1
|
Lopez Martinez D, Todorovski I, Noe Gonzalez M, Rusimbi C, Blears D, Khallou N, Han Z, Dirac-Svejstrup AB, Svejstrup JQ. PAF1C-mediated activation of CDK12/13 kinase activity is critical for CTD phosphorylation and transcript elongation. Mol Cell 2025; 85:1952-1967.e8. [PMID: 40315851 DOI: 10.1016/j.molcel.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
The transcription cycle is regulated by dynamic changes in RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphorylation, which are crucial for gene expression. However, the mechanisms regulating the transcription-specific cyclin-dependent kinases (CDKs) during the transcription cycle remain poorly understood. Here, we show that human CDK12 co-phosphorylates CTD Serine2 and Serine5. This di-phosphorylated Serine2-Serine5 CTD mark may then act as a precursor for Serine2 mono-phosphorylated CTD through Serine5 de-phosphorylation. Notably, CDK12 is specifically regulated by association with the elongation-specific factor PAF1 complex (PAF1C), in which the CDC73 subunit contains a metazoan-specific peptide motif, capable of allosteric CDK12/cyclin K activation. This motif is essential for cell proliferation and required for normal levels of CTD phosphorylation in chromatin, and for transcript elongation, particularly across long human genes. Together, these findings provide insight into the mechanisms governing RNAPII phospho-CTD dynamics that ensure progression through the human transcription cycle.
Collapse
Affiliation(s)
- David Lopez Martinez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Izabela Todorovski
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melvin Noe Gonzalez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charlotte Rusimbi
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Blears
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nessrine Khallou
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zhong Han
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - A Barbara Dirac-Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper Q Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Schmid CM, Gregor A, Ruiz A, Manso Bazús C, Herman I, Ammouri F, Kotzaeridou U, McNiven V, Dupuis L, Steindl K, Begemann A, Rauch A, Suter AA, Isidor B, Mercier S, Nizon M, Cogné B, Deb W, Besnard T, Haack TB, Falb RJ, Müller AJ, Linden T, Haldeman-Englert CR, Ockeloen CW, Mattioli F, Reymond A, Ibrahim N, Naz S, Lacaze E, Bassetti JA, Hoefele J, Brunet T, Riedhammer KM, Elloumi HZ, Person R, Zou F, Kahle JJ, Cremer K, Schmidt A, Delrue MA, Almeida PM, Ramos F, Srivastava S, Quinlan A, Robertson S, Manka E, Kuechler A, Spranger S, Nowaczyk MJM, Elshafie RM, Alsharhan H, Hillman PR, Dunnington LA, Braakman HMH, McKee S, Moresco A, Ignat AD, Newbury-Ecob R, Banneau G, Patat O, Kuerbitz J, Rzucidlo S, Sell SS, Gordon P, Schuhmann S, Reis A, Halleb Y, Stoeva R, Keren B, Al Masseri Z, Tümer Z, Hammer-Hansen S, Krüger Sølyst S, Steigerwald CG, Abreu NJ, Faust H, Müller-Nedebock A, Tran Mau-Them F, Sticht H, Zweier C. Further delineation of the SCAF4-associated neurodevelopmental disorder. Eur J Hum Genet 2025; 33:588-594. [PMID: 39668183 PMCID: PMC12048650 DOI: 10.1038/s41431-024-01760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
While mostly de novo truncating variants in SCAF4 were recently identified in 18 individuals with variable neurodevelopmental phenotypes, knowledge on the molecular and clinical spectrum is still limited. We assembled data on 50 novel individuals with SCAF4 variants ascertained via GeneMatcher and personal communication. With detailed evaluation of clinical data, in silico predictions and structural modeling, we further characterized the molecular and clinical spectrum of the autosomal dominant SCAF4-associated neurodevelopmental disorder. The molecular spectrum comprises 25 truncating, eight splice-site and five missense variants. While all other truncating variants were classified as pathogenic/likely pathogenic, significance of one C-terminal truncating variant, one splice-site variant and the missense variants remained unclear. Three missense variants in the CTD-interacting domain of SCAF4 were predicted to destabilize the domain. Twenty-three variants occurred de novo, and variants were inherited in 13 cases. Frequent clinical findings were mild developmental delay with speech impairment, seizures, and skeletal abnormalities such as clubfoot, scoliosis or hip dysplasia. Cognitive abilities ranged from normal IQ to severe intellectual disability (ID), with borderline to mild ID in the majority of individuals. Our study confirms the role of SCAF4 variants in neurodevelopmental disorders and further delineates the associated clinical phenotype.
Collapse
Affiliation(s)
- Cosima M Schmid
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anna Ruiz
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carmen Manso Bazús
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosciences, Boystown National Research Hospital, Boystown, TX, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Farah Ammouri
- The University of Kansas Health System, Westwood, KS, USA
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Aude-Annick Suter
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | - Sandra Mercier
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Mathilde Nizon
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Benjamin Cogné
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Wallid Deb
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Thomas Besnard
- Department of Medical Genetics, CHU Nantes, Nantes, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ruth J Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie J Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias Linden
- University Children's Hospital, Klinikum Oldenburg, Department of Neuropediatrics, Oldenburg, Germany
| | | | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nazia Ibrahim
- Lahore College for Women University, Lahore, Pakistan
| | - Shagufta Naz
- Lahore College for Women University, Lahore, Pakistan
| | - Elodie Lacaze
- Department of Medical Genetics, Le Havre Hospital, Le Havre, France
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | | | | | | | | | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Marie-Ange Delrue
- Department of Genetics, Université de Montréal, Sainte-Justine University Hospital, Montreal, Canada
| | - Pedro M Almeida
- Medical Genetics Unit, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Fabiana Ramos
- Medical Genetics Unit, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Centro de Diagnóstico Pré-natal, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aisling Quinlan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Robertson
- Department of Pediatrics and Child Health, Dunedin School of Medicine, Otago University, Dunedin, New Zealand
| | - Eva Manka
- Center for Rare Disease Essen (Essener Zentrum für Seltene Erkrankungen-EZSE), Universitätsmedizin Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | | | - Reem M Elshafie
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
| | - Hind Alsharhan
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
- Department of Pediatrics, Health science center, College of Medicine, Kuwait University, P.O. Box 24923, Safat, Kuwait
| | - Paul R Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Leslie A Dunnington
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center & Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Shane McKee
- Belfast HSC Trust, Northern Ireland Regional Genetics Service, Belfast, Northern, Ireland
| | - Angelica Moresco
- Division of Clinical Genetics, Pediatric Department, Children's Hospital, London Health Sciences Centre, Western University, London, ON, Canada
| | - Andrea-Diana Ignat
- Division of Clinical Genetics, Pediatric Department, Children's Hospital, London Health Sciences Centre, Western University, London, ON, Canada
| | - Ruth Newbury-Ecob
- Clinical Genetics, University Hospitals Bristol, Southwell St, Bristol, UK
| | - Guillaume Banneau
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Olivier Patat
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Jeffrey Kuerbitz
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Susan Rzucidlo
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Susan S Sell
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Patricia Gordon
- Penn State Health Children's Hospital, Department of Pediatrics, Division of Human Genetics, Hershey, PA, USA
| | - Sarah Schuhmann
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Yosra Halleb
- Le Mans Hospital, Department of Medical Genetics, Le Mans, France
| | - Radka Stoeva
- Le Mans Hospital, Department of Medical Genetics, Le Mans, France
| | - Boris Keren
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Zainab Al Masseri
- Department of Pediatrics, Medical Genetics Unit, Qatif Central Hospital, Eastern Health Cluster, Dammam, Saudi Arabia
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Hammer-Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sofus Krüger Sølyst
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Connolly G Steigerwald
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nicolas J Abreu
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helene Faust
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland.
