1
|
He Q, Shu J, Liang Z, Li M, Li S, Liu T, Yang X, Lu Q, Wang L, Wang L. Prevalence of Multiple RNA Virus Infections in Nine Types of Commonly Used Laboratory Animals in China. Zoonoses Public Health 2025; 72:301-312. [PMID: 39777991 DOI: 10.1111/zph.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/30/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Laboratory animals are widely used in biomedical research. Surveillance of naturally occurring virus in laboratory animals is important to fully understand the results of animal experiment, control laboratory-acquired infections among research personnel and manage viral transmission within laboratory animal populations. This study aimed to investigate the prevalence of multiple RNA viruses in laboratory animals commonly used in China. METHODS We screened viral RNA for five different potentially zoonotic RNA viruses (astrovirus, coronavirus, hepevirus, hepatovirus and picornavirus) that can be transmitted via the faecal-oral route in 759 faecal samples collected from nine commonly used laboratory animals (mice, rats, monkeys, rabbits, pigs, dogs, ferrets, goats and tree shrews) in China. Viral RNA was screened by broad-spectrum reverse transcription polymerase chain reaction (RT-PCR) using primers annealing in genome-conserved regions. The laboratory mice and rats used in this study were specific-pathogen-free. The other laboratory animals were conventional animals. RESULTS At least one selected virus was detected in each of the nine sampled laboratory animal types, except tree shrews. The total positive rates of viral RNA for astroviruses, coronaviruses, hepeviruses and picornaviruses in the selected laboratory animals were 4.3%, 7.6%, 8.0% and 1.1%, respectively. Among these, the positivity rates for hepevirus RNA in laboratory ferrets (41.3%) and rabbits (17.8%), astrovirus RNA in laboratory pigs (75.0%) and coronavirus RNA in laboratory ferrets (45.7%) were relatively high. Viral RNA for hepatovirus was negative in all selected laboratory animals. Co-infection with multiple viruses has also been observed in laboratory dogs, pigs, ferrets and rabbits. CONCLUSIONS Our findings highlight the need for the surveillance of natural viral infections in laboratory animals.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jingyi Shu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Zhaochao Liang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Manyu Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shuangshuang Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
2
|
Wu Z, Xie ZP, Cui XX, Sun XB, Zhao FY, Wang N, Li Y, Wang H, Zhang L, Shen J, Chen F, Sun H, He J. HIV and the gut microbiome: future research hotspots and trends. Front Microbiol 2025; 16:1466419. [PMID: 39990153 PMCID: PMC11844347 DOI: 10.3389/fmicb.2025.1466419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Background The use of highly active antiretroviral therapy has transformed AIDS into a chronic infectious disease, but issues of chronic inflammation and immune system activation persist. Modulating the gut microbiome of patients may improve this situation, yet the specific association mechanisms between HIV and the gut microbiome remain unclear. This study aims to explore the research hotspots and trends of the HIV and the gut microbiome, providing direction for future research. Methods We conducted a search of the Web of Science Core Collection database up to April 30, 2024 to retrieve articles related to the relationship between the HIV and the gut microbiome. The scientific achievements and research frontiers in this field were analyzed using CiteSpace, VOSviewer, and Bibliometrix statistical software. Results As of April 30, 2024, a total of 379 articles met the inclusion criteria. The number of publications in this field peaked in 2023, and the number of articles published after 2020 declined. The country with the highest number of publications was the United States (184 articles), and the institution with the most publications was the University of Colorado (USA) (21 articles). The author with the most publications was Routy Jean-Pierre (Canada) (14 articles). High-frequency keywords, aside from the key terms, included "HIV," "inflammation," "immune activation," "gut microbiota," and "translocation." Keyword burst results indicated that short-chain fatty acids, T cells and obesity might become the focus of future research. Conclusion The research hotspots in this field should prioritize examining the role of the primary gut microbiome metabolite, short-chain fatty acids, in reducing immune system activation and inflammation. Another emerging area of interest could be the investigation into the annual increase in obesity rates within this field. Furthermore, understanding the metabolic mechanisms of short-chain fatty acids in T cells is essential. Additionally, multi-omics analysis holds potential.
Collapse
Affiliation(s)
- Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Zhan-Peng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Xin-Xin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Xiang-Bin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Fang-Yi Zhao
- Medical School of Shihezi University, Shihezi, China
| | - Nuo Wang
- Medical School of Shihezi University, Shihezi, China
| | - Yu Li
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Haixia Wang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Li Zhang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Jing Shen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Fulei Chen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Haogang Sun
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Jia He
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| |
Collapse
|
3
|
Bayón-Gil Á, Martinez-Picado J, Puertas MC. Viremic non-progression in HIV/SIV infection: A tied game between virus and host. Cell Rep Med 2025; 6:101921. [PMID: 39842407 PMCID: PMC11866547 DOI: 10.1016/j.xcrm.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
High-efficacy antiretroviral treatment (ART) has been a game-changer for HIV/AIDS pandemic, but incomplete CD4+ T cell recovery and persistent chronic immune activation still affect HIV-suppressed people. Exceptional cases of HIV infection that naturally exhibit delayed disease progression provide invaluable insights into protective biological mechanisms with potential clinical application. Viremic non-progressors (VNPs) represent an extremely rare population of individuals with HIV, characterized by preservation of the CD4+ T cell compartment despite persistent high levels of viral load (>10,000 copies/mL). While only a few studies have investigated the immunovirological characteristics of adult and pediatric VNPs, most of our knowledge about this phenotype stems from its non-human-primate counterpart, the natural simian immunodeficiency virus (SIV) hosts. In this review, we synthesize the insights gained from recent studies of natural SIV hosts and VNPs and evaluate the potential similarities and differences in the mechanisms that underlie the absence of pathogenesis, with special focus on the control of immune activation.
