1
|
Chen TT, Yang JC, Chen GY, Dai YH, Zhang X, Chan HL, Lin TC, Wu YC. Silibinin, a PLC-β3 inhibitor, inhibits mast cell activation and alleviates OVA-induced asthma. Mol Immunol 2025; 178:76-86. [PMID: 39870013 DOI: 10.1016/j.molimm.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The immunoglobulin E (IgE) receptor FcεRI (Fc epsilon RI) plays a crucial role in allergic reactions. Recent studies have indicated that the interaction between FcεRIβ and the downstream protein phospholipase C beta 3 (PLCβ3) leads to the production of inflammatory cytokines. The aim of this study was to develop small molecules that inhibit the protein-protein interactions between FcεRIβ and PLCβ3 to treat allergic inflammation. Additionally, PLCβ3 has emerged as a potential target protein for treating allergic inflammation. In this study, we employed a virtual screening technique to search the Taiwan Traditional Chinese Medicine Database, followed by a second screening using absorption, distribution, metabolism, excretion, and toxicity (ADMET). Among the compounds screened, silibinin exhibited the best performance, forming strong hydrogen bond interactions with residues of PLCβ3, with a binding free energy of -119.277 kcal/mol. Therefore, silibinin effectively blocked the interaction between FcεRIβ and PLCβ3. Silibinin reduced the production of allergic inflammatory cytokines, including cytokine-induced neutrophil chemoattractant 2a (CINC-2a), interleukin-2 (IL-2), cytokine-induced neutrophil chemoattractant 1 (CINC-1), interleukin 1α (IL-1α), macrophage inflammatory protein 3 alpha (MIP3α), interferon γ (IFN-γ), activin A, granulocyte macrophage colony stimulating factor (GM-CSF), intercellular adhesion molecule-1 (ICAM-1), interleukin 4 (IL-4), interleukin 13 (IL-13), Fas ligand (FasL) and tumor necrosis factor alpha (TNF-α), without inducing cytotoxicity. Furthermore, in studies of IgE-mediated allergic responses, silibinin also decreased the expression of surface IgE receptors (FcεRIs). Moreover, silibinin effectively alleviated allergen-induced asthma responses and reduced the infiltration of inflammatory immune cells into the lungs of an OVA-induced allergic airway inflammation mouse model. Taken together, these results demonstrate the potential antiallergic mechanism of silibinin both in vitro and in vivo, making it a promising candidate for the development of asthma therapeutics.
Collapse
Affiliation(s)
- Tzu-Ting Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yun-Hao Dai
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE-17177, Sweden.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Tim Cc Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung 402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
2
|
Capellmann S, Kauffmann M, Arock M, Huber M. SR-BI regulates the synergistic mast cell response by modulating the plasma membrane-associated cholesterol pool. Eur J Immunol 2024; 54:e2350788. [PMID: 38708681 DOI: 10.1002/eji.202350788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MβCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.
Collapse
Affiliation(s)
- Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Ligands and Signaling of Mas-Related G Protein-Coupled Receptor-X2 in Mast Cell Activation. Rev Physiol Biochem Pharmacol 2021; 179:139-188. [PMID: 33479839 DOI: 10.1007/112_2020_53] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mas-related G protein-coupled receptor-X2 (MRGPRX2) is known as a novel receptor to activate mast cells (MCs). MRGPRX2 plays a dual role in promoting MC-dependent host defense and immunomodulation and contributing to the pathogenesis of pseudo-allergic drug reactions, pain, itching, and inflammatory diseases. In this article, we discuss the possible signaling pathways of MCs activation mediated by MRGPRX2 and summarize and classify agonists and inhibitors of MRGPRX2 in MCs activation. MRGPRX2 is a low-affinity and low-selectivity receptor, which allows it to interact with a diverse group of ligands. Diverse MRGPRX2 ligands utilize conserved residues in its transmembrane (TM) domains and carboxyl-terminus Ser/Thr residues to undergo ligand binding and G protein coupling. The coupling likely initiates phosphorylation cascades, induces Ca2+ mobilization, and causes degranulation and generation of cytokines and chemokines via MAPK and NF-κB pathways, resulting in MCs activation. Agonists of MRGPRX2 on MCs are divided into peptides (including antimicrobial peptides, neuropeptides, MC degranulating peptides, peptide hormones) and nonpeptides (including FDA-approved drugs). Inhibitors of MRGPRX2 include non-selective GPCR inhibitors, herbal extracts, small-molecule MRGPRX2 antagonists, and DNA aptamer drugs. Screening and classifying MRGPRX2 ligands and summarizing their signaling pathways would improve our understanding of MRGPRX2-mediated physiological and pathological effects on MCs.
