1
|
Kim YK. Knockout of OsWOX13 moderately delays flowering in rice under natural long-day conditions. Biosci Biotechnol Biochem 2024; 88:1307-1315. [PMID: 39164217 DOI: 10.1093/bbb/zbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are sensitive to photoperiods and are also equipped with systems to adjust their flowering time in response to various changes in the environment and developmental hormones. In the present study, previously generated rice OsWOX13 overexpression and newly generated OsWOX13 knockout lines constructed via CRISPR/Cas9 technology flowered 10 days earlier and 4-6 days later than the wild type, respectively. Quantitative real-time polymerase chain reaction analyses revealed that OsWOX13 might be involved in drought escape responses through the b-ZIP TRANSCRIPTION FACTOR 23 signaling pathway during rice flowering via photoperiod signaling genes such as Grain number, plant height and heading date 7, Early heading date 1, RICE FLOWERING LOCUS T1, Heading date 3a, and MADS14. Future investigations of OsWOX13 may provide insight into how plants adjust their flowering under stress conditions and how OsWOX13 could be precisely controlled to achieve maximum productivity in rice breeding.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Singh SK, Srivastava A. Decoding the plant clock: a review of mathematical models for the circadian regulatory network. PLANT MOLECULAR BIOLOGY 2024; 114:93. [PMID: 39207587 DOI: 10.1007/s11103-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Most organisms have evolved specific mechanisms to respond to changes in environmental conditions such as light and temperature over the course of day. These periodic changes in the physiology and behaviour of organisms, referred to as circadian rhythms, are a consequence of intricate molecular mechanisms in the form of transcription and translational feedback loops. The plant circadian regulatory network is a complex web of interconnected feedback loops involving various transcription factors such as CCA1, LHY, PRRs, TOC1, LUX, ELF3, ELF4, RVE8, and more. This network enables plants to adapt and thrive in diverse environmental conditions. It responds to entrainment signals, including light, temperature, and nutrient concentrations and interacts with most of the physiological functions such as flowering, growth and stress response. Mathematical modelling of these gene regulatory networks enables a deeper understanding of not only the function but also the perturbations that may affect the plant growth and function with changing climate. Over the years, numerous mathematical models have been developed to understand the diverse aspects of plant circadian regulation. In this review, we have delved into the systematic development of these models, outlining the model components and refinements over time. We have also highlighted strengths and limitations of each of the models developed so far. Finally, we conclude the review by describing the prospects for investigation and advancement of these models for better understanding of plant circadian regulation.
Collapse
Affiliation(s)
- Shashank Kumar Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Helfrich-Förster C. Erwin Bünning and Wolfgang Engelmann: establishing the involvement of the circadian clock in photoperiodism. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:481-493. [PMID: 38805044 PMCID: PMC11226508 DOI: 10.1007/s00359-024-01704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
In 1936, Erwin Bünning published his groundbreaking work that the endogenous clock is used to measure day length for initiating photoperiodic responses. His publication triggered years of controversial debate until it ultimately became the basic axiom of rhythm research and the theoretical pillar of chronobiology. Bünning's thesis is frequently quoted in the articles in this special issue on the subject of "A clock for all seasons". However, nowadays only few people know in detail about Bünning's experiments and almost nobody knows about the contribution of his former doctoral student, Wolfgang Engelmann, to his theory because most work on this topic is published in German. The aim of this review is to give an overview of the most important experiments at that time, including Wolfgang Engelmann's doctoral thesis, in which he demonstrated the importance of the circadian clock for photoperiodic flower induction in the Flaming Katy, Kalanchoë blossfeldiana, but not in the Red Morning Glory, Ipomoea coccinea.
Collapse
|
4
|
Schmal C. The seasons within: a theoretical perspective on photoperiodic entrainment and encoding. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:549-564. [PMID: 37659985 PMCID: PMC11226496 DOI: 10.1007/s00359-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Circadian clocks are internal timing devices that have evolved as an adaption to the omnipresent natural 24 h rhythmicity of daylight intensity. Properties of the circadian system are photoperiod dependent. The phase of entrainment varies systematically with season. Plastic photoperiod-dependent re-arrangements in the mammalian circadian core pacemaker yield an internal representation of season. Output pathways of the circadian clock regulate photoperiodic responses such as flowering time in plants or hibernation in mammals. Here, we review the concepts of seasonal entrainment and photoperiodic encoding. We introduce conceptual phase oscillator models as their high level of abstraction, but, yet, intuitive interpretation of underlying parameters allows for a straightforward analysis of principles that determine entrainment characteristics. Results from this class of models are related and discussed in the context of more complex conceptual amplitude-phase oscillators as well as contextual molecular models that take into account organism, tissue, and cell-type-specific details.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Yu J, Yang Y, Luo L, Feng F, Saeed S, Luo J, Fang C, Zhou J, Li K. Photoperiod-Dependent Nutrient Accumulation in Rice Cultivated in Plant Factories: A Comparative Metabolomic Analysis. Foods 2024; 13:1544. [PMID: 38790844 PMCID: PMC11121446 DOI: 10.3390/foods13101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Plant factories offer a promising solution to some of the challenges facing traditional agriculture, allowing for year-round rapid production of plant-derived foods. However, the effects of conditions in plant factories on metabolic nutrients remain to be explored. In this study, we used three rice accessions (KongYu131, HuangHuaZhan, and Kam Sweet Rice) as objectives, which were planted in a plant factory with strict photoperiods that are long-day (12 h light/12 h dark) or short-day (8 h light/16 h dark). A total of 438 metabolites were detected in the harvested rice grains. The difference in photoperiod leads to a different accumulation of metabolites in rice grains. Most metabolites accumulated significantly higher levels under the short-day condition than the long-day condition. Differentially accumulated metabolites were enriched in the amino acids and vitamin B6 pathway. Asparagine, pyridoxamine, and pyridoxine are key metabolites that accumulate at higher levels in rice grains harvested from the short-day photoperiod. This study reveals the photoperiod-dependent metabolomic differences in rice cultivated in plant factories, especially the metabolic profiling of taste- and nutrition-related compounds.
