1
|
Mukherjee S, Warden EA, Zhang J. YAP/TAZ: An Epitome of Tumorigenesis. Cancer Lett 2025:217806. [PMID: 40381686 DOI: 10.1016/j.canlet.2025.217806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Mounting evidence has demonstrated that the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are the main effectors of the Hippo signal transduction pathway that is involved in multiple layered events in tumorigenesis. The role of YAP/TAZ in cancer development is critical in a context dependent manner. Overexpression of YAP/TAZ induces cell proliferation and is elevated in various cancers and many other malignancies. On the other hand, studies have shown YAP binds p73 to activate PML transcription in response to DNA damage and generate a DNA-damage-induced feedback loop. Intriguingly, at the genomic level, YAP/TAZ genes are rarely mutated in cancer, except in specific tumors. The central role of YAP/TAZ in driving tumorigenesis is attributed through diverse mechanisms, such as regulatory kinases, cellular mechano-transduction, epigenetic modification/alterations, post-translational modifications, protein -protein interaction and nucleo-cytoplasmic export import. The complex interplay among feedback loops and crosstalk between various signaling pathways portrays the dynamic nature of YAP/TAZ. Thus, a comprehensive understanding of how posttranslational modifications and nucleo-cytoplasmic traffic of YAP/TAZ dynamically regulate and control each other holds great promise for selectively targeting YAP/TAZ import and export for drug therapy.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Emily A Warden
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jianmin Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA.
| |
Collapse
|
2
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Deng M, McClenaghan C, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein. SCIENCE ADVANCES 2025; 11:eads7627. [PMID: 40249817 PMCID: PMC12007584 DOI: 10.1126/sciadv.ads7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a substantial challenge. Here, we develop micropipette aspiration and whole-cell patch-clamp (MAPAC), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify multiple molecular factors that distinctly regulate the viscosity, interfacial tension, and maturation of synapsin condensates, confirming the cellular roles of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Johannes V. Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Xiao Su
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Mengying Deng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Chan SW, Ong C, Hong W. The recent advances and implications in cancer therapy for the hippo pathway. Curr Opin Cell Biol 2025; 93:102476. [PMID: 39908768 DOI: 10.1016/j.ceb.2025.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
The Hippo pathway is a highly conserved signaling network integrating diverse intracellular, intercellular and extracellular biological cues to regulate complex physiological processes such as organ size, tissue development, homeostasis and regeneration. These cues include cytoskeletal organization, mechanical force, cell-cell interaction, cell polarity, cell-extracellular matrix interaction to govern cell proliferation, differentiation, apoptosis, stem cell property and tissue microenvironment. In this review, we discuss how the emerging role of biomolecular condensates regulates the activity of the pathway components, and how dysregulation of the pathway leads to cancer. Lastly, we highlight the therapeutic modalities which target YAP/TAZ-TEAD interaction for cancer therapy.
Collapse
Affiliation(s)
- Siew Wee Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Camellia Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
4
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Lv J, Liang S, Qin P, Liu X, Ge X, Guo Y, Xia S, Jing W, Lu Y, Zhang T, Li H. WWC1 mutation drives dopamine dysregulation and synaptic imbalance in Tourette's syndrome. SCIENCE ADVANCES 2025; 11:eadr4588. [PMID: 40153501 PMCID: PMC11952098 DOI: 10.1126/sciadv.adr4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Tourette's syndrome (TS) is a major neurodevelopmental disorder characterized by childhood-onset motor and vocal tics. A W88C mutation in WWC1 gene is a notable risk factor for TS, but the underlying molecular mechanisms remain unclear due to the lack of suitable animal models. Here, we generate a mutant mouse line with human W88C mutation (W88CMut mice), which exhibits behavioral deficits similar to those observed in patients with TS, including repetitive motor behaviors and sensorimotor gating abnormalities. The W88C mutation leads to the degradation of kidney and brain (KIBRA) protein via a proteasomal pathway, evokes dopamine release in the dorsal striatum, and disrupts synaptic function through the dysregulation of Hippo pathway. Neuron-specific overexpression of wild-type WWC1 rescues synaptic and behavioral phenotypes in W88CMut mice. Together, this study not only provides a valuable mouse model for studying TS but also offers fresh insights into the molecular and synaptic mechanisms underlying neurodevelopmental abnormalities in TS.
