1
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 PMCID: PMC11995790 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Xiang W, Zhang X, Dong M, Wan L, Zhang B, Wan F. Differentiation therapy targeting the stalled epigenetic developmental programs in pediatric high-grade gliomas. Pharmacol Res 2025; 212:107599. [PMID: 39818258 DOI: 10.1016/j.phrs.2025.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are the most common brain malignancies in children and are characterized by blocked differentiation. The epigenetic landscape of pHGGs, particularly the H3K27-altered and H3G34-mutant subtypes, suggests these tumors may be particularly susceptible to strategies that target blocked differentiation. Differentiation therapy aims to overcome this differentiation blockade by promoting glioma cell differentiation into more mature and less malignant cells. Epigenetic modulators, including inhibitors of histone deacetylase (HDAC), enhancer of zeste homolog 2 (EZH2), BRG1/BRM-associated factor (BAF) complex, have shown promise in preclinical studies of pHGGs by altering the differentiation program of glioma cells. Although challenges remain in overcoming tumor cell heterogeneity, induced differentiation therapy holds promise for treating these currently incurable pediatric brain cancers.
Collapse
Affiliation(s)
- Wang Xiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Postdoctoral Research Station, School of Basic Medicine Science, Guangxi Medical University, Nanning 530021, PR China.
| | - Lijun Wan
- Department of Neurosurgery, The Second Affiliated Hospital of The Third Army Medical University, Chongqing 404100, PR China.
| | - Bin Zhang
- Department of Physiology, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430030, PR China.
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Lin Z, Xu Y, Jiang H, Zeng W, Wang Y, Zhu L, Lin C, Lou C, Shen H, Ye H, Gu Y, Yu H, Pan X, Zheng L. CDK8 mediated inflammatory microenvironment aggravates osteoarthritis progression. J Adv Res 2025:S2090-1232(25)00036-0. [PMID: 39809361 DOI: 10.1016/j.jare.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Cyclin-Dependent Kinase 8 (CDK8), a CDK family member, regulates the development of inflammatory processes through transcriptional activation. The involvement of CDK8 in osteoarthritis (OA) progression is not yet understood. OBJECTIVES This study aims to investigate whether CDK8, through its transcriptional regulatory functions, collaborates with NF-κB in chondrocytes to regulate the transcription of senescence-associated secretory phenotype (SASP) genes, thereby exacerbating the inflammatory microenvironment in the progression of osteoarthritis (OA), and to explore the specific mechanisms involved. METHODS The effects of CDK8 silencing or overexpression will be assessed by measuring OA pathological markers through H&E staining, immunoblotting, Western blot, qRT-PCR, immunofluorescence and ELISA. The DMM surgery mouse model will be used as the OA model, and the PAM and Von Frey tests will be employed to measure the pain threshold in mice. Luciferase and ChIP assays will be conducted to explore the transcriptional regulation and elongation mechanisms of CDK8. RESULT CDK8 influences OA advancement by being recruited to the SASP promoter region in cooperation with NF-κB, leading to the elongation phosphorylation of Rpb1 CTD within the context of NF-κB-induced gene specificity, thereby regulating SASP transcription. The SASP secreted by chondrocytes during this process promotes the inflammatory microenvironment in the joint and drives macrophage differentiation into osteoclasts, further worsening the severity of osteoarthritis. CONCLUSION The SASP secreted by chondrocytes during the OA process plays a crucial role in worsening the severity of the disease. Inhibiting CDK8 expression can decrease its secretion by downregulating the transcription levels of SASP, which are co-regulated by CDK8 and NF-κB. This could offer a new target for osteoarthritis treatment.
Collapse
Affiliation(s)
- Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Yining Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Wen Zeng
- Experiemtial Center of Basic Medicine, School of Basic Medical Sciences Wenzhou Medical University Wenzhou China.
| | - Yuhan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Liang Zhu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Han Ye
- The Stomatology Hospital, Zhejiang University School of Medicine, China.
| | - Yean Gu
- The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Huachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| | - Lin Zheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang Province China; Key Laboratory of Orthopedics of Zhejiang Province Wenzhou Zhejiang Province China; The Second Clinical School of Medicine Wenzhou Medical University Wenzhou Zhejiang Province China.
| |
Collapse
|
4
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Merali C, Quinn C, Huffman KM, Pieper CF, Bogan JS, Barrero CA, Merali S. Sustained caloric restriction potentiates insulin action by activating prostacyclin synthase. Obesity (Silver Spring) 2024; 32:2286-2298. [PMID: 39420421 PMCID: PMC12034231 DOI: 10.1002/oby.24150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Caloric restriction (CR) is known to enhance insulin sensitivity and reduce the risk of metabolic disorders; however, its molecular mechanisms are not fully understood. This study aims to elucidate specific proteins and pathways responsible for these benefits. METHODS We examined adipose tissue from participants in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy Phase 2 (CALERIE 2) study, comparing proteomic profiles from individuals after 12 and 24 months of CR with baseline and an ad libitum group. Biochemical and cell-specific physiological approaches complemented these analyses. RESULTS Our data revealed that CR upregulates prostacyclin synthase (PTGIS) in adipose tissue, an enzyme crucial for producing prostacyclin (PGI2). PGI2 improves the ability of insulin to stimulate the tether-containing UBX domain for GLUT4 (TUG) cleavage pathway, which is essential for glucose uptake regulation. Additionally, iloprost, a PGI2 analog, was shown to increase insulin receptor density on cell membranes, increasing glucose uptake in human adipocytes. CR also reduces carbonylation of GLUT4, a modification that is detrimental to GLUT4 function. CONCLUSIONS CR enhances insulin sensitivity by promoting PTGIS expression and stimulating the TUG cleavage pathway, leading to increased GLUT4 translocation to the cell surface and decreased GLUT4 carbonylation. These findings shed light on the complex molecular mechanisms through which CR favorably impacts insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Connor Quinn
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Kim M. Huffman
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carl F. Pieper
- Duke Center for Aging and Human Development, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos A. Barrero
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
7
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
8
|
Wang Y, Xu L, Ling L, Yao M, Shi S, Yu C, Li Y, Shen J, Jiang H, Xie C. Unraveling the CDK9/PP2A/ERK Network in Transcriptional Pause Release and Complement Activation in KRAS-mutant Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404926. [PMID: 39254172 PMCID: PMC11538672 DOI: 10.1002/advs.202404926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression. The "paradoxical" regulation of PP2Ac activity involving the CDK9/Src interplay contributes to ERK phosphorylation and pause-release of RNA polymerase II (Pol II). Co-targeting of CDK9 and KRAS/MAPK signaling pathways eliminates ERK-MYC activation and prevents feedback activation mediated by receptor tyrosine kinases, leading to more effective control of KRAS-mutant cancers and overcoming KRASi resistance. Moreover, modulating the tumor microenvironment (TME) by complement system intervention enhances the response to CDK9i and potently suppresses tumor growth. Overall, the preclinical investigations establish a robust framework for conducting clinical trials employing KRASi/SOS1i/MEKi or immunomodifiers in combination with CDK9i to simultaneously target cancer cells and their crosstalk with the TME, thereby yielding improved responses in KRAS-mutant patients.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lijun Ling
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- Lingang LaboratoryShanghai200031P. R. China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| | - Chengcheng Yu
