1
|
Liu CW, Wang YM, Chen SY, Lu LY, Liang TY, Fang KC, Chen P, Lee IC, Liu WC, Kumar A, Kuo SH, Lee JC, Lo CC, Wu SC, Pan MK. The cerebellum shapes motions by encoding motor frequencies with precision and cross-individual uniformity. Nat Biomed Eng 2025:10.1038/s41551-025-01409-5. [PMID: 40425805 DOI: 10.1038/s41551-025-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Understanding brain behaviour encoding or designing neuroprosthetics requires identifying precise, consistent neural algorithms across individuals. However, cerebral microstructures and activities are individually variable, posing challenges for identifying precise codes. Here, despite cerebral variability, we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in vivo electrophysiology and optogenetics in mice, we confirm that deep cerebellar neurons encode frequencies using populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism is consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validate the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for a brain-computer interface for motor control.
Collapse
Grants
- NTUMC 110C101-011 NTU | College of Medicine, National Taiwan University (College of Medicine, National Taiwan University)
- NSC-145-11 National Taiwan University Hospital (NTUH)
- 113-UN0013 National Taiwan University Hospital (NTUH)
- 108-039 National Taiwan University Hospital (NTUH)
- 112-UN0024 National Taiwan University Hospital (NTUH)
- 113-E0001 National Taiwan University Hospital (NTUH)
- AS-TM-112-01-02 Academia Sinica
- NHRI-EX113-11303NI National Health Research Institutes (NHRI)
- 109-2326-B-002-013-MY4 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 107-2321-B-002-020 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-002-059-MY2 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 110-2321-B-002-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 111-2628-B-002-036 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 112-2628-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 113-2628-B-002-002 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- R01NS118179 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS104423 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS124854 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Mei Wang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Liang-Yin Lu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ke-Chu Fang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Peng Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - I-Chen Lee
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ami Kumar
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and Bioinformatics, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Park H, Keri HVS, Yoo C, Bi C, Pluta SR. Bilateral integration in somatosensory cortex is controlled by behavioral relevance. Nat Neurosci 2025:10.1038/s41593-025-01960-z. [PMID: 40369365 DOI: 10.1038/s41593-025-01960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
Sensory perception requires the processing of stimuli from both sides of the body. Yet, how neurons bind stimulus information across the hemispheres to create a unified percept remains unknown. Here we perform large-scale recordings from neurons in the left and right primary somatosensory cortex (S1) in mice performing a task requiring active whisker touch to coordinate stimulus features across hemispheres. When mice touched reward-associated stimuli, their whiskers moved with greater bilateral symmetry, and synchronous spiking and enhanced spike-field coupling emerged between the hemispheres. This coordinated activity was absent in stimulus-matched naive animals, indicating that interhemispheric coupling involves a goal-directed, internal process. In S1 neurons, the addition of ipsilateral touch primarily facilitated the contralateral principal whisker response. This facilitation primarily emerged for reward-associated stimuli and was lost on trials where mice failed to respond. Silencing of callosal S1 signaling reduced bilateral facilitation and interhemispheric synchrony. These results reveal a state-dependent logic that augments the flow of tactile information through the corpus callosum.
Collapse
Affiliation(s)
- Hyein Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Hayagreev V S Keri
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chaeyoung Yoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Chengyu Bi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Wu XM, Lu B, He JY, Zhang YX, Wu ZY, Xiong ZQ. Aberrant outputs of glutamatergic neurons in deep cerebellar nuclei mediate dystonic movements. SCIENCE ADVANCES 2025; 11:eadp2377. [PMID: 40344058 PMCID: PMC12063653 DOI: 10.1126/sciadv.adp2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (Prrt2) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)-projecting neurons within the DCN during episodes of dystonia in Prrt2-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both Prrt2-associated and kainic acid-induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Yan He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xian Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
4
|
Hage P, Fakharian MA, Shoup AM, Pi JS, Sedaghat-Nejad E, Orozco SP, Jang IK, Looi V, Elseweifi HY, Mohammadrezaei N, Vasserman AN, Arginteanu T, Shadmehr R. Purkinje cells of the cerebellum control deceleration of tongue movements. PLoS Biol 2025; 23:e3003110. [PMID: 40208864 PMCID: PMC11984719 DOI: 10.1371/journal.pbio.3003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/10/2025] [Indexed: 04/12/2025] Open
Abstract
We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth. We identified the lingual regions of the cerebellar vermis and then measured the contribution of each Purkinje cell (P-cell) to control of the tongue by relying on the brief but complete suppression that they experienced following an input from the inferior olive. When a P-cell was suppressed during protraction, the tongue's trajectory became hypermetric, and when the suppression took place during retraction, the tongue's return to the mouth was slowed. Both effects were amplified when two P-cells were simultaneously suppressed. Moreover, these effects were present even when the pauses were not due to the climbing fiber input. Therefore, suppression of P-cells in the lingual vermis disrupted the forces that would normally decelerate the tongue as it approached the target. Notably, the population simple spike activity peaked near deceleration onset when the movement required precision (aiming for a tube), but not when the movement was for the purpose of grooming. Thus, the P-cells appeared to signal when to stop protrusion as the tongue approached its target.
Collapse
Affiliation(s)
- Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alden M. Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Simon P. Orozco
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - In Kyu Jang
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Vivian Looi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hisham Y. Elseweifi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Nazanin Mohammadrezaei
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander N. Vasserman
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Toren Arginteanu
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Zhang H, Lu J, Zhang L, Hu J, Yue J, Ma Y, Yao Q, Jie P, Fan M, Fang J, Zhao J. Abnormal cerebellar activity and connectivity alterations of the cerebellar-limbic system in post-stroke cognitive impairment: a study based on resting state functional magnetic resonance imaging. Front Neurosci 2025; 19:1543760. [PMID: 40177371 PMCID: PMC11962788 DOI: 10.3389/fnins.2025.1543760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Background Stroke is an important cause of cognitive impairment. Post-stroke cognitive impairment (PSCI) is a prevalent psychiatric disorder following stroke. However, the effects of PSCI on the cerebellum remain mostly unknown. Methods A total of 31 PSCI patients and 31 patients without cognitive impairment after stroke were included in this study. The Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) were administered to all participants. Analyses of ALFF, fALFF, and ReHo were employed to investigate alterations in brain neuronal activity, while limbic connectivity analysis was utilized to reflect changes within the abnormal connections within brain regions. Results We found that ALFF values were increased in Cerebelum_7b_R, Cerebelum_Crus1_L. fALFF values were increased in Vermis_3. The ReHo values were increased in Cerebelum_8_R, Cerebelum_Crus2_R, Cerebelum_Crus1_L. The functional connection between Frontal_Mid_Orb_L and Cerebelum_Crus2_R brain regions was decreased. The functional connection between Hippocampus_L and Cerebelum_Crus2_R brain regions was decreased. The functional connection between Vermis_3 and Frontal_Med_Orb_L brain regions was decreased. Conclusion The severity of cognitive impairment may influence the extent of functional connectivity disruption between the cerebellum and the limbic system. Furthermore, atypical alterations in neuronal activity within cerebellar regions are associated with cognitive decline.
