction of 14-3-3 and FLC was firstly documented in this study, indicating BnGF14-2c may act as a positive regulator of flowering in rapeseed, which is worthy for more in-depth exploration.
Collapse
|
49
|
Li X, Hu D, Cai L, Wang H, Liu X, Du H, Yang Z, Zhang H, Hu Z, Huang F, Kan G, Kong F, Liu B, Yu D, Wang H. CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. PLANT PHYSIOLOGY 2022; 190:480-499. [PMID: 35640995 PMCID: PMC9434205 DOI: 10.1093/plphys/kiac260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 06/02/2023]
Abstract
Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.
Collapse
Affiliation(s)
- Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Cai
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiqi Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huairen Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Chmura HE, Williams CT. A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Horm Behav 2022; 144:105215. [PMID: 35687987 DOI: 10.1016/j.yhbeh.2022.105215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The regulation of seasonality has been an area of interest for decades, yet global climate change has created extra urgency in the quest to understand how sensory circuits and neuroendocrine control systems interact to generate flexibility in biological timekeeping. The capacity of temperature to alter endogenous or photoperiod-regulated neuroendocrine mechanisms driving seasonality, either as a direct cue or through temperature-dependent effects on energy and metabolism, is at the heart of this phenological flexibility. However, until relatively recently, little research had been done on the integration of temperature information in canonical seasonal neuroendocrine pathways, particularly in vertebrates. We review recent advances from research in vertebrates that deepens our understanding of how temperature cues are perceived and integrated into seasonal hypothalamic thyroid hormone (TH) signaling, which is a critical regulator of downstream seasonal phenotypic changes such as those regulated by the BPG (brain-pituitary-gonadal) axis. Temperature perception occurs through cutaneous transient receptor potential (TRP) neurons, though sensitivity of these neurons varies markedly across taxa. Although photoperiod is the dominant cue used to trigger seasonal physiology or entrain circannual clocks, across birds, mammals, fish, reptiles and amphibians, seasonality appears to be temperature sensitive and in at least some cases this appears to be related to phylogenetically conserved TH signaling in the hypothalamus. Nevertheless, the exact mechanisms through which temperature modulates seasonal neuroendocrine pathways remains poorly understood.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA; Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave., Missoula, MT 59801, USA.
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|