Collapse
Affiliation(s)
- Jingyao Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Yu Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Lanjun Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| | - Fang Feng
- Wuhan Greenfafa Institute of Novel Genechip R&D Co., Ltd., Wuhan 430070, China;
| | - Sana Saeed
- Department of Plant Breeding & Genetics, University of Sargodha, Sargodha 40100, Pakistan;
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
| | - Chuanying Fang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
| | - Junjie Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Life and Health Sciences, Hainan University, Haikou 570288, China
| | - Kang Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (J.Y.); (Y.Y.); (J.L.); (C.F.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China;
| |
Collapse
|
7
|
Huang PK, Schmitt J, Runcie DE. Exploring the molecular regulation of vernalization-induced flowering synchrony in Arabidopsis. THE NEW PHYTOLOGIST 2024; 242:947-959. [PMID: 38509854 DOI: 10.1111/nph.19680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.
Collapse
Affiliation(s)
- Po-Kai Huang
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Johanna Schmitt
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Lee N, Ozaki Y, Hempton AK, Takagi H, Purusuwashi S, Song YH, Endo M, Kubota A, Imaizumi T. The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. THE NEW PHYTOLOGIST 2023; 239:208-221. [PMID: 37084001 PMCID: PMC10244125 DOI: 10.1111/nph.18932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yusuke Ozaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Savita Purusuwashi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Young Hun Song
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
9
|
Abstract
Photoperiod-measuring mechanisms allow organisms to anticipate seasonal changes to align reproduction and growth with appropriate times of the year. This review provides historical and modern context to studies of plant photoperiodism. We describe how studies of photoperiodic flowering in plants led to the first theoretical models of photoperiod-measuring mechanisms in any organism. We discuss how more recent molecular genetic studies in Arabidopsis and rice have revisited these concepts. We then discuss how photoperiod transcriptomics provides new lessons about photoperiodic gene regulatory networks and the discovery of noncanonical photoperiod-measuring systems housed in metabolic networks of plants. This leads to an examination of nonflowering developmental processes controlled by photoperiod, including metabolism and growth. Finally, we highlight the importance of understanding photoperiodism in the context of climate change, delving into the rapid latitudinal migration of plant species and the potential role of photoperiod-measuring systems in generating photic barriers during migration.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA;
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany;
| |
Collapse
|
10
|
Xie J, Wang L, Zheng H. Molecular Basis to Integrate Microgravity Signals into the Photoperiodic Flowering Pathway in Arabidopsis thaliana under Spaceflight Condition. Int J Mol Sci 2021; 23:63. [PMID: 35008489 PMCID: PMC8744661 DOI: 10.3390/ijms23010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the effects of spaceflight on plant flowering regulation is important to setup a life support system for long-term human space exploration. However, the way in which plant flowering is affected by spaceflight remains unclear. Here, we present results from our latest space experiments on the Chinese spacelab Tiangong-2, in which Arabidopsis wild-type and transgenic plants pFT::GFP germinated and grew as normally as their controls on the ground, but the floral initiation under the long-day condition in space was about 20 days later than their controls on the ground. Time-course series of digital images of pFT::GFP plants showed that the expression rhythm of FT in space did not change, but the peak appeared later in comparison with those of their controls on the ground. Whole-genome microarray analysis revealed that approximately 16% of Arabidopsis genes at the flowering stage changed their transcript levels under spaceflight conditions in comparison with their controls on the ground. The GO terms were enriched in DEGs with up-regulation of the response to temperature, wounding, and protein stabilization and down-regulation of the function in circadian rhythm, gibberellins, and mRNA processes. FT and SOC1 could act as hubs to integrate spaceflight stress signals into the photoperiodic flowering pathway in Arabidopsis in space.
Collapse
Affiliation(s)
| | | | - Huiqiong Zheng
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.X.); (L.W.)
| |
Collapse
|
11
|
Calderan-Rodrigues MJ, Luzarowski M, Monte-Bello CC, Minen RI, Zühlke BM, Nikoloski Z, Skirycz A, Caldana C. Proteogenic Dipeptides Are Characterized by Diel Fluctuations and Target of Rapamycin Complex-Signaling Dependency in the Model Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:758933. [PMID: 35003157 PMCID: PMC8727597 DOI: 10.3389/fpls.2021.758933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.
Collapse
Affiliation(s)
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Boris M. Zühlke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
12
|
A framework of artificial light management for optimal plant development for smart greenhouse application. PLoS One 2021; 16:e0261281. [PMID: 34898651 PMCID: PMC8668093 DOI: 10.1371/journal.pone.0261281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Smart greenhouse farming has emerged as one of the solutions to global food security, where farming productivity can be managed and improved in an automated manner. While it is known that plant development is highly dependent on the quantity and quality of light exposure, the specific impact of the different light properties is yet to be fully understood. In this study, using the model plant Arabidopsis, we systematically investigate how six different light properties (i.e., photoperiod, light offset, intensity, phase of dawn, duration of twilight and period) would affect plant development i.e., flowering time and hypocotyl (seedling stem) elongation using an established mathematical model of the plant circadian system relating light input to flowering time and hypocotyl elongation outputs for smart greenhouse application. We vary each of the light properties individually and then collectively to understand their effect on plant development. Our analyses show in comparison to the nominal value, the photoperiod of 18 hours, period of 24 hours, no light offset, phase of dawn of 0 hour, duration of twilight of 0.05 hour and a reduced light intensity of 1% are able to improve by at least 30% in days to flower (from 32.52 days to 20.61 days) and hypocotyl length (from 1.90 mm to 1.19mm) with the added benefit of reducing energy consumption by at least 15% (from 4.27 MWh/year to 3.62 MWh/year). These findings could provide beneficial solutions to the smart greenhouse farming industries in terms of achieving enhanced productivity while consuming less energy.