Collapse
Affiliation(s)
- Ángel Bayón-Gil
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Sun X, Xie Z, Wu Z, Song M, Zhang Y, Zhang Z, Cui X, Liu A, Li K. Mechanisms of HIV-immunologic non-responses and research trends based on gut microbiota. Front Immunol 2024; 15:1378431. [PMID: 39802299 PMCID: PMC11718445 DOI: 10.3389/fimmu.2024.1378431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
With the increasing number of people with HIV (PWH) and the use of antiretroviral treatment (ART) for PWH, HIV has gradually become a chronic infectious disease. However, some infected individuals develop issues with immunologic non-responses (INRs) after receiving ART, which can lead to secondary infections and seriously affect the life expectancy and quality of life of PWH. Disruption of the gut microbiota is an important factor in immune activation and inflammation in HIV/AIDS, thus stabilizing the gut microbiota to reduce immune activation and inflammation and promoting immune reconstitution may become a direction for the treatment of HIV/AIDS. This paper, based on extensive literature review, summarizes the definition, mechanisms, and solutions for INRs, starting from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Xiangbin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Zhanpeng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Meiyang Song
- Medical School of Shihezi University, Shihezi, China
| | - Youxian Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Zezhan Zhang
- Medical School of Shihezi University, Shihezi, China
| | - Xinxin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Aodi Liu
- Medical School of Shihezi University, Shihezi, China
| | - Ke Li
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
| |
Collapse
|
5
|
Dagotto G, Fisher JL, Li D, Li Z, Jenni S, Li Z, Tartaglia LJ, Abbink P, Barouch DH. Identification of a novel neutralization epitope in rhesus AAVs. Mol Ther Methods Clin Dev 2024; 32:101350. [PMID: 39469420 PMCID: PMC11513466 DOI: 10.1016/j.omtm.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Adeno-associated viruses (AAVs) are popular gene therapy delivery vectors, but their application can be limited by anti-vector immunity. Both preexisting neutralizing antibodies (NAbs) and post-administration NAbs can limit transgene expression and reduce the clinical utility of AAVs. The development of novel AAVs will advance our understanding of AAV immunity and may also have practical applications. In this study, we identified five novel AAV capsids from rhesus macaques. RhAAV4282 exhibited 91.4% capsid sequence similarity with AAV7 and showed similar tissue tropism with slightly diminished overall signal. Despite this sequence homology, RhAAV4282 and AAV7 showed limited cross-neutralization. We determined a cryo-EM structure of the RhAAV4282 capsid at 2.57 Å resolution and identified a small segment within the hypervariable region IV, involving seven amino acids that formed a shortened external loop in RhAAV4282 compared with AAV7. We generated RhAAV4282 and AAV7 mutants that involved swaps of this region and showed that this region partially determined neutralization phenotype. We termed this region the hypervariable region IV neutralizing epitope (HRNE). Our data suggests that modification of the HRNE can lead to AAVs with altered neutralization profiles.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jana L. Fisher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenyu Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
7
|
Li Y, Song TZ, Cao L, Zhang HD, Ma Y, Tian RR, Zheng YT, Zhang C. Large expansion of plasma commensal viruses is associated with SIV pathogenesis in Macaca leonina. SCIENCE ADVANCES 2024; 10:eadq1152. [PMID: 39356751 PMCID: PMC11446265 DOI: 10.1126/sciadv.adq1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection disrupts the homeostatic equilibrium between the host and commensal microbes. However, the dynamic changes of plasma commensal viruses and their role in HIV/simian immunodeficiency virus (SIV) pathogenesis are rarely reported. Here, we investigated the longitudinal changes of plasma virome, inflammation levels, and disease markers using an SIV-infected Macaca leonina model. Large expansions of plasma Anelloviridae, Parvoviridae, Circoviridae and other commensal viruses, and elevated levels of inflammation and D-dimer were observed since the chronic phase of SIV infection. Anelloviridae abundance appears to correlate positively with the CD4+ T cell count but negatively with SIV load especially at the acute phase, whereas other commensal viruses' abundances show opposite correlations with the two disease markers. Antiretroviral therapy slightly reduces but does not substantially reverse the expansion of commensal viruses. Furthermore, 1387 primate anellovirus open reading frame 1 sequences of more than 1500 nucleotides were annotated. The data reveal different roles of commensal viruses in SIV pathogenesis.
Collapse
Affiliation(s)
- Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Han-Dan Zhang
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ren-Rong Tian
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
8
|
Lippincott RA, O’Connor J, Neff CP, Lozupone C, Palmer BE. Deciphering HIV-associated inflammation: microbiome's influence and experimental insights. Curr Opin HIV AIDS 2024; 19:228-233. [PMID: 38884255 PMCID: PMC11305906 DOI: 10.1097/coh.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW To review novel experimental approaches for studying host:microbe interactions and their role in intestinal and systemic inflammation in people living with HIV (PLWH). RECENT FINDINGS Inflammation in PLWH is impacted by interactions between the microbiome, the intestinal epithelium, and immune cells. This complex interplay is not fully understood and requires a variety of analytical techniques to study. Using a multiomic systems biology approach provides hypothesis generating data on host:microbe interactions that can be used to guide further investigation. The direct interactions between host cells and microbes can be elucidated using peripheral blood mononuclear cells (PBMCs), lamina propria mononuclear cells (LPMC's) or human intestinal organoids (HIO). Additionally, the broader relationship between the host and the microbiome can be explored using animal models such as nonhuman primates and germ-free and double humanized mice. SUMMARY To explore complex host:microbe relationships, hypotheses are generated and investigations are guided by multiomic data, while causal components are identified using in-vitro and in-vivo assays.
Collapse
Affiliation(s)
| | - John O’Connor
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
9
|
Ortiz AM, Brenchley JM. Untangling the role of the microbiome across the stages of HIV disease. Curr Opin HIV AIDS 2024; 19:221-227. [PMID: 38935047 PMCID: PMC11305932 DOI: 10.1097/coh.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The primate microbiome consists of bacteria, eukaryotes, and viruses that dynamically shape and respond to host health and disease. Understanding how the symbiotic relationship between the host and microbiome responds to HIV has implications for therapeutic design. RECENT FINDINGS Advances in microbiome identification technologies have expanded our ability to identify constituents of the microbiome and to infer their functional capacity. The dual use of these technologies and animal models has allowed interrogation into the role of the microbiome in lentiviral acquisition, vaccine efficacy, and the response to antiretrovirals. Lessons learned from such studies are now being harnessed to design microbiome-based interventions. SUMMARY Previous studies considering the role of the microbiome in people living with HIV largely described viral acquisition as an intrusion on the host:microbiome interface. Re-framing this view to consider HIV as a novel, albeit unwelcome, component of the microbiome may better inform the research and development of pre and postexposure prophylaxes.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Pinski AN, Gan T, Lin SC, Droit L, Diamond M, Barouch DH, Wang D. Isolation of a recombinant simian adenovirus encoding the human adenovirus G52 hexon suggests a simian origin for human adenovirus G52. J Virol 2024; 98:e0004324. [PMID: 38497664 PMCID: PMC11019922 DOI: 10.1128/jvi.00043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Human adenoviruses (HAdVs) are causative agents of morbidity and mortality throughout the world. These double-stranded DNA viruses are phylogenetically classified into seven different species (A-G). HAdV-G52, originally isolated in 2008 from a patient presenting with gastroenteritis, is the sole human-derived member of species G. Phylogenetic analysis previously suggested that HAdV-G52 may have a simian origin, indicating a potential zoonotic spillover into humans. However, evidence of HAdV-G52 in either human or simian populations has not been reported since. Here, we describe the isolation and in vitro characterization of rhesus (rh)AdV-69, a novel simian AdV with clear evidence of recombination with HAdV-G52, from the stool of a rhesus macaque. Specifically, the rhAdV-69 hexon capsid protein is 100% identical to that of HAdV-G52, whereas the remainder of the genome is most similar to rhAdV-55, sharing 95.36% nucleic acid identity. A second recombination event with an unknown adenovirus (AdV) is evident at the short fiber gene. From the same sample, we also isolated a second, highly related recombinant AdV (rhAdV-68) that harbors a distinct hexon gene but nearly identical backbone compared to rhAdV-69. In vitro, rhAdV-68 and rhAdV-69 demonstrate comparable growth kinetics and tropisms in human cell lines, nonhuman cell lines, and human enteroids. Furthermore, we show that coinfection of highly related AdVs is not unique to this sample since we also isolated coinfecting rhAdVs from two additional rhesus macaque stool samples. Our data collectively contribute to elucidating the origins of HAdV-G52 and provide insights into the frequency of coinfections and subsequent recombination in AdV evolution.IMPORTANCEUnderstanding the host origins of adenoviruses (AdVs) is critical for public health as transmission of viruses from animals to humans can lead to emergent viruses. Recombination between animal and human AdVs can also produce emergent viruses. HAdV-G52 is the only human-derived member of the HAdV G species. It has been suggested that HAdV-G52 has a simian origin. Here, we isolated from a rhesus macaque, a novel rhAdV, rhAdV-69, that encodes a hexon protein that is 100% identical to that of HAdV-G52. This observation suggests that HAdV-G52 may indeed have a simian origin. We also isolated a highly related rhAdV, differing only in the hexon gene, from the same rhesus macaque stool sample as rhAdV-69, illustrating the potential for co-infection of closely related AdVs and recombination at the hexon gene. Furthermore, our study highlights the critical role of whole-genome sequencing in understanding AdV evolution and monitoring the emergence of pathogenic AdVs.