Collapse
Affiliation(s)
- Haiyi Zhang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Juan Lu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Lu Zhang
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jidan Hu
- Department of Radiology, The Second People’s Hospital of Neijiang, Southwest Medical University, Neijiang, Sichuan, China
| | - Jiajun Yue
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Yunhan Ma
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Qi Yao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Pingping Jie
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| | - Min Fan
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Toyama K, Kitamura K, Kawato M. Predictive reward-prediction errors of climbing fiber inputs integrate modular reinforcement learning with supervised learning. PLoS Comput Biol 2025; 21:e1012899. [PMID: 40096178 PMCID: PMC11957396 DOI: 10.1371/journal.pcbi.1012899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/31/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Although the cerebellum is typically associated with supervised learning algorithms, it also exhibits extensive involvement in reward processing. In this study, we investigated the cerebellum's role in executing reinforcement learning algorithms, with a particular emphasis on essential reward-prediction errors. We employed the Q-learning model to accurately reproduce the licking responses of mice in a Go/No-go auditory-discrimination task. This method enabled the calculation of reinforcement learning variables, such as reward, predicted reward, and reward-prediction errors in each learning trial. Through tensor component analysis of two-photon Ca2+ imaging data from more than 6,000 Purkinje cells, we found that climbing fiber inputs of the two distinct components, which were specifically activated during Go and No-go cues in the learning process, showed an inverse relationship with predictive reward-prediction errors. Assuming bidirectional parallel-fiber Purkinje-cell synaptic plasticity, we constructed a cerebellar neural-network model with 5,000 spiking neurons of granule cells, Purkinje cells, cerebellar nuclei neurons, and inferior olive neurons. The network model qualitatively reproduced distinct changes in licking behaviors, climbing-fiber firing rates, and their synchronization during discrimination learning separately for Go/No-go conditions. We found that Purkinje cells in the two components could develop specific motor commands for their respective auditory cues, guided by the predictive reward-prediction errors from their climbing fiber inputs. These results indicate a possible role of context-specific actors in modular reinforcement learning, integrating with cerebellar supervised learning capabilities.
Collapse
Affiliation(s)
- Huu Hoang
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Shinichiro Tsutsumi
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Masanobu Kano
- Department of Neurophysiology, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Keisuke Toyama
- Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | - Mitsuo Kawato
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
| |
Collapse
|
7
|
Bina L, Ciapponi C, Yu S, Wang X, Bosman LWJ, De Zeeuw CI. Cerebellar control of targeted tongue movements. J Physiol 2025; 603:1141-1169. [PMID: 40019494 PMCID: PMC11870073 DOI: 10.1113/jp287732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
The cerebellum is critical for coordinating movements related to eating, drinking and swallowing, all of which require proper control of the tongue. Cerebellar Purkinje cells can encode tongue movements, but it is unclear how their simple spikes and complex spikes induce changes in the shape of the tongue that contribute to goal-directed movements. To study these relations, we recorded and stimulated Purkinje cells in the vermis and hemispheres of mice during spontaneous licking from a stationary or moving water spout. We found that Purkinje cells can encode rhythmic licking with both their simple spikes and complex spikes. Increased simple spike firing during tongue protrusion induces ipsiversive bending of the tongue. Unexpected changes in the target location trigger complex spikes that alter simple spike firing during subsequent licks, adjusting the tongue trajectory. Furthermore, we observed increased complex spike firing during behavioural state changes at both the start and the end of licking bouts. Using machine learning, we confirmed that alterations in Purkinje cell activity accompany licking, with different Purkinje cells often exerting heterogeneous encoding schemes. Our data highlight that directional movement control is paramount in cerebellar function and that modulation of the complex spikes and that of the simple spikes are complementary during acquisition and execution of sensorimotor coordination. These results bring us closer to understanding the clinical implications of cerebellar disorders during eating, drinking and swallowing. KEY POINTS: When drinking, mice make rhythmic tongue movements directed towards the water source. Cerebellar Purkinje cells can fire rhythmically in tune with the tongue movements. Purkinje cells encode changes in the position of the water source with complex spikes. Purkinje cell simple spike firing affects the direction of tongue movements. Purkinje cells that report changes in the position of the target can also adjust movements in the right direction.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Si‐yang Yu
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | - Xiang Wang
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Academy of SciencesAmsterdamThe Netherlands
| |
Collapse
|
8
|
Hage P, Amin Fakharian M, Shoup AM, Pi JS, Sedaghat-Nejad E, Orozco SP, Jang IK, Looi V, Elseweifi HY, Mohammadrezaei N, Vasserman AN, Arginteanu T, Shadmehr R. Control of tongue movements by the Purkinje cells of the cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.25.604757. [PMID: 39829829 PMCID: PMC11741394 DOI: 10.1101/2024.07.25.604757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth. We identified the lingual regions of the cerebellar vermis and then measured the contribution of each Purkinje cell (P-cell) to control of the tongue by relying on the brief but complete suppression that they experienced following an input from the inferior olive. When a P-cell was suppressed during protraction, the tongue's trajectory became hypermetric, and when the suppression took place during retraction, the tongue's return to the mouth was slowed. Both effects were amplified when two P-cells were simultaneously suppressed. Therefore, suppression of P-cells in the lingual vermis disrupted the forces that would normally decelerate the tongue as it approached the target. Notably, the population simple spike activity peaked near deceleration onset when the movement required precision (aiming for a tube), but not when the movement was for the purpose of grooming. Thus, the P-cells appeared to signal when to stop protrusion as the tongue approached its target.
Collapse
Affiliation(s)
- Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alden M Shoup
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Jay S Pi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Simon P Orozco
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - In Kyu Jang
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Vivian Looi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Hisham Y Elseweifi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Nazanin Mohammadrezaei
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Alexander N Vasserman
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Toren Arginteanu
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
9
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xu An
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yongjun Qian
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology, Peking University, China
| | - X. Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Hemanth Mohan
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | | | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Research, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Z. Josh Huang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Tanigawa M, Liu M, Sekiguchi M, Goda K, Kato C, Ono T, Uesaka N. Nasal obstruction during development leads to defective synapse elimination, hypersynchrony, and impaired cerebellar function. Commun Biol 2024; 7:1381. [PMID: 39443666 PMCID: PMC11500345 DOI: 10.1038/s42003-024-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Nasal respiratory disorders are linked to craniofacial anomalies and systemic dysfunctions. However, the implications of nasal respiratory disorders on brain development and their subsequent impact on brain functionalization remain largely unknown. Here, we describe that nasal obstruction from postnatal developmental stages in mice precipitates deficits in cerebellum-associated behaviors and compromised refinement and maturation of neural circuits in the cerebellum. We show that mice with nasal obstruction during developmental phases exhibit marked impairments in motor function and exhibit increased immobility time in forced swimming test. Additionally, we identified critical periods during which nasal respiration is essential for optimizing motor function and preserving mental health. Our study also reveals that nasal obstruction in mice disrupts the typical developmental process of synapse elimination in the cerebellum and hinders the normal transition of activity patterns in cerebellar Purkinje cell populations during development. Through comparing activity patterns in mouse models subjected to nasal obstruction at various stages, we suggest that the maturation of specific activity pattern among Purkinje cell populations is fundamental to the functional integrity of the cerebellum. Our findings highlight the indispensable role of adequate nasal respiration during development for the establishment and functional integrity of neural circuits, thereby significantly affecting brain function.