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Chen Z, Zhao J, Fan X, Xuan X, Zhao X. A novel nonsense mutation in SCAF4 associated with fliedner-zweier syndrome: a case report and review of the literature. Front Genet 2025; 16:1487352. [PMID: 40290495 PMCID: PMC12021868 DOI: 10.3389/fgene.2025.1487352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Variants in the SR-related C-terminal domain-Associated factor 4 (SCAF4) gene are linked to Fliedner-Zweier syndrome (FZS), which presents with diverse symptoms, including mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. However, there is a paucity of cases describing genotypes and clinical features. Case presentation We present the case of a 4-year and seven-month-old Chinese boy displaying intellectual impairment, language development disorder, behavioral abnormalities, and distinct facial features. Whole exome sequencing (WES) identified a heterozygous nonsense mutation, c.1693C>T (p.Arg565*), located in exon 14 of the SCAF4 gene (NM_020706). Sanger sequencing confirmed paternal inheritance of this mutation. RNA sequencing from the patient demonstrated widespread transcriptional dysregulation, reinforcing the role of SCAF4 dysfunction in impaired transcription and neurodevelopmental disorders. This mutation is novel, not previously recorded in databases such as GnomAD or dbSNP, nor reported in existing literature. Conclusion We reviewed the clinical features of the patients reported in the literature with mutations in SCAF4 gene and described the case of a Chinese patient with this mutation. This case underscores the critical need for continued exploration of genotype-phenotype correlations, enhancing our understanding of the diverse manifestations of Fliedner-Zweier syndrome and informing future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zhengfang Chen
- Department of Rehabilitation, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhao
- Department of Gastroenterology, Anhui Provincial Children’s Hospital, Hefei, China
| | - Xiaoxuan Fan
- Department of Rehabilitation, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Xuan
- Department of Rehabilitation, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Zheng H, Pan Y. Transcriptome-proteome integration analysis identifies elevated expression of LARP7 promoting the tumorigenesis and development of gastrointestinal stromal tumors. Transl Oncol 2025; 53:102316. [PMID: 39933393 DOI: 10.1016/j.tranon.2025.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the digestive tract, with c-kit and PDGFRA mutations being the primary causes. However, GIST pathogenesis is not still fully understood. Differential expression analysis, Univariate Cox regression and Kaplan-Meier curves were utilized to screen for up-regulated and prognostically relevant genes. The expression distribution was compared across various demographics and clinical groups. The relationship between gene expression and cytokine pathway activation was assessed via CytoSig. Immune cell infiltration was analyzed using TIMER2.0. Four paired GIST and adjacent normal tissues were collected to validate the expression trend. CCK8 assays and scratch wound healing assays were conducted in GIST-T1 and GIST-882 cells. Results indicated that LARP7 was up-regulated in GISTs at both mRNA and protein levels. This elevated expression was associated with poor prognosis, particularly in GISTs located in the small intestine and those with larger tumor sizes. LARP7 was implicated in the expression of IFN-induced genes and the negative regulation of viral processes. Predictions of cytokine pathways supported these findings, and immune cell infiltration analysis revealed a higher presence of CD8+ T cells in GISTs with high LARP7 expression. The lncRNA (H19 or LINC00665)-miRNA(hsa-miR-138-5p) axis targeted LARP7. Furthermore, LARP7 was elevated in imatinib-resistant GISTs, with some other drugs predicted to aid in therapy. LARP7 knockdown resulted in reduced proliferation and migration of GIST-T1 and GIST-882 cells. Overall, high expression of LARP7 correlates with poor prognosis in GISTs, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Heng Zheng
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Qingyang District, Chengdu, 610072 China
| | - Yong Pan
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Qingyang District, Chengdu, 610072 China.
| |
Collapse
|
5
|
Du Y, Gu B, Shi L, She Y, Zhao Q, Gao S. Data-Driven Molecular Typing: A New Frontier in Esophageal Cancer Management. Cancer Med 2025; 14:e70730. [PMID: 40018789 PMCID: PMC11868787 DOI: 10.1002/cam4.70730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a predominant and highly lethal form of esophageal cancer, with a five-year survival rate below 20%. Despite advancements, most patients are diagnosed at advanced stages, limiting effective treatment options. Multi-omics integration, encompassing somatic genomic alterations, inherited genetic mutations, transcriptomics, proteomics, metabolomics, and single-cell sequencing, has enabled the identification of distinct molecular subtypes of ESCC. METHOD This article systematically reviewed the current status of molecular subtyping of ESCC based on big data, summarized unique subtypes with differing treatment responses and prognostic outcomes. RESULT Key findings included subtype-specific genetic mutations, signaling pathway alterations, and metabolomic profiles, which offer novel biomarkers and therapeutic targets. Furthermore, this review discusses the link between molecular subtypes and immunotherapy efficacy, chemotherapy response, and drug development. CONCLUSION These insights highlight the potential of omics-based molecular typing to transform ESCC management and facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Yue Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Yong She
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| |
Collapse
|
6
|
Mei B, Chen J, Peng Y. The circRNA circSCAF8 promotes tumor growth and metastasis of gastric cancer via miR-1293/TIMP1signaling. Gene Ther 2025; 32:142-153. [PMID: 39465333 DOI: 10.1038/s41434-024-00496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
SR-like CTD-associated factor 8 (SCAF8) can regulate transcriptional termination, but the function of circSCAF8 remains unclear. In our study, we observed a significant increase in circSCAF8 expression in gastric cancer, particularly in tissues with lymph node metastasis. The Kaplan-Meier curve revealed that high circSCAF8 expression was associated with a low overall survival time in gastric cancer patients. Moreover, circSCAF8 shRNA effectively decreased gastric cancer proliferation, invasion, and migration in vitro. Additionally, using bioluminescence imaging (BLI) technology in vivo, we found that circSCAF8 shRNA viruses inhibited the growth of xenograft tumors and gastric cancer lung metastasis. RNA immunoprecipitation (RIP) and circRNA pulldown assays confirmed the direct binding of circSCAF8 to miR-1293, but circSCAF8 could not regulate the expression of miR-1293 in gastric cancer. Interestingly, circSCAF8 regulated the downstream gene tissue inhibitor of metalloproteinases 1 (TIMP1) of miR-1293, and this observation was further verified in gastric cancer tissues. Moreover, we confirmed that miR-1293 directly suppressed TIMP1 expression. Subsequent rescue experiments revealed that TIMP1 overexpression reversed the impact of circSCAF8 shRNA viruses on gastric cancer. In conclusion, circSCAF8 expression was elevated in gastric cancer, and circSCAF8 shRNA viruses inhibited gastric cancer growth and metastasis by upregulating TIMP1 expression via miR-1293.
Collapse
Affiliation(s)
- Bin Mei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajie Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Peng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Bhandare P, Narain A, Hofstetter J, Rummel T, Wenzel J, Schülein-Völk C, Lamer S, Eilers U, Schlosser A, Eilers M, Erhard F, Wolf E. Phenotypic screens identify SCAF1 as critical activator of RNAPII elongation and global transcription. Nucleic Acids Res 2025; 53:gkae1219. [PMID: 39698826 PMCID: PMC11879057 DOI: 10.1093/nar/gkae1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Transcripts produced by RNA polymerase II (RNAPII) are fundamental for cellular responses to environmental changes. It is therefore no surprise that there exist multiple avenues for the regulation of this process. To explore the regulation mediated by RNAPII-interacting proteins, we used a small interfering RNA (siRNA)-based screen to systematically evaluate their influence on RNA synthesis. We identified several proteins that strongly affected RNAPII activity. We evaluated one of the top hits, SCAF1 (SR-related C-terminal domain-associated factor 1), using an auxin-inducible degradation system and sequencing approaches. In agreement with our screen results, acute depletion of SCAF1 decreased RNA synthesis, and showed an increase of Serine-2 phosphorylated-RNAPII (pS2-RNAPII). We found that the accumulation of pS2-RNAPII within the gene body occurred at GC-rich regions and was indicative of stalled RNAPII complexes. The accumulation of stalled RNAPII complexes was accompanied by reduced recruitment of initiating RNAPII, explaining the observed global decrease in transcriptional output. Furthermore, upon SCAF1 depletion, RNAPII complexes showed increased association with components of the proteasomal-degradation machinery. We concluded that in cells lacking SCAF1, RNAPII undergoes a rather interrupted passage, resulting in intervention by the proteasomal-degradation machinery to clear stalled RNAPII. While cells survive the compromised transcription caused by absence of SCAF1, further inhibition of proteasomal-degradation machinery is synthetically lethal.