Collapse
Affiliation(s)
- Amanda N. Pinski
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shih-Ching Lin
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Diamond
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Davies H, Dastjerdi A, Everest D, Floyd T, Collins R, McFadzean H, Reuter G, Reichel R. Incidental finding of a human-like tusavirus in a lamb with lip lesions and fatal pneumonia. J Gen Virol 2024; 105:001968. [PMID: 38441565 PMCID: PMC10999738 DOI: 10.1099/jgv.0.001968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Tusaviruses in the genus Protoparvovirus of family Parvoviridae were first identified in a diarrhoeic Tunisian child in 2014. Thereafter, high prevalence of a genetically similar virus was demonstrated in faeces from caprine and ovine species in Hungary. Here, we describe an investigation into the cause of scabby lip lesions in a 6 month-old lamb, submitted from a farm experiencing weight loss and scouring in lambs in England. Transmission electron microscopy visualised small circular particles of 18 and 22 nm in diameter in lip lesions identified as tusavirus and flumine parvovirus by Next Generation Sequencing. Liver, kidney, lung, small intestine content and faeces were also strongly positive for the tusavirus DNA as well as 10 % of faecal samples of the flock collected 2 months after the initial lip sampling. NS1 and VP1 amino acid sequences of this tusavirus displayed 99.5 and 92.89 % identity to those of a human tusavirus, respectively. These amino acid identities were at 95.5 and 89.68 % when compared to those of a goat tusavirus. Phylogenetic analysis of the NS1 and VP1 also grouped the virus in the genus Protoparvovirus and close to tusaviruses detected in human, ovine and caprine species. Wider surveillance of the virus indicated a broader geographical distribution for the virus in England. Histology of the lip tissue revealed localised areas of epidermal hyperplasia and hyperkeratosis affecting haired skin, with mild leucocyte infiltration of the subjacent dermis, but no changes to implicate virus involvement. Flumine parvovirus was concluded to be an environment contaminant. Broader studies in prevalence of these virus in UK sheep flocks and human population, animal models and experimental infections could provide insights into the pathogenesis of these novel viruses and their zoonotic potential.
Collapse
Affiliation(s)
- Hannah Davies
- Animal and Plant Health Agency (APHA)- Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Akbar Dastjerdi
- Animal and Plant Health Agency (APHA)- Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - David Everest
- Animal and Plant Health Agency (APHA)- Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Tobias Floyd
- Animal and Plant Health Agency (APHA)- Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | - Rachael Collins
- APHA-Starcross, Staplake mount, Starcross, Exeter, Devon, EX6 8PE, UK
| | - Harriet McFadzean
- APHA-Starcross, Staplake mount, Starcross, Exeter, Devon, EX6 8PE, UK
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Rudolf Reichel
- APHA-Thirsk, Wests House, Station Road, Thirsk North, Yorkshire, YO7 1PZ, UK
| |
Collapse
|
12
|
Piewbang C, Poonsin P, Lohavicharn P, Van Nguyen T, Lacharoje S, Kasantikul T, Techangamsuwan S. Canine bufavirus ( Carnivore protoparvovirus-3) infection in dogs with respiratory disease. Vet Pathol 2024; 61:232-242. [PMID: 37681306 DOI: 10.1177/03009858231198000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Canine bufavirus (CBuV) or Carnivore protoparvovirus-3, a nonenveloped DNA virus belonging to the genus Protoparvovirus, family Parvoviridae, has been identified in dogs with respiratory and enteric diseases. Although CBuV detection has been reported in multiple countries, descriptions of pathologic findings associated with infection have not yet been provided. In this study, the authors necropsied 14 dogs (12 puppies and 2 adult dogs) from a breeding colony that died during multiple outbreaks of respiratory diseases. Postmortem investigations revealed extensive bronchointerstitial pneumonia with segmental type II pneumocyte hyperplasia in all necropsied puppies but less severe lesions in adults. With negative results of common pathogen detection by ancillary testing, CBuV DNA was identified in all investigated dogs using a polymerase chain reaction (PCR). Quantitative PCR demonstrated CBuV DNA in several tissues, and in situ hybridization (ISH) indicated CBuV tissue localization in the lung, tracheobronchial lymph node, and spinal cord, suggesting hematogenous spread. Dual CBuV ISH and cellular-specific immunohistochemistry were used to determine the cellular tropism of the virus in the lung and tracheobronchial lymph node, demonstrating viral localization in various cell types, including B-cells, macrophages, and type II pneumocytes, but not T-cells. Three complete CBuV sequences were successfully characterized and revealed that they clustered with the CBuV sequences obtained from dogs with respiratory disease in Hungary. No additional cases were identified in small numbers of healthy dogs. Although association of the bufavirus with enteric disease remains to be determined, a contributory role of CBuV in canine respiratory disease is possible.
Collapse
|
13
|
He W, Ding H, Feng Y, Liu X, Fang X, Gao F, Shi B. Dietary-fat supplementation alleviates cold temperature-induced metabolic dysbiosis and barrier impairment by remodeling gut microbiota. Food Funct 2024; 15:1443-1459. [PMID: 38226701 DOI: 10.1039/d3fo04916g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
As important components of the mammalian diet and tissues, fats are involved in a variety of biological processes in addition to providing energy. In general, the increase in basal metabolism and health risks under cold temperature conditions causes the host to need more energy to maintain body temperature and normal biological processes. The intestine and its microbiota are key components in orchestrating host metabolic homeostasis and immunity, and respond rapidly to changing environmental conditions. However, the role of dietary-fat supplementation in regulating host homeostasis of metabolism and barrier functions through gut microbiota at cold temperatures is incompletely understood. Our results showed that dietary-fat supplementation alleviated the negative effects of cold temperatures on the alpha-diversity of both ileal and colonic microbiota. Cold temperatures altered the ileal and colonic microbiota of pigs, and the extent of changes was more pronounced in the colonic microbiota. Translocation of the gut microbiota was restored after supplementation with a high-fat diet. In addition, cold temperatures exacerbated ileal mucosal damage and inflammation, and disrupted barrier function, which may be associated with decreased concentrations of butyrate and isobutyrate. Cold temperature-induced metabolic dysbiosis was manifested by altered hormone levels and upregulation of expression of multiple metabolites involved in metabolism (lipids, amino acids and minerals) and the immune response. Supplementation with a high-fat diet restored metabolic homeostasis and barrier function by improving gut-microbiota composition and increasing SCFAs concentrations in pigs. In conclusion, cold temperatures induced severe translocation of microbiota and barrier damage. These actions increased the risk of metabolic imbalance. Dietary-fat supplementation alleviated the adverse effects of cold temperatures on host metabolism by remodeling the gut microbiota.
Collapse
Affiliation(s)
- Wei He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
14
|
Sarchese V, Palombieri A, Prandi I, Robetto S, Bertolotti L, Capucchio MT, Orusa R, Mauthe von Degerfeld M, Quaranta G, Vacchetta M, Martella V, Di Martino B, Di Profio F. Molecular Surveillance for Bocaparvoviruses and Bufaviruses in the European Hedgehog ( Erinaceus europaeus). Microorganisms 2024; 12:189. [PMID: 38258015 PMCID: PMC10819369 DOI: 10.3390/microorganisms12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The presence of bocaparvoviruses (BoVs) and bufaviruses (BuVs) in the European hedgehog (Erinaceus europaeus) was investigated by screening duodenal and liver samples collected from 183 carcasses, delivered to wildlife rescue centers located in northwestern Italy. BoV DNA was detected in 15 animals (8.2%), with prevalences of 7.1% (13/183) and 2.7% (5/183) in intestine and liver samples, respectively. Upon the sequence analyses of the NS1 gene, two highly divergent BoVs (65.5-67.8% nt identities) were identified. Fourteen strains showed the highest identity (98.3-99.4% nt) to the hedgehog BoV strains recently detected in China in Amur hedgehogs (Erinaceus amurensis), whilst four strains were genetically related (98.9-99.4% nt identities) to the porcine BoVs identified in pigs and classified in the species Bocaparvovirus ungulate 4, which included related viruses also found in rats, minks, shrews, and mice. BuV DNA was detected in the duodenal samples of two hedgehogs, with a prevalence rate of 1.1%. The nearly full-length genome of two BuV strains, Hedgehog/331DU-2022/ITA and Hedgehog/1278DU/2019/ITA, was reconstructed. Upon phylogenetic analysis based on the NS and VP aa sequences, the Italian hedgehog BuVs tightly clustered with the BuVs recently identified in the Chinese Amur hedgehogs, within a potential novel candidate species of the genus Protoparvovirus.