Collapse
|
13
|
Wang X, Zhou P, Huang R, Zhang J, Ouyang X. A Daylength Recognition Model of Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:778515. [PMID: 34868180 PMCID: PMC8638659 DOI: 10.3389/fpls.2021.778515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 06/01/2023]
Abstract
The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Kinmonth-Schultz H, Lewandowska-Sabat A, Imaizumi T, Ward JK, Rognli OA, Fjellheim S. Flowering Times of Wild Arabidopsis Accessions From Across Norway Correlate With Expression Levels of FT, CO, and FLC Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:747740. [PMID: 34790213 PMCID: PMC8591261 DOI: 10.3389/fpls.2021.747740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joy K. Ward
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
15
|
Gendron JM, Leung CC, Liu W. Energy as a seasonal signal for growth and reproduction. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102092. [PMID: 34461431 DOI: 10.1016/j.pbi.2021.102092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants measure photoperiod as a predictable signal for seasonal change. Recently, new connections between photoperiod measuring systems and metabolism in plants have been revealed. These studies explore historical observations of metabolism and photoperiod with modern tools and approaches, suggesting there is much more to learn about photoperiodism in plants.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
16
|
Qiu L, Wu Q, Wang X, Han J, Zhuang G, Wang H, Shang Z, Tian W, Chen Z, Lin Z, He H, Hu J, Lv Q, Ren J, Xu J, Li C, Wang X, Li Y, Li S, Huang R, Chen X, Zhang C, Lu M, Liang C, Qin P, Huang X, Li S, Ouyang X. Forecasting rice latitude adaptation through a daylength-sensing-based environment adaptation simulator. NATURE FOOD 2021; 2:348-362. [PMID: 37117734 DOI: 10.1038/s43016-021-00280-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/20/2021] [Indexed: 04/30/2023]
Abstract
Global climate change necessitates crop varieties with good environmental adaptability. As a proxy for climate adaptation, crop breeders could select for adaptability to different latitudes, but the lengthy procedures for that slow development. Here, we combined molecular technologies with a streamlined in-house screening method to facilitate rapid selection for latitude adaptation. We established the daylength-sensing-based environment adaptation simulator (DEAS) to assess rice latitude adaptation status via the transcriptional dynamics of florigen genes at different latitudes. The DEAS predicted the florigen expression profiles in rice varieties with high accuracy. Furthermore, the DEAS showed potential for application in different crops. Incorporating the DEAS into conventional breeding programmes would help to develop cultivars for climate adaptation.
Collapse
Affiliation(s)
- Leilei Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gui Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiyun Shang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhuo Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zechuan Lin
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jie Hu
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Juansheng Ren
- Crop Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
| | - Jun Xu
- Deyang Agricultural Science and Education Management Station, Deyang, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yang Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Shaohua Li
- Photobiological Industry Institute, Sanan Sino-Science Photobiotech, Xiamen, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
17
|
Izawa T. What is going on with the hormonal control of flowering in plants? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:431-445. [PMID: 33111430 DOI: 10.1111/tpj.15036] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 05/12/2023]
Abstract
Molecular genetic studies using Arabidopsis thaliana as a model system have overwhelmingly revealed many important molecular mechanisms underlying the control of various biological events, including floral induction in plants. The major genetic pathways of flowering have been characterized in-depth, and include the photoperiod, vernalization, autonomous and gibberellin pathways. In recent years, novel flowering pathways are increasingly being identified. These include age, thermosensory, sugar, stress and hormonal signals to control floral transition. Among them, hormonal control of flowering except the gibberellin pathway is not formally considered a major flowering pathway per se, due to relatively weak and often pleiotropic genetic effects, complex phenotypic variations, including some controversial ones. However, a number of recent studies have suggested that various stress signals may be mediated by hormonal regulation of flowering. In view of molecular diversity in plant kingdoms, this review begins with an assessment of photoperiodic flowering, not in A. thaliana, but in rice (Oryza sativa); rice is a staple crop for human consumption worldwide, and is a model system of short-day plants, cereals and breeding crops. The rice flowering pathway is then compared with that of A. thaliana. This review then aims to update our knowledge on hormonal control of flowering, and integrate it into the entire flowering gene network.
Collapse
Affiliation(s)
- Takeshi Izawa
- Laboratory of Plant Breeding & Genetics, Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Panchy N, von Arnim AG, Hong T. Early Detection of Daylengths with a Feedforward Circuit Coregulated by Circadian and Diurnal Cycles. Biophys J 2020; 119:1878-1895. [PMID: 33086045 PMCID: PMC7677250 DOI: 10.1016/j.bpj.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Light-entrained circadian clocks confer rhythmic dynamics of cellular and molecular activities to animals and plants. These intrinsic clocks allow stable anticipations to light-dark (diel) cycles. Many genes in the model plant Arabidopsis thaliana are regulated by diel cycles via pathways independent of the clock, suggesting that the integration of circadian and light signals is important for the fitness of plants. Previous studies of light-clock signal integrations have focused on moderate phase adjustment of the two signals. However, dynamical features of integrations across a broad range of phases remain elusive. Phosphorylation of ribosomal protein of the small subunit 6 (eS6), a ubiquitous post-translational modification across kingdoms, is influenced by the circadian clock and the light-dark (diel) cycle in an opposite manner. To understand this striking phenomenon and its underlying information processing capabilities, we built a mathematical model for the eS6 phosphorylation (eS6-P) control circuit. We found that the dynamics of eS6-P can be explained by a feedforward circuit with inputs from both circadian and diel cycles. Furthermore, the early day response of this circuit with dual rhythmic inputs is sensitive to the changes in daylength, including both transient and gradual changes observed in realistic light intervals across a year, because of weather and seasons. By analyzing published gene expression data, we found that the dynamics produced by the eS6-P control circuit can be observed in the expression profiles of a large number of genes. Our work provides mechanistic insights into the complex dynamics of a ribosomal protein, and it proposes a previously underappreciated function of the circadian clock, which not only prepares organisms for normal diel cycles but also helps to detect both transient and seasonal changes with a predictive power.