Collapse
Affiliation(s)
- Pranjali Bhandare
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Teresa Rummel
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Julia Wenzel
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Ursula Eilers
- Core Unit High-Content Microscopy, Biocenter, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstraße 4, Regensburg 93040, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Straße 1, Kiel 24118, Germany
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
8
|
Anglada-Girotto M, Moakley DF, Zhang C, Miravet-Verde S, Califano A, Serrano L. Exon inclusion signatures enable accurate estimation of splicing factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600051. [PMID: 38979366 PMCID: PMC11230296 DOI: 10.1101/2024.06.21.600051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Splicing factors control exon inclusion in messenger RNA, shaping transcriptome and proteome diversity. Their catalytic activity is regulated by multiple layers, making single-omic measurements on their own fall short in identifying which splicing factors underlie a phenotype. Here, we propose splicing factor activity can be estimated by interpreting changes in exon inclusion. We benchmark methods to construct splicing factor→exon networks and calculate activity. Combining RNA-seq perturbation-based networks with VIPER (virtual inference of protein activity by enriched regulon analysis) accurately captures splicing factor activation modulated by different regulatory layers. This approach consolidates splicing factor regulation into a single score derived solely from exon inclusion signatures, allowing functional interpretation of heterogeneous conditions. As a proof of concept, we identify recurrent cancer splicing programs, revealing oncogenic- and tumor suppressor-like splicing factors missed by conventional methods. These programs correlate with patient survival and key cancer hallmarks: initiation, proliferation, and immune evasion. Altogether, we show splicing factor activity can be accurately estimated from exon inclusion changes, enabling comprehensive analyses of splicing regulation with minimal data requirements.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Daniel F. Moakley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, USA 10032
| | - Chaolin Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Center for Motor Neuron Biology and Disease, Columbia University, New York, USA 10032
| | - Samuel Miravet-Verde
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Chan Zuckerberg Biohub New York, New York, NY, USA
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Moreno RY, Panina SB, Zhang YJ. RPRD1B's direct interaction with phosphorylated RNA polymerase II regulates polyadenylation of cell cycle genes and drives cancer progression. RSC Chem Biol 2025:d4cb00212a. [PMID: 39886382 PMCID: PMC11775580 DOI: 10.1039/d4cb00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
RNA polymerase II (Pol II) regulates eukaryotic gene expression through dynamic phosphorylation of its C-terminal domain (CTD). Phosphorylation at Ser2 and Thr4 on the CTD is crucial for RNA 3' end processing and facilitating the recruitment of cleavage and termination factors. However, the transcriptional roles of most CTD-binding proteins remain poorly understood. In this study, we focus on RPRD1B, a transcriptional regulator that interacts with the phosphorylated CTD and has been implicated in various cancers. We investigated its molecular mechanism during transcription and found that RPRD1B modulates alternative polyadenylation of cell growth transcripts by directly interacting with the CTD. RPRD1B is recruited to transcribing Pol II near the 3' end of the transcript, specifically in response to Ser2 and Thr4 phosphorylation, but only after flanking Ser5 phosphorylation is removed. Transcriptomic analysis of RPRD1B knockdown cells revealed its role in cell proliferation via termination of the key cell growth genes at upstream polyadenylation sites, leading to the production of tumor suppressor transcripts that lack AU-rich elements (AREs) with increased mRNA stability. Overall, our study uncovers previously unrecognized connections between the Pol II CTD and CID, highlighting their influence on 3' end processing and their contribution to abnormal cell growth in cancer.
Collapse
Affiliation(s)
- Rosamaria Y Moreno
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| | - Svetlana B Panina
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas Austin Texas USA
| |
Collapse
|
10
|
Kopczyńska M, Saha U, Romanenko A, Nojima T, Gdula M, Kamieniarz-Gdula K. Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide. Nucleic Acids Res 2025; 53:gkae1240. [PMID: 39718990 PMCID: PMC11754735 DOI: 10.1093/nar/gkae1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA). However, in higher eukaryotes, the end of mRNA is separated from the sites of transcription termination by hundreds to thousands of base pairs. Currently used genomic annotations only take account of the end of the mature transcript - the sites where pre-mRNA cleavage occurs, while the regions in which transcription terminates are unannotated. Here, we describe the evidence for a marker of transcription termination, which could be widely applicable in genomic studies. Pol II termination regions can be determined genome-wide by detecting Pol II phosphorylated on threonine 4 of its C-terminal domain (Pol II CTD-T4ph). Pol II in this state pauses before leaving the DNA template. Up to date this potent mark has been underused because the evidence for its place and role in termination is scattered across multiple publications. We summarize the observations regarding Pol II CTD-T4ph in termination regions and present bioinformatic analyses that further support Pol II CTD-T4ph as a global termination mark in animals.
Collapse
Affiliation(s)
- Magda Kopczyńska
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Upasana Saha
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Takayuki Nojima
- Medical institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michał R Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
11
|
Luyties O, Sanford L, Rodino J, Nagel M, Jones T, Rimel JK, Ebmeier CC, Shelby GS, Cozzolino K, Brennan F, Hartzog A, Saucedo MB, Watts LP, Spencer S, Kugel JF, Dowell RD, Taatjes DJ. Multi-omics and biochemical reconstitution reveal CDK7-dependent mechanisms controlling RNA polymerase II function at gene 5'- and 3'-ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632016. [PMID: 39829884 PMCID: PMC11741307 DOI: 10.1101/2025.01.08.632016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
CDK7 regulates RNA polymerase II (RNAPII) initiation, elongation, and termination through incompletely understood mechanisms. Because contaminating kinases precluded CDK7 analysis with nuclear extracts, we completed biochemical assays with purified factors. Reconstitution of RNAPII transcription initiation showed CDK7 inhibition slowed and/or paused RNAPII promoter-proximal transcription, which reduced re-initiation. These CDK7-regulatory functions were Mediator- and TFIID-dependent. Similarly in human cells, CDK7 inhibition reduced transcription by suppressing RNAPII activity at promoters, consistent with reduced initiation and/or re-initiation. Moreover, widespread 3'-end readthrough transcription was observed in CDK7-inhibited cells; mechanistically, this occurred through rapid nuclear depletion of RNAPII elongation and termination factors, including high-confidence CDK7 targets. Collectively, these results define how CDK7 governs RNAPII function at gene 5'-ends and 3'-ends, and reveal that nuclear abundance of elongation and termination factors is kinase-dependent. Because 3'-readthrough transcription is commonly induced during stress, our results further suggest regulated suppression of CDK7 activity may enable this RNAPII transcriptional response.
Collapse
Affiliation(s)
- Olivia Luyties
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Lynn Sanford
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado; Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado; Boulder, CO, 80303, USA
| | - Jessica Rodino
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Michael Nagel
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Taylor Jones
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Jenna K. Rimel
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | | | - Grace S. Shelby
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Kira Cozzolino
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Finn Brennan
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Axel Hartzog
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Mirzam B. Saucedo
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Lotte P. Watts
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado; Boulder, CO, 80303, USA
| | - Sabrina Spencer
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado; Boulder, CO, 80303, USA
| | - Jennifer F. Kugel
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| | - Robin D. Dowell
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado; Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado; Boulder, CO, 80303, USA
| | - Dylan J. Taatjes
- Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA
| |
Collapse
|
12
|
Blears D, Lou J, Fong N, Mitter R, Sheridan RM, He D, Dirac-Svejstrup AB, Bentley D, Svejstrup JQ. Redundant pathways for removal of defective RNA polymerase II complexes at a promoter-proximal pause checkpoint. Mol Cell 2024; 84:4790-4807.e11. [PMID: 39504960 DOI: 10.1016/j.molcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The biological purpose of Integrator and RNA polymerase II (RNAPII) promoter-proximal pausing remains uncertain. Here, we show that loss of INTS6 in human cells results in increased interaction of RNAPII with proteins that can mediate its dissociation from the DNA template, including the CRL3ARMC5 E3 ligase, which ubiquitylates CTD serine5-phosphorylated RPB1 for degradation. ARMC5-dependent RNAPII ubiquitylation is activated by defects in factors acting at the promoter-proximal pause, including Integrator, DSIF, and capping enzyme. This ARMC5 checkpoint normally curtails a sizeable fraction of RNAPII transcription, and ARMC5 knockout cells produce more uncapped transcripts. When both the Integrator and CRL3ARMC5 turnover mechanisms are compromised, cell growth ceases and RNAPII with high pausing propensity disperses from the promoter-proximal pause site into the gene body. These data support a model in which CRL3ARMC5 functions alongside Integrator in a checkpoint mechanism that removes faulty RNAPII complexes at promoter-proximal pause sites to safeguard transcription integrity.