Collapse
Affiliation(s)
- Moe Tanigawa
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mengke Liu
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mariko Sekiguchi
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kyosuke Goda
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Yu Y, Liang L, Sun T, Lu H, Yang P, Li J, Pang Q, Zeng J, Shi P, Li J, Lu Y. Micro/Nanomotor-Driven Intelligent Targeted Delivery Systems: Dynamics Sources and Frontier Applications. Adv Healthc Mater 2024; 13:e2400163. [PMID: 39075811 DOI: 10.1002/adhm.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Micro/nanomotors represent a promising class of drug delivery carriers capable of converting surrounding chemical or external energy into mechanical power, enabling autonomous movement. Their distinct autonomous propulsive force distinguishes them from other carriers, offering significant potential for enhancing drug penetration across cellular and tissue barriers. A comprehensive understanding of micro/nanomotor dynamics with various power sources is crucial to facilitate their transition from proof-of-concept to clinical application. In this review, micro/nanomotors are categorized into three classes based on their energy sources: endogenously stimulated, exogenously stimulated, and live cell-driven. The review summarizes the mechanisms governing micro/nanomotor movements under these energy sources and explores factors influencing autonomous motion. Furthermore, it discusses methods for controlling micro/nanomotor movement, encompassing aspects related to their structure, composition, and environmental factors. The remarkable propulsive force exhibited by micro/nanomotors makes them valuable for significant biomedical applications, including tumor therapy, bio-detection, bacterial infection therapy, inflammation therapy, gastrointestinal disease therapy, and environmental remediation. Finally, the review addresses the challenges and prospects for the application of micro/nanomotors. Overall, this review emphasizes the transformative potential of micro/nanomotors in overcoming biological barriers and enhancing therapeutic efficacy, highlighting their promising clinical applications across various biomedical fields.
Collapse
Affiliation(s)
- Yue Yu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ting Sun
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Pushan Yang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Qinjiao Pang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| |
Collapse
|
12
|
Wang S, Chen X, Zhang Y, Gao Y, Gou L, Lei J. Characterization of cortical volume and whole-brain functional connectivity in Parkinson's disease patients: a MRI study combined with physiological aging brain changes. Front Neurosci 2024; 18:1451948. [PMID: 39315074 PMCID: PMC11418396 DOI: 10.3389/fnins.2024.1451948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
This study employed multiple MRI features to comprehensively evaluate the abnormalities in morphology, and functionality associated with Parkinson's disease (PD) and distinguish them from normal physiological changes. For investigation purposes, three groups: 32 patients with PD, 42 age-matched healthy controls (HCg1), and 33 young and middle-aged controls (HCg2) were designed. The aim of the current study was to differentiate pathological cortical changes in PD from age-related physiological cortical volume changes. Integrating these findings with functional MRI changes to characterize the effects of PD on whole-brain networks. Cortical volumes in the bilateral temporal lobe, frontal lobe, and cerebellum were significantly reduced in HCg1 compared to HCg2. Although no significant differences in cortical volume were observed between PD patients and HCg1, the PD group exhibited pronounced abnormalities with significantly lower mean connectivity values compared to HCg1. Conversely, physiological functional changes in HCg1 showed markedly higher mean connectivity values than in HCg2. By integrating morphological and functional assessments, as well as network characterization of physiological aging, this study further delineates the distinct characteristics of pathological changes in PD.
Collapse
Affiliation(s)
- Shuaiwen Wang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiaoli Chen
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yulin Gao
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Lubin Gou
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| |
Collapse
|
13
|
Garcia-Garcia MG, Kapoor A, Akinwale O, Takemaru L, Kim TH, Paton C, Litwin-Kumar A, Schnitzer MJ, Luo L, Wagner MJ. A cerebellar granule cell-climbing fiber computation to learn to track long time intervals. Neuron 2024; 112:2749-2764.e7. [PMID: 38870929 PMCID: PMC11343686 DOI: 10.1016/j.neuron.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.
Collapse
Affiliation(s)
- Martha G Garcia-Garcia
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Akash Kapoor
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oluwatobi Akinwale
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lina Takemaru
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tony Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Casey Paton
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mark J Schnitzer
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
14
|
Liu CW, Chen SY, Wang YM, Lu LY, Chen P, Liang TY, Liu WC, Kumar A, Kuo SH, Lee JC, Lo CC, Wu SC, Pan MK. The cerebellum computes frequency dynamics for motions with numerical precision and cross-individual uniformity. RESEARCH SQUARE 2024:rs.3.rs-4615547. [PMID: 39149481 PMCID: PMC11326405 DOI: 10.21203/rs.3.rs-4615547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cross-individual variability is considered the essence of biology, preventing precise mathematical descriptions of biological motion1-7 like the physics law of motion. Here we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in-vivo electrophysiology and optogenetics in mice, we confirmed that deep cerebellar neurons encoded frequencies via populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism was consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform, or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validated the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating-current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for brain-computer interface for motor control.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Mei Wang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Liang-Yin Lu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Peng Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ami Kumar
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Chin-Hua University, Shin-Chu, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and Bioinformatics, Chin-Hua University, Shin-Chu, Taiwan
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Xue R, Tang X, Tang J, Zhang S, Liao X, Chen X, Li L, Li X. Climbing Fiber Activation Induced by Footshock in the Cerebellar Vermis Lobule IV/V of Freely Moving Mice. Physiol Res 2024; 73:449-459. [PMID: 39027961 PMCID: PMC11299787 DOI: 10.33549/physiolres.935203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/12/2024] [Indexed: 07/27/2024] Open
Abstract
Parallel fibers (PFs) in the cerebellar cortex are involved in a series of coordinated responses in the fear conditioning paradigm induced by footshock. However, whether footshock can activate cerebellar climbing fibers (CFs) remains unclear. In this study, we recorded calcium (Ca2+) activity in CFs by optical fiber photometry in the cerebellar vermis lobule IV/V of freely moving mice with footshock stimulation. We found that the activation of CFs in the lobule IV/V was highly correlated with footshock stimulation but not with the sound stimulation used as a control. This result suggests that afferent information from CFs might be associated with the motor initiation of fear-related behaviors or fear emotion itself. Thus, our results suggest that a characteristic CF signal in the cerebellar cortex might be related to fear processing or footshock-related behaviors (such as startle responses or pain sensation).