Collapse
Affiliation(s)
- Junkai Lv
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiqi Liang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengwei Qin
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinlu Liu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Ge
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqing Guo
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shili Xia
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China
| | - Tongmei Zhang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Histology and embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Lu P, Deng B, Li X, Niu X, Qiu Y, Liang Y, Liang Y, Tang G, Yuan Z, Luo G, Kennedy S, Wan G. A nuclear pore-anchored condensate enables germ granule organization and transgenerational epigenetic inheritance. Nat Struct Mol Biol 2025:10.1038/s41594-025-01515-7. [PMID: 40082670 DOI: 10.1038/s41594-025-01515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Biomolecular condensates, such as stress and germ granules, often contain subcompartments. For instance, the Caenorhabditis elegans germ granule, which localizes near the outer nuclear membrane of germ cell nuclei, is composed of at least four ordered compartments, each housing distinct sets of proteins and RNAs. How these compartments form and why they are spatially ordered remains poorly understood. Here, we show that the conserved DEAD-box RNA helicase DDX-19 defines another compartment of the larger C. elegans germ granule, which we term the D compartment. The D compartment exhibits properties of a liquid condensate and forms between the outer nuclear pore filament and other compartments of the germ granule. Two nuclear pore proteins, NPP-14 and GLEL-1, are required for its formation, suggesting that the D compartment localizes adjacent to the outer nuclear membrane through interactions with the nuclear pore. The loss of DDX-19, NPP-14 or GLEL-1 leads to functional defects, including aberrant formation of the other four germ granule compartments, a loss of germline immortality and dysregulation of small RNA-based transgenerational epigenetic inheritance programs. Hence, we propose that a function of the D compartment is to anchor larger germ granules to nuclear pores, enabling germ granule compartmentalization and promoting transgenerational RNA surveillance.
Collapse
Affiliation(s)
- Pu Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyuan Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinru Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xufang Niu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Qiu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuntao Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guorun Tang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongping Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptor subunit GluA2 in coiled-coil-driven supramolecular complexes. J Biol Chem 2025; 301:108397. [PMID: 40074086 DOI: 10.1016/j.jbc.2025.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that protein interacting with C kinase 1 (PICK1), a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. In contrast, KIBRA can form a complex with GluA1 independent of PICK1. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the PICK1 BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lenora Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA; Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute Investigator, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Guo P, Wan S, Guan KL. The Hippo pathway: Organ size control and beyond. Pharmacol Rev 2025; 77:100031. [PMID: 40148032 DOI: 10.1016/j.pharmr.2024.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
The Hippo signaling pathway is a highly conserved signaling network for controlling organ size, tissue homeostasis, and regeneration. It integrates a wide range of intracellular and extracellular signals, such as cellular energy status, cell density, hormonal signals, and mechanical cues, to modulate the activity of YAP/TAZ transcriptional coactivators. A key aspect of Hippo pathway regulation involves its spatial organization at the plasma membrane, where upstream regulators localize to specific membrane subdomains to regulate the assembly and activation of the pathway components. This spatial organization is critical for the precise control of Hippo signaling, as it dictates the dynamic interactions between pathway components and their regulators. Recent studies have also uncovered the role of biomolecular condensation in regulating Hippo signaling, adding complexity to its control mechanisms. Dysregulation of the Hippo pathway is implicated in various pathological conditions, particularly cancer, where alterations in YAP/TAZ activity contribute to tumorigenesis and drug resistance. Therapeutic strategies targeting the Hippo pathway have shown promise in both cancer treatment, by inhibiting YAP/TAZ signaling, and regenerative medicine, by enhancing YAP/TAZ activity to promote tissue repair. The development of small molecule inhibitors targeting the YAP-TEAD interaction and other upstream regulators offers new avenues for therapeutic intervention. SIGNIFICANCE STATEMENT: The Hippo signaling pathway is a key regulator of organ size, tissue homeostasis, and regeneration, with its dysregulation linked to diseases such as cancer. Understanding this pathway opens new possibilities for therapeutic approaches in regenerative medicine and oncology, with the potential to translate basic research into improved clinical outcomes.
Collapse
Affiliation(s)
- Pengfei Guo
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Sicheng Wan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
9
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
10
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. Cell 2025; 188:447-464.e20. [PMID: 39591966 PMCID: PMC11761381 DOI: 10.1016/j.cell.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.
Collapse
Affiliation(s)
- Stephanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrés R Tejedor
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ignacio S Burgos
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lara Nasr
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Nesrine Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Kéren Fraissard
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Jorge R Espinosa
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| |
Collapse
|
11
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
12
|
Koroleva OA, Kurkin AV, Shtil AA. The Hippo pathway as an antitumor target: time to focus on. Expert Opin Investig Drugs 2024; 33:1177-1185. [PMID: 39592955 DOI: 10.1080/13543784.2024.2432395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION The Hippo signaling governs the expression of genes critically important for cell proliferation and survival. The components of this pathway are considered antitumor drug targets. However, the design of Hippo inhibitors is a challenge given the complexity of the network and redundancy of its elements. AREAS COVERED We review the current state-of-the-art in the structure of the Hippo pathway, the microenvironment-induced extracellular cues, the strategies to design pharmacological instruments for inactivation of the Hippo signaling using small molecular weight modulators, as well as the results of initial clinical trials. EXPERT OPINION One special characteristic of the Hippo signaling is the adverse role of phosphorylation: opposite to classical kinase cascades that activate the transcription factors, the Hippo kinases retain their partners in a transcriptionally inactive state. Therefore, approaches for pharmacological or genetic inhibition of Hippo protein kinases are counterproductive. The developing alternatives such as disruption of protein-protein interactions or PROTAC techniques are straightforward for preventing the Hippo signaling in cancer therapy.