Collapse
Affiliation(s)
- Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee; National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, Tennessee; National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee.
| |
Collapse
|
19
|
Chen Y, Song S, Gan Y, Jiang L, Yu H, Shen L. SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in Arabidopsis. SCIENCE ADVANCES 2020; 6:eaaw0413. [PMID: 32582842 PMCID: PMC7292628 DOI: 10.1126/sciadv.aaw0413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/05/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
Photoperiod is a major environmental cue that determines the floral transition from vegetative to reproductive development in flowering plants. Arabidopsis thaliana responds to photoperiodic signals mainly through a central regulator CONSTANS (CO). Although it has been suggested that phosphorylation of CO contributes to its role in photoperiodic control of flowering, how this is regulated so far remains unknown. Here, we report that a glycogen synthase kinase-3 member, SHAGGY-like kinase 12 (SK12), plays an important role in preventing precocious flowering through phosphorylating CO. Loss of function of SK12 causes early flowering. SK12 expression in seedlings is decreased during the floral transition, and its expression in vascular tissues is required for repressing flowering. SK12 interacts with and phosphorylates CO at threonine 119, thus facilitating CO degradation. Our findings suggest that site-specific phosphorylation of CO by SK12 is critical for modulating the photoperiodic output for the floral induction in Arabidopsis.
Collapse
Affiliation(s)
- Ying Chen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyong Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Corresponding author. (H.Y.); (L.S.)
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (H.Y.); (L.S.)
| |
Collapse
|
20
|
Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00753] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Kinmonth-Schultz HA, MacEwen MJS, Seaton DD, Millar AJ, Imaizumi T, Kim SH. An explanatory model of temperature influence on flowering through whole-plant accumulation of FLOWERING LOCUS T in Arabidopsis thaliana. IN SILICO PLANTS 2019; 1:diz006. [PMID: 36203490 PMCID: PMC9534314 DOI: 10.1093/insilicoplants/diz006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We assessed mechanistic temperature influence on flowering by incorporating temperature-responsive flowering mechanisms across developmental age into an existing model. Temperature influences the leaf production rate as well as expression of FLOWERING LOCUS T (FT), a photoperiodic flowering regulator that is expressed in leaves. The Arabidopsis Framework Model incorporated temperature influence on leaf growth but ignored the consequences of leaf growth on and direct temperature influence of FT expression. We measured FT production in differently aged leaves and modified the model, adding mechanistic temperature influence on FT transcription, and causing whole-plant FT to accumulate with leaf growth. Our simulations suggest that in long days, the developmental stage (leaf number) at which the reproductive transition occurs is influenced by day length and temperature through FT, while temperature influences the rate of leaf production and the time (in days) the transition occurs. Further, we demonstrate that FT is mainly produced in the first 10 leaves in the Columbia (Col-0) accession, and that FT accumulation alone cannot explain flowering in conditions in which flowering is delayed. Our simulations supported our hypotheses that: (i) temperature regulation of FT, accumulated with leaf growth, is a component of thermal time, and (ii) incorporating mechanistic temperature regulation of FT can improve model predictions when temperatures change over time.
Collapse
Affiliation(s)
- Hannah A. Kinmonth-Schultz
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Melissa J. S. MacEwen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Daniel D. Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, UK
- Present address: European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge CB10 1SD, UK
| | - Andrew J. Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Zardilis A, Hume A, Millar AJ. A multi-model framework for the Arabidopsis life cycle. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2463-2477. [PMID: 31091320 PMCID: PMC6487595 DOI: 10.1093/jxb/ery394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/20/2018] [Indexed: 05/04/2023]
Abstract
Linking our understanding of biological processes at different scales is a major conceptual challenge in biology and aggravated by differences in research methods. Modelling can be a useful approach to consolidating our understanding across traditional research domains. The laboratory model species Arabidopsis is very widely used to study plant growth processes and has also been tested more recently in ecophysiology and population genetics. However, approaches from crop modelling that might link these domains are rarely applied to Arabidopsis. Here, we combine plant growth models with phenology models from ecophysiology, using the agent-based modelling language Chromar. We introduce a simpler Framework Model of vegetative growth for Arabidopsis, FM-lite. By extending this model to include inflorescence and fruit growth and seed dormancy, we present a whole-life-cycle, multi-model FM-life, which allows us to simulate at the population level in various genotype × environment scenarios. Environmental effects on plant growth distinguish between the simulated life history strategies that were compatible with previously described Arabidopsis phenology. Our results simulate reproductive success that is founded on the broad range of physiological processes familiar from crop models and suggest an approach to simulating evolution directly in future.
Collapse
Affiliation(s)
- Argyris Zardilis
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- EPCC, University of Edinburgh, Edinburgh, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Luccioni L, Krzymuski M, Sánchez-Lamas M, Karayekov E, Cerdán PD, Casal JJ. CONSTANS delays Arabidopsis flowering under short days. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:923-932. [PMID: 30468542 DOI: 10.1111/tpj.14171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very-SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long-standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.
Collapse
Affiliation(s)
- Laura Luccioni
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Martín Krzymuski
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Pablo D Cerdán
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| | - Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
24
|
Seaton DD, Graf A, Baerenfaller K, Stitt M, Millar AJ, Gruissem W. Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Mol Syst Biol 2018; 14:e7962. [PMID: 29496885 PMCID: PMC5830654 DOI: 10.15252/msb.20177962] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Plants respond to seasonal cues such as the photoperiod, to adapt to current conditions and to prepare for environmental changes in the season to come. To assess photoperiodic responses at the protein level, we quantified the proteome of the model plant Arabidopsis thaliana by mass spectrometry across four photoperiods. This revealed coordinated changes of abundance in proteins of photosynthesis, primary and secondary metabolism, including pigment biosynthesis, consistent with higher metabolic activity in long photoperiods. Higher translation rates in the day than the night likely contribute to these changes, via an interaction with rhythmic changes in RNA abundance. Photoperiodic control of protein levels might be greatest only if high translation rates coincide with high transcript levels in some photoperiods. We term this proposed mechanism "translational coincidence", mathematically model its components, and demonstrate its effect on the Arabidopsis proteome. Datasets from a green alga and a cyanobacterium suggest that translational coincidence contributes to seasonal control of the proteome in many phototrophic organisms. This may explain why many transcripts but not their cognate proteins exhibit diurnal rhythms.