Collapse
Affiliation(s)
- R Xue
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China. or
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yoshioka M, Takahashi M, Kershaw J, Handa M, Takada A, Takuwa H. Two-photon optogenetics-based assessment of neuronal connectivity in healthy and chronic hypoperfusion mice. NEUROPHOTONICS 2024; 11:035009. [PMID: 39345733 PMCID: PMC11436461 DOI: 10.1117/1.nph.11.3.035009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
Significance Two-photon optogenetics and simultaneous calcium imaging can be used to visualize the response of surrounding neurons with respect to the activity of an optically stimulated target neuron, providing a direct method to assess neuronal connectivity. Aim We aim to develop a two-photon optogenetics-based method for evaluating neuronal connectivity, compare it to the existing indirect resting-state synchrony method, and investigate the application of the method to brain pathophysiology. Approach C1V1-mScarlet was introduced into GCaMP6s-expressing transgenic mice with an adeno-associated virus. Optical stimulation of a single target neuron and simultaneous calcium imaging of the target and surrounding cells were performed. Neuronal connectivity was evaluated from the correlation between the fluorescence intensity of the target and surrounding cells. Results The neuronal connectivity in the living brain was evaluated using two-photon optogenetics. However, resting-state synchrony was not always consistent with two-photon optogenetics-based connectivity. Comparison with neuronal synchrony measured during sensory stimulation suggested that the disagreement was due to external sensory input. Two-photon optogenetics-based connectivity significantly decreased in the common carotid artery occlusion model, whereas there was no significant change in the control group. Conclusions We successfully developed a direct method to evaluate neuronal connectivity in the living brain using two-photon optogenetics. The technique was successful in detecting connectivity impairment in hypoperfusion model mice.
Collapse
Affiliation(s)
- Masaki Yoshioka
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Medicine, Department of Neurological Surgery, Chiba, Japan
| | - Manami Takahashi
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
| | - Jeff Kershaw
- National Institutes for Quantum Science and Technology, Institute for Quantum Medical Science, Department of Molecular Imaging and Theranostics, Chiba, Japan
| | - Mariko Handa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Ayaka Takada
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| | - Hiroyuki Takuwa
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Neuromapping and Neuromodulation Team, Chiba, Japan
- Chiba University, Graduate School of Science, Department of Quantum Life Science, Chiba, Japan
| |
Collapse
|
17
|
Yan Y, Murphy TH. Decoding state-dependent cortical-cerebellar cellular functional connectivity in the mouse brain. Cell Rep 2024; 43:114348. [PMID: 38865245 DOI: 10.1016/j.celrep.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Gouhier A, Villette V, Mathieu B, Ayon A, Bradley J, Dieudonné S. Identification and Organization of a Postural Anti-Gravity Module in the Cerebellar Vermis. Neuroscience 2024:S0306-4522(24)00263-X. [PMID: 38897374 DOI: 10.1016/j.neuroscience.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
The cerebellum is known to control the proper balance of isometric muscular contractions that maintain body posture. Current optogenetic manipulations of the cerebellar cortex output, however, have focused on ballistic body movements, examining movement initiation or perturbations. Here, by optogenetic stimulations of cerebellar Purkinje cells, which are the output of the cerebellar cortex, we evaluate body posture maintenance. By sequential analysis of body movement, we dissect the effect of optogenetic stimulation into a directly induced movement that is then followed by a compensatory reflex to regain body posture. We identify a module in the medial part of the anterior vermis which, through multiple muscle tone regulation, is involved in postural anti-gravity maintenance of the body. Moreover, we report an antero-posterior and medio-lateral functional segregation over the vermal lobules IV/V/VI. Taken together our results open new avenues for better understanding of the modular functional organization of the cerebellar cortex and its role in postural anti-gravity maintenance.
Collapse
Affiliation(s)
- Aurélien Gouhier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| |
Collapse
|
19
|
Sheng M, Lu D, Sheng K, Ding JB. Activity-Dependent Remodeling of Corticostriatal Axonal Boutons During Motor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598366. [PMID: 38915677 PMCID: PMC11195117 DOI: 10.1101/2024.06.10.598366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Motor skill learning induces long-lasting synaptic plasticity at not only the inputs, such as dendritic spines1-4, but also at the outputs to the striatum of motor cortical neurons5,6. However, very little is known about the activity and structural plasticity of corticostriatal axons during learning in the adult brain. Here, we used longitudinal in vivo two-photon imaging to monitor the activity and structure of thousands of corticostriatal axonal boutons in the dorsolateral striatum in awake mice. We found that learning a new motor skill induces dynamic regulation of axonal boutons. The activities of motor corticostriatal axonal boutons exhibited selectivity for rewarded movements (RM) and un-rewarded movements (UM). Strikingly, boutons on the same axonal branches showed diverse responses during behavior. Motor learning significantly increased the fraction of RM boutons and reduced the heterogeneity of bouton activities. Moreover, motor learning-induced profound structural dynamism in boutons. By combining structural and functional imaging, we identified that newly formed axonal boutons are more likely to exhibit selectivity for RM and are stabilized during motor learning, while UM boutons are selectively eliminated. Our results highlight a novel form of plasticity at corticostriatal axons induced by motor learning, indicating that motor corticostriatal axonal boutons undergo dynamic reorganization that facilitates the acquisition and execution of motor skills.
Collapse
Affiliation(s)
- Mengjun Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Di Lu
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Kaiwen Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Stanford Bioengineering PhD program, Stanford University
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
20
|
Li H, Feng J, Chen M, Xin M, Chen X, Liu W, Wang L, Wang KH, He J. Cholecystokinin facilitates motor skill learning by modulating neuroplasticity in the motor cortex. eLife 2024; 13:e83897. [PMID: 38700136 PMCID: PMC11068356 DOI: 10.7554/elife.83897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.
Collapse
Affiliation(s)
- Hao Li
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Jingyu Feng
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Mengying Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Min Xin
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| | - Xi Chen
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Wenhao Liu
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Kuan Hong Wang
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Jufang He
- Departments of Neuroscience and Biomedical Sciences, City University of Hong KongHong KongChina
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of SciencesHong KongChina
| |
Collapse
|
21
|
Li CN, Keay KA, Henderson LA, Mychasiuk R. Re-examining the Mysterious Role of the Cerebellum in Pain. J Neurosci 2024; 44:e1538232024. [PMID: 38658164 PMCID: PMC11044115 DOI: 10.1523/jneurosci.1538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Collapse
Affiliation(s)
- Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
22
|
Mosberger AC, Sibener LJ, Chen TX, Rodrigues HFM, Hormigo R, Ingram JN, Athalye VR, Tabachnik T, Wolpert DM, Murray JM, Costa RM. Exploration biases forelimb reaching strategies. Cell Rep 2024; 43:113958. [PMID: 38520691 PMCID: PMC11097405 DOI: 10.1016/j.celrep.2024.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.