- Lingang LaboratoryShanghai200031P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | | | - Jie Shen
- Department of PharmacyThe SATCM Third Grade Laboratory of Traditional Chinese Medicine PreparationsShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203P. R. China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- Lingang LaboratoryShanghai200031P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
9
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 PMCID: PMC11629774 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman Sarott
- Department of Chemical and Systems Biology, Stanford University
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University
| | - Basel Karim
- Department of Chemistry, Stanford University
| | | | - Haopeng Yang
- Department of Lymphoma-Myeloma, MD Anderson Cancer Center
| | | | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University
| | | | | | - Gerald R. Crabtree
- Department of Pathology, Stanford University
- Department Developmental Biology, Stanford University
| | | |
Collapse
|
10
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
11
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
12
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Chen W, Wu Y, Yang C, Ren W, Hou L, Liang H, Wu T, Kong Y, Wu J, Rao Y, Chen C. CDK9 targeting PROTAC L055 inhibits ERα-positive breast cancer. Biomed Pharmacother 2024; 177:116972. [PMID: 38906024 DOI: 10.1016/j.biopha.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Breast cancer is one of the most prevalent malignancies affecting women worldwide, underscoring the urgent need for more effective and specific treatments. Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy to develop new lead compounds by selectively targeting oncoproteins for degradation. In this study, we designed, synthesized and evaluated a CRBN-based PROTAC, L055, which targets CDK9. Our findings demonstrate that L055 effectively inhibits the proliferation, induces cell cycle arrest, and decreases the survival of ERα-positive breast cancer cells in vitro. L055 specifically binds to CDK9, facilitating its degradation via the CRBN-dependent proteasomal pathway. Additionally, L055 suppressed the growth of organoids and tumors derived from T47D and MCF7 cells in nude mice. Thus, L055 represents a potential novel therapeutic agent for ERα-positive breast cancer and potentially other malignancies.
Collapse
Affiliation(s)
- Wenmin Chen
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming 650204, China; Department of Basic Medical Sciences, Beihai Vocational College of Wellness, Beihai 536000, China
| | - Yue Wu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Chuanyu Yang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenlong Ren
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; School of Life Science, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Lei Hou
- Department of Breast Disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huichun Liang
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyue Wu
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; School of Life Science, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Yanjie Kong
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Ceshi Chen
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China; The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.
| |
Collapse
|
14
|
Walker FM, Sobral LM, Danis E, Sanford B, Donthula S, Balakrishnan I, Wang D, Pierce A, Karam SD, Kargar S, Serkova NJ, Foreman NK, Venkataraman S, Dowell R, Vibhakar R, Dahl NA. Rapid P-TEFb-dependent transcriptional reorganization underpins the glioma adaptive response to radiotherapy. Nat Commun 2024; 15:4616. [PMID: 38816355 PMCID: PMC11139976 DOI: 10.1038/s41467-024-48214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Dynamic regulation of gene expression is fundamental for cellular adaptation to exogenous stressors. P-TEFb-mediated pause-release of RNA polymerase II (Pol II) is a conserved regulatory mechanism for synchronous transcriptional induction in response to heat shock, but this pro-survival role has not been examined in the applied context of cancer therapy. Using model systems of pediatric high-grade glioma, we show that rapid genome-wide reorganization of active chromatin facilitates P-TEFb-mediated nascent transcriptional induction within hours of exposure to therapeutic ionizing radiation. Concurrent inhibition of P-TEFb disrupts this chromatin reorganization and blunts transcriptional induction, abrogating key adaptive programs such as DNA damage repair and cell cycle regulation. This combination demonstrates a potent, synergistic therapeutic potential agnostic of glioma subtype, leading to a marked induction of tumor cell apoptosis and prolongation of xenograft survival. These studies reveal a central role for P-TEFb underpinning the early adaptive response to radiotherapy, opening avenues for combinatorial treatment in these lethal malignancies.
Collapse
Affiliation(s)
- Faye M Walker
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lays Martin Sobral
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bridget Sanford
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sahiti Donthula
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dong Wang
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angela Pierce
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Soudabeh Kargar
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie J Serkova
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robin Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
15
|
Jarmoskaite I, Li JB. Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity. RNA (NEW YORK, N.Y.) 2024; 30:500-511. [PMID: 38531645 PMCID: PMC11019752 DOI: 10.1261/rna.079953.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- AIRNA Corporation, Cambridge, Massachusetts 02142, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
16
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. Oncogene 2024; 43:729-743. [PMID: 38243078 PMCID: PMC11157427 DOI: 10.1038/s41388-024-02947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Merck, Bioinformatics Oncology Discovery, Boston, MA, USA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Dong B, Wang X, Song X, Wang J, Liu X, Yu Z, Zhou Y, Deng J, Wu Y. RNF20 contributes to epigenetic immunosuppression through CDK9-dependent LSD1 stabilization. Proc Natl Acad Sci U S A 2024; 121:e2307150121. [PMID: 38315842 PMCID: PMC10873621 DOI: 10.1073/pnas.2307150121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xinzhao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Xiang Song
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jianlin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xia Liu
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Yongkun Zhou
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou256600, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| |
Collapse
|
18
|
Wang S, Liu F, Li P, Wang JN, Mo Y, Lin B, Mei Y. Potent inhibitors targeting cyclin-dependent kinase 9 discovered via virtual high-throughput screening and absolute binding free energy calculations. Phys Chem Chem Phys 2024; 26:5377-5386. [PMID: 38269624 DOI: 10.1039/d3cp05582e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to the crucial regulatory mechanism of cyclin-dependent kinase 9 (CDK9) in mRNA transcription, the development of kinase inhibitors targeting CDK9 holds promise as a potential treatment strategy for cancer. A structure-based virtual screening approach has been employed for the discovery of potential novel CDK9 inhibitors. First, compounds with kinase inhibitor characteristics were identified from the ZINC15 database via virtual high-throughput screening. Next, the predicted binding modes were optimized by molecular dynamics simulations, followed by precise estimation of binding affinities using absolute binding free energy calculations based on the free energy perturbation scheme. The binding mode of molecule 006 underwent an inward-to-outward flipping, and the new binding mode exhibited binding affinity comparable to the small molecule T6Q in the crystal structure (PDB ID: 4BCF), highlighting the essential role of molecular dynamics simulation in capturing a plausible binding pose bridging docking and absolute binding free energy calculations. Finally, structural modifications based on these findings further enhanced the binding affinity with CDK9. The results revealed that enhancing the molecule's rigidity through ring formation, while maintaining the major interactions, reduced the entropy loss during the binding process and, thus, enhanced binding affinities.