Collapse
Affiliation(s)
- Olga A Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| |
Collapse
|
13
|
Hu L, Zhang N, Zhao C, Pan J. Engineering ADSCs by manipulating YAP for lymphedema treatment in a mouse tail model. Exp Biol Med (Maywood) 2024; 249:10295. [PMID: 39633684 PMCID: PMC11614642 DOI: 10.3389/ebm.2024.10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Secondary lymphedema is a chronic disease associated with deformity of limbs and dysfunction; however, conventional therapies are not curative. Adipose-derived stem cells (ADSCs) based therapy is a promising way, but a single transplantation of ADSCs has limited efficacy. In this study, ADSCs were engineered in vitro and then transplanted into the site of lymphedema. Yes-associated protein (YAP), a crucial regulator of Hippo pathway, plays an important role in regulating stem cell functions. We examined the YAP expression in a mouse tail lymphedema model, and found that transplanted ADSCs exhibited high expression level of YAP and a large number of YAP positive cells existed in lymphedema environment. In vitro, the downregulation of YAP in ADSCs resulted in higher expression levels of genes related to lymphangiogenesis such as Lyve-1, VEGFR-3 and Prox-1. In vivo, YAP-engineered ADSCs generated abundant VEGFR-3-positive lymphatic vessels and significantly improved subcutaneous fibrosis. These results indicated that the transplantation of pre-engineered ADSCs by manipulating YAP is a promising strategy for lymphatic reconstruction.
Collapse
Affiliation(s)
| | | | | | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Li Y, Liu Y, Yu XY, Xu Y, Pan X, Sun Y, Wang Y, Song YH, Shen Z. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct Target Ther 2024; 9:305. [PMID: 39551864 PMCID: PMC11570651 DOI: 10.1038/s41392-024-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Once considered unconventional cellular structures, membraneless organelles (MLOs), cellular substructures involved in biological processes or pathways under physiological conditions, have emerged as central players in cellular dynamics and function. MLOs can be formed through liquid-liquid phase separation (LLPS), resulting in the creation of condensates. From neurodegenerative disorders, cardiovascular diseases, aging, and metabolism to cancer, the influence of MLOs on human health and disease extends widely. This review discusses the underlying mechanisms of LLPS, the biophysical properties that drive MLO formation, and their implications for cellular function. We highlight recent advances in understanding how the physicochemical environment, molecular interactions, and post-translational modifications regulate LLPS and MLO dynamics. This review offers an overview of the discovery and current understanding of MLOs and biomolecular condensate in physiological conditions and diseases. This article aims to deliver the latest insights on MLOs and LLPS by analyzing current research, highlighting their critical role in cellular organization. The discussion also covers the role of membrane-associated condensates in cell signaling, including those involving T-cell receptors, stress granules linked to lysosomes, and biomolecular condensates within the Golgi apparatus. Additionally, the potential of targeting LLPS in clinical settings is explored, highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State key laboratory of cardiovascular disease, Beijing, 100037, P. R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, P. R. China
| | - Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
15
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
16
|
Dunham TL, Wilkerson JR, Johnson RC, Huganir RL, Volk LJ. WWC2 modulates GABA A-receptor-mediated synaptic transmission, revealing class-specific mechanisms of synapse regulation by WWC family proteins. Cell Rep 2024; 43:114841. [PMID: 39388350 PMCID: PMC11913214 DOI: 10.1016/j.celrep.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/22/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
The WW and C2 domain-containing protein (WWC2) is implicated in several neurological disorders. Here, we demonstrate that WWC2 interacts with inhibitory, but not excitatory, postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses γ-aminobutyric acid type-A receptor (GABAAR) incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABAAR recycling to the membrane. Inhibitory synaptic transmission is increased in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (kidney/brain protein; WWC1), a key regulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking at excitatory synapses, the deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABAAR membrane expression. These data reveal synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABAAR membrane expression.