Collapse
|
4
|
Paluchova V, Vik A, Cajka T, Brezinova M, Brejchova K, Bugajev V, Draberova L, Draber P, Buresova J, Kroupova P, Bardova K, Rossmeisl M, Kopecky J, Hansen TV, Kuda O. Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice. Mol Nutr Food Res 2020; 64:e1901238. [PMID: 32277573 DOI: 10.1002/mnfr.201901238] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2020] [Indexed: 12/22/2022]
Abstract
SCOPE The docosahexaenoic acid ester of hydroxy linoleic acid (13-DHAHLA) is a bioactive lipid with anti-inflammatory properties from the family of fatty acid esters of hydroxy fatty acids (FAHFA). METHODS AND RESULTS To explore the biosynthesis of 13-DHAHLA from dietary oils, C57BL/6N mice are gavaged for 8 days with various corn oil/marine oil mixtures containing the same amount of DHA. Plasma levels of omega-3 FAHFAs are influenced by the lipid composition of the mixtures but do not reflect the changes in bioavailability of polyunsaturated fatty acids in plasma. Triacylglycerol-bound DHA and linoleic acid serve as more effective precursors for 13-DHAHLA synthesis than DHA bound in phospholipids or wax esters. Both 13(S)- and 13(R)-DHAHLA inhibit antigen and PGE2 -induced chemotaxis and degranulation of mast cells to a comparable extent and 13(S)-DHAHLA is identified as the predominant isomer in mouse adipose tissue. CONCLUSION Here, the optimal nutritional source of DHA is identified, which supports production of anti-inflammatory FAHFAs, as triacylglycerol-based marine oil and also reveals a possible role of triacylglycerols in the synthesis of FAHFA lipokines.
Collapse
Affiliation(s)
- Veronika Paluchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Anders Vik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068, Blindern, Oslo, N-0316, Norway
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Marie Brezinova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jana Buresova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Petra Kroupova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Kristina Bardova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068, Blindern, Oslo, N-0316, Norway
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| |
Collapse
|
5
|
Yoshida K, Tajima M, Nagano T, Obayashi K, Ito M, Yamamoto K, Matsuoka I. Co-Stimulation of Purinergic P2X4 and Prostanoid EP3 Receptors Triggers Synergistic Degranulation in Murine Mast Cells. Int J Mol Sci 2019; 20:E5157. [PMID: 31627451 PMCID: PMC6829402 DOI: 10.3390/ijms20205157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/21/2023] Open
Abstract
Mast cells (MCs) recognize antigens (Ag) via IgE-bound high affinity IgE receptors (FcεRI) and trigger type I allergic reactions. FcεRI-mediated MC activation is regulated by various G protein-coupled receptor (GPCR) agonists. We recently reported that ionotropic P2X4 receptor (P2X4R) stimulation enhanced FcεRI-mediated degranulation. Since MCs are involved in Ag-independent hypersensitivity, we investigated whether co-stimulation with ATP and GPCR agonists in the absence of Ag affects MC degranulation. Prostaglandin E2 (PGE2) induced synergistic degranulation when bone marrow-derived MCs (BMMCs) were co-stimulated with ATP, while pharmacological analyses revealed that the effects of PGE2 and ATP were mediated by EP3 and P2X4R, respectively. Consistently, this response was absent in BMMCs prepared from P2X4R-deficient mice. The effects of ATP and PGE2 were reduced by PI3 kinase inhibitors but were insensitive to tyrosine kinase inhibitors which suppressed the enhanced degranulation induced by Ag and ATP. MC-dependent PGE2-triggered vascular hyperpermeability was abrogated in a P2X4R-deficient mouse ear edema model. Collectively, our results suggest that P2X4R signaling enhances EP3R-mediated MC activation via a different mechanism to that involved in enhancing Ag-induced responses. Moreover, the cooperative effects of the common inflammatory mediators ATP and PGE2 on MCs may be involved in Ag-independent hypersensitivity in vivo.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Makoto Tajima
