1
|
Fan D, Huang Y, Yao R, Zhang G, Yang S, Li L. Discovery of 4-((quinolin-8-ylthio)methyl)benzamide derivatives as a new class of SARS-CoV-2 nsp13 inhibitors. Bioorg Med Chem Lett 2025; 122:130207. [PMID: 40147803 DOI: 10.1016/j.bmcl.2025.130207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Antivirals have provided important protection against COVID-19, however, the emergence of SARS-CoV-2 variants and drug-resistant mutants calls for the development of novel anti-coronavirus drugs with alternative mechanisms of action. The nonstructural protein 13 (nsp13) of SARS-CoV-2 plays a conserved role in the replication of coronaviruses and has been identified as a promising target. In this study, we report a series of 4-((quinolin-8-ylthio)methyl)benzamide derivatives as inhibitors of SARS-CoV-2 nsp13. Through structure-activity relationship (SAR) analyses, we identified compound 6r, which demonstrated potent inhibition of nsp13 with an IC50 value of 0.28 ± 0.11 μM. Collectively, we discovered a new potent SARS-CoV-2 nsp13 inhibitor, which could be taken as a promising lead compound for further drug development targeting SARS-CoV-2 nsp13.
Collapse
Affiliation(s)
- Danchen Fan
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuanting Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Yao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Kang E, Yoon H, Lee J, Lee J, Kim S, Jo I, Han SB, Jeong DG, Cho S. Construction and validation of a cell based reporter assay for identifying inhibitors of SARS coronavirus 2 RNA dependent RNA polymerase activity. Sci Rep 2025; 15:18443. [PMID: 40419748 DOI: 10.1038/s41598-025-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
Targeting RNA-dependent RNA polymerase (RdRp), a highly conserved enzyme essential for SARS coronavirus 2 (SARS-CoV-2) replication and transcription, represents a promising antiviral strategy due to its lower mutation rate than structural proteins such as Spike. This study introduces a cell-based assay system for screening potential SARS-CoV-2 RdRp inhibitors, contributing to ongoing efforts to identify effective antiviral agents. The assay utilizes a reporter vector containing the 3' untranslated region (UTR), luciferase reporter gene, and 5' UTR gene, sequentially arranged in reverse under the control of the cytomegalovirus promoter in the pcDNA3.1 vector. Co-transfection with SARS-CoV-2 RdRp resulted an increase in luminescence-based quantification of RdRp activity, achieving a Z-factor of 0.605, indicative of high reproducibility and reliability for high-throughput screening. Established RdRp inhibitors, including remdesivir, molnupiravir, tenofovir, and sofosbuvir, significantly reduced reporter activity, with remdesivir exhibiting the strongest inhibition. A newly identified RdRp inhibitor was further validated through primer extension polymerase and NMPylation assays, along with virus-based experiments, confirming its inhibitory mechanism. These results highlight the utility of this screening system in identifying effective RdRp-targeting antivirals, reinforcing the strategic importance of RdRp inhibition in combating SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haelim Yoon
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junho Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - JinAh Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Soo Bong Han
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Dumm AJ, Zheng AY, Butler TJ, Kulikowicz T, George JC, Bombard PT, Sommers JA, Ding J, Brosh RM. SARS-CoV-2 point mutations are over-represented in terminal loops of RNA stem-loop structures that can be resolved by Nsp13 helicase in a unique manner with respect to nucleotide dependence. Nucleic Acids Res 2025; 53:gkaf447. [PMID: 40421800 PMCID: PMC12107433 DOI: 10.1093/nar/gkaf447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
To improve health outcomes for COVID-19 (coronavirus disease 2019) patients, the factors that influence coronavirus genome variation need to be ascertained. The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) genome is rich in predicted RNA secondary structures, particularly stem-loops (SLs) formed by intramolecular base pairing within palindromic sequences. We analyzed the NCBI Virus collection of SARS-CoV-2 genome sequences from COVID-19 individuals to map variants relative to SL structural elements. Point mutations in the SARS-CoV-2 genome, with a C-to-U transition bias, were over-represented in unpaired nucleotides and, more specifically, within the terminal loops of RNA SL structures. As the sole helicase encoded by SARS-CoV-2, Nsp13 may operate in the timely resolution of secondary RNA structures to facilitate SARS-CoV-2 RNA copying or processing. We characterized Nsp13 to resolve SARS-CoV-2 sequence-derived unimolecular RNA SL substrates and determined that it does so in a functionally cooperative manner. In addition to ATP, Nsp13 resolves the unimolecular RNA SL structure in the absence of nucleotide, in contrast to the strict ATP requirement for a bimolecular RNA forked duplex. We suggest a model in which a series of binary and ternary complex interactions of Nsp13 with nucleotide and/or RNA SL pose mechanistic implications for RNA SL resolution.
Collapse
Affiliation(s)
- Adaira J Dumm
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Andrew Y Zheng
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Thomas J Butler
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Joe C George
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Pierce T Bombard
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| |
Collapse
|
4
|
Hou Y, Shi H, Wang H, Tian L, Huan C, Liu Y, Wang H, Zhang W. HERC5-mediated ISGylation of SARS-CoV-2 nsp8 facilitates its degradation and inhibits viral replication. Int J Biol Macromol 2025; 315:144546. [PMID: 40409630 DOI: 10.1016/j.ijbiomac.2025.144546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 non-structural protein 8 (SARS-CoV-2 nsp8) is a multifunctional protein essential for viral replication and immune evasion. However, the host factors that regulate nsp8 stability and function remain unclear. In this study, we identify HECT and RCC-like domain-containing protein 5 (HERC5) as an essential E3 ligase that regulates nsp8 stability through ISGylation, a ubiquitin-like post-translational modification that facilitates proteasome-dependent degradation. HERC5 overexpression significantly enhances nsp8 degradation in an enzymatic activity-dependent manner, whereas SARS-CoV-2 papain-like protease (PLpro) counteracts this process by deconjugating interferon-stimulated gene 15 (ISG15) from nsp8-thereby preventing its degradation and facilitating viral replication. Mass spectrometry and mutational analyses revealed that the N2 domain of nsp8 is indispensable for ISGylation, with multiple lysine residues acting as primary modification sites. Additionally, we demonstrated that the ISGylation system, including HERC5, ubiquitin-like modifier activating enzyme 7 (UBA7), and ISG15, effectively suppresses SARS-CoV-2 replication across multiple variants, including Omicron BA.5 and XBB.1.5.15. These findings provide novel insights into the role of ISGylation in host antiviral defense and highlight the interplay between HERC5 and PLpro in modulating viral replication. This study establishes a foundation for developing therapeutic strategies targeting HERC5 or PLpro to inhibit SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yubao Hou
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Hongyun Shi
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Huihan Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Li Tian
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China
| | - Yan Liu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130000, Jilin, China.
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China.