Collapse
Affiliation(s)
- Thomas L Dunham
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia R Wilkerson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lenora J Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry UT Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Zhao P, Gao Y, Zhou Y, Huang M, Fan S, Bi H. Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions. Drug Metab Dispos 2024; 52:1161-1169. [PMID: 38296653 DOI: 10.1124/dmd.123.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT: PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., Y.G., Y.Z., M.H., S.F., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (S.F., H.B.)
| |
Collapse
|
18
|
Cai X, Chen F, Tang H, Chao D, Kang R, Tang D, Liu J. ITCH inhibits alkaliptosis in human pancreatic cancer cells through YAP1-dependent SLC16A1 activation. Int J Biochem Cell Biol 2024; 175:106646. [PMID: 39179170 DOI: 10.1016/j.biocel.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Alkaliptosis is a type of pH-dependent cell death and plays an emerging role in tumor suppression. However, the key modulation mechanism of alkaliptosis remains largely unknown. In particular, the nucleus, as the centre of genetic and metabolic regulation, is crucial for the regulation of cellular life. It is not known whether nuclear proteins are involved in the regulation of alkaliptosis. Here, we isolated nuclear proteins to perform a proteomics that identified itchy E3 ubiquitin protein ligase (ITCH) as a natural inhibitor of alkaliptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. The downregulation of ITCH protein is associated with the induction of alkaliptosis in three human PDAC cell lines (SW1990, MiaPaCa2, and PANC1). Functionally, increasing ITCH expression reduces JTC801-induced growth inhibition and cell death. In contrast, knocking down ITCH using specific shRNA increases JTC801-induced cell growth inhibition in the short or long term, resulting in increased cell death. Mechanistically, JTC801-induced ITCH inhibition blocks large tumor suppressor kinase 1 (LATS1) ubiquitination, which in turn suppresses Yes1 associated transcriptional regulator (YAP1)-dependent the transcriptional activation of solute carrier family 16 member 1 (SLC16A1), a proton-linked monocarboxylate transporter that inhibits JTC801-induced alkaliptosis. Additionally, decreased expression of ITCH is associated with longer survival times in patients with PDAC. Collectively, our results establish an ITCH-dependent pathway that regulates alkaliptotic sensitivity in PDAC cells and deepen the understanding of alkaliptosis in targeted therapy.
Collapse
Affiliation(s)
- Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dandan Chao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA..
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
19
|
Guo YZ, Cui HY, Cai MY, Wang D, Deng WP, Hu CP. SOX9 promotes hypoxic pulmonary hypertension through stabilization of DPP4 in pulmonary artery smooth muscle cells. Exp Cell Res 2024; 442:114254. [PMID: 39276964 DOI: 10.1016/j.yexcr.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Cell Hypoxia
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- SOX9 Transcription Factor/metabolism
- SOX9 Transcription Factor/genetics
- Vascular Remodeling
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Yan-Zi Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Han-Yu Cui
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ming-Yuan Cai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Di Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wei-Ping Deng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China.
| |
Collapse
|
20
|
Liu Y, Zhang J, Zhai Z, Liu C, Yang S, Zhou Y, Zeng X, Liu J, Zhang X, Nie X, Xu J, Huang J, Liu C, Liu Z, Guo M, Sun G. Upregulated PrP C by HBx enhances NF-κB signal via liquid-liquid phase separation to advance liver cancer. NPJ Precis Oncol 2024; 8:211. [PMID: 39333690 PMCID: PMC11437096 DOI: 10.1038/s41698-024-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cellular prion protein (PrPC) has been implicated in carcinogenic through the activation of various signal pathways, however, the precise mechanisms remain elusive. In vitro studies have shown that PrPC is prone to undergo liquid-liquid phase separation (LLPS). However, it remains unknown whether PrPC contributes to LLPS-inducing cancer development. Herein, we observed an upregulation of PrPC expression in hepatitis B virus-positive hepatocellular carcinoma (HCC). Subsequent investigation revealed that HBx of HBV enhances PrPC expression in a dose-dependent manner by binding to CREB1. Furthermore, we demonstrated that PrPC undergoes LLPS and recruits TRAF2/6, TAB2/3, and TAK1 protein, thereby activating the NF-κB signaling pathway and promoting tumor progression. Notably, although unable to undergo LLPS itself, the α3 helix of PrPC is essential for its activation of the NF-κB signaling pathway during the LLPS process. Further analysis unveiled that disulfide bond formation within the C-terminal domain of PrPC is necessary for its LLPS and subsequent activation of the NF-κB signaling pathway. Additionally, our findings indicate that NF-κB activation by PrPC condensates leads to increased IL-8 expression which further promotes tumor development.