Collapse
Affiliation(s)
- Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexander Graf
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Katja Baerenfaller
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | - Mark Stitt
- System Regulation Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Oakenfull RJ, Davis SJ. Shining a light on the Arabidopsis circadian clock. PLANT, CELL & ENVIRONMENT 2017; 40:2571-2585. [PMID: 28732105 DOI: 10.1111/pce.13033] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/23/2023]
Abstract
The circadian clock provides essential timing information to ensure optimal growth to prevailing external environmental conditions. A major time-setting mechanism (zeitgeber) in clock synchronization is light. Differing light wavelengths, intensities, and photoperiodic duration are processed for the clock-setting mechanism. Many studies on light-input pathways to the clock have focused on Arabidopsis thaliana. Photoreceptors are specific chromic proteins that detect light signals and transmit this information to the central circadian oscillator through a number of different signalling mechanisms. The most well-characterized clock-mediating photoreceptors are cryptochromes and phytochromes, detecting blue, red, and far-red wavelengths of light. Ultraviolet and shaded light are also processed signals to the oscillator. Notably, the clock reciprocally generates rhythms of photoreceptor action leading to so-called gating of light responses. Intermediate proteins, such as Phytochrome interacting factors (PIFs), constitutive photomorphogenic 1 (COP1) and EARLY FLOWERING 3 (ELF3), have been established in signalling pathways downstream of photoreceptor activation. However, the precise details for these signalling mechanisms are not fully established. This review highlights both historical and recent efforts made to understand overall light input to the oscillator, first looking at how each wavelength of light is detected, this is then related to known input mechanisms and their interactions.
Collapse
Affiliation(s)
| | - Seth J Davis
- Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
26
|
Yan J, Mao D, Liu X, Wang L, Xu F, Wang G, Zhang W, Liao Y. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. PLANT CELL REPORTS 2017; 36:1387-1399. [PMID: 28616659 DOI: 10.1007/s00299-017-2162-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering. CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15-20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.
Collapse
Affiliation(s)
- Jiaping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Dun Mao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
27
|
ePlant for quantitative and predictive plant science research in the big data era—Lay the foundation for the future model guided crop breeding, engineering and agronomy. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
van Dijk ADJ, Molenaar J. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time. PeerJ 2017; 5:e3197. [PMID: 28439467 PMCID: PMC5399868 DOI: 10.7717/peerj.3197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.,Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands.,Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
29
|
Koda S, Onda Y, Matsui H, Takahagi K, Uehara-Yamaguchi Y, Shimizu M, Inoue K, Yoshida T, Sakurai T, Honda H, Eguchi S, Nishii R, Mochida K. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2017; 8:2055. [PMID: 29234348 PMCID: PMC5712366 DOI: 10.3389/fpls.2017.02055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/16/2017] [Indexed: 05/08/2023]
Abstract
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Collapse
Affiliation(s)
- Satoru Koda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | | | - Kotaro Takahagi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| | - Yukiko Uehara-Yamaguchi
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Minami Shimizu
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Takuhiro Yoshida
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tetsuya Sakurai
- Integrated Genome Informatics Research Unit, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, Kochi, Japan
| | - Hiroshi Honda
- Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
| | - Shinto Eguchi
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Ryuei Nishii
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Keiichi Mochida, Ryuei Nishii,
| |
Collapse
|
30
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
31
|
Flis A, Fernández AP, Zielinski T, Mengin V, Sulpice R, Stratford K, Hume A, Pokhilko A, Southern MM, Seaton DD, McWatters HG, Stitt M, Halliday KJ, Millar AJ. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biol 2016; 5:rsob.150042. [PMID: 26468131 PMCID: PMC4632509 DOI: 10.1098/rsob.150042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell−1) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell−1) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aurora Piñas Fernández
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kevin Stratford
- EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alexandra Pokhilko
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Megan M Southern
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Harriet G McWatters
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| |
Collapse
|
32
|
Kinmonth-Schultz HA, Tong X, Lee J, Song YH, Ito S, Kim SH, Imaizumi T. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. THE NEW PHYTOLOGIST 2016; 211:208-24. [PMID: 26856528 PMCID: PMC4887344 DOI: 10.1111/nph.13883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 05/18/2023]
Abstract
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time.
Collapse
Affiliation(s)
| | - Xinran Tong
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jae Lee
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Department of Life Sciences, Ajou University, Suwon 443-749, Korea
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195-2100, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| |
Collapse
|
33
|
Genome-wide analysis of gene expression reveals gene regulatory networks that regulate chasmogamous and cleistogamous flowering in Pseudostellaria heterophylla (Caryophyllaceae). BMC Genomics 2016; 17:382. [PMID: 27206349 PMCID: PMC4875749 DOI: 10.1186/s12864-016-2732-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudostellaria heterophylla produces both closed (cleistogamous, CL) and open (chasmogamous, CH) flowers on the same individual but in different seasons. The production of CH and CL flowers might be in response to environmental changes. To better understand the molecular mechanisms of CH and CL flowering, we compared the transcriptome of the two types of flowers to examine differential gene expression patterns, and to identify gene regulatory networks that control CH and CL flowering. RESULTS Using RNA sequencing, we identified homologues of 428 Arabidopsis genes involved in regulating flowering processes and estimated the differential gene expression patterns between CH and CL flowers. Some of these genes involved in gene regulatory networks of flowering processes showed significantly differential expression patterns between CH and CL flowers. In addition, we identified another 396 differentially expressed transcripts between CH and CL flowers. Some are involved in environmental stress responses and flavonoid biosynthesis. CONCLUSIONS We propose how the differential expression of key members of three gene regulatory modules may explain CH and CL flowering. Future research is needed to investigate how the environment impinges on these flowering pathways to regulate CH and CL flowering in P. heterophylla.