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, China; Centre of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Furusawa Y, Iwatsuki-Horimoto K, Yamayoshi S, Kawaoka Y. The NSP6-L260F substitution in SARS-CoV-2 BQ.1.1 and XBB.1.16 lineages compensates for the reduced viral polymerase activity caused by mutations in NSP13 and NSP14. J Virol 2025:e0065625. [PMID: 40358207 DOI: 10.1128/jvi.00656-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants emerged at the end of 2021, and their subvariants are still circulating worldwide. While changes in the S protein of these variants have been extensively studied, the roles of amino acid substitutions in non-structural proteins have not been fully revealed. In this study, we found that SARS-CoV-2 bearing the NSP6-L260F substitution emerged repeatedly when we generated several SARS-CoV-2 variants by reverse genetics or when we passaged SARS-CoV-2 isolated from clinical samples and that it was selected under cell culture conditions. Although this substitution has been detected in BQ.1.1 and XBB.1.16 that circulated in nature, its effect on viral properties is unclear. Here, we generated SARS-CoV-2 with or without the NSP6-L260F by reverse genetics and found that NSP6-L260F promotes virus replication in vitro and in vivo by increasing viral polymerase activity and enhancing virus pathogenicity in hamsters. We also identified disadvantageous substitutions, NSP13-M233I and NSP14-D222Y, that reduced BQ.1.1 and XBB.1.16 replication, respectively. These adverse effects were compensated for by NSP6-L260F. Our findings suggest the importance of NSP6-L260F for virus replication and pathogenicity and reveal part of the evolutionary process of Omicron variants.IMPORTANCEAlthough the properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants continue to change through the acquisition of various amino acid substitutions, the roles of the amino acid substitutions in the non-structural proteins have not been fully explored. In this study, we found that the NSP6-L260F substitution enhances viral polymerase activity and is important for viral replication and pathogenicity. In addition, we found that the NSP13-M233I substitution in the BQ.1.1 lineage and the NSP14-D222Y substitution in the XBB.1.16 lineage reduce viral polymerase activity, and this adverse effect is compensated for by the NSP6-L260F substitution. Our results provide insight into the evolutionary process of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuri Furusawa
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Institute of Medical Science, University of Tokyo, Bunkyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
| | - Seiya Yamayoshi
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Bunkyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Bunkyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Groves D, Cunnison R, McMahon A, Fan H, Sharps J, Deng A, Keown JR, Fodor E, Robb NC. Mechanistic insights into the activity of SARS-CoV-2 RNA polymerase inhibitors using single-molecule FRET. Nucleic Acids Res 2025; 53:gkaf351. [PMID: 40298114 PMCID: PMC12038395 DOI: 10.1093/nar/gkaf351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in significant global mortality, with over 7 million cases reported. Despite extensive research and high vaccination rates, highly mutated forms of the virus continue to circulate. It is therefore important to understand the viral lifecycle and the precise molecular mechanisms underlying SARS-CoV-2 replication. To address this, we developed a single-molecule Förster resonance energy transfer (smFRET) assay to directly visualize and analyse in vitro RNA synthesis by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). We purified the minimal replication complex, comprising nsp12, nsp7, and nsp8, and combined it with fluorescently labelled RNA substrates, enabling real-time monitoring of RNA primer elongation at the single-molecule level. This platform allowed us to investigate the mechanisms of action of key inhibitors of SARS-CoV-2 replication. In particular, our data provides evidence for remdesivir's mechanism of action, which involves polymerase stalling and subsequent chain termination dependent on the concentration of competing nucleotide triphosphates. Our study demonstrates the power of smFRET to provide dynamic insights into SARS-CoV-2 replication, offering a valuable tool for antiviral screening and mechanistic studies of viral RdRp activity.
Collapse
Affiliation(s)
- Danielle Groves
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Rory Cunnison
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Andrew McMahon
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Jane Sharps
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Adrian Deng
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jeremy R Keown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Nicole C Robb
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Lundrigan E, Hum C, Ahmed N, Pezacki JP. Monitoring SARS-CoV-2 Nsp13 helicase binding activity using expanded genetic code techniques. RSC Chem Biol 2025:d4cb00230j. [PMID: 40309067 PMCID: PMC12038430 DOI: 10.1039/d4cb00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structural protein 13 (Nsp13) helicase is a multi-functional protein that can unwind dsDNA and dsRNA in an NTP-dependent manner. Given that this viral helicase is essential for viral replication and highly conserved among coronaviruses, a thorough understanding of the helicase's unwinding and binding activity may allow for the development of more effective pan-coronavirus therapeutics. Herein, we describe the use of genetic code expansion techniques to site-specifically incorporate the non-canonical amino acid (ncAA) p-azido-l-phenylalanine (AzF) into Nsp13 for fluorescent labelling of the enzyme with a conjugated Cy5 fluorophore. This Cy5-labelled Nsp13-AzF can then be used in Förster resonance energy transfer (FRET) experiments to investigate the dynamics of enzyme translocation on its substrate during binding and unwinding. Five sites (F81, F90, Y205, Y246, and Y253) were identified for AzF incorporation in Nsp13 and assessed for fluorescent labelling efficiency. The incorporation of AzF was confirmed to not interfere with the unwinding activity of the helicase. Subsequently, FRET-based binding assays were conducted to monitor the binding of Cy5-labelled Nsp13-AzF constructs to a series of fluorescently-labelled nucleic acid substrates in a distance-dependent manner. Overall, this approach not only allows for the direct monitoring of Nsp13's binding activity on its substrate, it may also introduce a novel method to screen for compounds that can inhibit this essential enzymatic activity during viral replication.
Collapse
Affiliation(s)
- Eryn Lundrigan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Christine Hum
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
8
|
Zhao J, Zhang G, Li Y, Ma L, Yi D, Li Q, Shi Y, Guo S, Liu T, Wang Y, Li X, Wang Y, Tan W, Li J, Cen S. Discovery and optimization of phenazopyridine hydrochloride as novel SARS-CoV-2 RdRp inhibitors. Eur J Med Chem 2025; 288:117422. [PMID: 39999742 DOI: 10.1016/j.ejmech.2025.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen of coronavirus disease (COVID-19) causing a pandemic with growing global transmission. The viral RNA-dependent RNA polymerase (RdRp) is conserved especially for variants of concern (VOCs), making it as an effective antivirals target. Due to the proofreading activity of coronavirus nsp14/nsp10, limited the efficacy of nucleoside analogs in vivo. Herein, we identified that Phenazopyridine hydrochloride (PAP) inhibits SARS-CoV-2 with EC50 of 5.37 μmol/L. Furthermore, PAP can effectively inhibit SARS-CoV-2 RdRp with EC50 value of 7.37 μmol/L, after further optimization, compound PAP-22 exhibits the most potential inhibition, with EC50 of 1.11 μmol/L. PAP and its derivatives can bind directly to SARS-CoV-2 RdRp, fully resistance to the exoribonuclease (ExoN) and exhibit broad spectrum anti-CoV activities. Combined with the current data available on the safe and pharmacokinetics of PAP as an approved drug in clinical use, these results provide a path for the urgently needed antivirals to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - YaSheng Li
- Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yu Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Tianfu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| | - Wenjie Tan
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
| | - Jiabin Li
- Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
9
|
Liu HL, Lin S, Hung W, Chang DC, Lin SL. A novel replicase-mediated self-amplifying RNA amplification mechanism of the SARS-CoV-2 replication-transcription system. Biochem Biophys Res Commun 2025; 758:151654. [PMID: 40117978 DOI: 10.1016/j.bbrc.2025.151654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
A novel self-amplifying mRNA (samRNA) amplification mechanism was first discovered in the SARS-CoV-2 replication-transcription system and named replicase cycling reaction (RCR). In principle, RCR is a replicase-mediated transcription reaction driven by the SARS-CoV-2 RNA-dependent RNA polymerases (RdRPs), which amplify a specific samRNA construct consisting of an RNA/mRNA sequence flanked by a 5'-end RdRP-reverse-promoter (5'-RdRP-RP) and a 3'-end RdRP-forward-promoter (3'-RdRP-FP) on both sides. Based on this samRNA composition, we had not only successfully established the first in-vitro RCR reaction for directly amplifying the SARS-CoV-2 genomic and subgenomic RNAs but also further used it in a combined in-vitro-transcription and RCR (IVT-RCR) protocol to identify new functions of the SARS-CoV-2 NSP7, NSP8, and NSP12 proteins, leading to a fast diagnostic assay for measuring the SARS-CoV-2 RdRP activity. These findings may shed a new light on the molecular mechanisms of SARS-CoV-2 replication and transcription. As a result, in addition to the previously found primer-dependent RNA synthesis activity of the coronaviral RdRP complexes, we herein reported another new 5'/3'-promoter-dependent, primer-independent samRNA synthesis mechanism mediated by the SARS-CoV-2 RdRP complex. Based on this novel RCR mechanism, the associated samRNA composition is conceivably useful for facilitating the design and development of next-generation RNA/mRNA medicines and vaccines.