Collapse
Affiliation(s)
- Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zixu Zhai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chenyi Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Zhou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoyu Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xinqi Nie
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhepeng Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, People's Republic of China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
21
|
Sun X, Zhou D, Sun Y, Zhao Y, Deng Y, Pang X, Liu Q, Zhou Z. Oxidative stress reprograms the transcriptional coactivator Yki to suppress cell proliferation. Cell Rep 2024; 43:114584. [PMID: 39106181 DOI: 10.1016/j.celrep.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
The transcriptional coactivator Yorkie (Yki) regulates organ size by promoting cell proliferation. It is unclear how cells control Yki activity when exposed to harmful stimuli such as oxidative stress. In this study, we show that oxidative stress inhibits the binding of Yki to Scalloped (Sd) but promotes the interaction of Yki with another transcription factor, forkhead box O (Foxo), ultimately leading to a halt in cell proliferation. Mechanistically, Foxo normally exhibits a low binding affinity for Yki, allowing Yki to form a complex with Sd and activate proliferative genes. Under oxidative stress, Usp7 deubiquitinates Foxo to promote its interaction with Yki, thereby activating the expression of proliferation suppressors. Finally, we show that Yki is essential for Drosophila survival under oxidative stress. In summary, these findings suggest that oxidative stress reprograms Yki from a proliferation-promoting factor to a proliferation suppressor, forming a self-protective mechanism.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanfei Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolin Pang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
22
|
Jiang L, Yan C, Yi Y, Zhu L, Liu Z, Zhang D, Jiang W. Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling. Stem Cell Reports 2024; 19:1137-1155. [PMID: 39094563 PMCID: PMC11368700 DOI: 10.1016/j.stemcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
Collapse
Affiliation(s)
- Lai Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China; Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
23
|
Liang J, Djurkovic MA, Leavitt CG, Shtanko O, Harty RN. Hippo signaling pathway regulates Ebola virus transcription and egress. Nat Commun 2024; 15:6953. [PMID: 39138205 PMCID: PMC11322314 DOI: 10.1038/s41467-024-51356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo "ON") where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is "OFF", unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Guo P, Li B, Dong W, Zhou H, Wang L, Su T, Carl C, Zheng Y, Hong Y, Deng H, Pan D. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science 2024; 385:eadf4478. [PMID: 39116228 PMCID: PMC11956869 DOI: 10.1126/science.adf4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/11/2023] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Huabin Zhou
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Christopher Carl
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Hua Deng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
25
|
Singh S, Bernal Astrain G, Hincapie AM, Goudreault M, Smith MJ. Complex interplay between RAS GTPases and RASSF effectors regulates subcellular localization of YAP. EMBO Rep 2024; 25:3574-3600. [PMID: 39009833 PMCID: PMC11316025 DOI: 10.1038/s44319-024-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.
Collapse
Affiliation(s)
- Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
26
|
Chen M, Liu Y, Zuo M, Guo C, Du Y, Xu H, Liu B, Li M, Xiao W, Yu G. NEDD8 enhances Hippo signaling by mediating YAP1 neddylation. J Biol Chem 2024; 300:107512. [PMID: 38960037 PMCID: PMC11327456 DOI: 10.1016/j.jbc.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China.
| |
Collapse
|
27
|
Zhao Z, Chu Y, Feng A, Zhang S, Wu H, Li Z, Sun M, Zhang L, Chen T, Xu M. STK3 kinase activation inhibits tumor proliferation through FOXO1-TP53INP1/P21 pathway in esophageal squamous cell carcinoma. Cell Oncol (Dordr) 2024; 47:1295-1314. [PMID: 38436783 PMCID: PMC11322239 DOI: 10.1007/s13402-024-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is an aggressive disease with a poor prognosis, caused by the inactivation of critical cell growth regulators that lead to uncontrolled proliferation and increased malignancy. Although Serine/Threonine Kinase 3 (STK3), also known as Mammalian STE20-like protein kinase 2 (MST2), is a highly conserved kinase of the Hippo pathway, plays a critical role in immunomodulation, organ development, cellular differentiation, and cancer suppression, its phenotype and function in ESCC require further investigation. In this study, we report for the first time on the role of STK3 kinase and its activation condition in ESCC, as well as the mechanism and mediators of kinase activation. METHODS In this study, we investigated the expression and clinical significance of STK3 in ESCC. We first used bioinformatics databases and immunohistochemistry to analyze STK3 expression in the ESCC patient cohort and conducted survival analysis. In vivo, we conducted a tumorigenicity assay using nude mouse models to demonstrate the phenotypes of STK3 kinase. In vitro, we conducted Western blot analysis, qPCR analysis, CO-IP, and immunofluorescence (IF) staining analysis to detect molecule expression, interaction, and distribution. We measured proliferation, migration, and apoptosis abilities in ESCC cells in the experimental groups using CCK-8 and transwell assays, flow cytometry, and EdU staining. We used RNA-seq to identify genes that were differentially expressed in ESCC cells with silenced STK3 or FOXO1. We demonstrated the regulatory relationship of the TP53INP1/P21 gene medicated by the STK3-FOXO1 axis using Western blotting and ChIP in vitro. RESULTS We demonstrate high STK3 expression in ESCC tissue and cell lines compared to esophageal epithelium. Cellular ROS induces STK3 autophosphorylation in ESCC cells, resulting in upregulated p-STK3/4. STK3 activation inhibits ESCC cell proliferation and migration by triggering apoptosis and suppressing the cell cycle. STK3 kinase activation phosphorylates FOXO1Ser212, promoting nuclear translocation, enhancing transcriptional activity, and upregulating TP53INP1 and P21. We also investigated TP53INP1 and P21's phenotypic effects in ESCC, finding that their knockdown significantly increases tumor proliferation, highlighting their crucial role in ESCC tumorigenesis. CONCLUSION STK3 kinase has a high expression level in ESCC and can be activated by cellular ROS, inhibiting cell proliferation and migration. Additionally, STK3 activation-mediated FOXO1 regulates ESCC cell apoptosis and cell cycle arrest by targeting TP53INP1/P21. Our research underscores the anti-tumor function of STK3 in ESCC and elucidates the mechanism underlying its anti-tumor effect on ESCC.