Collapse
Affiliation(s)
- Daniel Blears
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jiangman Lou
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Dandan He
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
van den Heuvel D, Rodríguez-Martínez M, van der Meer PJ, Nieto Moreno N, Park J, Kim HS, van Schie JJM, Wondergem AP, D'Souza A, Yakoub G, Herlihy AE, Kashyap K, Boissière T, Walker J, Mitter R, Apelt K, de Lint K, Kirdök I, Ljungman M, Wolthuis RMF, Cramer P, Schärer OD, Kokic G, Svejstrup JQ, Luijsterburg MS. STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair. Cell 2024; 187:7107-7125.e25. [PMID: 39547229 DOI: 10.1016/j.cell.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and transcription factor IIH (TFIIH) around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryoelectron microscopy (cryo-EM) and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta Rodríguez-Martínez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paula J van der Meer
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicolas Nieto Moreno
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jiyoung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Janne J M van Schie
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Areetha D'Souza
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - George Yakoub
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna E Herlihy
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Krushanka Kashyap
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thierry Boissière
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaas de Lint
- Department of Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Idil Kirdök
- Department of Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Rob M F Wolthuis
- Department of Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, 37077 Göttingen, Germany
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Goran Kokic
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, 37077 Göttingen, Germany.
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
An H, Hong Y, Goh YT, Koh CWQ, Kanwal S, Zhang Y, Lu Z, Yap PML, Neo SP, Wong CM, Wong AST, Yu Y, Ho JSY, Gunaratne J, Goh WSS. m 6Am sequesters PCF11 to suppress premature termination and drive neuroblastoma differentiation. Mol Cell 2024; 84:4142-4157.e14. [PMID: 39481383 DOI: 10.1016/j.molcel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
N6,2'-O-dimethyladenosine (m6Am) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the m6Am reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a m6Am-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that m6Am does not regulate mRNA stability but promotes nascent transcription. Mechanistically, m6Am functions by sequestering PCF11 away from proximal RNA polymerase II (RNA Pol II). This suppresses PCF11 from dissociating RNA Pol II near transcription start sites, thereby promoting full-length transcription of m6Am-modified RNAs. m6Am's unique relationship with PCF11 means m6Am function is enhanced when PCF11 is reduced, which occurs during all-trans-retinoic-acid (ATRA)-induced neuroblastoma-differentiation therapy. Here, m6Am promotes expression of ATF3, which represses neuroblastoma biomarker MYCN. Depleting m6Am suppresses MYCN repression in ATRA-treated neuroblastoma and maintains their tumor-stem-like properties. Collectively, we characterize m6Am as an anti-terminator RNA modification that suppresses premature termination and modulates neuroblastoma's therapeutic response.
Collapse
Affiliation(s)
- Huihui An
- Shenzhen Bay Laboratory, Shenzhen, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yifan Hong
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | | | | | - Yi Zhang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaoqi Lu
- Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Ming Wong
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jessica Sook Yuin Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | | | | |
Collapse
|
15
|
Li M, Hao X, Shi D, Cheng S, Zhong Z, Cai L, Jiang M, Ding L, Ding L, Wang C, Yu X. Identification of susceptibility loci and relevant cell type for IgA nephropathy in Han Chinese by integrative genome-wide analysis. Front Med 2024; 18:862-877. [PMID: 39343836 DOI: 10.1007/s11684-024-1086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/17/2024] [Indexed: 10/01/2024]
Abstract
Although many susceptibility loci for IgA nephropathy (IgAN) have been identified, they only account for 11.0% of the overall IgAN variance. We performed a large genome-wide meta-analysis of IgAN in Han Chinese with 3616 cases and 10 417 controls to identify additional genetic loci of IgAN. Considering that inflammatory bowel disease (IBD) and asthma might share an etiology of dysregulated mucosal immunity with IgAN, we performed cross-trait integrative analysis by leveraging functional annotations of relevant cell type and the pleiotropic information from IBD and asthma. Among 8 669 456 imputed variants, we identified a novel locus at 4p14 containing the long noncoding RNA LOC101060498. Cell type enrichment analysis based on annotations suggested that PMA-I-stimulated CD4+CD25-IL17+ Th17 cell was the most relevant cell type for IgAN, which highlights the essential role of Th17 pathway in the pathogenesis of IgAN. Furthermore, we identified six more novel loci associated with IgAN, which included three loci showing pleiotropic effects with IBD or asthma (2q35/PNKD, 6q25.2/SCAF8, and 22q11.21/UBE2L3) and three loci specific to IgAN (14q32.32/TRAF3, 16q22.2/TXNL4B, and 21q21.3/LINC00113) in the pleiotropic analysis. Our findings support the involvement of mucosal immunity, especially T cell immune response and IL-17 signal pathway, in the development of IgAN and shed light on further investigation of IgAN.
Collapse
Affiliation(s)
- Ming Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dianchun Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Nephrology (Sun Yat-sen University), and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Lu Cai
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- NHC Key Laboratory of Nephrology (Sun Yat-sen University), and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, 510080, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Ding
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lanbo Ding
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xueqing Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
17
|
Zhang Q, Kim W, Panina SB, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. Nat Commun 2024; 15:7985. [PMID: 39266551 PMCID: PMC11393077 DOI: 10.1038/s41467-024-52391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. With CTD driving condensate formation on gene loci, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulators, forms distinct condensates from unphosphorylated CTD. Functional studies demonstrate CTD variants with diverse condensation properties exhibit differences in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths influence the assembly of RNA processing machinery and alternative splicing outcomes, which in turn affects cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX, USA
| | - Svetlana B Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Joshua E Mayfield
- Department of Pharmacology, Pathology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Y Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.
| |
Collapse
|
18
|
Moreno RY, Panina SB, Irani S, Hardtke HA, Stephenson R, Floyd BM, Marcotte EM, Zhang Q, Zhang YJ. Thr 4 phosphorylation on RNA Pol II occurs at early transcription regulating 3'-end processing. SCIENCE ADVANCES 2024; 10:eadq0350. [PMID: 39241064 PMCID: PMC11378909 DOI: 10.1126/sciadv.adq0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.
Collapse
Affiliation(s)
| | - Svetlana B. Panina
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Seema Irani
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Renee Stephenson
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
19
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
20
|
Kowalski MH, Wessels HH, Linder J, Dalgarno C, Mascio I, Choudhary S, Hartman A, Hao Y, Kundaje A, Satija R. Multiplexed single-cell characterization of alternative polyadenylation regulators. Cell 2024; 187:4408-4425.e23. [PMID: 38925112 PMCID: PMC12052259 DOI: 10.1016/j.cell.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.
Collapse
Affiliation(s)
- Madeline H Kowalski
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Isabella Mascio
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Saket Choudhary
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Yuhan Hao
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Mehta P, Sethi S, Yadav SK, Gupta G, Singh R. Heat stress induced piRNA alterations in pachytene spermatocytes and round spermatids. Reprod Biol Endocrinol 2024; 22:87. [PMID: 39049033 PMCID: PMC11267754 DOI: 10.1186/s12958-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
22
|
van den Heuvel D, Rodríguez-Martínez M, van der Meer PJ, Moreno NN, Park J, Kim HS, van Schie JJM, Wondergem AP, D'Souza A, Yakoub G, Herlihy AE, Kashyap K, Boissière T, Walker J, Mitter R, Apelt K, de Lint K, Kirdök I, Ljungman M, Wolthuis RMF, Cramer P, Schärer OD, Kokic G, Svejstrup JQ, Luijsterburg MS. STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604575. [PMID: 39091731 PMCID: PMC11291029 DOI: 10.1101/2024.07.22.604575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and TFIIH around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a new TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryo-EM and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.