Collapse
Affiliation(s)
- Hsien-Lin Liu
- WJWU and LYNN Institute for Stem Cell Research, La Puente, CA, 91744, USA
| | - Sam Lin
- WJWU and LYNN Institute, National Biotechnology Research Park, Taipei, 115202, Taiwan
| | - William Hung
- WJWU and LYNN Institute, National Biotechnology Research Park, Taipei, 115202, Taiwan
| | - Donald C Chang
- WJWU and LYNN Institute for Stem Cell Research, La Puente, CA, 91744, USA
| | - Shi-Lung Lin
- WJWU and LYNN Institute for Stem Cell Research, La Puente, CA, 91744, USA; WJWU and LYNN Institute, National Biotechnology Research Park, Taipei, 115202, Taiwan.
| |
Collapse
|
10
|
Chen Q, Yu M, Guo J, Qiu J, Liu F, Shan Y. Repurposing Vancomycin as a Potential Antiviral Agent Against PEDV via nsp13 Helicase Inhibition. Animals (Basel) 2025; 15:923. [PMID: 40218318 PMCID: PMC11987754 DOI: 10.3390/ani15070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious intestinal disease with severe economic impacts on the global swine industry. The non-structural protein 13 (nsp13), a viral helicase, is essential for viral replication, making it a promising target for antiviral drug development. In this study, through virtual screening and molecular dynamics simulations, Vancomycin, a small-molecule drug also clinically used as an antibacterial agent, was identified to exhibit a stable binding affinity for PEDV nsp13. The NTPase and ATP-dependent RNA helicase activities of PEDV nsp13 were confirmed in vitro, and the optimal biochemical reaction conditions for its dsRNA unwinding activity were established. Further experiments demonstrated that Vancomycin effectively inhibited the dual enzymatic activities of PEDV nsp13 and reduced PEDV infections in vitro. This research highlights Vancomycin as a novel inhibitor of PEDV nsp13, providing valuable mechanistic insights and serving as a model for antiviral drug discovery. While this study suggests its potential for repurposing as a therapeutic agent against PEDV, further investigations are required to evaluate its feasibility in vivo, particularly in terms of safety, efficacy, and practical applicability.
Collapse
Affiliation(s)
- Qiao Chen
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqi Yu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajing Guo
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Jingqi Qiu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; (Q.C.); (M.Y.); (J.G.); (J.Q.)
- Single Molecule Biochemistry & Biomedicine Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Furusawa Y, Kiso M, Uraki R, Sakai-Tagawa Y, Nagai H, Koga M, Kashima Y, Hojo M, Iwamoto N, Iwatsuki-Horimoto K, Ohmagari N, Suzuki Y, Yotsuyanagi H, Halfmann PJ, Kamitani W, Yamayoshi S, Kawaoka Y. Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures. J Virol 2025; 99:e0221724. [PMID: 39936915 PMCID: PMC11915790 DOI: 10.1128/jvi.02217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
In general, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates well at 37°C, which is the temperature of the human lower respiratory tract, but it poorly at 30°C‒32°C, which is the temperature of the human upper respiratory tract. The replication efficiency of SARS-CoV-2 in the upper respiratory tract may directly affect its transmissibility. In this study, an XBB.1.5 isolate showed superior replicative ability at 32°C and 30°C, whereas most other Omicron sub-variant isolates showed limited growth. Deep sequencing analysis demonstrated that the frequencies of viruses possessing the NSP6-S163P and NSP13-P238S substitutions increased to more than 97% during propagation of the XBB.1.5 isolate at 32°C but did not reach 55% at 37°C. Reverse genetics revealed that these substitutions contributed to superior virus growth in vitro at these low temperatures by improving virus genome replication. Mutant virus possessing both substitutions showed slightly higher virus titers in the upper respiratory tract of hamsters compared to the parental virus; however, transmissibility between hamsters was similar for the mutant and parental viruses. Taken together, our findings indicate that NSP6-S163P and NSP13-P238S contribute to superior virus growth at low temperatures in vitro and in the upper respiratory tract of hamsters. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates efficiently at 37°C. However, the temperature of the human upper airway is 30°C-32°C. Therefore, the replicative ability of SARS-CoV-2 at low temperatures could influence virus replication in the upper airway and transmissibility. In this study, we assessed the growth of Omicron sub-variants at low temperatures and found that an XBB.1.5 isolate showed increased replicative ability. By deep sequencing analysis and reverse genetics, we found that amino acid changes in NSP6 and NSP13 contribute to the low-temperature growth; these changes improved RNA polymerase activity at low temperatures and enhanced virus replication in the upper airway of hamsters. Although these substitutions alone did not drastically affect virus transmissibility, in combination with other substitutions, they could affect virus replication in humans. Furthermore, since these substitutions enhance virus replication in cultured cells, they could be used to improve the production of inactivated or live attenuated vaccine virus.
Collapse
Affiliation(s)
- Yuri Furusawa
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Maki Kiso
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Ryuta Uraki
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Michiko Koga
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Masayuki Hojo
- Department of Respiratory Disease, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Shinjuku, Tokyo, Japan
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Seiya Yamayoshi
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
| | - Yoshihiro Kawaoka
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Shinjuku, Tokyo, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Shinjuku, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Shinjuku, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Wu C, Tao L, Zhou Q, Zhang F, Zeng Y. The Stalk and 1B Domains Are Required for Porcine Deltacoronavirus Helicase NSP13 to Separate the Double-Stranded Nucleic Acids, and the Deletion of the ZBD Impairs This Activity. Animals (Basel) 2025; 15:865. [PMID: 40150394 PMCID: PMC11939599 DOI: 10.3390/ani15060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The nonstructural protein 13 (NSP13) of PDCoV is a highly conservative helicase and plays key roles in viral replication. NSP13 contains a zinc-binding domain (ZBD), a helical Stalk domain, a beta-barrel 1B domain, and a core helicase domain. However, the specific functions of these domains of PDCoV NSP13 remain largely unknown. Here, we expressed and purified the wild-type NSP13WT and various mutants with domain deletions, and the activities of these proteins were analyzed using multiple methods. We found that NSP13ΔZBD possessed the abilities to hydrolyze ATP and unwind double-stranded nucleic acids, but the unwinding efficiency was lower than that of NSP13WT. In contrast, NSP13ΔZBD-Stalk, NSP13Δ1B, and NSP13ΔZBD-Stalk-1B all lost their unwinding activity, but not their ATPase activity. These results revealed that the deletion of the ZBD impaired the unwinding activity of PDCoV helicase NSP13, and the Stalk and 1B domains were critical for NSP13 to separate the duplexes. The identification of the roles of each domain in this study was helpful to gain an in-depth understanding of the overall functions of helicase NSP13, providing a theoretical basis for the development of antiviral drugs targeting helicase.