Collapse
Affiliation(s)
- Ziying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Anqi Feng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shihan Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hao Wu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhaoxing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingchuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Meidong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
28
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Zhao P, Fan S, Zhou Y, Huang M, Gao Y, Bi H. Constitutive Androstane Receptor and Peroxisome Proliferator-Activated Receptor α Do Not Perform Liquid-Liquid Phase Separation in Cells. J Pharmacol Exp Ther 2024; 390:88-98. [PMID: 38719477 DOI: 10.1124/jpet.124.002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/23/2024] [Indexed: 06/23/2024] Open
Abstract
Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiologic and pathologic processes. Phase separation is a dynamic biophysical process in which biomacromolecules form liquid-like condensates, which have been identified as contributors to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα The computational analysis utilizing algorithm tools examining the intrinsically disordered regions of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. SIGNIFICANCE STATEMENT: Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.
Collapse
Affiliation(s)
- Pengfei Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Min Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (P.Z., S.F., H.B.); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.Z., M.H., Y.G., H.B.); and The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China (H.B.)
| |
Collapse
|
31
|
Qin M, Geng E, Wang J, Yu M, Dong T, Li S, Zhang X, Lin J, Shi M, Li J, Zhang H, Chen L, Cao X, Huang L, Wang M, Li Y, Yang XP, Zhao B, Sun S. LATS2 condensates organize signalosomes for Hippo pathway signal transduction. Nat Chem Biol 2024; 20:710-720. [PMID: 38200110 DOI: 10.1038/s41589-023-01516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Min Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ershuo Geng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Yu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juebei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixia Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lian Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Cao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Zhu S, Shen Z, Wu X, Han W, Jia B, Lu W, Zhang M. Demixing is a default process for biological condensates formed via phase separation. Science 2024; 384:920-928. [PMID: 38781377 DOI: 10.1126/science.adj7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.
Collapse
Affiliation(s)
- Shihan Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Bowen Jia
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
33
|
Wang H, Hu Q, Chen Y, Huang X, Feng Y, Shi Y, Li R, Yin X, Song X, Liang Y, Zhang T, Xu L, Dong G, Jiang F. Ferritinophagy mediates adaptive resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Nat Commun 2024; 15:4195. [PMID: 38760351 PMCID: PMC11101634 DOI: 10.1038/s41467-024-48433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Qianfan Hu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuzhong Chen
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Xing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Yipeng Feng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuanjian Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Rutao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuewen Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
| | - Xuming Song
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Te Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangning District, Nanjing, China
| | - Gaochao Dong
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
34
|
Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Non-coding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol 2024; 15:1348280. [PMID: 38698813 PMCID: PMC11063341 DOI: 10.3389/fphar.2024.1348280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People’s Hospital, Shenyang, China
| | - Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
36
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
37
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptors in coiled-coil-driven supramolecular complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584494. [PMID: 38558978 PMCID: PMC10980033 DOI: 10.1101/2024.03.12.584494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
|
38
|
Dunham TL, Wilkerson JR, Johnson RC, Huganir RL, Volk LJ. Modulation of GABA A receptor trafficking by WWC2 reveals class-specific mechanisms of synapse regulation by WWC family proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584487. [PMID: 38559047 PMCID: PMC10979870 DOI: 10.1101/2024.03.11.584487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
WWC2 (WW and C2 domain-containing protein) is implicated in several neurological disorders, however its function in the brain has yet to be determined. Here, we demonstrate that WWC2 interacts with inhibitory but not excitatory postsynaptic scaffolds, consistent with prior proteomic identification of WWC2 as a putative component of the inhibitory postsynaptic density. Using mice lacking WWC2 expression in excitatory forebrain neurons, we show that WWC2 suppresses GABA A R incorporation into the plasma membrane and regulates HAP1 and GRIP1, which form a complex promoting GABA A R recycling to the membrane. Inhibitory synaptic transmission is dysregulated in CA1 pyramidal cells lacking WWC2. Furthermore, unlike the WWC2 homolog KIBRA (WWC1), a key regulator of AMPA receptor trafficking at excitatory synapses, deletion of WWC2 does not affect synaptic AMPAR expression. In contrast, loss of KIBRA does not affect GABA A R membrane expression. These data reveal unique, synapse class-selective functions for WWC proteins as regulators of ionotropic neurotransmitter receptors and provide insight into mechanisms regulating GABA A R membrane expression.