Collapse
|
23
|
Velychko T, Mohammad E, Ferrer-Vicens I, Parfentev I, Werner M, Studniarek C, Schwalb B, Urlaub H, Murphy S, Cramer P, Lidschreiber M. CDK7 kinase activity promotes RNA polymerase II promoter escape by facilitating initiation factor release. Mol Cell 2024; 84:2287-2303.e10. [PMID: 38821049 DOI: 10.1016/j.molcel.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.
Collapse
Affiliation(s)
- Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eusra Mohammad
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ivan Ferrer-Vicens
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marcel Werner
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Cecilia Studniarek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
24
|
Mateo-Bonmatí E, Montez M, Maple R, Fiedler M, Fang X, Saalbach G, Passmore LA, Dean C. A CPF-like phosphatase module links transcription termination to chromatin silencing. Mol Cell 2024; 84:2272-2286.e7. [PMID: 38851185 PMCID: PMC7616277 DOI: 10.1016/j.molcel.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Pozuelo de Alarcón, Madrid 28223, Spain.
| | - Miguel Montez
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Maple
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc Fiedler
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Xiaofeng Fang
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gerhard Saalbach
- Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
25
|
Menon G, Mateo-Bonmati E, Reeck S, Maple R, Wu Z, Ietswaart R, Dean C, Howard M. Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing. Mol Cell 2024; 84:2255-2271.e9. [PMID: 38851186 DOI: 10.1016/j.molcel.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
Collapse
Affiliation(s)
- Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eduardo Mateo-Bonmati
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Robert Ietswaart
- Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
26
|
Martinez S, Wu S, Geuenich M, Malik A, Weber R, Woo T, Zhang A, Jang GH, Dervovic D, Al-Zahrani KN, Tsai R, Fodil N, Gros P, Gallinger S, Neely GG, Notta F, Sendoel A, Campbell K, Elling U, Schramek D. In vivo CRISPR screens reveal SCAF1 and USP15 as drivers of pancreatic cancer. Nat Commun 2024; 15:5266. [PMID: 38902237 PMCID: PMC11189927 DOI: 10.1038/s41467-024-49450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-β and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine. Furthermore, we find that loss of SCAF1 leads to the formation of a truncated, inactive USP15 isoform at the expense of full-length USP15, functionally coupling SCAF1 and USP15. Notably, USP15 and SCAF1 alterations are observed in 31% of pancreatic cancer patients. Our results highlight the utility of in vivo CRISPR screens to integrate human cancer genomics and mouse modeling for the discovery of cancer driver genes with potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Sebastien Martinez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shifei Wu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael Geuenich
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ramona Weber
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Tristan Woo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Dzana Dervovic
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Khalid N Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nassima Fodil
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Steven Gallinger
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, and School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Kieran Campbell
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Dr. Bohr-Gasse 3, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Du X, Qin W, Yang C, Dai L, San M, Xia Y, Zhou S, Wang M, Wu S, Zhang S, Zhou H, Li F, He F, Tang J, Chen JY, Zhou Y, Xiao R. RBM22 regulates RNA polymerase II 5' pausing, elongation rate, and termination by coordinating 7SK-P-TEFb complex and SPT5. Genome Biol 2024; 25:102. [PMID: 38641822 PMCID: PMC11027413 DOI: 10.1186/s13059-024-03242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.
Collapse
Affiliation(s)
- Xian Du
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wenying Qin
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chunyu Yang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mingkui San
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingdan Xia
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Siyu Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengyang Wang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shuang Wu
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shaorui Zhang
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huiting Zhou
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fangshu Li
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fang He
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yu Zhou
- TaiKang Center for Life and Medical Sciences, College of Life Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Rui Xiao
- Department of Hematology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Jacinto JGP, Häfliger IM, Letko A, Weber J, Freick M, Gentile A, Drögemüller C, Agerholm JS. Multiple independent de novo mutations are associated with the development of schistosoma reflexum, a lethal syndrome in cattle. Vet J 2024; 304:106069. [PMID: 38281659 DOI: 10.1016/j.tvjl.2024.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Schistosoma reflexum (SR) is a lethal congenital syndrome characterized by U-shaped dorsal retroflexion of the spine and exposure of abdominal viscera. SR is usually associated with severe dystocia. The syndrome is thought to be inherited as a Mendelian trait. We collected a series of 23 SR-affected calves from four breeds (20 Holstein, one Red Danish, one Limousin, one Romagnola) and performed whole-genome sequencing (WGS). WGS was performed on 51 cattle, including 14 cases with parents (trio-based; Group 1) and nine single cases (solo-based; Group 2). Sequencing-based genome-wide association studies with 20 Holstein cases and 154 controls showed no association (above Bonferroni threshold; P-value<3 ×10-09). Assuming a monogenic recessive inheritance, no region of shared homozygosity was observed, suggesting heterogeneity. Alternatively, the presence of possible dominant acting de novo mutations were assessed. In Group 1, heterozygous private variants, absent in both parents, were found in seven cases. These involved the ACTL6A, FLNA, GLG1, IQSEC2, MAST3, MBTPS2, and MLLT1 genes. In addition, heterozygous private variants affecting the genes DYNC1LI1, PPP2R2B, SCAF8, SUGP1, and UBP1 were identified in five cases from Group 2. The detected frameshift and missense variants are predicted to cause haploinsufficiency. Each of these 12 affected genes belong to the class of haploinsufficient loss-of-function genes or are involved in embryonic and pre-weaning lethality or are known to be associated with severe malformation syndromes in humans and/or mice. This study presents for the first time a detailed genomic evaluation of bovine SR, suggesting that independent de novo mutations may explain the sporadic occurrence of SR in cattle.
Collapse
Affiliation(s)
- J G P Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (Bologna), Italy; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - I M Häfliger
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - A Letko
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - J Weber
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - M Freick
- Faculty of Agriculture/Environment/Chemistry, HTW Dresden-University of Applied Sciences, 01326 Dresden, Germany
| | - A Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia (Bologna), Italy
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| | - J S Agerholm
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Allé 5A, 2630 Taastrup, Denmark
| |
Collapse
|
29
|
Lin H, Chen YH. SCAF4 variants associated with focal epilepsy accompanied by multisystem disorders. Seizure 2024; 116:65-73. [PMID: 37394306 DOI: 10.1016/j.seizure.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
PURPOSE The SCAF4 gene encodes serine/arginine-related carboxyl-terminal domain-associated factor 4, which is highly expressed in the brain and potentially affects neurodevelopment. However, the functional significance of SCAF4 variants in human diseases remains unknown. METHODS Trio-based whole-exome sequencing was performed in three individuals with focal epilepsy. Bioinformatics tools were used to assess the pathogenicity of SCAF4 variants. Knockout scaf4a/b zebrafish were created using CRISPR-Cas9 used to validate the phenotype. RESULTS SCAF4 variants were identified in three individuals from three unrelated families with focal epilepsy. All patients had focal seizures and focal discharges on EEG recordings, with intellectual disability or motor retardation, skeletal abnormalities, and one had cryptorchidism. However, no recurrence was observed after short-term ASMs treatment. The identified SCAF4 variants included two nonsense variants and one compound heterozygous variant, consisting of a missense and an in-frame variant. A low frequency of SCAF4 variants was observed in gnomAD in this study. Computational modelling has suggested that missense variants lead to functional impairments. In zebrafish, abnormal epileptiform signals, skeletal development, and neurodevelopment have been found in scaf4a/b knockout compared to wild-type zebrafish. CONCLUSION These results indicate that SCAF4 is associated with focal epilepsy accompanied by multisystem disorders. Otherwise, the management of patients with SCAF4 variants requires more attention to multisystem involvement.