Collapse
Affiliation(s)
- Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Lihan Tao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
13
|
Wu C, Tao L, Li H, Huang C, Zeng Y. Two opposite abilities of the infectious bronchitis virus helicase Nsp13: separating the duplex and promoting the annealing of single-stranded nucleic acid. Front Vet Sci 2025; 12:1560586. [PMID: 40166702 PMCID: PMC11955809 DOI: 10.3389/fvets.2025.1560586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Genome replication is a key step in the coronavirus life cycle and requires the involvement of a range of virally encoded non-structural proteins. The non-structural protein 13 (Nsp13) of coronaviruses is a highly conserved helicase and is considered an ideal drug target. However, the activity characteristics of the helicase Nsp13 of the infectious bronchitis virus (IBV) remain unclear. In this study, we expressed and biochemically characterized the purified recombinant IBV Nsp13 and found that IBV Nsp13 was able to unwind duplex substrates in a 5'-to-3' direction by using the energy from the hydrolysis of all nucleotide triphosphate (NTP) and deoxyribonucleoside triphosphate (dNTP). We also explored the substrate selectivity and influencing factors of the unwinding activity of IBV Nsp13. The nucleic acid continuity of the loading strand was essential for Nsp13 to unwind duplex substrates. In addition, we first demonstrated that IBV helicase Nsp13 also had an annealing activity to promote two single-stranded nucleic acids to form a double-stranded nucleic acid. Biochemical analysis of the unwinding and annealing activities of IBV Nsp13 was helpful for deeply revealing the replication mechanism of coronavirus and the development of antiviral drugs.
Collapse
Affiliation(s)
- Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihan Tao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cong Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
14
|
Marcantonio E, Guazzetti D, Coppa C, Battistini L, Sartori A, Bugatti K, Provinciael B, Curti C, Contini A, Vermeire K, Zanardi F. The chiral 5,6-cyclohexane-fused uracil ring-system: A molecular platform with promising activity against SARS-CoV-2. Eur J Med Chem 2025; 286:117302. [PMID: 39884099 DOI: 10.1016/j.ejmech.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
The recurrent global exposure to highly challenging viral epidemics, and the still limited spectrum of effective pharmacological options step on the accelerator towards the development of new antiviral medicines. In this work we explored the anti-SARS-CoV-2 potential of a recently launched chiral ring system based on the uracil scaffold fused to carbocycle rings. The asymmetric synthesis of two generations of chiral uracil-based compounds (overall 31 different products), and their in vitro cytotoxicity and antiviral screening against wild-type SARS-CoV-2 in U87.ACE cells allowed us to identify seven non-cytotoxic enantioenriched derivatives exhibiting in vitro EC50 in the 6-37 μM range. Among these compounds, bicyclic uracil 10 showed the best antiviral potency against SARS-CoV-2 (EC50 20A.EU2 = 7.41 μM and EC50 Omicron = 19.4 μM), combined with a favourable selectivity index. Additionally, it exhibited single-digit micromolar inhibition of the isolated SARS-CoV-2 RNA-dependent RNA polymerase (IC50 = 2.1 μM). Starting from a reported cryo-EM structure of RdRp, docking and molecular dynamics simulations were performed to rationalize possible binding modes of the active compounds. Interestingly, no inhibition of viral replication in cells was observed against a wide spectrum of human viruses, while some derivatives, and especially hit compound 10, exhibited specific low micromolar antiviral effect against β-coronavirus OC43. Collectively, these data indicate that this novel uracil-based ring system represents a valid starting point for further development of a new class of RdRp inhibitors to treat SARS-CoV-2 and, potentially, other β-coronavirus infections.
Collapse
Affiliation(s)
- Enrico Marcantonio
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Debora Guazzetti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Claudio Curti
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milano, Italy.
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular, Structural and Translational Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area Delle Scienze 27/A, 43124, Parma, Italy.
| |
Collapse
|
15
|
America PPB, Bera SC, Das A, Anderson TK, Marecki JC, Papini FS, Arnold JJ, Kirchdoerfer RN, Cameron CE, Raney KD, Depken M, Dulin D. The coronavirus helicase synergizes with the viral polymerase to enable rapid RNA synthesis through duplex RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641625. [PMID: 40093076 PMCID: PMC11908277 DOI: 10.1101/2025.03.05.641625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The genome of most positive-sense (+)RNA viruses encodes a helicase, such as the coronavirus (CoV) nsp13-helicase, but little is known about their actual function, despite being absolutely essential for CoV replication. The CoV polymerase associates with two nsp13-helicases, which translocates in the opposite direction, raising questions about nsp13-helicase role during viral RNA synthesis. Using magnetic tweezers, we show that nsp13-helicase specifically associates with the CoV polymerase and tranlocates on the strand opposite to the template, increasing the overall RNA synthesis rate on a double-stranded (ds) RNA template by ten-fold. Nsp13-helicase utilizes both ATP hydrolysis and allostery to assist the CoV polymerase through the dsRNA fork. Our kinetic modelling provides the energy landscape of the two nsp13-helicases association with the polymerase and describes the nucleotide addition mechanochemistry of the resulting complex. Our study demonstrates a new function for (+)RNA virus helicase and deepens the understanding of CoV replication and transcription.
Collapse
Affiliation(s)
- Pim P. B. America
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Subhas C. Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Arnab Das
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| | - Thomas K. Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John C. Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Flávia S. Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
16
|
de Oliveira Silva Pinto M, de Paula Pereira L, de Mendonça Angelo ALP, Xavier MAP, de Magalhães Vieira Machado A, Russo RC. Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins. J Mol Recognit 2025; 38:e70002. [PMID: 39905998 DOI: 10.1002/jmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), the virus responsible for COVID-19, interacts with the host immune system through complex mechanisms that significantly influence disease outcomes, affecting both innate and adaptive immunity. These interactions are crucial in determining the disease's severity and the host's ability to clear the virus. Given the virus's substantial socioeconomic impact, high morbidity and mortality rates, and public health importance, understanding these mechanisms is essential. This article examines the diverse innate immune responses triggered by SARS-CoV-2's structural proteins, including the spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins, along with nonstructural proteins (NSPs) and open reading frames. These proteins play pivotal roles in immune modulation, facilitating viral replication, evading immune detection, and contributing to severe inflammatory responses such as cytokine storms and acute respiratory distress syndrome (ARDS). The virus employs strategies like suppressing type I interferon production and disrupting key antiviral pathways, including MAVS, OAS-RNase-L, and PKR. This study also explores the immune pathways that govern the activation and suppression of immune responses throughout COVID-19. By analyzing immune sensing receptors and the responses initiated upon recognizing SARS-CoV-2 structural proteins, this review elucidates the complex pathways associated with the innate immune response in COVID-19. Understanding these mechanisms offers valuable insights for therapeutic interventions and informs public health strategies, contributing to a deeper understanding of COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Matheus de Oliveira Silva Pinto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo de Paula Pereira
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Viral Disease Immunology Group, Fundação Osvaldo Cruz, Instituto René Rachou, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
17
|
Frick DN, Bavisotto RV, Hopper NC, Tysoe WT. Analogs of NIH Molecular Probe ML283 Are Potent SARS-CoV-2 Helicase Inhibitors. ACS Chem Biol 2025; 20:281-296. [PMID: 39910979 DOI: 10.1021/acschembio.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The National Institutes of Health molecular probe ML283 was synthesized as a potent, selective inhibitor of the helicase encoded by the hepatitis C virus. Because modeling with AutoDock Vina predicted that ML283 might bind the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 13 (nsp13) helicase, the effects of a collection of ML283 analogs and other hepatitis C virus (HCV) helicase inhibitors on the SARS-CoV-2 helicase were analyzed. Only modest impacts on nsp13-catalyzed ATP hydrolyses were observed with some compounds, most of which were analogs of the drug ebselen, not ML283. In contrast, a new molecular-beacon-based helicase assay revealed that ML283 and many ML283 analogs are potent SARS-CoV-2 helicase inhibitors. Analog potencies correlate with the binding energies predicted by modeling, which suggests that a pocket surrounded by the carboxy-terminal nsp13 RecA-like helicase motor domain might be exploitable for antiviral drug development.