Collapse
Affiliation(s)
- Alice C Mosberger
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Leslie J Sibener
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tiffany X Chen
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Helio F M Rodrigues
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Allen Institute, Seattle, WA 98109, USA
| | - Richard Hormigo
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James N Ingram
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Vivek R Athalye
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Tanya Tabachnik
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Daniel M Wolpert
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - James M Murray
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Rui M Costa
- Departments of Neuroscience and Neurology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Allen Institute, Seattle, WA 98109, USA.
| |
Collapse
|
23
|
Pi JS, Fakharian MA, Hage P, Sedaghat-Nejad E, Muller SZ, Shadmehr R. The olivary input to the cerebellum dissociates sensory events from movement plans. Proc Natl Acad Sci U S A 2024; 121:e2318849121. [PMID: 38630714 PMCID: PMC11047103 DOI: 10.1073/pnas.2318849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Neurons in the inferior olive are thought to anatomically organize the Purkinje cells (P-cells) of the cerebellum into computational modules, but what is computed by each module? Here, we designed a saccade task in marmosets that dissociated sensory events from motor events and then recorded the complex and simple spikes of hundreds of P-cells. We found that when a visual target was presented at a random location, the olive reported the direction of that sensory event to one group of P-cells, but not to a second group. However, just before movement onset, it reported the direction of the planned movement to both groups, even if that movement was not toward the target. At the end of the movement if the subject experienced an error but chose to withhold the corrective movement, only the first group received information about the sensory prediction error. We organized the P-cells based on the information content of their olivary input and found that in the group that received sensory information, the simple spikes were suppressed during fixation, then produced a burst before saccade onset in a direction consistent with assisting the movement. In the second group, the simple spikes were not suppressed during fixation but burst near saccade deceleration in a direction consistent with stopping the movement. Thus, the olive differentiated the P-cells based on whether they would receive sensory or motor information, and this defined their contributions to control of movements as well as holding still.
Collapse
Affiliation(s)
- Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| | - Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY10027
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MA21205
| |
Collapse
|
24
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
25
|
Liu Y, Lin W, Liu J, Zhu H. Structural and temporal dynamics analysis of neural circuit from 2002 to 2022: A bibliometric analysis. Heliyon 2024; 10:e24649. [PMID: 38298625 PMCID: PMC10828061 DOI: 10.1016/j.heliyon.2024.e24649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background In the pursuit of causal insights into neural circuit functionality, various interventions, including electrical, genetic, and pharmacological approaches, have been applied over recent decades. This study employs a comprehensive bibliometric perspective to explore the field of neural circuits. Methods Reviews and articles on neural circuits were obtained from the Web of Science Core Collection (WOSCC) database on Apr. 12, 2023. In this article, co-authorship analysis, co-occurrence analysis, citation analysis, bibliographic analysis, and co-citation analysis were used to clarify the authors, journals, institutions, countries, topics, and internal associations between them. Results More than 2000 organizations from 52 different countries published 3975 articles in the field of "neural circuit" were used to analysis. Luo liqun emerged as the most prolific author, and Deisseroth Karl garners the highest co-citations (3643). The Journal of Neuroscience leaded in publications, while Nature toped in citations. Chinese Academy of Science recorded the highest article count institutionally, with Stanford University ranking first with 14,350 citations. Since 2020, neurodynamic, anxiety-related mechanisms, and GABAergic neurons have gained prominence, shaping the trajectory of neural circuitry research. Conclusions Our investigation has discerned a paradigmatic reorientation towards neurodynamic processes, anxiety-related mechanisms, and GABAergic neurons within the domain of neural circuit research. This identification intimates a prospective trajectory for the field. In the future, it is imperative for research endeavors to accord priority to the translational application of these discernments, with the aim of materializing tangible clinical solutions.
Collapse
Affiliation(s)
- Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Wei Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jie Liu
- Department of Orthopedics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Haixia Zhu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Sandhu PS, Mirza Agha B, Inayat S, Singh S, Ryait HS, Mohajerani MH, Whishaw IQ. Information-theory analysis of mouse string-pulling agrees with Fitts's Law: Increasing task difficulty engages multiple sensorimotor modalities in a dual oscillator behavior. Behav Brain Res 2024; 456:114705. [PMID: 37838246 DOI: 10.1016/j.bbr.2023.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Mouse string pulling, in which a mouse reels in a string with hand-over-hand movements, can provide insights into skilled motor behavior, neurological status, and cognitive function. The task involves two oscillatory movements connected by a string. The snout oscillates to track the pendulum movement of the string produced by hand-over-hand oscillations of pulling, and so the snout guides the hands to grasp the string. The present study examines the allocation of time required to pull strings of varying diameter. Movement is also described with end-point measures, string-pulling topography with 2D markerless pose estimates based on transfer learning with deep neural networks, and Mat-lab image-segmentation and heuristic algorithms for object tracking. With reduced string diameter, mice took longer to pull 60 cm long strings. They also made more pulling cycles, misses, and mouth engagements, and displayed changes in the amplitude and frequency of pull cycles. The time measures agree with Fitts's law in showing that increased task difficulty slows behavior and engages multiple compensatory sensorimotor modalities. The analysis reveals that time is a valuable resource in skilled motor behavior and information-theory can serve as a measure of its effective use.
Collapse
Affiliation(s)
- Pardeepak S Sandhu
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Behroo Mirza Agha
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Surjeet Singh
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Hardeep S Ryait
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada.
| |
Collapse
|
27
|
Zhai P, Romano V, Soggia G, Bauer S, van Wingerden N, Jacobs T, van der Horst A, White JJ, Mazza R, De Zeeuw CI. Whisker kinematics in the cerebellum. J Physiol 2024; 602:153-181. [PMID: 37987552 DOI: 10.1113/jp284064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. KEY POINTS: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high sensitivity for whisker velocity are preferentially located in the medial part of lobule simplex, crus1 and lateral paramedian. In the downstream cerebellar nuclei, neurons with high sensitivity for whisker velocity are located at the intersection between the medial and interposed nucleus.
Collapse
Affiliation(s)
- Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Giulia Soggia
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, Amsterdam, Netherlands
| |
Collapse
|
28
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements and reveal the sensorimotor map of Purkinje cells. Curr Biol 2023; 33:4869-4879.e3. [PMID: 37858343 PMCID: PMC10751015 DOI: 10.1016/j.cub.2023.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Computations that are performed by the cerebellar cortex are transmitted via simple spikes of Purkinje cells (P-cells) to downstream structures, but because P-cells are many synapses away from muscles, we do not know the relationship between modulation of simple spikes and control of behavior. Here, we recorded the spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell coarsely described the direction and amplitude of the visual stimulus as well as the upcoming movement. Occasionally, the complex spike occurred just before saccade onset, suppressing the P-cell's simple spikes and disrupting its output during that saccade. Remarkably, this brief suppression of simple spikes altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, there is an alignment between the sensory space encoded by the complex spikes and the behavior conveyed by the simple spikes: a reduction in simple spikes is a signal to bias the ongoing movement toward the part of the sensory space preferentially encoded by the olivary input to that P-cell.