Collapse
|
34
|
Abstract
Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of
phyA-105 (SPA) proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO), a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3) indirectly modulate
CO expression via the degradation of GIGANTEA (GI). Here, we summarize the current understanding of the molecular mechanisms underlying COP1’s role in controlling of photoperiodic flowering.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
35
|
Krzymuski M, Andrés F, Cagnola JI, Jang S, Yanovsky MJ, Coupland G, Casal JJ. The dynamics of FLOWERING LOCUS T expression encodes long-day information. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015. [PMID: 26212862 DOI: 10.1111/tpj.12938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Long days repeatedly enhance the expression of the FLOWERING LOCUS T (FT) gene during the evening and early night. This signal induces flowering despite low FT expression the rest of the day. To investigate whether this temporal behaviour transmits information, plants of Arabidopsis thaliana were exposed to different day-night cycles, including combinations that induced FT expression out of normal hours. Flowering time best correlated with the integral of FT expression over several days, corrected for a higher evening and early night sensitivity to FT. We generated a system to induce FT expression in a leaf removed 8-12 h later. The expression of flowering genes in the apex and flowering required cycles of induction repeated over several days. Evening and early night FT induction was the most effective. The temporal pattern of FT expression encodes information that discriminates long days from other inputs.
Collapse
Affiliation(s)
- Martín Krzymuski
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Juan I Cagnola
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Jorge J Casal
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
36
|
Zhang B, Wang L, Zeng L, Zhang C, Ma H. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 2015; 29:975-87. [PMID: 25934507 PMCID: PMC4421985 DOI: 10.1101/gad.251520.114] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants flower in an appropriate season to allow sufficient vegetative development and position flower development in favorable environments. In Arabidopsis, CONSTANS (CO) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) promote flowering by inducing FLOWER LOCUS T (FT) expression in the long-day afternoon. The CO protein is present in the morning but could not activate FT expression due to unknown negative mechanisms, which prevent premature flowering before the day length reaches a threshold. Here, we report that TARGET OF EAT1 (TOE1) and related proteins interact with the activation domain of CO and CO-like (COL) proteins and inhibit CO activity. TOE1 binds to the FT promoter near the CO-binding site, and reducing TOE function results in a morning peak of the FT mRNA. In addition, TOE1 interacts with the LOV domain of FKF1 and likely interferes with the FKF1-CO interaction, resulting in partial degradation of the CO protein in the afternoon to prevent premature flowering.
Collapse
Affiliation(s)
- Bailong Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China
| | - Liang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liping Zeng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Biodiversity Sciences, Fudan University, Shanghai 200438, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
37
|
Izawa T. Deciphering and prediction of plant dynamics under field conditions. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:87-92. [PMID: 25706440 DOI: 10.1016/j.pbi.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 05/18/2023]
Abstract
Elucidation of plant dynamics under fluctuating natural environments is a challenging goal in plant physiology. Recently, using a computer statistics integrating a series of transcriptome data of field-grown rice leaves during an entire crop season and several corresponding environmental data such as solar radiation and ambient temperature, most parts of transcriptome have been modeled. This reveals the detailed contributions of developmental timing, circadian clocks and each environmental factor to transcriptome dynamics in the field and can predict transcriptome dynamics under given environments. Furthermore, some traits such as flowering time in natural environments have been shown to be predicted by mathematical models based on gene-networks parameterized with data obtained in the laboratory, and phenology models refined by knowledge of molecular genetics. New molecular physiology is beginning in plant science.
Collapse
Affiliation(s)
- Takeshi Izawa
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
38
|
Leal Valentim F, van Mourik S, Posé D, Kim MC, Schmid M, van Ham RCHJ, Busscher M, Sanchez-Perez GF, Molenaar J, Angenent GC, Immink RGH, van Dijk ADJ. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS One 2015; 10:e0116973. [PMID: 25719734 PMCID: PMC4342252 DOI: 10.1371/journal.pone.0116973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.
Collapse
Affiliation(s)
- Felipe Leal Valentim
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Simon van Mourik
- Biometris, Wageningen UR, Wageningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - David Posé
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | - Min C. Kim
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Molecular Biology, Tübingen, Germany
| | | | - Marco Busscher
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Gabino F. Sanchez-Perez
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Chair group Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Wageningen UR, Wageningen, The Netherlands
| | - Gerco C. Angenent
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Richard G. H. Immink
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
| | - Aalt D. J. van Dijk
- Bioscience, Plant Research International, Wageningen UR, Wageningen, The Netherlands
- Biometris, Wageningen UR, Wageningen, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:719-30. [PMID: 25371508 DOI: 10.1093/jxb/eru441] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular players in the photoperiodic pathway have been identified in Arabidopsis thaliana. Moreover, the intricate connections between the circadian clockwork and components of the photoperiodic pathway have been unravelled. In particular, the molecular basis of time-of-day-dependent sensitivity to floral stimuli, as predicted by Bünning and Pittendrigh, has been elucidated. This review covers recent insights into the molecular mechanisms underlying clock regulation of photoperiodic responses and the integration of the photoperiodic pathway into the flowering time network in Arabidopsis. Furthermore, examples of conservation and divergence in photoperiodic flower induction in other plant species are discussed.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| |
Collapse
|
40
|
Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Mol Syst Biol 2015; 11:776. [PMID: 25600997 PMCID: PMC4332151 DOI: 10.15252/msb.20145766] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to CYCLING DOF FACTOR 1 (CDF1) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) transcription. Physical interaction data support these links, which create threefold feed-forward motifs from two clock components to the floral regulator FT. In hypocotyl growth, the model described clock-regulated transcription of PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4, PIF5), interacting with post-translational regulation of PIF proteins by phytochrome B (phyB) and other light-activated pathways. The model predicted bimodal and end-of-day PIF activity profiles that are observed across hundreds of PIF-regulated target genes. In the response to temperature, warmth-enhanced PIF4 activity explained the observed hypocotyl growth dynamics but additional, temperature-dependent regulators were implicated in the flowering response. Integrating these two pathways with the clock model highlights the molecular mechanisms that coordinate plant development across changing conditions.