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Tomoki Nagano
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kosuke Obayashi
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Masaaki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
6
|
Magadmi R, Meszaros J, Damanhouri ZA, Seward EP. Secretion of Mast Cell Inflammatory Mediators Is Enhanced by CADM1-Dependent Adhesion to Sensory Neurons. Front Cell Neurosci 2019; 13:262. [PMID: 31275114 PMCID: PMC6591473 DOI: 10.3389/fncel.2019.00262] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Judit Meszaros
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Abstract
Receptors recognizing the Fc-part of immunoglobulins (FcR) are important in the engagement of phagocytes with opsonized micro-organisms, but they also play a major role in the pathogenesis of chronic inflammatory diseases. Different FcRs are specifically recognizing and binding the different classes of immunoglobulins, transmitting different signals into the cell. The function of IgG (FcγR's) and IgA (FcαR) recognizing receptors is controlled by cellular signals evoked by activation of heterologous receptors in a process generally referred to as inside-out control. This concept is clearly described for the regulation of integrin receptors. Inside-out control can be achieved at different levels by modulation of: (i) receptor affinity, (ii) receptor avidity/valency, (iii) interaction with signaling chains, (iv) interaction with other receptors and (v) localization in functionally different membrane domains. The inside-out control of FcRs is an interesting target for novel therapy by therapeutical antibodies as it can potentiate or decrease the functionality of the response to the antibodies depending on the mechanisms of the diseases they are applied for.
Collapse
Affiliation(s)
- Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Halova I, Bambouskova M, Draberova L, Bugajev V, Draber P. The transmembrane adaptor protein NTAL limits mast cell chemotaxis toward prostaglandin E2. Sci Signal 2018; 11:11/556/eaao4354. [DOI: 10.1126/scisignal.aao4354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotaxis of mast cells is one of the crucial steps in their development and function. Non–T cell activation linker (NTAL) is a transmembrane adaptor protein that inhibits the activation of mast cells and B cells in a phosphorylation-dependent manner. Here, we studied the role of NTAL in the migration of mouse mast cells stimulated by prostaglandin E2 (PGE2). Although PGE2 does not induce the tyrosine phosphorylation of NTAL, unlike IgE immune complex antigens, we found that loss of NTAL increased the chemotaxis of mast cells toward PGE2. Stimulation of mast cells that lacked NTAL with PGE2 enhanced the phosphorylation of AKT and the production of phosphatidylinositol 3,4,5-trisphosphate. In resting NTAL-deficient mast cells, phosphorylation of an inhibitory threonine in ERM family proteins accompanied increased activation of β1-containing integrins, which are features often associated with increased invasiveness in tumors. Rescue experiments indicated that only full-length, wild-type NTAL restored the chemotaxis of NTAL-deficient cells toward PGE2. Together, these data suggest that NTAL is a key inhibitor of mast cell chemotaxis toward PGE2, which may act through the RHOA/ERM/β1-integrin and PI3K/AKT axes.