Collapse
Affiliation(s)
- Salomon Z Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| | - Jay S Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
30
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
31
|
Ikezoe K, Hidaka N, Manita S, Murakami M, Tsutsumi S, Isomura Y, Kano M, Kitamura K. Cerebellar climbing fibers multiplex movement and reward signals during a voluntary movement task in mice. Commun Biol 2023; 6:924. [PMID: 37689776 PMCID: PMC10492837 DOI: 10.1038/s42003-023-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar climbing fibers convey sensorimotor information and their errors, which are used for motor control and learning. Furthermore, they represent reward-related information. Despite such functional diversity of climbing fiber signals, it is still unclear whether each climbing fiber conveys the information of single or multiple modalities and how the climbing fibers conveying different information are distributed over the cerebellar cortex. Here we perform two-photon calcium imaging from cerebellar Purkinje cells in mice engaged in a voluntary forelimb lever-pull task and demonstrate that climbing fiber responses in 68% of Purkinje cells can be explained by the combination of multiple behavioral variables such as lever movement, licking, and reward delivery. Neighboring Purkinje cells exhibit similar climbing fiber response properties, form functional clusters, and share noise fluctuations of responses. Taken together, individual climbing fibers convey behavioral information on multiplex variables and are spatially organized into the functional modules of the cerebellar cortex.
Collapse
Affiliation(s)
- Koji Ikezoe
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
| | - Naoki Hidaka
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoshi Manita
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Masayoshi Murakami
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichiro Tsutsumi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kazuo Kitamura
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
32
|
Pilotto F, Douthwaite C, Diab R, Ye X, Al Qassab Z, Tietje C, Mounassir M, Odriozola A, Thapa A, Buijsen RAM, Lagache S, Uldry AC, Heller M, Müller S, van Roon-Mom WMC, Zuber B, Liebscher S, Saxena S. Early molecular layer interneuron hyperactivity triggers Purkinje neuron degeneration in SCA1. Neuron 2023; 111:2523-2543.e10. [PMID: 37321222 PMCID: PMC10431915 DOI: 10.1016/j.neuron.2023.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.
Collapse
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christopher Douthwaite
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Rim Diab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Zahraa Al Qassab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph Tietje
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Meriem Mounassir
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | | | - Aishwarya Thapa
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Müller
- Flow Cytometry and Cell sorting, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University Hospital Cologne, Deptartment of Neurology, Cologne, Germany.
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
33
|
Wang X, Liu Z, Angelov M, Feng Z, Li X, Li A, Yang Y, Gong H, Gao Z. Excitatory nucleo-olivary pathway shapes cerebellar outputs for motor control. Nat Neurosci 2023; 26:1394-1406. [PMID: 37474638 PMCID: PMC10400430 DOI: 10.1038/s41593-023-01387-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Milen Angelov
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhao Feng
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Anan Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Hui Gong
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Aimi T, Matsuda K, Yuzaki M. C1ql1-Bai3 signaling is necessary for climbing fiber synapse formation in mature Purkinje cells in coordination with neuronal activity. Mol Brain 2023; 16:61. [PMID: 37488606 PMCID: PMC10367388 DOI: 10.1186/s13041-023-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Changes in neural activity induced by learning and novel environments have been reported to lead to the formation of new synapses in the adult brain. However, the underlying molecular mechanism is not well understood. Here, we show that Purkinje cells (PCs), which have established adult-type monosynaptic innervation by climbing fibers (CFs) after elimination of weak CFs during development, can be reinnervated by multiple CFs by increased expression of the synaptic organizer C1ql1 in CFs or Bai3, a receptor for C1ql1, in PCs. In the adult cerebellum, CFs are known to have transverse branches that run in a mediolateral direction without forming synapses with PCs. Electrophysiological, Ca2+-imaging and immunohistochemical studies showed that overexpression of C1ql1 or Bai3 caused these CF transverse branches to elongate and synapse on the distal dendrites of mature PCs. Mature PCs were also reinnervated by multiple CFs when the glutamate receptor GluD2, which is essential for the maintenance of synapses between granule cells and PCs, was deleted. Interestingly, the effect of GluD2 knockout was not observed in Bai3 knockout PCs. In addition, C1ql1 levels were significantly upregulated in CFs of GluD2 knockout mice, suggesting that endogenous, not overexpressed, C1ql1-Bai3 signaling could regulate the reinnervation of mature PCs by CFs. Furthermore, the effects of C1ql1 and Bai3 overexpression required neuronal activity in the PC and CF, respectively. C1ql1 immunoreactivity at CF-PC synapses was reduced when the neuronal activity of CFs was suppressed. These results suggest that C1ql1-Bai3 signaling may mediate CF synaptogenesis in mature PCs, potentially in concert with neuronal activity.
Collapse
Affiliation(s)
- Takahiro Aimi
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
35
|
Mosberger AC, Sibener LJ, Chen TX, Rodrigues H, Hormigo R, Ingram JN, Athalye VR, Tabachnik T, Wolpert DM, Murray JM, Costa RM. Exploration biases how forelimb reaches to a spatial target are learned. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539291. [PMID: 37214823 PMCID: PMC10197595 DOI: 10.1101/2023.05.08.539291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The brain can learn to generate actions, such as reaching to a target, using different movement strategies. Understanding how different variables bias which strategies are learned to produce such a reach is important for our understanding of the neural bases of movement. Here we introduce a novel spatial forelimb target task in which perched head-fixed mice learn to reach to a circular target area from a set start position using a joystick. These reaches can be achieved by learning to move into a specific direction or to a specific endpoint location. We find that mice gradually learn to successfully reach the covert target. With time, they refine their initially exploratory complex joystick trajectories into controlled targeted reaches. The execution of these controlled reaches depends on the sensorimotor cortex. Using a probe test with shifting start positions, we show that individual mice learned to use strategies biased to either direction or endpoint-based movements. The degree of endpoint learning bias was correlated with the spatial directional variability with which the workspace was explored early in training. Furthermore, we demonstrate that reinforcement learning model agents exhibit a similar correlation between directional variability during training and learned strategy. These results provide evidence that individual exploratory behavior during training biases the control strategies that mice use to perform forelimb covert target reaches.
Collapse
|
36
|
Muller SZ, Pi JS, Hage P, Fakharian MA, Sedaghat-Nejad E, Shadmehr R. Complex spikes perturb movements, revealing the sensorimotor map of Purkinje cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537034. [PMID: 37090615 PMCID: PMC10120735 DOI: 10.1101/2023.04.16.537034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The cerebellar cortex performs computations that are critical for control of our actions, and then transmits that information via simple spikes of Purkinje cells (P-cells) to downstream structures. However, because P-cells are many synapses away from muscles, we do not know how their output affects behavior. Furthermore, we do not know the level of abstraction, i.e., the coordinate system of the P-cell's output. Here, we recorded spiking activities of hundreds of P-cells in the oculomotor vermis of marmosets during saccadic eye movements and found that following the presentation of a visual stimulus, the olivary input to a P-cell encoded a probabilistic signal that coarsely described both the direction and the amplitude of that stimulus. When this input was present, the resulting complex spike briefly suppressed the P-cell's simple spikes, disrupting the P-cell's output during that saccade. Remarkably, this brief suppression altered the saccade's trajectory by pulling the eyes toward the part of the visual space that was preferentially encoded by the olivary input to that P-cell. Thus, analysis of behavior in the milliseconds following a complex spike unmasked how the P-cell's output influenced behavior: the preferred location in the coordinates of the visual system as conveyed probabilistically from the inferior olive to a P-cell defined the action in the coordinates of the motor system for which that P-cell's simple spikes directed behavior.