Collapse
|
39
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
罗 国, 周 陈. [Latest Findings on Phase Separation of Cytomechanical Proteins]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:19-23. [PMID: 38322526 PMCID: PMC10839485 DOI: 10.12182/20240160206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 02/08/2024]
Abstract
The cellular response to mechanical stimuli depends largely on the structure of the cell itself and the abundance of intracellular cytomechanical proteins also plays a key role in the response to the stimulation of external mechanical signals. Liquid-liquid phase separation (LLPS) is the process by which proteins or protein-RNA complexes spontaneously separate and form two distinct "phases", ie, a low-concentration phase coexisting with a high-concentration phase. According to published findings, membrane-free organelles form and maintain their structures and regulate their internal biochemical activities through LLPS. LLPS, a novel mechanism for intracellular regulation of the biochemical reactions of biomacromolecules, plays a crucial role in modulating the responses of cytomechanical proteins. LLPS leads to the formation of highly concentrated liquid-phase condensates through multivalent interactions between biomacromolecules, thereby regulating a series of intracellular life activities. It has been reported that a variety of cytomechanical proteins respond to external mechanical signals through LLPS, which in turn affects biological behaviors such as cell growth, proliferation, spreading, migration, and apoptosis. Herein, we introduced the mechanisms of cytomechanics and LLPS. In addition, we presented the latest findings on cytomechanical protein phase separation, covering such issues as the regulation of focal adhesion maturation and mechanical signal transduction by LIM domain-containing protein 1 (LIMD1) phase separation, the regulation of intercellular tight junctions by zonula occludens (ZO) phase separation, and the regulation of cell proliferation and apoptosis by cytomechanical protein phase separation of the Hippo signaling pathway. The proposition of LLPS provides an explanation for the formation mechanism of intracellular membraneless organelles and supplies new approaches to understanding the biological functions of intracellular physiology or pathology. However, the molecular mechanisms by which LLPS drives focal adhesions and cell-edge dynamics are still not fully understood. It is not clear whether LLPS under in vitro conditions can occur under physiological conditions of organisms. There are still difficulties to be overcome in using LLPS to explain the interactions of multiple intracellular molecules. Researchers should pursue answers to these questions in the future.
Collapse
Affiliation(s)
- 国文 罗
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陈晨 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Shao Y, Shu X, Lu Y, Zhu W, Li R, Fu H, Li C, Sun W, Li Z, Zhang Y, Cao X, Ye X, Ajiboye E, Zhao B, Zhang L, Wu H, Feng XH, Yang B, Lu H. A chaperone-like function of FUS ensures TAZ condensate dynamics and transcriptional activation. Nat Cell Biol 2024; 26:86-99. [PMID: 38172614 DOI: 10.1038/s41556-023-01309-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
The Hippo pathway has important roles in organ development, tissue homeostasis and tumour growth. Its downstream effector TAZ is a transcriptional coactivator that promotes target gene expression through the formation of biomolecular condensates. However, the mechanisms that regulate the biophysical properties of TAZ condensates to enable Hippo signalling are not well understood. Here using chemical crosslinking combined with an unbiased proteomics approach, we show that FUS associates with TAZ condensates and exerts a chaperone-like effect to maintain their proper liquidity and robust transcriptional activity. Mechanistically, the low complexity sequence domain of FUS targets the coiled-coil domain of TAZ in a phosphorylation-regulated manner, which ensures the liquidity and dynamicity of TAZ condensates. In cells lacking FUS, TAZ condensates transition into gel-like or solid-like assembles with immobilized TAZ, which leads to reduced expression of target genes and inhibition of pro-tumorigenic activity. Thus, our findings identify a chaperone-like function of FUS in Hippo regulation and demonstrate that appropriate biophysical properties of transcriptional condensates are essential for gene activation.
Collapse
Affiliation(s)
- Yangqing Shao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Lu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxuan Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ran Li
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huanyi Fu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhuo Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yitong Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaolei Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xifu Ye
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Emmanuel Ajiboye
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, USA
| | - Bin Zhao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, USA
| | - Xin-Hua Feng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Bulos ML, Grzelak EM, Li-Ma C, Chen E, Hull M, Johnson KA, Bollong MJ. Pharmacological inhibition of CLK2 activates YAP by promoting alternative splicing of AMOTL2. eLife 2023; 12:RP88508. [PMID: 38126343 PMCID: PMC10735217 DOI: 10.7554/elife.88508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Yes-associated protein (YAP), the downstream effector of the evolutionarily conserved Hippo pathway, promotes cellular proliferation and coordinates certain regenerative responses in mammals. Small molecule activators of YAP may, therefore, display therapeutic utility in treating disease states involving insufficient proliferative repair. From a high-throughput chemical screen of the comprehensive drug repurposing library ReFRAME, here we report the identification of SM04690, a clinical stage inhibitor of CLK2, as a potent activator of YAP-driven transcriptional activity in cells. CLK2 inhibition promotes alternative splicing of the Hippo pathway protein AMOTL2, producing an exon-skipped gene product that can no longer associate with membrane-bound proteins, resulting in decreased phosphorylation and membrane localization of YAP. This study reveals a novel mechanism by which pharmacological perturbation of alternative splicing inactivates the Hippo pathway and promotes YAP-dependent cellular growth.