Collapse
Affiliation(s)
- David N Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Robert V Bavisotto
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Nicholas C Hopper
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Wilfred T Tysoe
- Department of Chemistry & Biochemistry, The University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| |
Collapse
|
18
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2025; 69:e0123824. [PMID: 39699245 PMCID: PMC11823660 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
19
|
Rodriguez L, Zamora JLR, Han D, Moshiri J, Peinovich N, Martinez C, Ho PY, Li J, Aeschbacher T, Martin R, Pekosz A, Bilello JP, Perry JK, Hedskog C. Remdesivir and Obeldesivir Retain Potent Antiviral Activity Against SARS-CoV-2 Omicron Variants. Viruses 2025; 17:168. [PMID: 40006923 PMCID: PMC11860839 DOI: 10.3390/v17020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
As new SARS-CoV-2 variants continue to emerge, it is important to evaluate the potency of antiviral drugs to support their continued use. Remdesivir (RDV; VEKLURY®) an approved antiviral treatment for COVID-19, and obeldesivir (ODV) are inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase Nsp12. Here we show these two compounds retain antiviral activity against the Omicron variants BA.2.86, BF.7, BQ.1, CH.1.1, EG.1.2, EG.5.1, EG.5.1.4, FL.22, HK.3, HV.1, JN.1, JN.1.7, JN.1.18, KP.2, KP.3, LB.1, XBB.1.5, XBB.1.5.72, XBB.1.16, XBB.2.3.2, XBC.1.6, and XBF when compared with reference strains. Genomic analysis identified 29 Nsp12 polymorphisms in these and previous Omicron variants. Phenotypic analysis of these polymorphisms confirmed no impact on the antiviral activity of RDV or ODV and suggests Omicron variants containing these Nsp12 polymorphisms remain susceptible to both compounds. These data support the continued use of RDV in the context of circulating SARS-CoV-2 variants and the development of ODV as an antiviral therapeutic.
Collapse
Affiliation(s)
| | | | - Dong Han
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | | | | | - Pui Yan Ho
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | | | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA 94404, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
20
|
Yu J, Im H, Cho H, Jeon Y, Lee JB, Lee G. A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase. Nucleic Acids Res 2025; 53:gkaf034. [PMID: 39878212 PMCID: PMC11775617 DOI: 10.1093/nar/gkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Helicase is a nucleic acid motor that catalyses the unwinding of double-stranded (ds) RNA and DNA via ATP hydrolysis. Helicases can act either as a nucleic acid motor that unwinds its ds substrates or as a chaperone that alters the stability of its substrates, but the two activities have not yet been reported to act simultaneously. Here, we used single-molecule techniques to unravel the synergistic coordination of helicase and chaperone activities, and found that the severe acute respiratory syndrome coronavirus helicase (nsp13) is capable of two modes of action: (i) binding of nsp13 in tandem with the fork junction of the substrate mechanically unwinds the substrate by an ATP-driven synchronous power stroke; and (ii) free nsp13, which is not bound to the substrate but complexed with ADP in solution, destabilizes the substrate through collisions between transient binding and unbinding events with unprecedented melting capability. Our findings provide new insights into how the same enzyme works via two modes on different parts of the substrate and synergistically catalyses the unwinding reaction, utilizing ATP and recycling its by-product ADP as an energy source.
Collapse
Affiliation(s)
- Jeongmin Yu
- Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyeryeon Im
- Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - HyeokJin Cho
- Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Gwangrog Lee
- Single-Molecule and Cell Mechanobiology Laboratory, Daejeon, 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| |
Collapse
|
21
|
Klein M, Das A, Bera SC, Anderson TK, Kocincova D, Lee HW, Wang B, Papini FS, Marecki JC, Arnold JJ, Cameron CE, Raney KD, Artsimovitch I, Götte M, Kirchdoerfer RN, Depken M, Dulin D. A post-assembly conformational change makes the SARS-CoV-2 polymerase elongation-competent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632299. [PMID: 39829827 PMCID: PMC11741424 DOI: 10.1101/2025.01.10.632299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell. While essential for viral replication, the mechanism by which the core RTC assembles into a processive polymerase remains poorly understood. We show that the core RTC preferentially assembles by first having nsp12-polymerase bind to the RNA template, followed by the subsequent association of nsp7 and nsp8. Once assembled on the RNA template, the core RTC requires hundreds of seconds to undergo a conformational change that enables processive elongation. In the absence of RNA, the (apo-)RTC requires several hours to adopt its elongation-competent conformation. We propose that this obligatory activation step facilitates the recruitment of additional nsp's essential for efficient viral RNA synthesis and may represent a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Misha Klein
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Arnab Das
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Subhas C. Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Thomas K. Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bing Wang
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Flavia S. Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - John C. Marecki
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Mathias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
22
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
23
|
Mishra S, Jain D, Dey AA, Nagaraja S, Srivastava M, Khatun O, Balamurugan K, Anand M, Ashok AK, Tripathi S, Ganji M, Kesavardhana S. Bat RNA viruses employ viral RHIMs orchestrating species-specific cell death programs linked to Z-RNA sensing and ZBP1-RIPK3 signaling. iScience 2024; 27:111444. [PMID: 39697597 PMCID: PMC11652944 DOI: 10.1016/j.isci.2024.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/06/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
RHIM is a protein motif facilitating the assembly of large signaling complexes triggering regulated cell death. A few DNA viruses employ viral RHIMs mimicking host RHIMs and counteract cell death by interacting with host RHIM-proteins to alleviate antiviral defenses. Whether RNA viruses operate such viral RHIMs remains unknown. Here, we identified viral RHIMs in Nsp13 of SARS-CoV-2 and other bat RNA viruses, providing the basis for bats as the hosts for their evolution. Nsp13 promoted viral RHIM and RNA-binding channel-dependent cell death. However, Nsp13 viral RHIM is more critical for human cell death than in bat-derived Tb1 Lu cells, suggesting species-specific regulation. Nsp13 showed RHIM-dependent interactions with ZBP1 and RIPK3, forming large complexes and promoting ZBP1-RIPK3 signaling-mediated cell death. Intriguingly, the SARS-CoV-2 genome consisted of Z-RNA-forming segments promoting Nsp13-dependent cell death. Our findings reveal the functional viral RHIMs of bat-originated RNA viruses regulating host cell death associated with ZBP1-RIPK3 signaling, indicating possible mechanisms of cellular damage and cytokine storm in bat-originated RNA virus infections.