Collapse
Affiliation(s)
- Salomon Z. Muller
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY USA
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Paul Hage
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Dept. of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
37
|
The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Rep 2023; 42:112000. [PMID: 36656714 DOI: 10.1016/j.celrep.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Cerebellar-thalamo-striatal synaptic communication has been implicated in a wide range of behaviors, including goal-directed actions, and is altered in cerebellar dystonia. However, its detailed connectivity through the thalamus and its contribution to the execution of forelimb movements is unclear. Here, we use trans-synaptic and retrograde tracing, ex vivo slice recordings, and optogenetic inhibitions during the execution of unidirectional or sequential joystick displacements to demonstrate that the deep cerebellar nuclei (DCN) influence the dorsal striatum with a very high probability. We show that this mainly occurs through the centrolateral (CL), parafascicular (PF), and ventrolateral (VL) nuclei of the thalamus, observing that the DCN→VL and DCN→CL pathways contribute to the execution of unidirectional forelimb displacements while the DCN→PF and DCN→thalamo→striatal pathways contribute to the appropriate execution of forelimb reaching and sequential displacements. These findings highlight specific contributions of the different cerebellar-thalamo-striatal paths to the control of skilled forelimb movement.
Collapse
|
38
|
Huang J, Liang S, Li L, Li X, Liao X, Hu Q, Zhang C, Jia H, Chen X, Wang M, Li R. Daily two-photon neuronal population imaging with targeted single-cell electrophysiology and subcellular imaging in auditory cortex of behaving mice. Front Cell Neurosci 2023; 17:1142267. [PMID: 36937184 PMCID: PMC10020347 DOI: 10.3389/fncel.2023.1142267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Quantitative and mechanistic understanding of learning and long-term memory at the level of single neurons in living brains require highly demanding techniques. A specific need is to precisely label one cell whose firing output property is pinpointed amidst a functionally characterized large population of neurons through the learning process and then investigate the distribution and properties of dendritic inputs. Here, we disseminate an integrated method of daily two-photon neuronal population Ca2+ imaging through an auditory associative learning course, followed by targeted single-cell loose-patch recording and electroporation of plasmid for enhanced chronic Ca2+ imaging of dendritic spines in the targeted cell. Our method provides a unique solution to the demand, opening a solid path toward the hard-cores of how learning and long-term memory are physiologically carried out at the level of single neurons and synapses.
Collapse
Affiliation(s)
- Junjie Huang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Susu Liang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Qianshuo Hu
- School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China
| | - Chunqing Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hongbo Jia
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Neuroscience and the SyNergy Cluster, Technical University Munich, Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Xiaowei Chen,
| | - Meng Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- Meng Wang,
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- School of Physical Science and Technology, Advanced Institute for Brain and Intelligence, Guangxi University, Nanning, China
- *Correspondence: Ruijie Li,
| |
Collapse
|
39
|
Gurel NZ, Sudarshan KB, Hadaya J, Karavos A, Temma T, Hori Y, Armour JA, Kember G, Ajijola OA. Metrics of high cofluctuation and entropy to describe control of cardiac function in the stellate ganglion. eLife 2022; 11:e78520. [PMID: 36426848 PMCID: PMC9815826 DOI: 10.7554/elife.78520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown. Current therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to treat HF. Future therapies that target the SG will require understanding of their networking capabilities to modify any pathological remodeling. We observe SG networking by examining cofluctuation and specificity of SG networked activity to cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced HF and control subjects during extended in-vivo extracellular microelectrode recordings. We find that information processing and cardiac control in chronic HF by the SG, relative to controls, exhibits: (i) more frequent, short-lived, high magnitude cofluctuations, (ii) greater variation in neural specificity to cardiac cycles, and (iii) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude.
Collapse
Affiliation(s)
- Nil Z Gurel
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Koustubh B Sudarshan
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
- UCLA Molecular, Cellular, and Integrative Physiology ProgramLos AngelesUnited States
| | - Alex Karavos
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Taro Temma
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Guy Kember
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
- UCLA Molecular, Cellular, and Integrative Physiology ProgramLos AngelesUnited States
| |
Collapse
|
40
|
Lyu C, Yu C, Sun G, Zhao Y, Cai R, Sun H, Wang X, Jia G, Fan L, Chen X, Zhou L, Shen Y, Gao L, Li X. Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203665. [PMID: 36373709 PMCID: PMC9811470 DOI: 10.1002/advs.202203665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The cerebellum is involved in encoding balance, posture, speed, and gravity during locomotion. However, most studies are carried out on flat surfaces, and little is known about cerebellar activity during free ambulation on slopes. Here, it has been imaged the neuronal activity of cerebellar molecular interneurons (MLIs) and Purkinje cells (PCs) using a miniaturized microscope while a mouse is walking on a slope. It has been found that the neuronal activity of vermal MLIs specifically enhanced during uphill and downhill locomotion. In addition, a subset of MLIs is activated during entire uphill or downhill positions on the slope and is modulated by the slope inclines. In contrast, PCs showed counter-balanced neuronal activity to MLIs, which reduced activity at the ramp peak. So, PCs may represent the ramp environment at the population level. In addition, chemogenetic inactivation of lobule V of the vermis impaired uphill locomotion. These results revealed a novel micro-circuit in the vermal cerebellum that regulates ambulatory behavior in 3D terrains.
Collapse
Affiliation(s)
- Chenfei Lyu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Chencen Yu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Guanglong Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Yue Zhao
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
| | - Xintai Wang
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Lingzhu Fan
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloonHong KongChina
| | - Lin Zhou
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ying Shen
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
- Key Laboratory of Medical Neurobiology of Zhejiang ProvinceHangzhou310027China
| |
Collapse
|
41
|
Monsees A, Voit KM, Wallace DJ, Sawinski J, Charyasz E, Scheffler K, Macke JH, Kerr JND. Estimation of skeletal kinematics in freely moving rodents. Nat Methods 2022; 19:1500-1509. [PMID: 36253644 PMCID: PMC9636019 DOI: 10.1038/s41592-022-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
Forming a complete picture of the relationship between neural activity and skeletal kinematics requires quantification of skeletal joint biomechanics during free behavior; however, without detailed knowledge of the underlying skeletal motion, inferring limb kinematics using surface-tracking approaches is difficult, especially for animals where the relationship between the surface and underlying skeleton changes during motion. Here we developed a videography-based method enabling detailed three-dimensional kinematic quantification of an anatomically defined skeleton in untethered freely behaving rats and mice. This skeleton-based model was constrained using anatomical principles and joint motion limits and provided skeletal pose estimates for a range of body sizes, even when limbs were occluded. Model-inferred limb positions and joint kinematics during gait and gap-crossing behaviors were verified by direct measurement of either limb placement or limb kinematics using inertial measurement units. Together we show that complex decision-making behaviors can be accurately reconstructed at the level of skeletal kinematics using our anatomically constrained model.