Collapse
Affiliation(s)
- Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Ilaria Prandi
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Serena Robetto
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy;
| | - Maria Teresa Capucchio
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Riccardo Orusa
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Mitzy Mauthe von Degerfeld
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Giuseppe Quaranta
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | | | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, BA, Italy;
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| |
Collapse
|
15
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
16
|
Kosoltanapiwat N, van der Hoek L, Kinsella CM, Tongshoob J, Prasittichai L, Klein M, Jebbink MF, Deijs M, Reamtong O, Boonnak K, Khongsiri W, Phadungsombat J, Tongthainan D, Tulayakul P, Yindee M. A Novel Simian Adenovirus Associating with Human Adeno-virus Species G Isolated from Long-Tailed Macaque Feces. Viruses 2023; 15:1371. [PMID: 37376670 PMCID: PMC10303043 DOI: 10.3390/v15061371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Luxsana Prasittichai
- Wildlife Conservation Division, Protected Areas Regional Office 3 (Ban Pong), Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Ratchaburi 70110, Thailand;
| | - Michelle Klein
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Maarten F. Jebbink
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Wathusiri Khongsiri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand;
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Marnoch Yindee
- Akkhraratchakumari Veterinary College, Walailak University, Nakhonsithammarat 80161, Thailand;
| |
Collapse
|
17
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
18
|
Gan T, Droit L, Vernon S, Barouch DH, Wang D. Isolation of a rhesus calicivirus that can replicate in human cells. Virology 2023; 582:83-89. [PMID: 37031656 PMCID: PMC10264158 DOI: 10.1016/j.virol.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recoviruses (rhesus enteric caliciviruses) are members of the Caliciviridae family. They are a valuable model for studying human caliciviruses such as noroviruses. It has been suggested that some recoviruses may infect humans, which necessitates detailed studies on the cell type tropism of recoviruses. For the recoviruses that have been cultured to date, successful growth has only been reported in monkey kidney cell lines, precluding their use to study virus interactions with human cells. We isolated and characterized a new recovirus, Recovirus Mo/TG30/2012, from monkey stool which grew efficiently in the monkey kidney cell line LLC-MK2. Notably, the virus can infect and replicate in several human cell lines derived from different organs. The ability to infect a human cell culture system with a recovirus expands our understanding of the potential for spillover to humans as well as increases the value of recoviruses as a model of human caliciviruses.
Collapse
Affiliation(s)
- Tianyu Gan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Susan Vernon
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
20
|
Revisiting fecal metatranscriptomics analyses of macaques with idiopathic chronic diarrhoea with a focus on trichomonad parasites. Parasitology 2023; 150:248-261. [PMID: 36503585 PMCID: PMC10090643 DOI: 10.1017/s0031182022001688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichomonads, anaerobic microbial eukaryotes members of the phylum Parabasalia, are common obligate extracellular symbionts that can lead to pathological or asymptomatic colonization of various mucosal surfaces in a wide range of animal hosts. Results from previous in vitro studies have suggested a number of intriguing mucosal colonization strategies by Trichomonads, notably highlighting the importance of interactions with bacteria. However, in vivo validation is currently lacking. A previous metatranscriptomics study into the cause of idiopathic chronic diarrhoea in macaques reported the presence of an unidentified protozoan parasite related to Trichomonas vaginalis. In this work, we performed a reanalysis of the published data in order to identify the parasite species present in the macaque gut. We also leveraged the information-rich metatranscriptomics data to investigate the parasite behaviour in vivo. Our results indicated the presence of at least 3 genera of Trichomonad parasite; Tetratrichomonas, Pentatrichomonas and Trichomitus, 2 of which had not been previously reported in the macaque gut. In addition, we identified common in vivo expression profiles shared amongst the Trichomonads. In agreement with previous findings for other Trichomonads, our results highlighted a relationship between Trichomonads and mucosal bacterial diversity which could be influential in health and disease.
Collapse
|
21
|
Ortiz AM, Baker PJ, Langner CA, Simpson J, Stacy A, Flynn JK, Starke CE, Vinton CL, Fennessey CM, Belkaid Y, Keele BF, Brenchley JM. Experimental bacterial dysbiosis with consequent immune alterations increase intrarectal SIV acquisition susceptibility. Cell Rep 2023; 42:112020. [PMID: 36848230 PMCID: PMC9989505 DOI: 10.1016/j.celrep.2023.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Variations in the composition of the intestinal bacterial microbiome correlate with acquisition of some sexually transmitted pathogens. To experimentally assess the contribution of intestinal dysbiosis to rectal lentiviral acquisition, we induce dysbiosis in rhesus macaques (RMs) with the antibiotic vancomycin prior to repeated low-dose intrarectal challenge with simian immunodeficiency virus (SIV) SIVmac239X. Vancomycin administration reduces T helper 17 (TH17) and TH22 frequencies, increases expression of host bacterial sensors and antibacterial peptides, and increases numbers of transmitted-founder (T/F) variants detected upon SIV acquisition. We observe that SIV acquisition does not correlate with measures of dysbiosis but rather associates with perturbations in the host antimicrobial program. These findings establish a functional association between the intestinal microbiome and susceptibility to lentiviral acquisition across the rectal epithelial barrier.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip J Baker
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlotte A Langner
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Lane S, Hilliam Y, Bomberger JM. Microbial and Immune Regulation of the Gut-Lung Axis during Viral-Bacterial Coinfection. J Bacteriol 2023; 205:e0029522. [PMID: 36409130 PMCID: PMC9879096 DOI: 10.1128/jb.00295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral-bacterial coinfections of the respiratory tract have long been associated with worsened disease outcomes. Clinical and basic research studies demonstrate that these infections are driven via complex interactions between the infecting pathogens, microbiome, and host immune response, although how these interactions contribute to disease progression is still not fully understood. Research over the last decade shows that the gut has a significant role in mediating respiratory outcomes, in a phenomenon known as the "gut-lung axis." Emerging literature demonstrates that acute respiratory viruses can modulate the gut-lung axis, suggesting that dysregulation of gut-lung cross talk may be a contributing factor during respiratory coinfection. This review will summarize the current literature regarding modulation of the gut-lung axis during acute respiratory infection, with a focus on the role of the microbiome, secondary infections, and the host immune response.
Collapse
Affiliation(s)
- Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yasmin Hilliam
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Lavinder TR, Fachko DN, Stanton J, Varco-Merth B, Smedley J, Okoye AA, Skalsky RL. Effects of Early Antiretroviral Therapy on the Composition and Diversity of the Fecal Microbiome of SIV-infected Rhesus Macaques ( Macaca mulatta). Comp Med 2022; 72:287-297. [PMID: 36162961 PMCID: PMC9827599 DOI: 10.30802/aalas-cm-22-000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and β diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in β diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.
Collapse
Affiliation(s)
- Tiffany R Lavinder
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University,,Corresponding authors. ,
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and
| | - Jeffrey Stanton
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon,Corresponding authors. ,
| |
Collapse
|
24
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
25
|
Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022; 13:e0102122. [PMID: 36069449 PMCID: PMC9600335 DOI: 10.1128/mbio.01021-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome—and vice versa—is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus–mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.