Collapse
Affiliation(s)
- Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert W Smith
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Young Hun Song
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Kelly Stewart
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gavin Steel
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Foreman
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Golembeski GS, Imaizumi T. Photoperiodic Regulation of Florigen Function in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2015; 13:e0178. [PMID: 26157354 PMCID: PMC4489636 DOI: 10.1199/tab.0178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
One mechanism through which flowering in response to seasonal change is brought about is by sensing the fluctuation in day-length; the photoperiod. Flowering induction occurs through the production of the florigenic protein FLOWERING LOCUS T (FT) and its movement from the phloem companion cells in the leaf vasculature into the shoot apex, where meristematic reprogramming occurs. FT activation in response to photoperiod condition is accomplished largely through the activity of the transcription factor CONSTANS (CO). Regulation of CO expression and protein stability, as well as the timing of other components via the circadian clock, is a critical mechanism by which plants are able to respond to photoperiod to initiate the floral transition. Modulation of FT expression in response to external and internal stimuli via components of the flowering network is crucial to mediate a fluid flowering response to a variety of environmental parameters. In addition, the regulated movement of FT protein from the phloem to the shoot apex, and interactions that determine floral meristem cell fate, constitute novel mechanisms through which photoperiodic information is translated into flowering time.
Collapse
Affiliation(s)
- Greg S. Golembeski
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
| | - Takato Imaizumi
- University of Washington, Department of Biology, Seattle, WA, 98195-1800
- Address correspondence to
| |
Collapse
|
42
|
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. ANNALS OF BOTANY 2014; 114:1445-58. [PMID: 24651369 PMCID: PMC4204779 DOI: 10.1093/aob/mcu032] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/04/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses. SCOPE This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed. CONCLUSIONS Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.
Collapse
Affiliation(s)
- Roshi Shrestha
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Jorge Gómez-Ariza
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Vittoria Brambilla
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Fabio Fornara
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
43
|
|
44
|
Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P, Stitt M, Williams M, Muetzelfeldt R, Halliday KJ, Millar AJ. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci U S A 2014; 111:E4127-36. [PMID: 25197087 PMCID: PMC4191812 DOI: 10.1073/pnas.1410238111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Collapse
Affiliation(s)
- Yin Hoon Chew
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Bénédicte Wenden
- Institut National de la Recherche Agronomique and Université Bordeaux, Unité Mixte de Recherche 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Christopher L Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Christopher Tindal
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Howard Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Helen J Ougham
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Philippe de Reffye
- Cirad-Amis, Unité Mixte de Recherche, Association pour le Maintien d'une Agriculture Paysanne, F-34398 Montpellier Cedex 5, France; and
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mathew Williams
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, United Kingdom
| | | | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom;
| |
Collapse
|
45
|
Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, Porri A, Coupland G, Van de Peer Y, van Dijk ADJ, Colombo L, Davies B, Angenent GC. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4731-45. [PMID: 24913630 DOI: 10.1093/jxb/eru233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly on genetic studies, the regulatory pathways were considered to be linear, but recent genome-wide analyses, using high-throughput technologies, have begun to reveal a different scenario. Complex gene regulatory networks underlie these processes, including transcription factors, microRNAs, movable factors, hormones, and chromatin-modifying proteins. Here we review recent progress in understanding the networks that control the major steps in plant reproduction, showing how new advances in experimental and computational technologies have been instrumental. As these recent discoveries were obtained using the model species Arabidopsis thaliana, we will restrict this review to regulatory networks in this important model species. However, more fragmentary information obtained from other species reveals that both the developmental processes and the underlying regulatory networks are largely conserved, making this review also of interest to those studying other plant species.
Collapse
Affiliation(s)
- Alice Pajoro
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Sandra Biewers
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Evangelia Dougali
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Felipe Leal Valentim
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Aimone Porri
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, D-50829 Cologne, Germany
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Aalt D J van Dijk
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Biometris, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Brendan Davies
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gerco C Angenent
- Plant Research International (PRI) Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands Laboratory of Molecular Biology, Wageningen University, Droevendaalseweg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Abelenda JA, Navarro C, Prat S. Flowering and tuberization: a tale of two nightshades. TRENDS IN PLANT SCIENCE 2014; 19:115-22. [PMID: 24139978 DOI: 10.1016/j.tplants.2013.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 05/27/2023]
Abstract
The concept of florigen, postulated in the early 1930s, has taken form after the identification of the FLOWERING LOCUS T (FT) protein as the flowering-inducing signal. Besides their role in flowering, FT genes were subsequently reported to play additional functions in other biological processes. This is particularly relevant in the nightshades, where the FT genes appear to have undergone considerable expansion at the functional level and gained a new role in the control of storage organ formation in potato (Solanum tuberosum). Neofunctionalization of FT homologs in the nightshades identifies these proteins as a new class of primary signaling components that modulate development and organogenesis in these agronomic relevant species.
Collapse
Affiliation(s)
- José A Abelenda
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain
| | - Cristina Navarro
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC) Campus de Cantoblanco, c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
47
|
Schmal C, Leloup JC, Gonze D. Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO. Methods Mol Biol 2014; 1158:337-58. [PMID: 24792063 DOI: 10.1007/978-1-4939-0700-7_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian clocks are endogenous timekeepers that produce oscillations with a period of about one day. Their rhythmicity originates from complex gene regulatory networks at the cellular level. In the last decades, computational models have been proven to be a powerful tool in order to understand the dynamics and design principles of the complex regulatory circuitries underlying the circadian clocks of different organisms. We present the process of model development using a small and simplified two-gene regulatory network of the Arabidopsis circadian clock. Subsequently, we discuss important numerical techniques to analyze such a mathematical model using XPP-AUTO. We show how to solve deterministic and stochastic ordinary differential equations and how to compute bifurcation diagrams or simulate phase-shift experiments. We finally discuss the contributions of modeling to the understanding and dissection of the Arabidopsis circadian system.