Collapse
Affiliation(s)
- Shipeng Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Fengjiao Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Pengfei Li
- Single Particle, LLC, 10531 4S Commons Dr 166-629, San Diego, CA 92127, USA
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
19
|
Zhou J, Du H, Cai W. Narrative review: precision medicine applications in neuroblastoma-current status and future prospects. Transl Pediatr 2024; 13:164-177. [PMID: 38323175 PMCID: PMC10839273 DOI: 10.21037/tp-23-557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Background and Objective Neuroblastoma (NB) is a common malignant tumor in children, and its treatment remains challenging. Precision medicine, as an individualized treatment strategy, aims to improve efficacy and reduce toxicity by combining unique patient- and tumor-related factors, bringing new hope for NB treatment. In this article, we review the evidence related to precision medicine in NB, with a focus on potential clinically actionable targets and a series of targeted drugs associated with NB. Methods We conducted an extensive search in PubMed, EMBASE, and Web of Science using key terms and database-specific strategies, filtered for time and language, to ensure a comprehensive collection of literature related to precision medicine in NB. The main search terms consisted of "neuroblastoma", "precision medicine", "pediatrics", and "targeting". The articles included in this study encompass those published from 1985 to the present, without restrictions on the type of articles. Key Content and Findings ALK inhibitors and MYCN inhibitors have been developed to interfere with tumor cell growth and dissemination, thereby improving treatment outcomes. Additionally, systematic testing to identify relevant driver mutations is crucial and can be used for diagnosis and prognostic assessment through the detection of many associated molecular markers. Furthermore, liquid biopsy, a non-invasive tumor detection method, can complement tissue biopsy and play a role in NB by analyzing circulating tumor DNA and circulating tumor cells to provide genetic information and molecular characteristics of the tumor. Recently, trials conducted by many pediatric oncology groups have shown the urgent need for new approaches to cure relapsed and refractory patients. Conclusions The purpose of this review is to summarize the latest advances in clinical treatment of NB, to better understand and focus on the development of promising treatment approaches, and to expedite the transition to the precision medicine clinical relevance in NB patients.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongmei Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weisong Cai
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Bhutada I, Khambati F, Cheng SY, Tiek DM, Duckett D, Lawrence H, Vogelbaum MA, Mo Q, Chellappan SP, Padmanabhan J. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Neuro Oncol 2024; 26:70-84. [PMID: 37551745 PMCID: PMC10768977 DOI: 10.1093/neuonc/noad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.
Collapse
Affiliation(s)
- Isha Bhutada
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatema Khambati
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna M Tiek
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neuro-Oncology Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Zhang H, Huang C, Gordon J, Yu S, Morton G, Childers W, Abou-Gharbia M, Zhang Y, Jelinek J, Issa JPJ. MC180295 is a highly potent and selective CDK9 inhibitor with preclinical in vitro and in vivo efficacy in cancer. Clin Epigenetics 2024; 16:3. [PMID: 38172923 PMCID: PMC10765884 DOI: 10.1186/s13148-023-01617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.
Collapse
Affiliation(s)
- Hanghang Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chen Huang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John Gordon
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Sijia Yu
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - George Morton
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Yi Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
- Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ, 08103, USA
- Cooper Medical School at Rowan University, Camden, NJ, 08103, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ, 08103, USA.
- Cooper Medical School at Rowan University, Camden, NJ, 08103, USA.
| |
Collapse
|
22
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
23
|
Potapova TA, Unruh JR, Conkright-Fincham J, Banks CAS, Florens L, Schneider DA, Gerton JL. Distinct states of nucleolar stress induced by anticancer drugs. eLife 2023; 12:RP88799. [PMID: 38099650 PMCID: PMC10723795 DOI: 10.7554/elife.88799] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Jennifer L Gerton
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
24
|
Dominguez EC, Roleder C, Ball B, Danilov AV. Cyclin-dependent kinase-9 in B-cell malignancies: pathogenic role and therapeutic implications. Leuk Lymphoma 2023; 64:1893-1904. [PMID: 37552126 DOI: 10.1080/10428194.2023.2244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023]
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle and transcriptional activity. Pan-CDK inhibitors demonstrated early efficacy in lymphoid malignancies, but also have been associated with narrow therapeutic index. Among transcriptional CDKs, CDK7 and CDK9 emerged as promising targets. CDK9 serves as a component of P-TEFb elongation complex and thus is indispensable in mRNA transcription. Selective CDK9 inhibitors demonstrated pre-clinical efficacy in in vitro and in vivo models of B-cell non-Hodgkin lymphoma. CDK9 inhibition results in transcriptional pausing with rapid downmodulation of short-lived oncogenic proteins, e.g. Myc and Mcl-1, followed by cell apoptosis. Early phase clinical trials established safety of CDK9 inhibitors, with manageable neutropenia, infections and gastrointestinal toxicities. In this review, we summarize the rationale of targeting CDK9 in lymphoid malignancies, as well as pre-clinical and early clinical data with pan-CDK and selective CDK9 inhibitors.