Collapse
Affiliation(s)
- Sanchita Mishra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Disha Jain
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Ayushi Amin Dey
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sahana Nagaraja
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mansi Srivastava
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Oyahida Khatun
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Keerthana Balamurugan
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Micky Anand
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Avinash Karkada Ashok
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Mahipal Ganji
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
24
|
Zeng HL, Yang CL, Jing B, Barton J, Aurell E. Two fitness inference schemes compared using allele frequencies from 1068 391 sequences sampled in the UK during the COVID-19 pandemic. Phys Biol 2024; 22:016003. [PMID: 39536448 DOI: 10.1088/1478-3975/ad9213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Throughout the course of the SARS-CoV-2 pandemic, genetic variation has contributed to the spread and persistence of the virus. For example, various mutations have allowed SARS-CoV-2 to escape antibody neutralization or to bind more strongly to the receptors that it uses to enter human cells. Here, we compared two methods that estimate the fitness effects of viral mutations using the abundant sequence data gathered over the course of the pandemic. Both approaches are grounded in population genetics theory but with different assumptions. One approach, tQLE, features an epistatic fitness landscape and assumes that alleles are nearly in linkage equilibrium. Another approach, MPL, assumes a simple, additive fitness landscape, but allows for any level of correlation between alleles. We characterized differences in the distributions of fitness values inferred by each approach and in the ranks of fitness values that they assign to sequences across time. We find that in a large fraction of weeks the two methods are in good agreement as to their top-ranked sequences, i.e. as to which sequences observed that week are most fit. We also find that agreement between the ranking of sequences varies with genetic unimodality in the population in a given week.
Collapse
Affiliation(s)
- Hong-Li Zeng
- School of Science, Nanjing University of Posts and Telecommunications, Key Laboratory of Radio and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, People's Republic of China
| | - Cheng-Long Yang
- School of Science, Nanjing University of Posts and Telecommunications, Key Laboratory of Radio and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, People's Republic of China
| | - Bo Jing
- School of Science, Nanjing University of Posts and Telecommunications, Key Laboratory of Radio and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, People's Republic of China
| | - John Barton
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States of America
| | - Erik Aurell
- Department of Computational Science and Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Chen A, Lupan AM, Quek RT, Stanciu SG, Asaftei M, Stanciu GA, Hardy KS, de Almeida Magalhães T, Silver PA, Mitchison TJ, Salic A. A coronaviral pore-replicase complex links RNA synthesis and export from double-membrane vesicles. SCIENCE ADVANCES 2024; 10:eadq9580. [PMID: 39514670 PMCID: PMC11546809 DOI: 10.1126/sciadv.adq9580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus-infected cells contain double-membrane vesicles (DMVs) that are key for viral RNA replication and transcription, perforated by hexameric pores connecting the vesicular lumen to the cytoplasm. How pores form and traverse two membranes, and how DMVs organize RNA synthesis, is unknown. Using structure prediction and functional assays, we show that the nonstructural viral membrane protein nsp4 is the key pore organizer, spanning the double membrane and forming most of the pore lining. Nsp4 interacts with nsp3 on the cytoplasmic side and with the viral replicase inside the DMV. Newly synthesized mRNAs exit the DMV into the cytoplasm, passing through a narrow ring of conserved nsp4 residues. Steric constraints imposed by the ring predict that modified nucleobases block mRNA transit, resulting in broad-spectrum anticoronaviral activity.
Collapse
Affiliation(s)
- Anan Chen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ana-Mihaela Lupan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Tong Quek
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Mihaela Asaftei
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
- Department of Microbiology, University of Bucharest, Aleea Portocalelor nr. 1-3, 060101 Bucharest, Romania
| | - George A. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Kierra S. Hardy
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Faculty of Chemistry, University of Bucharest, Șoseaua Panduri nr. 90, 050663 Bucharest, Romania
| |
Collapse
|
26
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Hoferle PJ, Anderson TK, Kirchdoerfer RN. A genus-specific nsp12 region impacts polymerase assembly in Alphacoronavirus and Gammacoronavirus. J Biol Chem 2024; 300:107802. [PMID: 39307300 PMCID: PMC11530588 DOI: 10.1016/j.jbc.2024.107802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Coronavirus relevancy for human health has surged over the past 20 years as they have a propensity for spillover into humans from animal reservoirs resulting in pandemics such as COVID-19. The diversity within the Coronavirinae subfamily and high infection frequency in animal species worldwide creates a looming threat that calls for research across all genera within the Coronavirinae subfamily. We sought to contribute to the limited structural knowledge within the Gammacoronavirus genera and determined the structure of the viral core replication-transcription complex (RTC) from infectious bronchitis virus using single-particle cryo-electron microscopy. Comparison between our infectious bronchitis virus structure with published RTC structures from other Coronavirinae genera reveals structural differences across genera. Using in vitro biochemical assays, we characterized these differences and revealed their differing involvement in core RTC formation across different genera. Our findings highlight the value of cross-genera Coronavirinae studies, as they show genera-specific features in coronavirus genome replication. A broader knowledge of coronavirus replication will better prepare us for future coronavirus spillovers.
Collapse
Affiliation(s)
- Peter J Hoferle
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas K Anderson
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Zhu M, Huang F, Sun H, Liu K, Chen Z, Yu B, Hao H, Liu H, Ding S, Zhang X, Liu L, Zhang K, Ren J, Liu Y, Liu H, Shan C, Guan W. Characterization of ACTN4 as a novel antiviral target against SARS-CoV-2. Signal Transduct Target Ther 2024; 9:243. [PMID: 39289355 PMCID: PMC11408661 DOI: 10.1038/s41392-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The various mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pose a substantial challenge in mitigating the viral infectivity. The identification of novel host factors influencing SARS-CoV-2 replication holds potential for discovering new targets for broad-spectrum antiviral drugs that can combat future viral mutations. In this study, potential host factors regulated by SARS-CoV-2 infection were screened through different high-throughput sequencing techniques and further identified in cells. Subsequent analysis and experiments showed that the reduction of m6A modification level on ACTN4 (Alpha-actinin-4) mRNA leads to a decrease in mRNA stability and translation efficiency, ultimately inhibiting ACTN4 expression. In addition, ACTN4 was demonstrated to target nsp12 for binding and characterized as a competitor for SARS-CoV-2 RNA and the RNA-dependent RNA polymerase complex, thereby impeding viral replication. Furthermore, two ACTN4 agonists, YS-49 and demethyl-coclaurine, were found to dose-dependently inhibit SARS-CoV-2 infection in both Huh7 cells and K18-hACE2 transgenic mice. Collectively, this study unveils the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveals two potential candidates for future anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Huize Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpeng Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Haizhou Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Shuang Ding
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jierao Ren
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Chao Shan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
29
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
30
|
Otsuka Y, Kim E, Krueger A, Shumate J, Wang C, Bdiri B, Ullah S, Park H, Scampavia L, Bannister TD, Chung D, Spicer TP. High throughput screening for SARS-CoV-2 helicase inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100180. [PMID: 39173831 DOI: 10.1016/j.slasd.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for nearly 7 million deaths worldwide since its outbreak in late 2019. Even with the rapid development and production of vaccines and intensive research, there is still a huge need for specific anti-viral drugs that address the rapidly arising new variants. To address this concern, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) Centers, tasked with exploring approaches to target pathogens with pandemic potential, including SARS-CoV-2. In this study, we sought inhibitors of SARS-CoV2 non-structural protein 13 (nsP13) as potential antivirals, first developing a HTS-compatible assay to measure SARS-CoV2 nsP13 helicase activity. Here we present our effort in implementing the assay in a 1,536 well-plate format and in identifying nsP13 inhibitor hit compounds from a ∼650,000 compound library. The primary screen was robust (average Z' = 0.86 ± 0.05) and resulted in 7,009 primary hits. 1,763 of these compounds upon repeated retests were further confirmed, showing consistent inhibition. Following in-silico analysis, an additional orthogonal assay and titration assays, we identified 674 compounds with IC50 <10 μM. We confirmed activity of independent compound batches from de novo powders while also incorporating multiple counterscreen assays. Our study highlights the potential of this assay for use on HTS platforms to discover novel compounds inhibiting SARS-CoV2 nsP13, which merit further development as an effective SARS-CoV2 antiviral.