Collapse
|
26
|
Pandrea I, Brooks K, Desai RP, Tare M, Brenchley JM, Apetrei C. I've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Front Immunol 2022; 13:899559. [PMID: 36032119 PMCID: PMC9411647 DOI: 10.3389/fimmu.2022.899559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The lumen of the gastrointestinal (GI) tract contains an incredibly diverse and extensive collection of microorganisms that can directly stimulate the immune system. There are significant data to demonstrate that the spatial localization of the microbiome can impact viral disease pathogenesis. Here we discuss recent studies that have investigated causes and consequences of GI tract pathologies in HIV, SIV, and SARS-CoV-2 infections with HIV and SIV initiating GI pathology from the basal side and SARS-CoV-2 from the luminal side. Both these infections result in alterations of the intestinal barrier, leading to microbial translocation, persistent inflammation, and T-cell immune activation. GI tract damage is one of the major contributors to multisystem inflammatory syndrome in SARS-CoV-2-infected individuals and to the incomplete immune restoration in HIV-infected subjects, even in those with robust viral control with antiretroviral therapy. While the causes of GI tract pathologies differ between these virus families, therapeutic interventions to reduce microbial translocation-induced inflammation and improve the integrity of the GI tract may improve the prognoses of infected individuals.
Collapse
Affiliation(s)
- Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rahul P. Desai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minali Tare
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L. The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 2022; 46:6608358. [PMID: 35700129 PMCID: PMC9629487 DOI: 10.1093/femsre/fuac027] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/11/2023] Open
Abstract
The human gut virome is comprised of diverse commensal and pathogenic viruses. The colonization by these viruses begins right after birth through vaginal delivery, then continues through breastfeeding, and broader environmental exposure. Their constant interaction with their bacterial hosts in the body shapes not only our microbiomes but us. In addition, these viruses interact with the immune cells, trigger a broad range of immune responses, and influence different metabolic pathways. Besides its key role in regulating the human gut homeostasis, the intestinal virome contributes to disease development in distant organs, both directly and indirectly. In this review, we will describe the changes in the gut virome through life, health, and disease, followed by discussing the interactions between the virome, the microbiome, and the human host as well as providing an overview of their contribution to gut disease and disease of distant organs.
Collapse
Affiliation(s)
| | | | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Corresponding author: Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany; Chair of Prevention of Microbial Diseases, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. E-mail:
| |
Collapse
|
28
|
Zhou W, Xie M, Xie Y, Liang H, Li M, Ran C, Zhou Z. Effect of dietary supplementation of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 124:332-342. [PMID: 35430347 DOI: 10.1016/j.fsi.2022.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to evaluate the effects of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fingerling GIFTs (n = 120; initial weight 1.33 ± 0.00 g) were randomly assigned to twelve 90-L tanks (four tanks per diet, 10 fish per tank) with three groups: control group (basal high fat diet), 1% XMX-1 group and 2% XMX-1 group (basal diet supplemented with 10 and 20 g XMX-1/kg feed respectively). After 49 days feeding trial, the growth performance and gut and liver health parameters of tilapia were evaluated. Also the gut microbiota and virome were detected by sequencing. 2% XMX-1 fermentation product had no effect on growth performance. For gut health, the expression of hypoxia-inducible factor-lα (Hif-1α) tend to increase in 1% XMX-1 group (P = 0.053). The expression of intestinal interleukin-6 (IL-6) and tumor growth factor β (TGF-β) was significantly down-regulated in 1% and 2% XMX-1 groups (P < 0.05), and the intestinal expression of interleukin-1β (IL-1β) had a trend to decrease (P = 0.08) in 1% XMX-1 group versus control. 1% and 2% XMX-1 groups also increased the intestinal expression of tight junction genes Claudin (P = 0.06 and 0.07, respectively). For liver health, XMX-1 fermentation product significantly decreased liver TAG (P < 0.05). Furthermore, the hepatic expression of lipid synthesis gene fatty acid synthase (FAS) was significantly decreased and the expression of lipid catabolism related-gene uncoupling protein 2 (UCP2) was significantly increased in 1% XMX-1 and 2% XMX-1 groups (P < 0.01). And the hepatic expression of IL-1β and IL-6 significantly decreased in 1% XMX-1 and 2% XMX-1 groups (P < 0.05). XMX-1 fermentation product increased the abundance of Fusobacteria in the gut microbiota and 2% XMX-1 group led to alteration in the virome composition at family level. Lastly, the time of tilapia death post Aeromoans challenge was delayed in 1% XMX-1 and 2% XMX-1 groups compared with control. To sum up, our results show that the dietary supplementation of XMX-1 fermentation product can improve the gut and liver health as well as the resistance against pathogenic bacteria of tilapia.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
29
|
Kaelin EA, Skidmore PT, Łaniewski P, Holland LA, Chase DM, Herbst-Kralovetz MM, Lim ES. Cervicovaginal DNA Virome Alterations Are Associated with Genital Inflammation and Microbiota Composition. mSystems 2022; 7:e0006422. [PMID: 35343798 PMCID: PMC9040584 DOI: 10.1128/msystems.00064-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
While the link between the cervicovaginal bacterial microbiome, human papillomavirus (HPV) infection, and cervical cancer is recognized (P. Łaniewski, D. Barnes, A. Goulder, H. Cui, et al., Sci. Rep. 8:7593, 2018, http://dx.doi.org/10.1038/s41598-018-25879-7; A. Mitra, D. A. MacIntyre, Y. S. Lee, A. Smith, et al., Sci. Rep. 5:16865, 2015, http://dx.doi.org/10.1038/srep16865; A. Mitra, D. A. MacIntyre, J. R. Marchesi, Y. S. Lee, et al., Microbiome 4:58, 2016, http://dx.doi.org/10.1186/s40168-016-0203-0; J. Norenhag, J. Du, M. Olovsson, H. Verstraelen, et al., BJOG, 127:171-180, 2020, http://dx.doi.org/10.1111/1471-0528.15854; E. O. Dareng, B. Ma, A. O. Famooto, S. N. Adebamowo, et al., Epidemiol. Infect. 144:123-137, 2016, http://dx.doi.org/10.1017/S0950268815000965; A. Audirac-Chalifour, K. Torres-Poveda, M. Bahena-Roman, J. Tellez-Sosa et al., PLoS One 11:e0153274, 2016, http://dx.doi.org/10.1371/journal.pone.0153274; M. Di Paola, C. Sani, A. M. Clemente, A. Iossa, et al., Sci. Rep. 7:10200, 2017, http://dx.doi.org/10.1038/s41598-017-09842-6), the role of the cervicovaginal virome remains poorly understood. In this pilot study, we conducted metagenomic next-generation sequencing of cervicovaginal lavage specimens to investigate the relationship between the cervicovaginal DNA virome, bacterial microbiome, genital inflammation, and HPV infection. Specific virome alterations were associated with features of the local microenvironment related to HPV persistence and progression to cervical cancer. Cervicovaginal viromes clustered distinctly by genital inflammation state. Genital inflammation was associated with decreased virome richness and alpha diversity and an increased abundance of Anelloviridae species from the genus Alphatorquevirus. Lactobacillus bacteriophages were closely associated with increased Lactobacillus abundance, consistent with phage-host relationships. Interestingly, bacteria-bacteriophage transkingdom interactions were linked to genital inflammation and showed specific interactions with bacterial vaginosis-associated bacteria, including Gardnerella, Prevotella, and Sneathia. Taken together, our results reveal prominent virome interactions with features of the cervicovaginal microenvironment that are associated with HPV and cervical cancer. These findings expand our understanding of the cervicovaginal host-microbiome interactions in women's health. IMPORTANCE HPV infection is an established risk factor for cervical cancer. However, more broadly, the role of the cervicovaginal virome in cervical cancer progression is not well understood. Here, we identified cervicovaginal DNA virome alterations associated with local microenvironment factors (vaginal microbiota and genital inflammation) that influence HPV persistence and progression to cervical cancer. These findings indicate that the cervicovaginal virome plays an important role in women's health.