Collapse
Affiliation(s)
- Arne Monsees
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| | - Kay-Michael Voit
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Damian J Wallace
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Juergen Sawinski
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Edyta Charyasz
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jakob H Macke
- Machine Learning in Science, Eberhard Karls University of Tübingen, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Jason N D Kerr
- Department of Behavior and Brain Organization, Max Planck Institute for Neurobiology of Behavior, Bonn, Germany.
| |
Collapse
|
42
|
Grillo M, Geminiani A, Alessandro C, D'Angelo E, Pedrocchi A, Casellato C. Bayesian Integration in a Spiking Neural System for Sensorimotor Control. Neural Comput 2022; 34:1893-1914. [PMID: 35896162 DOI: 10.1162/neco_a_01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
The brain continuously estimates the state of body and environment, with specific regions that are thought to act as Bayesian estimator, optimally integrating noisy and delayed sensory feedback with sensory predictions generated by the cerebellum. In control theory, Bayesian estimators are usually implemented using high-level representations. In this work, we designed a new spike-based computational model of a Bayesian estimator. The state estimator receives spiking activity from two neural populations encoding the sensory feedback and the cerebellar prediction, and it continuously computes the spike variability within each population as a reliability index of the signal these populations encode. The state estimator output encodes the current state estimate. We simulated a reaching task at different stages of cerebellar learning. The activity of the sensory feedback neurons encoded a noisy version of the trajectory after actual movement, with an almost constant intrapopulation spiking variability. Conversely, the activity of the cerebellar output neurons depended on the phase of the learning process. Before learning, they fired at their baseline not encoding any relevant information, and the variability was set to be higher than that of the sensory feedback (more reliable, albeit delayed). When learning was complete, their activity encoded the trajectory before the actual execution, providing an accurate sensory prediction; in this case, the variability was set to be lower than that of the sensory feedback. The state estimator model optimally integrated the neural activities of the afferent populations, so that the output state estimate was primarily driven by sensory feedback in prelearning and by the cerebellar prediction in postlearning. It was able to deal even with more complex scenarios, for example, by shifting the dominant source during the movement execution if information availability suddenly changed. The proposed tool will be a critical block within integrated spiking, brain-inspired control systems for simulations of sensorimotor tasks.
Collapse
Affiliation(s)
- Massimo Grillo
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,School of Medicine and Surgery/Sport and Exercise Science, University of Milano-Bicocca, 20126 Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| |
Collapse
|
43
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
44
|
Tang J, Xue R, Wang Y, Li M, Jia H, Pakan JMP, Li L, Chen X, Li X. Optical Fiber-Based Recording of Climbing Fiber Ca 2+ Signals in Freely Behaving Mice. BIOLOGY 2022; 11:907. [PMID: 35741428 PMCID: PMC9220032 DOI: 10.3390/biology11060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar Purkinje cells; however, these techniques can be technically challenging to apply in vivo and are not always possible in freely behaving animals. Here, we developed a method for the direct, accessible, and robust recording of climbing fiber (CF) Ca2+ signals based on optical fiber photometry. We first verified the IO stereotactic coordinates and the organization of contralateral CF projections using tracing techniques and then injected Ca2+ indicators optimized for axonal labeling, followed by optical fiber-based recordings. We demonstrated this method by recording CF Ca2+ signals in lobule IV/V of the cerebellar vermis, comparing the resulting signals in freely moving mice. We found various movement-evoked CF Ca2+ signals, but the onset of exploratory-like behaviors, including rearing and tiptoe standing, was highly synchronous with recorded CF activity. Thus, we have successfully established a robust and accessible method to record the CF Ca2+ signals in freely behaving mice, which will extend the toolbox for studying cerebellar function and related disorders.
Collapse
Affiliation(s)
- Jiechang Tang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rou Xue
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Yan Wang
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Min Li
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (Y.W.); (M.L.); (H.J.)
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Janelle M. P. Pakan
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Longhui Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; (J.T.); (R.X.)
| |
Collapse
|
45
|
Time and tide of cerebellar synchrony. Proc Natl Acad Sci U S A 2022; 119:e2204155119. [PMID: 35452313 PMCID: PMC9170046 DOI: 10.1073/pnas.2204155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Sedaghat-Nejad E, Pi JS, Hage P, Fakharian MA, Shadmehr R. Synchronous spiking of cerebellar Purkinje cells during control of movements. Proc Natl Acad Sci U S A 2022; 119:e2118954119. [PMID: 35349338 PMCID: PMC9168948 DOI: 10.1073/pnas.2118954119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/13/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe information that one region of the brain transmits to another is usually viewed through the lens of firing rates. However, if the output neurons could vary the timing of their spikes, then, through synchronization, they would spotlight information that may be critical for control of behavior. Here we report that, in the cerebellum, Purkinje cell populations that share a preference for error convey, to the nucleus, when to decelerate the movement, by reducing their firing rates and temporally synchronizing the remaining spikes.
Collapse
Affiliation(s)
- Ehsan Sedaghat-Nejad
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Jay S. Pi
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, 1956836484, Iran
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
47
|
Ding J, Shen L, Ye Y, Hu S, Ren Z, Liu T, Dai J, Li Z, Wang J, Luo Y, Zhang Q, Zhang X, Qi X, Huang J. Inflammasome Inhibition Prevents Motor Deficit and Cerebellar Degeneration Induced by Chronic Methamphetamine Administration. Front Mol Neurosci 2022; 15:861340. [PMID: 35431795 PMCID: PMC9010733 DOI: 10.3389/fnmol.2022.861340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH), a psychostimulant, has the potential to cause neurodegeneration by targeting the cerebrum and cerebellum. It has been suggested that the NLRP3 inflammasome may be responsible for the neurotoxicity caused by METH. However, the role of NLRP3 in METH-induced cerebellar Purkinje cell (PC) degeneration and the underlying mechanism remain elusive. This study aims to determine the consequences of NLRP3 modulation and the underlying mechanism of chronic METH-induced cerebellar PC degeneration. In METH mice models, increased NLRP3 expression, PC degeneration, myelin sheath destruction, axon degeneration, glial cell activation, and motor coordination impairment were observed. Using the NLRP3 inhibitor MCC950, we found that inhibiting NLRP3 alleviated the above-mentioned motor deficits and cerebellar pathologies. Furthermore, decreased mature IL-1β expression mediated by Caspase 1 in the cerebellum may be associated with the neuroprotective effects of NLRP3 inflammasome inhibition. Collectively, these findings suggest that mature IL-1β secretion mediated by NLRP3-ASC-Caspase 1 may be a critical step in METH-induced cerebellar degeneration and highlight the neuroprotective properties of inflammasome inhibition in cerebellar degeneration.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lingyi Shen
- School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People’s Hospital, Liuzhou, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng Ren
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Jialin Dai
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Ya Luo
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiaojun Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiali Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- *Correspondence: Jiang Huang,
| |
Collapse
|
48
|
Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, Poulain B, Battaglia D, Isope P. Cerebellar connectivity maps embody individual adaptive behavior in mice. Nat Commun 2022; 13:580. [PMID: 35102165 PMCID: PMC8803868 DOI: 10.1038/s41467-022-27984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.
Collapse
Affiliation(s)
- Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jyotika Bahuguna
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Theo Gagneux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Okinawa Institute of Science and Technology, Graduate University of Okinawa, Onna, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Demian Battaglia
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67084, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
49
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|