Collapse
Affiliation(s)
| | - Carly Roleder
- City of Hope National Medical Center, Duarte, CA, USA
| | - Brian Ball
- City of Hope National Medical Center, Duarte, CA, USA
| | | |
Collapse
|
25
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Wang Z, Himanen SV, Haikala HM, Friedel CC, Vihervaara A, Barborič M. Inhibition of CDK12 elevates cancer cell dependence on P-TEFb by stimulation of RNA polymerase II pause release. Nucleic Acids Res 2023; 51:10970-10991. [PMID: 37811895 PMCID: PMC10639066 DOI: 10.1093/nar/gkad792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
P-TEFb and CDK12 facilitate transcriptional elongation by RNA polymerase II. Given the prominence of both kinases in cancer, gaining a better understanding of their interplay could inform the design of novel anti-cancer strategies. While down-regulation of DNA repair genes in CDK12-targeted cancer cells is being explored therapeutically, little is known about mechanisms and significance of transcriptional induction upon inhibition of CDK12. We show that selective targeting of CDK12 in colon cancer-derived cells activates P-TEFb via its release from the inhibitory 7SK snRNP. In turn, P-TEFb stimulates Pol II pause release at thousands of genes, most of which become newly dependent on P-TEFb. Amongst the induced genes are those stimulated by hallmark pathways in cancer, including p53 and NF-κB. Consequently, CDK12-inhibited cancer cells exhibit hypersensitivity to inhibitors of P-TEFb. While blocking P-TEFb triggers their apoptosis in a p53-dependent manner, it impedes cell proliferation irrespective of p53 by preventing induction of genes downstream of the DNA damage-induced NF-κB signaling. In summary, stimulation of Pol II pause release at the signal-responsive genes underlies the functional dependence of CDK12-inhibited cancer cells on P-TEFb. Our study establishes the mechanistic underpinning for combinatorial targeting of CDK12 with either P-TEFb or the induced oncogenic pathways in cancer.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Samu V Himanen
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Heidi M Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki FIN-00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
27
|
Quinn C, Rico MC, Merali C, Barrero CA, Perez-Leal O, Mischley V, Karanicolas J, Friedman SL, Merali S. Secreted folate receptor γ drives fibrogenesis in metabolic dysfunction-associated steatohepatitis by amplifying TGFβ signaling in hepatic stellate cells. Sci Transl Med 2023; 15:eade2966. [PMID: 37756380 PMCID: PMC11816833 DOI: 10.1126/scitranslmed.ade2966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Hepatic fibrosis is the primary determinant of mortality in patients with metabolic dysfunction-associated steatohepatitis (MASH). Transforming growth factor-β (TGFβ), a master profibrogenic cytokine, is a promising therapeutic target that has not yet been translated into an effective therapy in part because of liabilities associated with systemic TGFβ antagonism. We have identified that soluble folate receptor γ (FOLR3), which is expressed in humans but not in rodents, is a secreted protein that is elevated in the livers of patients with MASH but not in those with metabolic dysfunction-associated steatotic liver disease, those with type II diabetes, or healthy individuals. Global proteomics showed that FOLR3 was the most highly significant MASH-specific protein and was positively correlated with increasing fibrosis stage, consistent with stimulation of activated hepatic stellate cells (HSCs), which are the key fibrogenic cells in the liver. Exposure of HSCs to exogenous FOLR3 led to elevated extracellular matrix (ECM) protein production, an effect synergistically potentiated by TGFβ1. We found that FOLR3 interacts with the serine protease HTRA1, a known regulator of TGFBR, and activates TGFβ signaling. Administration of human FOLR3 to mice induced severe bridging fibrosis and an ECM pattern resembling human MASH. Our study thus uncovers a role of FOLR3 in enhancing fibrosis.
Collapse
Affiliation(s)
- Connor Quinn
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
| | - Mario C. Rico
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
| | | | - Oscar Perez-Leal
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
| | - Victoria Mischley
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - John Karanicolas
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, PA 19140 USA
| |
Collapse
|
28
|
Cornista AM, Giolito MV, Baker K, Hazime H, Dufait I, Datta J, Khumukcham SS, De Ridder M, Roper J, Abreu MT, Breckpot K, Van der Jeught K. Colorectal Cancer Immunotherapy: State of the Art and Future Directions. GASTRO HEP ADVANCES 2023; 2:1103-1119. [PMID: 38098742 PMCID: PMC10721132 DOI: 10.1016/j.gastha.2023.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.
Collapse
Affiliation(s)
- Alyssa Mauri Cornista
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Maria Virginia Giolito
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Hajar Hazime
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jashodeep Datta
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Saratchandra Singh Khumukcham
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Maria T. Abreu
- Division of Gastroenterology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karine Breckpot
- Department of Biomedical Sciences, Vrije Universiteit Brussel, Laboratory for Molecular and Cellular Therapy, Brussels, Belgium
| | - Kevin Van der Jeught
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
29
|
Tran S, Plant-Fox AS, Chi SN, Narendran A. Current advances in immunotherapy for atypical teratoid rhabdoid tumor (ATRT). Neurooncol Pract 2023; 10:322-334. [PMID: 37457224 PMCID: PMC10346396 DOI: 10.1093/nop/npad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive embryonal tumors of central nervous system that typically affect children younger than 3 years of age. Given the generally poor outcomes of patients with ATRT and the significant toxicities associated with conventional multi-modal therapies, there is an urgent need for more novel approaches to treat ATRT, one such approach being immunotherapy. The recent rise of large-scale, multicenter interdisciplinary studies has delineated several molecular and genetic characteristics unique to ATRT. This review aims to describe currently available data on the tumor immune microenvironment of ATRT and its specific subtypes and to summarize the emerging clinical and preclinical results of immunotherapy-based approaches. It will also highlight the evolving knowledge of epigenetics on immunomodulation in this epigenetically influenced tumor, which may help guide the development of effective immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Son Tran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashley S Plant-Fox