Collapse
|
10
|
Ayyadurai S, Gibson AJ, D'Costa S, Overman EL, Sommerville LJ, Poopal AC, Mackey E, Li Y, Moeser AJ. Frontline Science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukoc Biol 2017; 102:1299-1312. [PMID: 28684600 DOI: 10.1189/jlb.2hi0317-088rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/28/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022] Open
Abstract
Life stress is a major risk factor in the onset and exacerbation of mast cell-associated diseases, including allergy/anaphylaxis, asthma, and irritable bowel syndrome. Although it is known that mast cells are highly activated upon stressful events, the mechanisms by which stress modulates mast cell function and disease pathophysiology remains poorly understood. Here, we investigated the role of corticotropin-releasing factor receptor subtype 1 (CRF1) in mast cell degranulation and associated disease pathophysiology. In a mast cell-dependent model of IgE-mediated passive systemic anaphylaxis (PSA), prophylactic administration of the CRF1-antagonist antalarmin attenuated mast cell degranulation and hypothermia. Mast cell-deficient KitW-sh/W-sh mice engrafted with CRF1-/- bone marrow-derived mast cells (BMMCs) exhibited attenuated PSA-induced serum histamine, hypothermia, and clinical scores compared with wild-type BMMC-engrafted KitW-sh/W-sh mice. KitW-sh/W-sh mice engrafted with CRF1-/- BMMCs also exhibited suppressed in vivo mast cell degranulation and intestinal permeability in response to acute restraint stress. Genetic and pharmacologic experiments with murine BMMCs, rat RBL-2H3, and human LAD2 mast cells demonstrated that although CRF1 activation did not directly induce MC degranulation, CRF1 signaling potentiated the degranulation responses triggered by diverse mast cell stimuli and was associated with enhanced release of Ca2+ from intracellular stores. Taken together, our results revealed a prominent role for CRF1 signaling in mast cells as a positive modulator of stimuli-induced degranulation and in vivo pathophysiologic responses to immunologic and psychologic stress.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Susan D'Costa
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Elizabeth L Overman
- Department of Biology, Methodist University, Fayetteville, North Carolina, USA
| | - Laura J Sommerville
- Department of Pathology, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Ashwini C Poopal
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Emily Mackey
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,Comparative Biomedical Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA; .,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA; and.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Einwallner E, Kiefer FW, Di Caro G, Orthofer M, Witzeneder N, Hörmann G, Itariu B, Zeyda M, Penninger JM, Stulnig TM, Esterbauer H, Todoric J. Mast cells are not associated with systemic insulin resistance. Eur J Clin Invest 2016; 46:911-919. [PMID: 27600500 DOI: 10.1111/eci.12675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Infiltration of white adipose tissue (WAT) by inflammatory cells in obesity is considered to be a key event in the development of insulin resistance. Recently, mast cells (MCs) have been identified as new players in the pathogenesis of obesity. We aimed to investigate the relationship between MCs and various inflammatory markers in serum and WAT and to determine the role of MCs in the aetiology of insulin resistance. MATERIALS AND METHODS Gene expression was measured in WAT from 20 morbidly obese patients and 20 nonobese control subjects. Homoeostasis Model of Assessment-Insulin Resistance (HOMA-IR) was used to estimate insulin sensitivity. In addition, wild-type and mast cell-deficient mice were fed a high-fat or low-fat diet to study mast cell influence on inflammatory cell polarization in WAT and overall metabolic changes. RESULTS WAT levels of MC-specific TPSb2 transcript were increased in obesity and significantly positively correlated with TNF, CCL2, CCL5 and CD68 gene expression levels in our study subjects after adjustment for sex, age and BMI. Accordingly, MC deficiency abrogated increase in expression of pro-inflammatory M1 macrophage marker genes in mouse WAT upon high-fat diet feeding. However, MCs accumulated in obese human WAT independent of insulin resistance and systemic changes in inflammatory mediators. CONCLUSIONS Our results suggest that MCs contribute to the local pro-inflammatory state within WAT in obesity but do not play a primary role in causing insulin resistance.
Collapse
Affiliation(s)
- Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Di Caro
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | - Michael Orthofer
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Hörmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bianca Itariu
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jelena Todoric
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria. .,Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
12
|