Collapse
Affiliation(s)
- Emily A. Kaelin
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Peter T. Skidmore
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Dana M. Chase
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, Arizona, USA
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Efrem S. Lim
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
30
|
Monaco CL. HIV, AIDS, and the virome: Gut reactions. Cell Host Microbe 2022; 30:466-470. [PMID: 35421345 DOI: 10.1016/j.chom.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In 2016 we discovered alterations in the gut bacterial and viral populations in HIV-associated AIDS (Monaco et al., 2016). Herein, I relate the background behind these developments and discuss how they advanced the field and propelled my current research endeavors.
Collapse
Affiliation(s)
- Cynthia L Monaco
- Department of Internal Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
31
|
Palombieri A, Di Profio F, Fruci P, Sarchese V, Martella V, Marsilio F, Di Martino B. Emerging Respiratory Viruses of Cats. Viruses 2022; 14:663. [PMID: 35458393 PMCID: PMC9030917 DOI: 10.3390/v14040663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.
Collapse
Affiliation(s)
- Andrea Palombieri
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Paola Fruci
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vittorio Sarchese
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vito Martella
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| |
Collapse
|
32
|
Ganji VK, Buddala B, Yella NR, Putty K. First report of canine bufavirus in India. Arch Virol 2022; 167:1145-1149. [PMID: 35235060 PMCID: PMC8889056 DOI: 10.1007/s00705-022-05398-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/16/2022] [Indexed: 11/11/2022]
Abstract
Canine bufavirus (CBuV), a novel protoparvovirus of dogs that is associated with enteric and respiratory symptoms, has been reported only in Italy and China. The enteric prevalence of CBuV in India was investigated, and the nearly complete genome sequence (4292 bp) was amplified and reconstructed for one strain. A nucleotide sequence alignment indicated 93.42–98.81% identity to the other available CBuV sequences and 70.88–73.39% and 54.4–54.8% identity to human bufavirus and canine parvovirus 2 (CPV-2), respectively. The current strain is most closely related to Chinese CBuV strains, which together form an Asian lineage. This first report of the prevalence of CBuV in India emphasizes the need for further epidemiological surveillance.
Collapse
Affiliation(s)
- Vishweshwar Kumar Ganji
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Bhagyalakshmi Buddala
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Narasimha Reddy Yella
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India.
| |
Collapse
|
33
|
Negrey JD, Mitani JC, Wrangham RW, Otali E, Reddy RB, Pappas TE, Grindle KA, Gern JE, Machanda ZP, Muller MN, Langergraber KE, Thompson ME, Goldberg TL. Viruses associated with ill health in wild chimpanzees. Am J Primatol 2022; 84:e23358. [PMID: 35015311 PMCID: PMC8853648 DOI: 10.1002/ajp.23358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Viral infection is a major cause of ill health in wild chimpanzees (Pan troglodytes), but most evidence to date has come from conspicuous disease outbreaks with high morbidity and mortality. To examine the relationship between viral infection and ill health during periods not associated with disease outbreaks, we conducted a longitudinal study of wild eastern chimpanzees (P. t. schweinfurthii) in the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We collected standardized, observational health data for 4 years and then used metagenomics to characterize gastrointestinal viromes (i.e., all viruses recovered from fecal samples) in individual chimpanzees before and during episodes of clinical disease. We restricted our analyses to viruses thought to infect mammals or primarily associated with mammals, discarding viruses associated with nonmammalian hosts. We found 18 viruses (nine of which were previously identified in this population) from at least five viral families. Viral richness (number of viruses per sample) did not vary by health status. By contrast, total viral load (normalized proportion of sequences mapping to viruses) was significantly higher in ill individuals compared with healthy individuals. Furthermore, when ill, Kanyawara chimpanzees exhibited higher viral loads than Ngogo chimpanzees, and males, but not females, exhibited higher infection rates with certain viruses and higher total viral loads as they aged. Post-hoc analyses, including the use of a machine-learning classification method, indicated that one virus, salivirus (Picornaviridae), was the main contributor to health-related and community-level variation in viral loads. Another virus, chimpanzee stool-associated virus (chisavirus; unclassified Picornavirales), was associated with ill health at Ngogo but not at Kanyawara. Chisavirus, chimpanzee adenovirus (Adenoviridae), and bufavirus (Parvoviridae) were also associated with increased age in males. Associations with sex and age are consistent with the hypothesis that nonlethal viral infections cumulatively reflect or contribute to senescence in long-lived species such as chimpanzees.
Collapse
Affiliation(s)
- Jacob D. Negrey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - John C. Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard W. Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Rachna B. Reddy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Tressa E. Pappas
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristine A. Grindle
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - James E. Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Zarin P. Machanda
- Department of Anthropology, Tufts University, Medford, MA, 02155, USA
| | - Martin N. Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kevin E. Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
34
|
Guo Y, Huang X, Sun X, Yu Y, Wang Y, Zhang B, Cao J, Wen S, Li Y, Wang X, Cai S, Xia W, Wei F, Duan J, Dong H, Guo S, Zhang F, Zheng D, Sun Z. The Underrated Salivary Virome of Men Who Have Sex With Men Infected With HIV. Front Immunol 2021; 12:759253. [PMID: 34925329 PMCID: PMC8674211 DOI: 10.3389/fimmu.2021.759253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Salivary virome is important for oral ecosystem, but there are few reports on people living with HIV. We performed metagenomic sequencing to compare composition and functional genes of salivary virobiota between one HIV-negative and four HIV-positive groups in which participants were all men who have sex with men (MSM) with different immunosuppression statuses (five samples per group) to find the evidence that salivary virobiota plays a role in the pathogenesis of oral disease. Acute-stage subjects achieved a positive result of HIV RNA, but HIV antibody negative or indeterminate, whereas individuals with mild, moderate, and severe immunosuppression exhibited CD4+ T-lymphocyte counts of at least 500, 200–499, and less than 200 cells/μL or opportunistic infection, respectively. The results showed the composition of salivary virus genera in subjects with mild immunosuppression was the most similar to that in healthy people, followed by that in the acute stage; under severe immunosuppression, virus genera were suppressed and more similar to that under moderate immunosuppression. Furthermore, abnormally high abundance of Lymphocryptovirus was particularly obvious in MSM with HIV infection. Analysis of KEGG Pathway revealed that Caulobacter cell cycle, which affects cell duplication, became shorter in HIV-positive subjects. It is worth noting that in acute-stage participants, protein digestion and absorption related to the anti-HIV-1 activity of secretory leukocyte protease inhibitor was increased. Moreover, in the severely immunosuppressed subjects, glutathione metabolism, which is associated with the activation of lymphocytes, was enhanced. Nevertheless, the ecological dysbiosis in HIV-positive salivary virobiota possibly depended on the changes in blood viral load, and salivary dysfunction of MSM infected with HIV may be related to CD4 counts. Ribonucleoside diphosphate reductase subunit M1 in purine metabolism was negatively correlated, though weakly, to CD4 counts, which may be related to the promotion of HIV-1 DNA synthesis in peripheral blood lymphocytes. 7-Cyano-7-deazaguanine synthase in folate biosynthesis was weakly positively correlated with HIV viral load, suggesting that this compound was produced excessively to correct oral dysfunction for maintaining normal cell development. Despite the limited number of samples, the present study provided insight into the potential role of salivary virome in the oral function of HIV infected MSM.