Collapse
Affiliation(s)
- Heng Lin
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan-Hui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
30
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Hu Y, Zhang B, Chen L, He J, Yang L, Chen X. SCAF4 variants are associated with epilepsy with neurodevelopmental disorders. Seizure 2024; 116:113-118. [PMID: 37891035 DOI: 10.1016/j.seizure.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS The genetic causes of epilepsy with unknown etiology in most patients remain unknown. The aim of this study was to elucidate the phenotype of SCAF4-related epilepsy. METHODS Trio-based whole-exome sequencing was performed in patients with epilepsy. Silico programs and protein modeling were employed to predict the damaging of variants. Previously reported SCAF4 variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS Three heterozygous variants in the SCAF4 were detected in three cases, including one missense variant and two frameshift variants. All variants were de novo. None of these variants is present in gnomAD controls. The missense variant was predicted to be damaging in silico tools. Protein modeling showed that two frameshift variants resulted in loss of domains, and the missense variant may disrupt a nearby phosphorylation site and alter the hydrogen bonds around 54C and the stability of the SCAF4 protein. Intellectual development was mildly delayed for all patients except for one with whom contact was lost. All probands experienced epilepsy as infrequent seizures, responded well to antiseizure drugs, and had a median [IQR] seizure onset age of 4 [1.75, 7.5] years. The variants in the domain-encoding exons and upstream exons exhibited a strong association with epilepsy. CONCLUSIONS SCAF4 is a potential causative gene of epilepsy with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Bingbing Zhang
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Li Chen
- Neurogenetic Group, Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518000, China
| | - Jing He
- Department of Neurology, Yuquan Hospital, Tsinghua University, Beijing 100000, China
| | - Letian Yang
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xuqin Chen
- Epilepsy Center and Neurology Department of Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
32
|
Zhang Q, Kim W, Panina S, Mayfield JE, Portz B, Zhang YJ. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.01.573828. [PMID: 38260389 PMCID: PMC10802280 DOI: 10.1101/2024.01.01.573828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight the pivotal role of CTD in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas, 78712
| | - Svetlana Panina
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| | - Joshua E. Mayfield
- Department of Pharmacology, Chemistry, and Biochemistry, and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093
| | - Bede Portz
- Dewpoint Therapeutics, 451 D Street, Boston, Massachusetts 02210
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas, 78712
| |
Collapse
|
33
|
de Andrade KQ, Cirne-Santos CC. Antiviral Activity of Zinc Finger Antiviral Protein (ZAP) in Different Virus Families. Pathogens 2023; 12:1461. [PMID: 38133344 PMCID: PMC10747524 DOI: 10.3390/pathogens12121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The CCCH-type zinc finger antiviral protein (ZAP) in humans, specifically isoforms ZAP-L and ZAP-S, is a crucial component of the cell's intrinsic immune response. ZAP acts as a post-transcriptional RNA restriction factor, exhibiting its activity during infections caused by retroviruses and alphaviruses. Its function involves binding to CpG (cytosine-phosphate-guanine) dinucleotide sequences present in viral RNA, thereby directing it towards degradation. Since vertebrate cells have a suppressed frequency of CpG dinucleotides, ZAP is capable of distinguishing foreign genetic elements. The expression of ZAP leads to the reduction of viral replication and impedes the assembly of new virus particles. However, the specific mechanisms underlying these effects have yet to be fully understood. Several questions regarding ZAP's mechanism of action remain unanswered, including the impact of CpG dinucleotide quantity on ZAP's activity, whether this sequence is solely required for the binding between ZAP and viral RNA, and whether the recruitment of cofactors is dependent on cell type, among others. This review aims to integrate the findings from studies that elucidate ZAP's antiviral role in various viral infections, discuss gaps that need to be filled through further studies, and shed light on new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kívia Queiroz de Andrade
- Laboratory of Immunology of Infectious Disease, Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Claudio Cesar Cirne-Santos
- Laboratory of Molecular Virology and Marine Biotechnology, Department of Cellular and Molecular Biology, Institute of Biology, Federal Fluminense University, Niterói 24020-150, RJ, Brazil
| |
Collapse
|
34
|
Hosseiniyan Khatibi SM, Rahbar Saadat Y, Hejazian SM, Sharifi S, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches. Fetal Pediatr Pathol 2023; 42:825-844. [PMID: 37548233 DOI: 10.1080/15513815.2023.2242979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.
Collapse
Affiliation(s)
- Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| | | | - Mohammad Teshnehlab
- Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
36
|
Goguen EC, Brow DA. Domains and residues of the Saccharomyces cerevisiae hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination. Genetics 2023; 225:iyad134. [PMID: 37467478 PMCID: PMC10471224 DOI: 10.1093/genetics/iyad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Proteins that bind the nascent transcript exiting RNA polymerase II can regulate transcription elongation. The essential Saccharomyces cerevisiae hnRNP protein Hrp1 is one such protein and participates in both cleavage and polyadenylation-coupled and Nrd1-Nab3-Sen1-dependent RNA polymerase II termination. Prior evidence that Hrp1 is a positive RNA polymerase II elongation factor suggests that its release from the elongation complex promotes termination. Here we report the effects of deletions and substitutions in Hrp1 on its autoregulation via an Nrd1-Nab3-Sen1-dependent transcription attenuator in the 5'-UTR of its mRNA and on the function of an Hrp1-dependent Nrd1-Nab3-Sen1 terminator in the SNR82 snoRNA gene. Deletion of either of two central RNA recognition motifs or either of the flanking low-sequence complexity domains is lethal. Smaller, viable deletions in the amino-terminal low-sequence complexity domain cause readthrough of both the HRP1 attenuator and SNR82 terminator. Substitutions that cause readthrough localized mostly to the RNA recognition motifs, although not always to the RNA-binding face. We found that autoregulation of Hrp1 mRNA synthesis is surprisingly robust, overcoming the expected lethal effects of the start codon and frameshift mutations via overexpression of the mRNA up to 40-fold. Our results suggest a model in which binding of attenuator or terminator elements in the nascent transcript by RNA recognition motifs 1 and 2 disrupts interactions between RNA recognition motif 2 and the RNA polymerase II elongation complex, increasing its susceptibility to termination.
Collapse
Affiliation(s)
- Emma C Goguen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
37
|
Wang B, Yu X, Chen T, Qiu C, Lu W, Zheng X, Wu Z. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:473-484. [PMID: 37643981 PMCID: PMC10495250 DOI: 10.3724/zdxbyxb-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To investigate the role and mechanism of circRNA-SR-related CTD associated factor 8 (SCAF8) in regulating endothelial cell pyroptosis in high glucose environment. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and divided into six groups. The normal control group and high glucose control group were cultured in cell culture medium with 5 and 33 mmol/L glucose, respectively. The RNA control group, circRNA-SCAF8 inhibition group, miR-93-5p overexpression group and miR-93-5p inhibition group were added with non-functional siRNA, circRNA-SCAF8 inhibitor, miR-93-5p overexpression molecule and miR-93-5p inhibitor in high glucose environment, respectively. Cell viability and pyroptosis were detected by cell counting kit-8 (CCK-8) assay, flow cytometry and Hoechst 33342/propidium iodide fluorescence double staining. Western blotting and enzyme-linked immunosorbent assay were used to detect the expression of pyroptosis-related factors including apoptosis-associated speck-like protein containing a CARD (ASC), cysteine aspartic acid specific protease-1 (caspase-1) and Gasdermin D (GSDMD), NOD like receptor protein 3 (NLRP-3), thioredoxin interacting proteins (TXNIP), IL-18 and IL-1β. The expression of circRNA-SCAF8, miR-93-5p and TXNIP was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fluorescence in situ hybridization (FISH) was used to locate circRNA-SCAF8 and miR-93-5p. Dual luciferase assay was used to verify the targeted regulatory relationship between miR-93-5p and upstream and downstream molecules. RESULTS Compared with the RNA control group, the cell survival rate of circRNA-SCAF8 inhibition group and miR-93-5p overexpression group increased (both P<0.01), the pyroptosis decreased (both P<0.01), and the expressions of pyroptosis-related factors such as TXNIP, NLRP-3, caspase-1, GSDMD, ASC, IL-18 and IL-1β were significantly decreased (all P<0.05). The expression of miR-93-5p was significantly increased after inhibition of circRNA-SCAF8 (P<0.01), and the expression of circRNA-SCAF8 tended to decrease after overexpression of miR-93-5p, but with no statistical significance (P>0.05). Dual luciferase assay showed that miR-93-5p downre-gulated circRNA-SCAF8 expression by binding to the 3 ´ UTR region of circRNA-SCAF8, and miR-93-5p downregulated TXNIP expression by binding to the 3 ´ UTR region of TXNIP. FISH showed that circRNA-SCAF8 and miR-93-5p were both located in the cytoplasm and were highly associated in the cells. qRT-PCR showed that the relative expression of TXNIP increased or decreased after overexpression or inhibition of miR-93-5p compared with the RNA control group, respectively (both P<0.05), suggesting that miR-93-5p could regulate TXNIP gene expression. CONCLUSIONS CircRNA-SCAF8/miR-93-5p/TXNIP axis is involved in the regulation of pyroptosis in HUVECs under high glucose.