Hox V, O'Connell MP, Lyons JJ, Sackstein P, Dimaggio T, Jones N, Nelson C, Boehm M, Holland SM, Freeman AF, Tweardy DJ, Olivera A, Metcalfe DD, Milner JD. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J Allergy Clin Immunol 2016; 138:187-199. [PMID: 26948077 PMCID: PMC4931983 DOI: 10.1016/j.jaci.2015.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND During IgE-mediated immediate hypersensitivity reactions, vascular endothelial cells permeabilize in response to mast cell mediators. We have demonstrated previously that patients and mice with signal transducer and activator of transcription 3 (STAT3) mutations (autosomal dominant hyper-IgE syndrome [AD-HIES]) are partially protected from anaphylaxis. OBJECTIVES We sought to study the mechanism by which STAT3 contributes to anaphylaxis and determine whether small-molecule inhibition of STAT3 can prevent anaphylaxis. METHODS Using unaffected and STAT3-inhibited or genetic loss-of-function samples, we performed histamine skin prick tests, investigated the contribution of STAT3 to animal models of anaphylaxis, and measured endothelial cell permeability, gene and protein expression, and histamine receptor-mediated signaling. RESULTS Although mouse mast cell degranulation was minimally affected by STAT3 blockade, mast cell mediator-induced anaphylaxis was blunted in Stat3 mutant mice with AD-HIES and in wild-type mice subjected to small-molecule STAT3 inhibition. Histamine skin prick test responses were diminished in patients with AD-HIES. Human umbilical vein endothelial cells derived from patients with AD-HIES or treated with a STAT3 inhibitor did not signal properly through Src or cause appropriate dissolution of the adherens junctions made up of the proteins vascular endothelial-cadherin and β-catenin. Furthermore, we found that diminished STAT3 target microRNA17-92 expression in human umbilical vein endothelial cells from patients with AD-HIES is associated with increased phosphatase and tensin homolog (PTEN) expression, which inhibits Src, and increased E2F transcription factor 1 expression, which regulates β-catenin cellular dynamics. CONCLUSIONS These data demonstrate that STAT3-dependent transcriptional activity regulates critical components for the architecture and functional dynamics of endothelial junctions, thus permitting vascular permeability.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paul Sackstein
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas Dimaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nina Jones
- Clinical Research Directorate/CMRP, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md
| | - Celeste Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
13
|
Zhang H, Du M, Yang Q, Zhu MJ. Butyrate suppresses murine mast cell proliferation and cytokine production through inhibiting histone deacetylase. J Nutr Biochem 2015; 27:299-306. [PMID: 26601598 DOI: 10.1016/j.jnutbio.2015.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
Beyond their nutritional impact to colonic epithelial cells, the intestinal microbiota metabolite butyrate has pleotropic effects to host cells and is known for its beneficial effects on intestinal homeostasis and metabolism. However, it remains unclear how it modulates mast cell function. Here, we demonstrate that butyrate profoundly inhibited proliferation of mouse mastocytoma P815 cells through inducing cell cycle arrest and apoptosis, as well as decreasing c-Kit activation. In addition, butyrate increased early- and late-stage apoptotic P815 cells. In murine bone marrow-derived mast cells (BMMC), butyrate-suppressed FcεRI-dependent tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) release without affecting β-Hexosaminidase, but that was associated with decreased mitogen-activated protein kinase extracellular signal-regulated kinase 1/2, p38 and c-Jun N-terminal kinases activation. Butyrate treatment substantially enhanced histone 3 acetylation in both P815 and BMMC and decreased FcεRI-dependent mRNA expression of tnf-α and il-6 in BMMC, mimicking the effect of Trichostatin A, a known histone deacetylase inhibitor. Chromatin immunoprecipitation revealed that butyrate enhanced acetylation of the tnf-α and il-6 promoter regions but blocked RNA polymerase II binding to the promoters of tnf-α and il-6 genes, indicating suppressed transcription initiation. These phenotypes mimicked those of Trichostatin A treatment. In conclusion, butyrate inhibits cell proliferation and increases cell apoptosis in mastocytoma P815 cells and suppresses FcεRI-dependent cytokine production in murine primary BMMC, which are likely mediated by HDAC inhibition.
Collapse
Affiliation(s)
- Hanying Zhang
- School of Food Science, Washington State University, Pullman, WA, 99164, USA; Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Qiyuan Yang
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol 2014; 135:729-36.e5. [PMID: 25553642 DOI: 10.1016/j.jaci.2014.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Clinical observations suggest that anaphylaxis is more common in adult women compared with adult men, although the mechanistic basis for this sex bias is not well understood. OBJECTIVES We sought to document sex-dependent differences in a mouse model of anaphylaxis and explore the role of female sex hormones and the mechanisms responsible. METHODS Passive systemic anaphylaxis was induced in female and male mice by using histamine, as well as IgE or IgG receptor aggregation. Anaphylaxis was assessed by monitoring body temperature, release of mast cell mediators and/or hematocrit, and lung weight as a measure of vascular permeability. A combination of ovariectomy, estrogen receptor antagonism, and estrogen administration techniques were used to establish estrogen involvement. RESULTS Anaphylactic responses were more pronounced in female than male mice. The enhanced severity of anaphylaxis in female mice was eliminated after pretreatment with an estrogen receptor antagonist or ovariectomy but restored after administration of estradiol in ovariectomized mice, demonstrating that the sex-specific differences are due to the female steroid estradiol. Estrogen did not affect mast cell responsiveness or anaphylaxis onset. Instead, it increased tissue expression of endothelial nitric oxide synthase (eNOS). Blockage of NOS activity with the inhibitor L-NG-nitroarginine methyl ester or genetic eNOS deficiency abolished the sex-related differences. CONCLUSION Our study defines a contribution of estrogen through its regulation of eNOS expression and nitric oxide production to vascular hyperpermeability and intensified anaphylactic responses in female mice, providing additional mechanistic insights into risk factors and possible implications for clinical management in the further exploration of human anaphylaxis.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