Collapse
Affiliation(s)
- Ying Guo
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xintong Sun
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yixi Yu
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Baojin Zhang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jie Cao
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wen
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyi Duan
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haozhi Dong
- Department of Stomatology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dongxiang Zheng
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Idiopathic Chronic Diarrhea in Rhesus Macaques Is Not Associated with Enteric Viral Infections. Viruses 2021; 13:v13122503. [PMID: 34960771 PMCID: PMC8707486 DOI: 10.3390/v13122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
While recent changes in treatment have reduced the lethality of idiopathic chronic diarrhea (ICD), this condition remains one of the most common causes of rhesus macaque deaths in non-human primate research centers. We compared the viromes in fecal swabs from 52 animals with late stage ICD and 41 healthy animals. Viral metagenomics targeting virus-like particles was used to identify viruses fecally shed by each animal. Five viruses belonging to the Picornaviridae, one to the Caliciviridae, one to the Parvoviridae, and one to the Adenoviridae families were identified. The fraction of reads matching each viral species was then used to estimate and compare viral loads in ICD cases versus healthy controls. None of the viruses detected in fecal swabs were strongly associated with ICD.
Collapse
|
36
|
Abstract
Purpose of Review Observations of differing bacterial, intestinal microbiomes in people living with HIV have propelled interest in contributions of the microbiome to HIV disease. Non-human primate (NHP) models of HIV infection provide a controlled setting for assessing contributions of the microbiome by standardizing environmental confounders. We provide an overview of the findings of microbiome contributions to aspects of HIV disease derived from these animal models. Recent Findings Observations of differing bacterial, intestinal microbiomes are inconsistently observed in the NHP model following SIV infection. Differences in lentiviral susceptibility and vaccine efficacy have been attributed to variations in the intestinal microbiome; however, by-and-large, these differences have not been experimentally assessed. Summary Although compelling associations exist, clearly defined contributions of the microbiome to HIV and SIV disease are lacking. The empirical use of comprehensive multi-omics assessments and longitudinal and interventional study designs in NHP models is necessary to define this contribution more clearly.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, USA.
| |
Collapse
|
37
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Bai X, Narayanan A, Nowak P, Ray S, Neogi U, Sönnerborg A. Whole-Genome Metagenomic Analysis of the Gut Microbiome in HIV-1-Infected Individuals on Antiretroviral Therapy. Front Microbiol 2021; 12:667718. [PMID: 34248876 PMCID: PMC8267369 DOI: 10.3389/fmicb.2021.667718] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Gut microbiome plays a significant role in HIV-1 immunopathogenesis and HIV-1-associated complications. Previous studies have mostly been based on 16S rRNA gene sequencing, which is limited in taxonomic resolution at the genus level and inferred functionality. Herein, we performed a deep shotgun metagenomics study with the aim to obtain a more precise landscape of gut microbiome dysbiosis in HIV-1 infection. A reduced tendency of alpha diversity and significantly higher beta diversity were found in HIV-1-infected individuals on antiretroviral therapy (ART) compared to HIV-1-negative controls. Several species, such as Streptococcus anginosus, Actinomyces odontolyticus, and Rothia mucilaginosa, were significantly enriched in the HIV-1-ART group. Correlations were observed between the degree of immunodeficiency and gut microbiome in terms of microbiota composition and metabolic pathways. Furthermore, microbial shift in HIV-1-infected individuals was found to be associated with changes in microbial virulome and resistome. From the perspective of methodological evaluations, our study showed that different DNA extraction protocols significantly affect the genomic DNA quantity and quality. Moreover, whole metagenome sequencing depth affects critically the recovery of microbial genes, including virulome and resistome, while less than 5 million reads per sample is sufficient for taxonomy profiling in human fecal metagenomic samples. These findings advance our understanding of human gut microbiome and their potential associations with HIV-1 infection. The methodological assessment assists in future study design to accurately assess human gut microbiome.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Aswathy Narayanan
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Shilpa Ray
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden.,The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, ANA Futura, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Emerging Parvoviruses in Domestic Cats. Viruses 2021; 13:v13061077. [PMID: 34200079 PMCID: PMC8229815 DOI: 10.3390/v13061077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.
Collapse
|
40
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
41
|
Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. mSystems 2021; 6:e01356-20. [PMID: 33975974 PMCID: PMC8125080 DOI: 10.1128/msystems.01356-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by applying genome- and gene-resolved metagenomic analysis of murine stool samples collected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th thoracic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4) abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality metagenome-assembled genomes (MAGs) were recovered, with most (n = 96) representing new bacterial species. Read mapping revealed that after SCI, the relative abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.) decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus lactis _A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encoding proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways for central nervous system function, were reduced after SCI. Among viruses, 1,028 mostly novel viral populations were recovered, expanding known murine gut viral species sequence space ∼3-fold compared to that of public databases. Phages of beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased, while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia) increased after SCI. Although the microbiomes and viromes were changed in all SCI mice, some of these changes varied as a function of spinal injury level, implicating loss of sympathetic tone as a mechanism underlying gut dysbiosis.IMPORTANCE To our knowledge, this is the first article to apply metagenomics to characterize changes in gut microbial population dynamics caused by a clinically relevant model of central nervous system (CNS) trauma. It also utilizes the most current approaches in genome-resolved metagenomics and viromics to maximize the biological inferences that can be made from these data. Overall, this article highlights the importance of autonomic nervous system regulation of a distal organ (gut) and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing information on taxonomy, function, and viruses, metagenomic data may better predict how SCI-induced gut dysbiosis influences systemic and neurological outcomes after SCI.
Collapse
Affiliation(s)
- Jingjie Du
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kristina A Kigerl
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Kylie Zane
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Infectious Disease Institute, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Belford Center for Spinal Cord Injury, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Center for Brain and Spinal Cord Repair, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
43
|
Bichet MC, Chin WH, Richards W, Lin YW, Avellaneda-Franco L, Hernandez CA, Oddo A, Chernyavskiy O, Hilsenstein V, Neild A, Li J, Voelcker NH, Patwa R, Barr JJ. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 2021; 24:102287. [PMID: 33855278 PMCID: PMC8024918 DOI: 10.1016/j.isci.2021.102287] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
It is increasingly apparent that bacteriophages, viruses that infect bacteria and more commonly referred to as simply phages, have tropisms outside their bacterial hosts. Using live tissue culture cell imaging, we demonstrate that cell type, phage size, and morphology play a major role in phage internalization. Uptake was validated under physiological conditions using a microfluidic device. Phages adhered to mammalian tissues, with adherent phages being subsequently internalized by macropinocytosis, with functional phages accumulating intracellularly. We incorporated these results into a pharmacokinetic model demonstrating the potential impact of phage accumulation by cell layers, which represents a potential sink for circulating phages in the body. During phage therapy, high doses of phages are directly administered to a patient in order to treat a bacterial infection, thereby facilitating broad interactions between phages and mammalian cells. Understanding these interactions will have important implications on innate immune responses, phage pharmacokinetics, and the efficacy of phage therapy.