Collapse
Affiliation(s)
- Christoph Schmal
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany,
| | | | | |
Collapse
|
48
|
Pullen N, Jaeger KE, Wigge PA, Morris RJ. Simple network motifs can capture key characteristics of the floral transition in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e26149. [PMID: 23989666 PMCID: PMC4106512 DOI: 10.4161/psb.26149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The floral transition is a key decision during plant development. While different species have evolved diverse pathways to respond to different environmental cues to flower in the correct season, key properties such as irreversibility and robustness to fluctuating signals appear to be conserved. We have used mathematical modeling to demonstrate how minimal regulatory networks of core components are sufficient to capture these behaviors. Simplified models inevitably miss finer details of the biological system, yet they provide a tractable route to understanding the overall system behavior. We combined models with experimental data to qualitatively reproduce characteristics of the floral transition and to quantitatively scale the network to fit with available leaf numbers. Our study highlights the value of pursuing an iterative approach combining modeling with experimental work to capture key features of complex systems.
Collapse
Affiliation(s)
- Nick Pullen
- Computational and Systems Biology; John Innes Centre; Norwich Research Park; Norwich UK
| | - Katja E Jaeger
- Sainsbury Laboratory; Cambridge University; Cambridge UK
| | - Philip A Wigge
- Sainsbury Laboratory; Cambridge University; Cambridge UK
| | - Richard J Morris
- Computational and Systems Biology; John Innes Centre; Norwich Research Park; Norwich UK
- Correspondence to: Richard J Morris,
| |
Collapse
|
49
|
Keily J, MacGregor DR, Smith RW, Millar AJ, Halliday KJ, Penfield S. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:247-57. [PMID: 23909712 PMCID: PMC4278413 DOI: 10.1111/tpj.12303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/01/2013] [Accepted: 07/09/2013] [Indexed: 05/08/2023]
Abstract
Circadian clocks confer advantages by restricting biological processes to certain times of day through the control of specific phased outputs. Control of temperature signalling is an important function of the plant oscillator, but the architecture of the gene network controlling cold signalling by the clock is not well understood. Here we use a model ensemble fitted to time-series data and a corrected Akaike Information Criterion (AICc) analysis to extend a dynamic model to include the control of the key cold-regulated transcription factors C-REPEAT BINDING FACTORs 1-3 (CBF1, CBF2, CBF3). AICc was combined with in silico analysis of genetic perturbations in the model ensemble, and selected a model that predicted mutant phenotypes and connections between evening-phased circadian clock components and CBF3 transcriptional control, but these connections were not shared by CBF1 and CBF2. In addition, our model predicted the correct gating of CBF transcription by cold only when the cold signal originated from the clock mechanism itself, suggesting that the clock has an important role in temperature signal transduction. Our data shows that model selection could be a useful method for the expansion of gene network models.
Collapse
Affiliation(s)
- Jack Keily
- Biosciences, College of Life and Environmental Sciences, University of ExeterStocker Road, Exeter, EX4 4QD, UK
- † These authors contributed equally to the work
| | - Dana R MacGregor
- Biosciences, College of Life and Environmental Sciences, University of ExeterStocker Road, Exeter, EX4 4QD, UK
- † These authors contributed equally to the work
| | - Robert W Smith
- Department of Biological Sciences, University of EdinburghCH Waddington Building, Mayfield Road, Edinburgh, EH9 3JD, UK
| | - Andrew J Millar
- Department of Biological Sciences, University of EdinburghCH Waddington Building, Mayfield Road, Edinburgh, EH9 3JD, UK
| | - Karen J Halliday
- Department of Biological Sciences, University of EdinburghCH Waddington Building, Mayfield Road, Edinburgh, EH9 3JD, UK
| | - Steven Penfield
- Biosciences, College of Life and Environmental Sciences, University of ExeterStocker Road, Exeter, EX4 4QD, UK
- * For correspondence (e-mail )
| |
Collapse
|
50
|
Zheng B, Biddulph B, Li D, Kuchel H, Chapman S. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3747-61. [PMID: 23873997 PMCID: PMC3745732 DOI: 10.1093/jxb/ert209] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a process-based model, APSIM, was modified to incorporate gene effects into estimation of heading time, while minimizing degradation in the predictive capability of the model. Model parameters describing environment responses were replaced with functions of the number of winter and photoperiod (PPD)-sensitive alleles at the three VRN1 loci and the Ppd-D1 locus, respectively. Two years of vernalization and PPD trials of 210 lines (spring wheats) at a single location were used to estimate the effects of the VRN1 and Ppd-D1 alleles, with validation against 190 trials (~4400 observations) across the Australian wheatbelt. Compared with spring genotypes, winter genotypes for Vrn-A1 (i.e. with two winter alleles) had a delay of 76.8 degree days (°Cd) in time to heading, which was double the effect of the Vrn-B1 or Vrn-D1 winter genotypes. Of the three VRN1 loci, winter alleles at Vrn-B1 had the strongest interaction with PPD, delaying heading time by 99.0 °Cd under long days. The gene-based model had root mean square error of 3.2 and 4.3 d for calibration and validation datasets, respectively. Virtual genotypes were created to examine heading time in comparison with frost and heat events and showed that new longer-season varieties could be heading later (with potential increased yield) when sown early in season. This gene-based model allows breeders to consider how to target gene combinations to current and future production environments using parameters determined from a small set of phenotyping treatments.
Collapse
Affiliation(s)
- Bangyou Zheng
- CSIRO Plant Industry and Climate Adaptation Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, 4067, QLD, Australia
| | - Ben Biddulph
- Department of Agriculture and Food, Western Australia, 3 Baron-Hay Court, South Perth, 6151, WA, Australia
| | - Dora Li
- Department of Agriculture and Food, Western Australia, 3 Baron-Hay Court, South Perth, 6151, WA, Australia
| | - Haydn Kuchel
- Australian Grain Technologies Pty Ltd,Perkins Building, Roseworthy Campus, Roseworthy, 5371, WA, Australia
| | - Scott Chapman
- CSIRO Plant Industry and Climate Adaptation Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, 4067, QLD, Australia
- * To whom correspondence should be addressed.
| |
Collapse
|