15
|
Kovarova M, Koller BH. PGE₂ promotes apoptosis induced by cytokine deprivation through EP3 receptor and induces Bim in mouse mast cells. PLoS One 2014; 9:e102948. [PMID: 25054560 PMCID: PMC4108439 DOI: 10.1371/journal.pone.0102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
Increased mast cell numbers are observed at sites of allergic inflammation and restoration of normal mast cell numbers is critical to the resolution of these responses. Early studies showed that cytokines protect mast cells from apoptosis, suggesting a simple model in which diminished cytokine levels during resolution leads to cell death. The report that prostaglandins can contribute both to recruitment and to the resolution of inflammation together with the demonstration that mast cells express all four PGE2 receptors raises the question of whether a single PGE2 receptor mediates the ability of PGE2 to regulate mast cell survival and apoptosis. We report here that PGE2 through the EP3 receptor promotes cell death of mast cells initiated by cytokine withdrawal. Furthermore, the ability of PGE2 to limit reconstitution of tissues with cultured mast cells is lost in cell lacking the EP3 receptor. Apoptosis is accompanied by higher dissipation of mitochondrial potential (ΔΨm), increased caspase-3 activation, chromatin condensation, and low molecular weight DNA cleavage. PGE2 augmented cell death is dependent on an increase in intracellular calcium release, calmodulin dependent kinase II and MAPK activation. Synergy between the EP3 pathway and the intrinsic mitochondrial apoptotic pathway results in increased Bim expression and higher sensitivity of mast cells to cytokine deprivation. This supports a model in which PGE2 can contribute to the resolution of inflammation in part by augmenting the removal of inflammatory cells in this case, mast cells.
Collapse
Affiliation(s)
- Martina Kovarova
- Department of Medicine, Pulmonary Division, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beverly H. Koller
- Department of Medicine, Pulmonary Division, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
Rapid progress has recently been made regarding how phospholipase C (PLC)-β functions downstream of G protein-coupled receptors and how PLC-β functions in the nucleus. PLC-β has also been shown to interplay with tyrosine kinase-based signaling pathways, specifically to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1. In this regard, a new multimolecular signaling platform, named SPS complex, has been identified. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Furthermore, a growing body of work suggests that PLC-β also participates in the differentiation and activation of immune cells that control both the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
17
|
Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol 2013; 132:515-525. [PMID: 23993353 PMCID: PMC3917661 DOI: 10.1016/j.jaci.2013.07.020] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells are part of the innate immune defense against infection and cancer and are especially useful in combating certain viral pathogens. The utility of NK cells in human health has been underscored by a growing number of persons who are deficient in NK cells and/or their functions. This can be in the context of a broader genetically defined congenital immunodeficiency, of which there are more than 40 presently known to impair NK cells. However, the abnormality of NK cells in certain cases represents the majority immunologic defect. In aggregate, these conditions are termed NK cell deficiency. Recent advances have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology. Appropriate consideration of these diagnoses and patients raises the potential for rational therapeutic options and further innovation.
Collapse
Affiliation(s)
- Jordan S Orange
- Immunology, Allergy, and Rheumatology, Baylor College of Medicine and the Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
18
|
Kawakami T, Xiao W. Phospholipase C-β in immune cells. Adv Biol Regul 2013; 53:249-57. [PMID: 23981313 DOI: 10.1016/j.jbior.2013.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Great progress has recently been made in structural and functional research of phospholipase C (PLC)-β. We now understand how PLC-β isoforms (β1-β4) are activated by GTP-bound Gαq downstream of G protein-coupled receptors. Numerous studies indicate that PLC-βs participate in the differentiation and activation of immune cells that control both the innate and adaptive immune systems. The PLC-β3 isoform also interplays with tyrosine kinase-based signaling pathways, to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1, with which PLC-β3 and Stat5 form a multi-molecular signaling platform, named SPS complex. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Laboratory of Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan.