Collapse
Affiliation(s)
- Maya L Bulos
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Edyta M Grzelak
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Emily Chen
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | - Mitchell Hull
- Calibr, A Division of Scripps ResearchLa JollaUnited States
| | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
44
|
Shi L, Ma H, Wang J, Ma M, Zhao H, Li Z, Wang JH, Wu S, Zhou Z, Dong MQ, Li Z. An EMC-Hpo-Yki axis maintains intestinal homeostasis under physiological and pathological conditions. Development 2023; 150:dev201958. [PMID: 38031990 DOI: 10.1242/dev.201958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.
Collapse
Affiliation(s)
- Lin Shi
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hubing Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinjun Wang
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meifang Ma
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shian Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
45
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
46
|
Driskill JH, Pan D. Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol 2023; 24:895-911. [PMID: 37626124 DOI: 10.1038/s41580-023-00644-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/27/2023]
Abstract
Complex physiological processes control whether stem cells self-renew, differentiate or remain quiescent. Two decades of research have placed the Hippo pathway, a highly conserved kinase signalling cascade, and its downstream molecular effectors YAP and TAZ at the nexus of this decision. YAP and TAZ translate complex biological cues acting on stem cells - from mechanical forces to cellular metabolism - into genome-wide effects to mediate stem cell functions. While aberrant YAP/TAZ activity drives stem cell dysfunction in ageing, tumorigenesis and disease, therapeutic targeting of Hippo signalling and YAP/TAZ can boost stem cell activity to enhance regeneration. In this Review, we discuss how YAP/TAZ control the self-renewal, fate and plasticity of stem cells in different contexts, how dysregulation of YAP/TAZ in stem cells leads to disease, and how therapeutic modalities targeting YAP/TAZ may benefit regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Cheng X, Case LB. Phase separation in chemical and mechanical signal transduction. Curr Opin Cell Biol 2023; 85:102243. [PMID: 37788587 PMCID: PMC11533726 DOI: 10.1016/j.ceb.2023.102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023]
Abstract
Signal transduction enables cells to sense and respond to chemical and mechanical information in the extracellular environment. Recently, phase separation has emerged as a physical mechanism that can influence the spatial organization of signaling molecules and regulate downstream signaling. Although many molecular components of signaling pathways, including receptors, kinases, and transcription factors, have been observed to undergo phase separation, understanding the functional consequences of their phase separation in signal transduction remains an ongoing area of research. In this review, we will discuss recent studies investigating how cells potentially use phase separation to regulate different signaling pathways by initiating signaling, amplifying signaling, or inhibiting signaling. We will also discuss recent observations that suggest a role for phase separation in mechanosensing in the Hippo pathway and at focal adhesions.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
48
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
49
|
Cai Z, Mei S, Zhou L, Ma X, Wuyun Q, Yan J, Ding H. Liquid-Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases. Int J Mol Sci 2023; 24:15418. [PMID: 37895097 PMCID: PMC10607581 DOI: 10.3390/ijms242015418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS.
Collapse
Affiliation(s)
- Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Tokamov SA, Nouri N, Rich A, Buiter S, Glotzer M, Fehon RG. Apical polarity and actomyosin dynamics control Kibra subcellular localization and function in Drosophila Hippo signaling. Dev Cell 2023; 58:1864-1879.e4. [PMID: 37729921 PMCID: PMC10591919 DOI: 10.1016/j.devcel.2023.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth that integrates inputs from both polarity and actomyosin networks. An upstream activator of the Hippo pathway, Kibra, localizes at the junctional and medial regions of the apical cortex in epithelial cells, and medial accumulation promotes Kibra activity. Here, we demonstrate that cortical Kibra distribution is controlled by a tug-of-war between apical polarity and actomyosin dynamics. We show that while the apical polarity network, in part via atypical protein kinase C (aPKC), tethers Kibra at the junctional cortex to silence its activity, medial actomyosin flows promote Kibra-mediated Hippo complex formation at the medial cortex, thereby activating the Hippo pathway. This study provides a mechanistic understanding of the relationship between the Hippo pathway, polarity, and actomyosin cytoskeleton, and it offers novel insights into how fundamental features of epithelial tissue architecture can serve as inputs into signaling cascades that control tissue growth, patterning, and morphogenesis.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicki Nouri
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ashley Rich
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|