Collapse
Affiliation(s)
- Yuka Otsuka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Eunjung Kim
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Austin Krueger
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Chao Wang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Bilel Bdiri
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Sultan Ullah
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - HaJeung Park
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States
| | - Thomas D Bannister
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Chemistry, Midwest AViDD Chemistry Core C, Jupiter, FL 33458, United States
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, Midwest AViDD Project 5, University of Louisville, Louisville, KY 40202, United States
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Department of Molecular Medicine, Midwest AViDD HTS Core B, Jupiter, FL 33458, United States.
| |
Collapse
|
31
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
32
|
Snyder LR, Koutmou KS. Studying the intersection of nucleoside modifications and SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted system. Methods Enzymol 2024; 705:81-109. [PMID: 39389674 PMCID: PMC11849750 DOI: 10.1016/bs.mie.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
There is growing recognition that viral RNA genomes possess enzymatically incorporated modified nucleosides. These small chemical changes are analogous to epigenomic modifications in DNA and have the potential to be similarly important modulators of viral transcription and evolution. However, the molecular level consequences of individual sites of modification remain to be broadly explored. Here we describe an in vitro assay to examine the impact of nucleoside modifications on the rate and fidelity of SARS-CoV-2 RNA transcription. Establishing the role of modified nucleotides in SARS-CoV-2 is of interest both for advancing fundamental knowledge of RNA modifications in viruses, and because modulating the modification-landscape of SARS-CoV-2 may represent a therapeutic strategy to interfere with viral RNA replication. Our approach can be used to assess the influence both of modifications present in a template RNA, as well nucleotide analog inhibitors. These methods provide a reproducible guide for generating active SARS-CoV-2 replication/transcription complexes capable of establishing how RNA modifications influence the pre-steady state rate constants of nucleotide addition by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Laura R Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
33
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Jena NR, Pant S. Peptide inhibitors derived from the nsp7 and nsp8 cofactors of nsp12 targeting different substrate binding sites of nsp12 of the SARS-CoV-2. J Biomol Struct Dyn 2024; 42:7077-7089. [PMID: 37434315 DOI: 10.1080/07391102.2023.2235012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
SARS-COV-2 is responsible for the COVID-19 pandemic, which has infected more than 767 million people worldwide including about 7 million deaths till 5 June 2023. Despite the emergency use of certain vaccines, deaths due to COVID-19 have not yet stopped completed. Therefore, it is imperative to design and develop drugs that can be used to treat patients suffering from COVID-19. Here, two peptide inhibitors derived from nsp7 and nsp8 cofactors of nsp12 have been shown to block different substrate binding sites of nsp12 that are mainly responsible for the replication of the viral genome of SARS-CoV-2. By using the docking, molecular dynamics (MD), and MM/GBSA techniques, it is shown that these inhibitors can bind to multiple binding sites of nsp12, such as the interface of nsp7 and nsp12, interface of nsp8 and nsp12, RNA primer entry site, and nucleoside triphosphate (NTP) entry site. The relative binding free energies of the most stable protein-peptide complexes are found to lie between ∼-34.20 ± 10.07 to -59.54 ± 9.96 kcal/mol. Hence, it is likely that these inhibitors may bind to different sites of nsp12 to block the access of its cofactors and the viral genome, thereby affecting the replication. It is thus proposed that these peptide inhibitors may be further developed as potential drug candidates to suppress the viral loads in COVID-19 patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
35
|
Hangyu W, Panpan L, Jie S, Hongyan W, Linmiao W, Kangning H, Yichen S, Shuai W, Cheng W. Advancements in Antiviral Drug Development: Comprehensive Insights into Design Strategies and Mechanisms Targeting Key Viral Proteins. J Microbiol Biotechnol 2024; 34:1376-1384. [PMID: 38934770 PMCID: PMC11294656 DOI: 10.4014/jmb.2403.03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024]
Abstract
Viral infectious diseases have always been a threat to human survival and quality of life, impeding the stability and progress of human society. As such, researchers have persistently focused on developing highly efficient, low-toxicity antiviral drugs, whether for acute or chronic infectious diseases. This article presents a comprehensive review of the design concepts behind virus-targeted drugs, examined through the lens of antiviral drug mechanisms. The intention is to provide a reference for the development of new, virus-targeted antiviral drugs and guide their clinical usage.
Collapse
Affiliation(s)
- Wang Hangyu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Li Panpan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shen Jie
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Hongyan
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wei Linmiao
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Han Kangning
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Shi Yichen
- School of Stomatology, Shandong Second Medical University, Weifang 261053, P.R. China
| | - Wang Shuai
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| | - Wang Cheng
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia 010050, P.R. China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, Inner Mongolia 010110, P.R. China
| |
Collapse
|
36
|
Hoferle PJ, Anderson TK, Kirchdoerfer RN. A genus-specific nsp12 region impacts polymerase assembly in Alpha- and Gammacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604833. [PMID: 39091740 PMCID: PMC11291119 DOI: 10.1101/2024.07.23.604833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Coronavirus relevancy for human health has surged over the past 20 years as they have a propensity for spillover into humans from animal reservoirs resulting in pandemics such as COVID-19. The diversity within the Coronavirinae subfamily and high infection frequency in animal species worldwide creates a looming threat that calls for research across all genera within the Coronavirinae subfamily. We sought to contribute to the limited structural knowledge within the Gammacoronavirus genera and determined the structure of the viral core replication-transcription complex (RTC) from Infectious Bronchitis Virus (IBV) using single-particle cryo-EM. Comparison between our IBV structure with published RTC structures from other Coronavirinae genera reveals structural differences across genera. Using in vitro biochemical assays, we characterized these differences and revealed their differing involvement in core RTC formation across different genera. Our findings highlight the value of cross-genera Coronavirinae studies, as they show genera specific features in coronavirus genome replication. A broader knowledge of coronavirus replication will better prepare us for future coronavirus spillovers.
Collapse
Affiliation(s)
- Peter J. Hoferle
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Thomas K. Anderson
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, Institute for Molecular Virology, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
37
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
38
|
Sales AH, Fu I, Durandin A, Ciervo S, Lupoli TJ, Shafirovich V, Broyde S, Geacintov NE. Variable Inhibition of DNA Unwinding Rates Catalyzed by the SARS-CoV-2 Helicase Nsp13 by Structurally Distinct Single DNA Lesions. Int J Mol Sci 2024; 25:7930. [PMID: 39063172 PMCID: PMC11276626 DOI: 10.3390/ijms25147930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2-5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions' inhibitory effects than unwinding rate constants.