Collapse
Affiliation(s)
- Marion C. Bichet
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Wai Hoe Chin
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - William Richards
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Yu-Wei Lin
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura Avellaneda-Franco
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Catherine A. Hernandez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Arianna Oddo
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | | | - Volker Hilsenstein
- Monash Micro Imaging, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Nicolas Hans Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Ruzeen Patwa
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
44
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
45
|
Jansen SA, Nijhuis W, Leavis HL, Riezebos-Brilman A, Lindemans CA, Schuurman R. Broad Virus Detection and Variant Discovery in Fecal Samples of Hematopoietic Transplant Recipients Using Targeted Sequence Capture Metagenomics. Front Microbiol 2020; 11:560179. [PMID: 33281758 PMCID: PMC7705093 DOI: 10.3389/fmicb.2020.560179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pediatric allogeneic hematopoietic stem cell transplantation (HSCT) patients often suffer from gastro-intestinal (GI) disease caused by viruses, Graft-versus-Host Disease (GVHD) or a combination of the two. Currently, the GI eukaryotic virome of HSCT recipients remains relatively understudied, which complicates the understanding of its role in GVHD pathogenicity. As decisions regarding immunosuppressive therapy in the treatment of virus infection or GVHD, respectively, can be completely contradicting, it is crucial to better understand the prevalence and relevance of viruses in the GI tract in the HSCT setting. A real time PCR panel for a set of specific viruses widely used to diagnose the most common causes of GI viral gastroenteritis is possibly insufficient to grasp the full extent of viruses present. Therefore, we applied the targeted sequence capture method ViroCap to residual fecal samples of 11 pediatric allogeneic HSCT recipients with GI symptoms and a suspicion of GVHD, to enrich for nucleic acids of viruses that are known to infect vertebrate hosts. After enrichment, NGS was applied to broadly detect viral sequences. Using ViroCap, we were able to detect viruses such as norovirus and adenovirus (ADV), that had been previously detected using clinical diagnostic PCR on the same sample. In addition, multiple, some of which clinically relevant viruses were detected, including ADV, human rhinovirus (HRV) and BK polyomavirus (BKV). Interestingly, in samples in which specific PCR testing for regular viral GI pathogens did not result in a diagnosis, the ViroCap pipeline led to the detection of viral sequences of human herpesvirus (HHV)-7, BKV, HRV, KI polyomavirus and astrovirus. The latter was an only recently described variant and showed extensive sequence mismatches with the applied real time PCR primers and would therefore not have been detected if tested. Our results indicate that target enrichment of viral nucleic acids through ViroCap leads to sensitive and broad possibly clinically relevant virus detection, including the detection of newer variants in clinical HSCT recipient samples. As such, ViroCap could be a useful detection tool clinically, but also in studying the associations between viral presence and GVHD.
Collapse
Affiliation(s)
- Suze A Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wouter Nijhuis
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Caroline A Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Stem Cell Transplantation, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Schuurman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
46
|
Negrey JD, Thompson ME, Langergraber KE, Machanda ZP, Mitani JC, Muller MN, Otali E, Owens LA, Wrangham RW, Goldberg TL. Demography, life-history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190613. [PMID: 32951554 PMCID: PMC7540950 DOI: 10.1098/rstb.2019.0613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
In humans, senescence increases susceptibility to viral infection. However, comparative data on viral infection in free-living non-human primates-even in our closest living relatives, chimpanzees and bonobos (Pan troglodytes and P. paniscus)-are relatively scarce, thereby constraining an evolutionary understanding of age-related patterns of viral infection. We investigated a population of wild eastern chimpanzees (P. t. schweinfurthii), using metagenomics to characterize viromes (full viral communities) in the faeces of 42 sexually mature chimpanzees (22 males, 20 females) from the Kanyawara and Ngogo communities of Kibale National Park, Uganda. We identified 12 viruses from at least four viral families possessing genomes of both single-stranded RNA and single-stranded DNA. Faecal viromes of both sexes varied with chimpanzee age, but viral richness increased with age only in males. This effect was largely due to three viruses, salivirus, porprismacovirus and chimpanzee stool-associated RNA virus (chisavirus), which occurred most frequently in samples from older males. This finding is consistent with the hypothesis that selection on males for early-life reproduction compromises investment in somatic maintenance, which has delayed consequences for health later in life, in this case reflected in viral infection and/or shedding. Faecal viromes are therefore useful for studying processes related to the divergent reproductive strategies of males and females, ageing, and sex differences in longevity. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah A. Owens
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
47
|
Liao Y, Lavenburg VM, Lennon M, Salvador A, Hsu AL, Wu VCH. The effects of environmental factors on the prevalence and diversity of bacteriophages lytic against the top six
non‐O157
Shiga toxin‐producing
Escherichia coli
on an organic farm. J Food Saf 2020. [DOI: 10.1111/jfs.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yen‐Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Valerie M. Lavenburg
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Marion Lennon
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Angeline L. Hsu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| |
Collapse
|
48
|
Yin XR, Liu P, Xu X, Xia Y, Huang KZ, Wang QD, Lai MM, Yu QG, Zheng XQ. Elevated plasma phage load as a marker for intestinal permeability in leukemic patients. Med Microbiol Immunol 2020; 209:693-703. [PMID: 32995957 DOI: 10.1007/s00430-020-00694-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023]
Abstract
Microbial translocation (MT) and altered gut microbiota have been described in acute leukemic patients and contribute to immune activation and inflammation. However, phage translocation has not been investigated in leukemia patients yet. We recruited 44 leukemic patients and 52 healthy adults and quantified the levels of 3 phages in peripheral blood, which were the most positive phages screened from fecal samples. The content of 16S rRNA in plasma was detected by qPCR to assess the intestinal mucosa of these patients. Spearman's rank correlation was used to analyze the relationship between phage load and the relevant clinical data. We found the most prevalent phages in fecal samples were λ phage, Wphi phage, and P22 phage, and λ phage had the highest detection rate in plasma (68%). Phage content was affected by chemotherapy and course of disease and correlated with the levels of CRP (r = 0.43, p = 0.003), sCD14 (r = 0.37, p = 0.014), and sCD163 (r = 0.44, p = 0.003). Our data indicate that plasma phage load is a promising marker for gut barrier damage and that gut phage translocation correlates with monocyte/macrophage activation and systemic inflammatory response in leukemic patients.
Collapse
Affiliation(s)
- Xue-Rui Yin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ping Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Qilu Children's Hospital of Shandong University, Jinan, 250000, China
| | - Xi Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ying Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Kai-Zhao Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiong-Dan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mei-Mei Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qi-Gui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Qun Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China. .,School of Laboratory Medicine and Life Sciences, The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, University Town, Room 327, Tongren Building, Chashan, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
49
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
50
|
Di Martino B, Sarchese V, Di Profio F, Palombieri A, Melegari I, Fruci P, Aste G, Bányai K, Fulvio M, Martella V. Genetic heterogeneity of canine bufaviruses. Transbound Emerg Dis 2020; 68:802-812. [PMID: 32688446 DOI: 10.1111/tbed.13746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
Canine bufavirus (CBuV) is a protoparvovirus, genetically related to human and non-human primate bufaviruses and distantly related to canine parvovirus type 2 (CPV-2). CBuV was initially identified from young dogs with respiratory signs but subsequent studies revealed that this virus is also a common component of the canine enteric virome. In this survey, by assessing archival and recent collections of dogs faecal samples, CBuV DNA was detected with a higher prevalence rate (8.8%) in animals with enteritis than in control animals (5.0%), although this difference was not statistically significant. The rate of co-infections with other enteric viruses in diarrhoeic dogs was high (84.6%), mostly in association with canine parvovirus CPV-2 (90.1%). The complete ORF2 gene was determined in five samples, and the nearly full-length genome was reconstructed for three strains, 62/2017/ITA, 9AS/2005/ITA and 35/2018/ITA. Upon sequence comparison, the viruses appeared highly conserved in the NS1 (97.2%-97.9% nt and 97.5%-98.1% aa identities). In the complete VP2 coding region, three strains were similar to the prototype viruses (99.7-99.8 nt and 99.6%-99.8% aa) whilst strains 9AS/2005/ITA and 35/2016/ITA were distantly related (87.6%-89.3% nt and 93.9%-95.1% aa identities). Interestingly, genetic diversification occurred downstream conserved regions such as the VP1/VP2 splicing signals and/or the G-rich motif in the N terminus of the VP2, suggesting a potential recombination nature. Upon phylogenetic analysis, the two divergent CBuV strains formed a distinct cluster/genotype.
Collapse
Affiliation(s)
- Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Giovanni Aste
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Krisztián Bányai
- Hungarian Academy of Sciences Centre for Agricultural Research Institute for Veterinary Medical Research, Budapest, Hungary
| | - Marsilio Fulvio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|