Collapse
Affiliation(s)
- Bing Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xinyu Yu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Tianchi Chen
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenyang Qiu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wei Lu
- Department of Vascular Surgery, Quzhou Hospital Affiliated to Wenzhou Medical University, Quzhou 324000, Zhejiang Province, China
| | - Xiangtao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Ziheng Wu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
38
|
Estell C, Davidson L, Eaton JD, Kimura H, Gold VAM, West S. A restrictor complex of ZC3H4, WDR82, and ARS2 integrates with PNUTS to control unproductive transcription. Mol Cell 2023:S1097-2765(23)00385-4. [PMID: 37329883 DOI: 10.1016/j.molcel.2023.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.
Collapse
Affiliation(s)
- Chris Estell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Lee Davidson
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Joshua D Eaton
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Hiroshi Kimura
- Cell Biology Centre, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Steven West
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom.
| |
Collapse
|
39
|
Duval M, Yague-Sanz C, Turowski TW, Petfalski E, Tollervey D, Bachand F. The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression. Nat Commun 2023; 14:3013. [PMID: 37230993 DOI: 10.1038/s41467-023-38826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Transcription by RNA polymerase I (RNAPI) represents most of the transcriptional activity in eukaryotic cells and is associated with the production of mature ribosomal RNA (rRNA). As several rRNA maturation steps are coupled to RNAPI transcription, the rate of RNAPI elongation directly influences processing of nascent pre-rRNA, and changes in RNAPI transcription rate can result in alternative rRNA processing pathways in response to growth conditions and stress. However, factors and mechanisms that control RNAPI progression by influencing transcription elongation rate remain poorly understood. We show here that the conserved fission yeast RNA-binding protein Seb1 associates with the RNAPI transcription machinery and promotes RNAPI pausing states along the rDNA. The overall faster progression of RNAPI at the rDNA in Seb1-deficient cells impaired cotranscriptional pre-rRNA processing and the production of mature rRNAs. Given that Seb1 also influences pre-mRNA processing by modulating RNAPII progression, our findings unveil Seb1 as a pause-promoting factor for RNA polymerases I and II to control cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Maxime Duval
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Carlo Yague-Sanz
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- URPHYM-GEMO, The University of Namur, 5000, Namur, Belgium
| | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - François Bachand
- RNA group, Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
40
|
Kashif M, Kumar B, Bharati AP, Altayeb H, Asalam M, Akhtar MS, Khan MI, Ahmad A, Chaudhary H, Hosawi SB, Zamzami MA, Baothman OA. Association of peptidyl prolyl cis/trans isomerase Rrd1 with C terminal domain of RNA polymerase II. Int J Biol Macromol 2023; 242:124653. [PMID: 37141964 DOI: 10.1016/j.ijbiomac.2023.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.
Collapse
Affiliation(s)
- Mohd Kashif
- Department of Biotech, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Bhupendra Kumar
- Center for Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, U.P., India
| | - Akhilendra Pratap Bharati
- Department Of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India.
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohd Asalam
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohd Sohail Akhtar
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Chaudhary
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salman Bakr Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
41
|
Lista MJ, Witney AA, Nichols J, Davison AJ, Wilson H, Latham KA, Ravenhill BJ, Nightingale K, Stanton RJ, Weekes MP, Neil SJD, Swanson CM, Strang BL. Strain-Dependent Restriction of Human Cytomegalovirus by Zinc Finger Antiviral Proteins. J Virol 2023; 97:e0184622. [PMID: 36916924 PMCID: PMC10062169 DOI: 10.1128/jvi.01846-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Adam A. Witney
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Jenna Nichols
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC–University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Katie A. Latham
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Benjamin J. Ravenhill
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, London, United Kingdom
| |
Collapse
|
42
|
de Prisco N, Ford C, Elrod ND, Lee W, Tang LC, Huang KL, Lin A, Ji P, Jonnakuti VS, Boyle L, Cabaj M, Botta S, Õunap K, Reinson K, Wojcik MH, Rosenfeld JA, Bi W, Tveten K, Prescott T, Gerstner T, Schroeder A, Fong CT, George-Abraham JK, Buchanan CA, Hanson-Khan A, Bernstein JA, Nella AA, Chung WK, Brandt V, Jovanovic M, Targoff KL, Yalamanchili HK, Wagner EJ, Gennarino VA. Alternative polyadenylation alters protein dosage by switching between intronic and 3'UTR sites. SCIENCE ADVANCES 2023; 9:eade4814. [PMID: 36800428 PMCID: PMC9937581 DOI: 10.1126/sciadv.ade4814] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Alternative polyadenylation (APA) creates distinct transcripts from the same gene by cleaving the pre-mRNA at poly(A) sites that can lie within the 3' untranslated region (3'UTR), introns, or exons. Most studies focus on APA within the 3'UTR; however, here, we show that CPSF6 insufficiency alters protein levels and causes a developmental syndrome by deregulating APA throughout the transcript. In neonatal humans and zebrafish larvae, CPSF6 insufficiency shifts poly(A) site usage between the 3'UTR and internal sites in a pathway-specific manner. Genes associated with neuronal function undergo mostly intronic APA, reducing their expression, while genes associated with heart and skeletal function mostly undergo 3'UTR APA and are up-regulated. This suggests that, under healthy conditions, cells toggle between internal and 3'UTR APA to modulate protein expression.
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Caitlin Ford
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan D. Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ai Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, WC67+HC Dongcheng, Beijing, China
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Venkata S. Jonnakuti
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Quantitative and Computational Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Lia Boyle
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Maximilian Cabaj
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Katrin Õunap
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Monica H. Wojcik
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation and Department of Pediatrics, Hospital of Southern Norway, Arendal, Norway
| | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chin-To Fong
- Department of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jaya K. George-Abraham
- Dell Children’s Medical Group, Austin, TX, USA
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | | | - Andrea Hanson-Khan
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
- Department of Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Jonathan A. Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Palo Alto, CA, USA
| | - Aikaterini A. Nella
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Vicky Brandt
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kimara L. Targoff
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hari Krishna Yalamanchili
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
43
|
Kowalski MH, Wessels HH, Linder J, Choudhary S, Hartman A, Hao Y, Mascio I, Dalgarno C, Kundaje A, Satija R. CPA-Perturb-seq: Multiplexed single-cell characterization of alternative polyadenylation regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527751. [PMID: 36798324 PMCID: PMC9934614 DOI: 10.1101/2023.02.09.527751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity that is governed by the cleavage and polyadenylation (CPA) regulatory machinery. To better understand how these proteins govern polyA site choice we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 known CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a statistical framework to specifically identify perturbation-dependent changes in intronic and tandem polyadenylation, and discover modules of co-regulated polyA sites exhibiting distinct functional properties. By training a multi-task deep neural network (APARENT-Perturb) on our dataset, we delineate a cis-regulatory code that predicts responsiveness to perturbation and reveals interactions between distinct regulatory complexes. Finally, we leverage our framework to re-analyze published scRNA-seq datasets, identifying new regulators that affect the relative abundance of alternatively polyadenylated transcripts, and characterizing extensive cellular heterogeneity in 3' UTR length amongst antibody-producing cells. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation in vitro and in vivo.