Collapse
Affiliation(s)
- Ana H. Sales
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Iwen Fu
- Biology Department, New York University, 24 Waverly Place, New York, NY 10003, USA; (I.F.); (S.B.)
| | - Alexander Durandin
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Sam Ciervo
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Tania J. Lupoli
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| | - Suse Broyde
- Biology Department, New York University, 24 Waverly Place, New York, NY 10003, USA; (I.F.); (S.B.)
| | - Nicholas E. Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA; (A.H.S.); (A.D.); (S.C.); (T.J.L.); (V.S.)
| |
Collapse
|
39
|
Soper N, Yardumian I, Chen E, Yang C, Ciervo S, Oom AL, Desvignes L, Mulligan MJ, Zhang Y, Lupoli TJ. A Repurposed Drug Interferes with Nucleic Acid to Inhibit the Dual Activities of Coronavirus Nsp13. ACS Chem Biol 2024; 19:1593-1603. [PMID: 38980755 PMCID: PMC11267572 DOI: 10.1021/acschembio.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlighted a critical need to discover more effective antivirals. While therapeutics for SARS-CoV-2 exist, its nonstructural protein 13 (Nsp13) remains a clinically untapped target. Nsp13 is a helicase responsible for unwinding double-stranded RNA during viral replication and is essential for propagation. Like other helicases, Nsp13 has two active sites: a nucleotide binding site that hydrolyzes nucleoside triphosphates (NTPs) and a nucleic acid binding channel that unwinds double-stranded RNA or DNA. Targeting viral helicases with small molecules, as well as the identification of ligand binding pockets, have been ongoing challenges, partly due to the flexible nature of these proteins. Here, we use a virtual screen to identify ligands of Nsp13 from a collection of clinically used drugs. We find that a known ion channel inhibitor, IOWH-032, inhibits the dual ATPase and helicase activities of SARS-CoV-2 Nsp13 at low micromolar concentrations. Kinetic and binding assays, along with computational and mutational analyses, indicate that IOWH-032 interacts with the RNA binding interface, leading to displacement of nucleic acid substrate, but not bound ATP. Evaluation of IOWH-032 with microbial helicases from other superfamilies reveals that it is selective for coronavirus Nsp13. Furthermore, it remains active against mutants representative of observed SARS-CoV-2 variants. Overall, this work provides a new inhibitor for Nsp13 and provides a rationale for a recent observation that IOWH-032 lowers SARS-CoV-2 viral loads in human cells, setting the stage for the discovery of other potent viral helicase modulators.
Collapse
Affiliation(s)
- Nathan Soper
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Isabelle Yardumian
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Chen
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Chao Yang
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Samantha Ciervo
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Aaron L. Oom
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Ludovic Desvignes
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
- High
Containment Laboratories, Office of Science and Research, NYU Langone Health, New York, New York 10016, United States
| | - Mark J. Mulligan
- NYU
Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
40
|
Wei X, Chan CL, Zhou Y, Tang K, Chen J, Wang S, Chan JFW, Yuan S, Li H, Sun H. Mechanistic insights into bismuth(iii) inhibition of SARS-CoV-2 helicase. Chem Sci 2024; 15:10065-10072. [PMID: 38966375 PMCID: PMC11220592 DOI: 10.1039/d3sc06961c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 μM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xueying Wei
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Chun-Lung Chan
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kaiming Tang
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jingxin Chen
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Suyu Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
41
|
Anderson TK, Hoferle PJ, Chojnacki KJ, Lee K, Coon J, Kirchdoerfer R. An alphacoronavirus polymerase structure reveals conserved replication factor functions. Nucleic Acids Res 2024; 52:5975-5986. [PMID: 38442273 PMCID: PMC11162792 DOI: 10.1093/nar/gkae153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.
Collapse
Affiliation(s)
- Thomas K Anderson
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter J Hoferle
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kennan J Chojnacki
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth W Lee
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Robert N Kirchdoerfer
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
43
|
Martinez DR, Moreira FR, Catanzaro NJ, Diefenbacher MV, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Nguyen C, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Feng JY, Cihlar T, Baric RS, Mackman RL, Bilello JP, Schäfer A, Sheahan TP. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci Transl Med 2024; 16:eadj4504. [PMID: 38776389 PMCID: PMC11333937 DOI: 10.1126/scitranslmed.adj4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jason Perry
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
44
|
Zhang C, Yu J, Deng M, Zhang Q, Jin F, Chen L, Li Y, He B. Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase. Molecules 2024; 29:2301. [PMID: 38792162 PMCID: PMC11124022 DOI: 10.3390/molecules29102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5'-3' polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication-transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 μM) and B3 (IC50 = 0.98 μM) as potential lead antiviral compounds for further targeted drug research.
Collapse
Affiliation(s)
- Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
45
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
46
|
Zheng T, Shen B, Bai Y, Li E, Zhang X, Hu Y, Gao T, Dong Q, Zhu L, Jin R, Shi H, Liu H, Gao Y, Liu X, Cao C. The PKA-CREB1 axis regulates coronavirus proliferation by viral helicase nsp13 association. J Virol 2024; 98:e0156523. [PMID: 38445884 PMCID: PMC11019953 DOI: 10.1128/jvi.01565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/07/2024] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Collapse
Affiliation(s)
- Tong Zheng
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Bai
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xun Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yong Hu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Gao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Jin
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Shi
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
47
|
Panda SK, Karmakar S, Sen Gupta PS, Rana MK. Can Duvelisib and Eganelisib work for both cancer and COVID-19? Molecular-level insights from MD simulations and enhanced samplings. Phys Chem Chem Phys 2024; 26:10961-10973. [PMID: 38526354 DOI: 10.1039/d3cp05934k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
SARS-CoV-2 has caused severe illness and anxiety worldwide, evolving into more dreadful variants capable of evading the host's immunity. Cytokine storms, led by PI3Kγ, are common in cancer and SARS-CoV-2. Naturally, there is a yearning to see whether any drugs could alleviate cytokine storms for both. Upon investigation, we identified two anticancer drugs, Duvelisib and Eganelisib, that could also work against SARS-CoV-2. This report is the first to decipher their synergic therapeutic effectiveness against COVID-19 and cancer with molecular insights from atomistic simulations. In addition to PI3Kγ, these drugs exhibit specificity for the main protease among all SARS-CoV-2 targets, with significant negative binding free energies and small time-dependent conformational changes of the complexes. Complexation makes active sites and secondary structures highly mechanically stiff, with barely any deformation. Replica simulations estimated large pulling forces in enhanced sampling to dissociate the drugs from Mpro's active site. Furthermore, the radial distribution function (RDF) demonstrated that the therapeutic molecules were closest to the His41 and Cys145 catalytic dyad residues. Finally, analyses implied Duvelisib and Eganelisib as promising dual-purposed anti-COVID and anticancer drugs, potentially targeting Mpro and PI3Kγ to stop virus replication and cytokine storms concomitantly. We also distinguished hotspot residues imparting significant interactions.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Shaswata Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| |
Collapse
|
48
|
Tang WF, Chang YH, Lin CC, Jheng JR, Hsieh CF, Chin YF, Chang TY, Lee JC, Liang PH, Lin CY, Lin GH, Cai JY, Chen YL, Chen YS, Tsai SK, Liu PC, Yang CM, Shadbahr T, Tang J, Hsu YL, Huang CH, Wang LY, Chen CC, Kau JH, Hung YJ, Lee HY, Wang WC, Tsai HP, Horng JT. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024; 68:e0095623. [PMID: 38446062 PMCID: PMC10989008 DOI: 10.1128/aac.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Fan Chin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Guan-Hua Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jie-Yun Cai
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Tolou Shadbahr
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Division of Medical Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Hsin-Yi Lee
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
49
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
50
|
Inniss NL, Rzhetskaya M, Ling-Hu T, Lorenzo-Redondo R, Bachta KE, Satchell KJF, Hultquist JF. Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100145. [PMID: 38301954 PMCID: PMC11160173 DOI: 10.1016/j.slasd.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Margarita Rzhetskaya
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ted Ling-Hu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kelly E Bachta
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| | - Judd F Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA; Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA.
| |
Collapse
|