- Division of Hematology, Stem Cell Transplant, and Neuro-Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Aru Narendran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546707. [PMID: 37425776 PMCID: PMC10327161 DOI: 10.1101/2023.06.27.546707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
- Current Affiliation: Merck, Bioinformatics Oncology Discovery, Boston, MA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
31
|
Luke JJ, Fakih M, Schneider C, Chiorean EG, Bendell J, Kristeleit R, Kurzrock R, Blagden SP, Brana I, Goff LW, O'Hayer K, Geschwindt R, Smith M, Zhou F, Naing A. Phase I/II sequencing study of azacitidine, epacadostat, and pembrolizumab in advanced solid tumors. Br J Cancer 2023; 128:2227-2235. [PMID: 37087488 PMCID: PMC10241827 DOI: 10.1038/s41416-023-02267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1), an interferon-inducible enzyme, contributes to tumor immune intolerance. Immune checkpoint inhibition may increase interferon levels; combining IDO1 inhibition with immune checkpoint blockade represents an attractive strategy. Epigenetic agents trigger interferon responses and may serve as an immunotherapy priming method. We evaluated whether epigenetic therapy plus IDO1 inhibition and immune checkpoint blockade confers clinical benefit to patients with advanced solid tumors. METHODS ECHO-206 was a Phase I/II study where treatment-experienced patients with advanced solid tumors (N = 70) received azacitidine plus an immunotherapy doublet (epacadostat [IDO1 inhibitor] and pembrolizumab). Sequencing of treatment was also assessed. Primary endpoints were safety/tolerability (Phase I), maximum tolerated dose (MTD) or pharmacologically active dose (PAD; Phase I), and investigator-assessed objective response rate (ORR; Phase II). RESULTS In Phase I, no dose-limiting toxicities were reported, the MTD was not reached; a PAD was not determined. ORR was 5.7%, with four partial responses. The most common treatment-related adverse events (AEs) were fatigue (42.9%) and nausea (42.9%). Twelve (17.1%) patients experienced ≥1 fatal AE, one of which (asthenia) was treatment-related. CONCLUSIONS Although the azacitidine-epacadostat-pembrolizumab regimen was well tolerated, it was not associated with substantial clinical response in patients with advanced solid tumors previously exposed to immunotherapy.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Charles Schneider
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - E Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | - Razelle Kurzrock
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah P Blagden
- Early Phase Clinical Trials Unit, University of Oxford, Oxford, England, UK
| | - Irene Brana
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Feng Zhou
- Incyte Corporation, Wilmington, DE, USA
| | - Aung Naing
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
32
|
Wu T, Wu X, Xu Y, Chen R, Wang J, Li Z, Bian J. A patent review of selective CDK9 inhibitors in treating cancer. Expert Opin Ther Pat 2023; 33:309-322. [PMID: 37128897 DOI: 10.1080/13543776.2023.2208747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION The dysregulation of CDK9 protein is greatly related to the proliferation and differentiation of various cancers due to its key role in the regulation of RNA transcription. Moreover, CDK9 inhibition can markedly downregulate the anti-apoptotic protein Mcl-1 which is essential for the survival of tumors. Thus, targeting CDK9 is considered to be a promising strategy for antitumor drug development, and the development of selective CDK9 inhibitors has gained increasing attention. AREAS COVERED This review focuses on the development of selective CDK9 inhibitors reported in patent publications during the period 2020-2022, which were searched from SciFinder and Cortellis Drug Discovery Intelligence. EXPERT OPINION Given that pan-CDK9 inhibitors may lead to serious side effects due to poor selectivity, the investigation of selective CDK9 inhibitors has attracted widespread attention. CDK9 inhibitors make some advance in treating solid tumors and possess the therapeutic potential in EGFR-mutant lung cancer. CDK9 inhibitors with short half-life and intravenous administration might result in transient target engagement and contribute to a better safety profile in vivo. However, more efforts are urgently needed to accelerate the development of CDK9 inhibitors, including the research on new binding modes between ligand and receptor or new protein binding sites.
Collapse
Affiliation(s)
- Tizhi Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaowei Wu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jubo Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
33
|
Modur V, Muhammad B, Yang JQ, Zheng Y, Komurov K, Guo F. Mechanism of inert inflammation in an immune checkpoint blockade-resistant tumor subtype bearing transcription elongation defects. Cell Rep 2023; 42:112364. [PMID: 37043352 PMCID: PMC10562518 DOI: 10.1016/j.celrep.2023.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/22/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) correlates with tumor-infiltrating cytolytic T lymphocytes (CTLs) prior to treatment. However, many of these inflamed tumors resist ICB through unknown mechanisms. We show that tumors with transcription elongation deficiencies (TEdef+), which we previously reported as being resistant to ICB in mouse models and the clinic, have high baseline CTLs. We show that high baseline CTLs in TEdef+ tumors result from aberrant activation of the nucleic acid sensing-TBK1-CCL5/CXCL9 signaling cascade, which results in an immunosuppressive microenvironment with elevated regulatory T cells and exhausted CTLs. ICB therapy of TEdef+ tumors fail to increase CTL infiltration and suppress tumor growth in both experimental and clinical settings, suggesting that TEdef+, along with surrogate markers of tumor immunogenicity such as tumor mutational burden and CTLs, should be considered in the decision process for patient immunotherapy indication.
Collapse
Affiliation(s)
- Vishnu Modur
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Belal Muhammad
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Scalia P, Merali C, Barrero C, Suma A, Carnevale V, Merali S, Williams SJ. Novel Isoform DTX3c Associates with UBE2N-UBA1 and Cdc48/p97 as Part of the EphB4 Degradation Complex Regulated by the Autocrine IGF-II/IR A Signal in Malignant Mesothelioma. Int J Mol Sci 2023; 24:ijms24087380. [PMID: 37108544 PMCID: PMC10139083 DOI: 10.3390/ijms24087380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein-protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as "DTX3c"), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway.