Collapse
Affiliation(s)
- Madeline H. Kowalski
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford USA
- Department of Computer Science, Stanford University, Stanford USA
| | - Saket Choudhary
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Yuhan Hao
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford USA
- Department of Computer Science, Stanford University, Stanford USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
44
|
Hughes AL, Szczurek AT, Kelley JR, Lastuvkova A, Turberfield AH, Dimitrova E, Blackledge NP, Klose RJ. A CpG island-encoded mechanism protects genes from premature transcription termination. Nat Commun 2023; 14:726. [PMID: 36759609 PMCID: PMC9911701 DOI: 10.1038/s41467-023-36236-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Transcription must be tightly controlled to regulate gene expression and development. However, our understanding of the molecular mechanisms that influence transcription and how these are coordinated in cells to ensure normal gene expression remains rudimentary. Here, by dissecting the function of the SET1 chromatin-modifying complexes that bind to CpG island-associated gene promoters, we discover that they play a specific and essential role in enabling the expression of low to moderately transcribed genes. Counterintuitively, this effect can occur independently of SET1 complex histone-modifying activity and instead relies on an interaction with the RNA Polymerase II-binding protein WDR82. Unexpectedly, we discover that SET1 complexes enable gene expression by antagonising premature transcription termination by the ZC3H4/WDR82 complex at CpG island-associated genes. In contrast, at extragenic sites of transcription, which typically lack CpG islands and SET1 complex occupancy, we show that the activity of ZC3H4/WDR82 is unopposed. Therefore, we reveal a gene regulatory mechanism whereby CpG islands are bound by a protein complex that specifically protects genic transcripts from premature termination, effectively distinguishing genic from extragenic transcription and enabling normal gene expression.
Collapse
Affiliation(s)
- Amy L Hughes
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Temporal-iCLIP captures co-transcriptional RNA-protein interactions. Nat Commun 2023; 14:696. [PMID: 36755023 PMCID: PMC9908952 DOI: 10.1038/s41467-023-36345-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Dynamic RNA-protein interactions govern the co-transcriptional packaging of RNA polymerase II (RNAPII)-derived transcripts. Yet, our current understanding of this process in vivo primarily stems from steady state analysis. To remedy this, we here conduct temporal-iCLIP (tiCLIP), combining RNAPII transcriptional synchronisation with UV cross-linking of RNA-protein complexes at serial timepoints. We apply tiCLIP to the RNA export adaptor, ALYREF; a component of the Nuclear Exosome Targeting (NEXT) complex, RBM7; and the nuclear cap binding complex (CBC). Regardless of function, all tested factors interact with nascent RNA as it exits RNAPII. Moreover, we demonstrate that the two transesterification steps of pre-mRNA splicing temporally separate ALYREF and RBM7 binding to splicing intermediates, and that exon-exon junction density drives RNA 5'end binding of ALYREF. Finally, we identify underappreciated steps in snoRNA 3'end processing performed by RBM7. Altogether, our data provide a temporal view of RNA-protein interactions during the early phases of transcription.
Collapse
|
46
|
Rodríguez-Molina JB, West S, Passmore LA. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell 2023; 83:404-415. [PMID: 36634677 PMCID: PMC7614299 DOI: 10.1016/j.molcel.2022.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.
Collapse
Affiliation(s)
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter, UK.
| | | |
Collapse
|
47
|
Carvalho LML, Pinto CF, de Oliveira Scliar M, Otto PA, Krepischi ACV, Rosenberg C. SCAF4-related syndromic intellectual disability. Am J Med Genet A 2023; 191:570-574. [PMID: 36333968 DOI: 10.1002/ajmg.a.63032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
The causal link between variants in the SCAF4 gene and a syndromic form of intellectual disability (ID) was established in 2020 by Fliedner et al. Since then, no additional cases have been reported. We performed exome sequencing in a 16-year-old Brazilian male presenting with ID, epilepsy, behavioral problems, speech impairment, facial dysmorphisms, heart malformations, and obesity. A de novo pathogenic variant [SCAF4(NM_020706.2):c.374_375dup(p.Glu126LeufsTer20)] was identified. This is the second study reporting the involvement of SCAF4 in syndromic ID, and the description of the patient's clinical features contributes to defining the phenotypic spectrum of this recently described Mendelian disorder.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo, Sao Paulo, Brazil
| | - Carla Franchi Pinto
- Department of Pathological Sciences, Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Marília de Oliveira Scliar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo, Sao Paulo, Brazil
| | - Paulo A Otto
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo, Sao Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo, Sao Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
48
|
MDC1 maintains active elongation complexes of RNA polymerase II. Cell Rep 2023; 42:111979. [PMID: 36640322 DOI: 10.1016/j.celrep.2022.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 10/04/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions. Decreased engaged RNAPII subsequently alters the assembly of the spliceosome complex on chromatin, leading to changes in pre-mRNA splicing. Mechanistically, the S/TQ domain of MDC1 modulates RNAPII-mediated transcription. Upon genotoxic stress, MDC1 promotes the abundance of engaged RNAPII complexes at DNA breaks, thereby stimulating nascent transcription at the damaged sites. Of clinical relevance, cancer cells lacking MDC1 display hypersensitivity to RNAPII inhibitors. Overall, we unveil a role of MDC1 in RNAPII-mediated transcription with potential implications for cancer treatment.
Collapse
|
49
|
Hao Y, Cai T, Liu C, Zhang X, Fu XD. Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation. Mol Cells 2023; 46:57-64. [PMID: 36697238 PMCID: PMC9880608 DOI: 10.14348/molcells.2023.2176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023] Open
Abstract
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ting Cai
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Present address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
50
|
Shi L, Li H, Wang L. Genetic parameters estimation and genome molecular marker identification for gestation length in pigs. Front Genet 2023; 13:1046423. [PMID: 36685960 PMCID: PMC9849246 DOI: 10.3389/fgene.2022.1046423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Gestation length (GL) plays an important role in piglet maturation of major organs and development of body, while the genetic molecular markers of GL have not been extensively identified. In this study, according to the 5,662 effective records of 3,072 sows, the heritability and repeatability of GL were estimated through the dmuai of DMU Version 6.5.1 with a repeatability model, namely, h 2 = 0.1594 and r e 2 = 0.2437. Among these sows, 906 individuals were genotyped with the GeneSeek Genomic Profiler (GGP) Porcine 50K Chip and imputed to the genome-wide level (9,212,179 SNPs) by the online software PHARP v1 for subsequent quality control and GWAS analyses. Further, the Fst was also performed to measure whether the actual frequency of genotypes in different GL phenotypes deviated from the theoretical proportion of genetic balance. We observed the highest degree of differentiation (average Fst value = 0.0376) in the group of 114 and 118 days, and identified a total of 1,002 SNPs strongly associated with GL. Through screening the genes located within a 500 kb distance on either side of the significant SNPs, we proposed 4,588 candidate genes. By the functional annotation, these candidates were found to be mainly involved in multicellular organism metabolism, early endosome, embryo implantation and development, and body and organ signaling pathway. Because of the simultaneous confirmation by GWAS and Fst analyses, there were 20 genes replied to be the most promising candidates including HUNK, ARHGDIB, ERP27, RERG, NEDD9, TMEM170B, SCAF4, SOD1, TIAM1, ENSSSCG00000048838, ENSSSCG00000047227, EDN1, HIVEP1, ENSSSCG00000043944, LRATD1, ENSSSCG00000048577, ENSSSCG00000042932, ENSSSCG00000041405, ENSSSCG00000045589, and ADTRP. This study provided effective molecular information for the genetic improvement of GL in pigs.
Collapse
|