Collapse
Affiliation(s)
- Pierluigi Scalia
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA and 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Carmen Merali
- Proteomics and Metabolomics Facility, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Carlos Barrero
- Proteomics and Metabolomics Facility, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Antonio Suma
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Salim Merali
- Proteomics and Metabolomics Facility, Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | - Stephen J Williams
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA and 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
35
|
Walhart TA, Vacca B, Hepperla AJ, Hamad SH, Petrongelli J, Wang Y, McKean EL, Moksa M, Cao Q, Yip S, Hirst M, Weissman BE. SMARCB1 Loss in Poorly Differentiated Chordomas Drives Tumor Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:456-473. [PMID: 36657718 PMCID: PMC10123523 DOI: 10.1016/j.ajpath.2022.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
Poorly differentiated (PD) chordoma, a rare, aggressive tumor originating from notochordal tissue, shows loss of SMARCB1 expression, a core component of the Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes. To determine the impact of SMARCB1 re-expression on cell growth and gene expression, two SMARCB1-negative PD chordoma cell lines with an inducible SMARCB1 expression system were generated. After 72 hours of induction of SMARCB1, both SMARCB1-negative PD chordoma cell lines continued to proliferate. This result contrasted with those observed with SMARCB1-negative rhabdoid cell lines in which SMARCB1 re-expression caused the rapid inhibition of growth. We found that the lack of growth inhibition may arise from the loss of CDKN2A (p16INK4A) expression in PD chordoma cell lines. RNA-sequencing of cell lines after SMARCB1 re-expression showed a down-regulation for rRNA and RNA processing as well as metabolic processing and increased expression of genes involved in cell adhesion, cell migration, and development. Taken together, these data establish that SMARCB1 re-expression in PD chordomas alters the repertoire of SWI/SNF complexes, perhaps restoring those associated with cellular differentiation. These novel findings support a model in which SMARCB1 inactivation blocks the conversion of growth-promoting SWI/SNF complexes to differentiation-inducing ones, and they implicate SMARCB1 loss as a late event in tumorigenic progression. Importantly, the absence of growth inhibition after SMARCB1 restoration creates a unique opportunity to identify therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tara A Walhart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Bryanna Vacca
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Austin J Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James Petrongelli
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Erin L McKean
- Department of Otolaryngology and Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle Moksa
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
36
|
Toure M, Koehler AN. Addressing Transcriptional Dysregulation in Cancer through CDK9 Inhibition. Biochemistry 2023; 62:1114-1123. [PMID: 36854448 PMCID: PMC10035036 DOI: 10.1021/acs.biochem.2c00609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Indexed: 03/02/2023]
Abstract
Undermining transcriptional addiction, the dependence of cancers on selected transcriptional programs, is critically important for addressing cancers with high unmet clinical need. Cyclin-dependent kinase 9 (CDK9) has long been considered an actionable therapeutic target for modulating transcription in many diseases. This appeal is due to its role in coordinating the biochemical events that regulate RNA polymerase II (RNA Pol II) pause-release state, one that offers a way for attenuating transcriptional dysregulation driven by amplified or overexpressed transcription factors implicated in cancer. However, targeting CDK9 in the clinic has historically proven elusive, a challenge that stems from the often highly intolerable cytotoxicity attributed to its essentiality across many cell lineages and the polypharmacology of the first generation of pan-CDK inhibitors to reach the clinic. A new wave of highly selective molecules progressing through the early stages of clinical evaluation offers renewed hope.
Collapse
Affiliation(s)
- Mohammed
A. Toure
- Department of Biological
Engineering, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative
Cancer Research, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT
and Harvard, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
37
|
Gupta A, Dagar G, Chauhan R, Sadida HQ, Almarzooqi SK, Hashem S, Uddin S, Macha MA, Akil ASAS, Pandita TK, Bhat AA, Singh M. Cyclin-dependent kinases in cancer: Role, regulation, and therapeutic targeting. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:21-55. [PMID: 37061333 DOI: 10.1016/bs.apcsb.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Regulated cell division is one of the fundamental phenomena which is the basis of all life on earth. Even a single base pair mutation in DNA leads to the production of the dysregulated protein that can have catastrophic consequences. Cell division is tightly controlled and orchestrated by proteins called cyclins and cyclin-dependent kinase (CDKs), which serve as licensing factors during different phases of cell division. Dysregulated cell division is one of the most important hallmarks of cancer and is commonly associated with a mutation in cyclins and CDKs along with tumor suppressor proteins. Therefore, targeting the component of the cell cycle which leads to these characteristics would be an effective strategy for treating cancers. Specifically, Cyclin-dependent kinases (CDKs) involved in cell cycle regulation have been identified to be overexpressed in many cancers. Many studies indicate that oncogenesis occurs in cancerous cells by the overactivity of different CDKs, which impact cell cycle progression and checkpoint dysregulation which is responsible for development of tumor. The development of CDK inhibitors has emerged as a promising and novel approach for cancer treatment in both solid and hematological malignancies. Some of the novel CDK inhibitors have shown remarkable results in clinical trials, such as-Ribociclib®, Palbociclib® and Abemaciclib®, which are CDK4/6 inhibitors and have received FDA approval for the treatment of breast cancer. In this chapter, we discuss the molecular mechanism through which cyclins and CDKs regulate cell cycle progression and the emergence of cyclins and CDKs as rational targets in cancer. We also discuss recent advances in developing CDK inhibitors, which have emerged as a novel class of inhibitors, and their associated toxicities in recent years.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, United States
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology, Dr B.R Ambedkar Institute Rotary Cancer Hospital All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
38
|
Lim B, Yoo D, Chun Y, Go A, Kim JY, Lee HY, Boohaker RJ, Cho KJ, Ahn S, Lee JS, Jung D, Choi G. Integrative Analyses Reveal the Anticancer Mechanisms and Sensitivity Markers of the Next-Generation Hypomethylating Agent NTX-301. Cancers (Basel) 2023; 15:cancers15061737. [PMID: 36980623 PMCID: PMC10046470 DOI: 10.3390/cancers15061737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Epigenetic dysregulation characterized by aberrant DNA hypermethylation is a hallmark of cancer, and it can be targeted by hypomethylating agents (HMAs). Recently, we described the superior therapeutic efficacy of a novel HMA, namely, NTX-301, when used as a monotherapy and in combination with venetoclax in the treatment of acute myeloid leukemia. Following a previous study, we further explored the therapeutic properties of NTX-301 based on experimental investigations and integrative data analyses. Comprehensive sensitivity profiling revealed that NTX-301 primarily exerted anticancer effects against blood cancers and exhibited improved potency against a wide range of solid cancers. Subsequent assays showed that the superior efficacy of NTX-301 depended on its strong effects on cell cycle arrest, apoptosis, and differentiation. Due to its superior efficacy, low doses of NTX-301 achieved sufficiently substantial tumor regression in vivo. Multiomics analyses revealed the mechanisms of action (MoAs) of NTX-301 and linked these MoAs to markers of sensitivity to NTX-301 and to the demethylation activity of NTX-301 with high concordance. In conclusion, our findings provide a rationale for currently ongoing clinical trials of NTX-301 and will help guide the development of novel therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Byungho Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Correspondence: (B.L.); (G.C.); Tel.: +82-42-860-7450 (B.L.); Fax: +82-42-861-4246 (B.L.)
| | - Dabin Yoo
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | | | - Areum Go
- Pinotbio, Inc., Suwon 16506, Republic of Korea
| | - Ji Yeon Kim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | | | | | - Kyung-Jin Cho
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jin Soo Lee
- Pinotbio, Inc., Suwon 16506, Republic of Korea
| | | | - Gildon Choi
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Correspondence: (B.L.); (G.C.); Tel.: +82-42-860-7450 (B.L.); Fax: +82-42-861-4246 (B.L.)
| |
Collapse
|
39
|
Safaroghli-Azar A, Emadi F, Lenjisa J, Mekonnen L, Wang S. Kinase inhibitors: Opportunities for small molecule anticancer immunotherapies. Drug Discov Today 2023; 28:103525. [PMID: 36907320 DOI: 10.1016/j.drudis.2023.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 03/12/2023]
Abstract
As the fifth pillar of cancer treatment, immunotherapy has dramatically changed the paradigm of therapeutic strategies by focusing on the host's immune system. In the long road of immunotherapy development, the identification of immune-modulatory effects for kinase inhibitors opened a new chapter in this therapeutic approach. These small molecule inhibitors not only directly eradicate tumors by targeting essential proteins of cell survival and proliferation but can also drive immune responses against malignant cells. This review summarizes the current standings and challenges of kinase inhibitors in immunotherapy, either as a single agent or in a combined modality.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Fatemeh Emadi
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Jimma Lenjisa
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
40
|
Wang Z, Mačáková M, Bugai A, Kuznetsov SG, Hassinen A, Lenasi T, Potdar S, Friedel CC, Barborič M. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Nucleic Acids Res 2023; 51:1687-1706. [PMID: 36727434 PMCID: PMC9976905 DOI: 10.1093/nar/gkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Monika Mačáková
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland.,Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergey G Kuznetsov
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Antti Hassinen
- High Content Imaging and Analysis Unit (HCA), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Tina Lenasi
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Swapnil Potdar
- High-Throughput Biomedicine Unit (HTB), Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FIN-00014, Finland
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Matjaž Barborič
- Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
41
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
42
|
Sher S, Whipp E, Walker J, Zhang P, Beaver L, Williams K, Orwick S, Ravikrishnan J, Walker B, Perry E, Gregory C, Purcell M, Pan A, Yan P, Alinari L, Johnson AJ, Frigault MM, Greer JM, Hamdy A, Izumi R, Mo X, Sampath D, Woyach J, Blachly J, Byrd JC, Lapalombella R. VIP152 is a selective CDK9 inhibitor with pre-clinical in vitro and in vivo efficacy in chronic lymphocytic leukemia. Leukemia 2023; 37:326-338. [PMID: 36376377 PMCID: PMC9898036 DOI: 10.1038/s41375-022-01758-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is effectively treated with targeted therapies including Bruton tyrosine kinase inhibitors and BCL2 antagonists. When these become ineffective, treatment options are limited. Positive transcription elongation factor complex (P-TEFb), a heterodimeric protein complex composed of cyclin dependent kinase 9 (CDK9) and cyclin T1, functions to regulate short half-life transcripts by phosphorylation of RNA Polymerase II (POLII). These transcripts are frequently dysregulated in hematologic malignancies; however, therapies targeting inhibition of P-TEFb have not yet achieved approval for cancer treatment. VIP152 kinome profiling revealed CDK9 as the main enzyme inhibited at 100 nM, with over a 10-fold increase in potency compared with other inhibitors currently in development for this target. VIP152 induced cell death in CLL cell lines and primary patient samples. Transcriptome analysis revealed inhibition of RNA degradation through the AU-Rich Element (ARE) dysregulation. Mechanistically, VIP152 inhibits the assembly of P-TEFb onto the transcription machinery and disturbs binding partners. Finally, immune competent mice engrafted with CLL-like cells of Eµ-MTCP1 over-expressing mice and treated with VIP152 demonstrated reduced disease burden and improvement in overall survival compared to vehicle-treated mice. These data suggest that VIP152 is a highly selective inhibitor of CDK9 that represents an attractive new therapy for CLL.
Collapse
Affiliation(s)
- Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ethan Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Janek Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Janani Ravikrishnan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brandi Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Perry
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Charles Gregory
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Matthew Purcell
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alexander Pan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | | | | - Xiaokui Mo
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Deepa Sampath
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
43
|
Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing. Mater Today Bio 2023; 19:100567. [PMID: 36747581 PMCID: PMC9898454 DOI: 10.1016/j.mtbio.2023.100567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Engineered mesenchymal stem cells (MSCs) have been investigated extensively for gene delivery and, more recently, for targeted small molecule delivery. While preclinical studies demonstrate the potential of MSCs for targeted delivery, clinical studies suggest that tumor homing of native MSCs may be inefficient. We report here a surprising finding that loading MSCs with the anticancer drug paclitaxel (PTX) by nanoengineering results in significantly improved tumor homing compared to naïve MSCs. Loading PTX in MSCs results in increased levels of mitochondrial reactive oxygen species (ROS). In response to this oxidative stress, MSCs upregulate two important set of proteins. First were critical antioxidant proteins, most importantly nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of antioxidant responses; upregulation of antioxidant proteins may explain how MSCs protect themselves from drug-induced oxidative stress. The second was CXCR4, a direct target of Nrf2 and a key mediator of tumor homing; upregulation of CXCR4 suggested a mechanism that may underlie the improved tumor homing of nanoengineered MSCs. In addition to demonstrating the potential mechanism of improved tumor targeting of nanoengineered MSCs, our studies reveal that MSCs utilize a novel mechanism of resistance against drug-induced oxidative stress and cell death, explaining how MSCs can deliver therapeutic concentrations of cytotoxic payload while maintaining their viability.
Collapse
|
44
|
Pandey S, Gupta VK, Lavania SP. Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 2023; 15:89-110. [PMID: 36647796 DOI: 10.2217/epi-2022-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, associated with poor survival outcomes. Lack of early diagnosis, resistance to conventional therapeutic treatments (including immunotherapy) and recurrence are some of the major hurdles in PDAC and contribute to its poor survival rate. While the risk of genetic predisposition to cancers is widely acknowledged and understood, recent advances in whole-genome and next-generation sequencing techniques have led to the acknowledgment of the role played by epigenetics, especially in PDAC. Epigenetic changes are heritable genetic modifications that influence gene expression without altering the DNA sequence. Epigenetic mechanisms (e.g., DNA methylation, post-translational modification of histone complexes and ncRNA) that result in reversible changes in gene expression are increasingly understood to be responsible for tumor initiation, development and even escape from immune surveillance. Our review seeks to highlight the various components of the epigenetic machinery that are known to be implicated in PDAC initiation and development and the feasibility of targeting these components to identify novel pharmacological strategies that could potentially lead to breakthroughs in PDAC treatment.
Collapse
Affiliation(s)
- Somnath Pandey
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta P Lavania
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
45
|
Skouras P, Markouli M, Strepkos D, Piperi C. Advances on Epigenetic Drugs for Pediatric Brain Tumors. Curr Neuropharmacol 2023; 21:1519-1535. [PMID: 36154607 PMCID: PMC10472812 DOI: 10.2174/1570159x20666220922150456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients' prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
46
|
Papavassiliou KA, Papavassiliou AG. The Biology and Therapeutic Potential of the Src-YAP Axis in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2022; 14:6178. [PMID: 36551659 PMCID: PMC9777266 DOI: 10.3390/cancers14246178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer type which accounts for the majority (~85%) of all lung cancer cases [...].
Collapse
Affiliation(s)
- Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, “Sotiria” Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
47
|
Rubanov A, Berico P, Hernando E. Epigenetic Mechanisms Underlying Melanoma Resistance to Immune and Targeted Therapies. Cancers (Basel) 2022; 14:cancers14235858. [PMID: 36497341 PMCID: PMC9738385 DOI: 10.3390/cancers14235858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is an aggressive skin cancer reliant on early detection for high likelihood of successful treatment. Solar UV exposure transforms melanocytes into highly mutated tumor cells that metastasize to the liver, lungs, and brain. Even upon resection of the primary tumor, almost thirty percent of patients succumb to melanoma within twenty years. Identification of key melanoma genetic drivers led to the development of pharmacological BRAFV600E and MEK inhibitors, significantly improving metastatic patient outcomes over traditional cytotoxic chemotherapy or pioneering IFN-α and IL-2 immune therapies. Checkpoint blockade inhibitors releasing the immunosuppressive effects of CTLA-4 or PD-1 proved to be even more effective and are the standard first-line treatment. Despite these major improvements, durable responses to immunotherapy and targeted therapy have been hindered by intrinsic or acquired resistance. In addition to gained or selected genetic alterations, cellular plasticity conferred by epigenetic reprogramming is emerging as a driver of therapy resistance. Epigenetic regulation of chromatin accessibility drives gene expression and establishes distinct transcriptional cell states. Here we review how aberrant chromatin, transcriptional, and epigenetic regulation contribute to therapy resistance and discuss how targeting these programs sensitizes melanoma cells to immune and targeted therapies.
Collapse
Affiliation(s)
- Andrey Rubanov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Pietro Berico
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
48
|
Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell development, gene transcription, and other essential biological operations, CDK blockers have been generated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell persistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for cancer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin, geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A molecular docking study was performed after preparing the protein and the ligands. The selected blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol) against the selected protein, resulting in promising candidates compared to the co-crystallized ligand (LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C (−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the structure–function relationships and protein–ligand interactions. The network pharmacology study for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression. Moreover, this study concluded by analyzing the computational approaches the natural-derived compounds that have potential interacting activities against CDK9 and, therefore, can be considered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo research is recommended.
Collapse
|
49
|
Clopper KC, Taatjes DJ. Chemical inhibitors of transcription-associated kinases. Curr Opin Chem Biol 2022; 70:102186. [PMID: 35926294 PMCID: PMC10676000 DOI: 10.1016/j.cbpa.2022.102186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Transcription by RNA polymerase II (pol II) is regulated by kinases. In recent years, many selective and potent inhibitors of pol II transcription-associated kinases have been developed, and these molecules have advanced understanding of kinase function in mammalian cells. Here, we focus on chemical inhibitors of the transcription-associated kinases CDK7, CDK8, CDK9, CDK12, CDK13, and CDK19. We provide a brief overview of the function of these kinases and common activation mechanisms. We then highlight the advantages of kinase inhibitors compared with other basic research methods, and describe the caveats associated with non-selective compounds (e.g. flavopiridol). We conclude with strategies and recommendations for implementation of chemical inhibitors for experimental analysis of transcription-associated kinases.
Collapse
Affiliation(s)
- Kevin C Clopper
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
50
|
Hang J, Ouyang H, Wei F, Zhong Q, Yuan W, Jiang L, Liu Z. Proteomics and phosphoproteomics of chordoma biopsies reveal alterations in multiple pathways and aberrant kinases activities. Front Oncol 2022; 12:941046. [PMID: 36248973 PMCID: PMC9563620 DOI: 10.3389/fonc.2022.941046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background Chordoma is a slow-growing but malignant subtype of bone sarcoma with relatively high recurrence rates and high resistance to chemotherapy. It is urgent to understand the underlying regulatory networks to determine more effective potential targets. Phosphorylative regulation is currently regarded as playing a significant role in tumorigenesis, and the use of tyrosine kinase inhibitors in clinical practice has yielded new promise for the treatment of a variety of sarcoma types. Materials and methods We performed comprehensive proteomic and phosphoproteomic analyses of chordoma using four-dimensional label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis. The potential aberrantly expressed kinases and their functions were validated using western blotting and CCK-8 assays. Results Compared with paired normal muscle tissues, 1,139 differentially expressed proteins (DEPs) and 776 differentially phosphorylated proteins (DPPs) were identified in chordoma tumor tissues. The developmentally significant Wnt-signaling pathway and oxidative phosphorylation were aberrant in chordoma. Moreover, we predicted three kinases (AURA, CDK9, and MOK) with elevated activity by kinase-pathway network analysis (KiPNA) and verified their increased expression levels. The knockdown of these kinases markedly suppressed chordoma cell growth, and this was also the case for cells treated with the CDK9 inhibitor AZD4573. We additionally examined 208 proteins whose expression and phosphorylation levels were synergetically altered. Conclusions We herein depicted the collective protein profiles of chordomas, providing insight into chordomagenesis and the potential development of new therapeutic targets.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
| | - Hanqiang Ouyang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Qihang Zhong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
- *Correspondence: Zhongjun Liu, ; Liang Jiang, ; Wanqiong Yuan,
| |
Collapse
|