| | | |
Collapse
|
19
|
Chan TK, Ng DSW, Cheng C, Guan SP, Koh HM, Wong WSF. Anti-allergic actions of rottlerin from Mallotus philippinensis in experimental mast cell-mediated anaphylactic models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:853-860. [PMID: 23632085 DOI: 10.1016/j.phymed.2013.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/04/2013] [Accepted: 03/09/2013] [Indexed: 05/28/2023]
Abstract
Allergy is an acquired hypersensitivity reaction of the immune system mediated by cross-linking of the allergen-specific IgE-bound high-affinity IgE receptors, leading to immediate mast cell degranulation. Rottlerin is an active molecule isolated from Mallotus philippinensis, a medicinal plant used in Ayurvedic Medicine System for anti-allergic and anti-helminthic treatments. The present study investigated potential anti-allergic effects of rottlerin in animal models of IgE-dependent anaphylaxis and the anti-allergic mechanisms of action of rottlerin in mast cells. Anti-allergic actions of rottlerin were evaluated in passive cutaneous anaphylaxis and passive systemic anaphylaxis mouse models, and in anaphylactic contraction of bronchial rings isolated from sensitized guinea pigs. Direct mast cell-stabilizing effect of rottlerin was examined in RBL-2H3 mast cell line. Anti-allergic signaling mechanisms of action of rottlerin in mast cells were also examined. Rottlerin prevented IgE-mediated cutaneous vascular extravasation, hypothermia, elevation in plasma histamine level and tracheal tissue mast cell degranulation in mice in a dose-dependent manner. In addition, rottlerin suppressed ovalbumin-induced guinea pig bronchial smooth muscle contraction. Furthermore, rottlerin concentration-dependently blocked IgE-mediated immediate release of β-hexosaminidase from RBL-2H3 mast cells. Rottlerin was found to inhibit IgE-induced PLCγ1 and Akt phosphorylation, production of IP3 and rise in cytosolic Ca²⁺ level in mast cells. We report here for the first time that rottlerin possesses anti-allergic activity by blocking IgE-induced mast cell degranulation, providing a foundation for developing rottlerin for the treatment of allergic asthma and other mast cell-mediated allergic disorders.
Collapse
Affiliation(s)
- Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Hox V, Vanoirbeek JA, Alpizar YA, Voedisch S, Callebaut I, Bobic S, Sharify A, De Vooght V, Van Gerven L, Devos F, Liston A, Voets T, Vennekens R, Bullens DMA, De Vries A, Hoet P, Braun A, Ceuppens JL, Talavera K, Nemery B, Hellings PW. Crucial Role of Transient Receptor Potential Ankyrin 1 and Mast Cells in Induction of Nonallergic Airway Hyperreactivity in Mice. Am J Respir Crit Care Med 2013; 187:486-93. [DOI: 10.1164/rccm.201208-1358oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
21
|
Olivera A, Dillahunt SE, Rivera J. Interrogation of sphingosine-1-phosphate receptor 2 function in vivo reveals a prominent role in the recovery from IgE and IgG-mediated anaphylaxis with minimal effect on its onset. Immunol Lett 2013; 150:89-96. [PMID: 23337656 PMCID: PMC3602243 DOI: 10.1016/j.imlet.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022]
Abstract
Autocrine stimulation of S1PR2, a receptor for the lipid mediator sphingosine-1-phosphate (S1P), has been implicated in mast cell degranulation to IgE/antigen (Ag) although, paradoxically, its ligand cannot trigger substantial degranulation. Additionally, the in vivo role of S1PR2 in the overall allergic responses is unclear since S1PR2 was reported to be required for the onset of systemic anaphylaxis by IgE/Ag but, in apparent contradiction, also for the recovery from histamine-induced anaphylaxis in a mast cell independent manner. Here, we sought to clarify the role of S1PR2 in mast cell degranulation and in IgE and IgG-mediated anaphylaxis. Lack of S1PR2 reduced IgE/Ag-induced degranulation in in vitro experiments with mucosal mast cells, but had no effect on connective tissue type mast cells. This latter response correlated with a lack of involvement of S1PR2 in the onset of non-lethal IgE/Ag-mediated systemic and cutaneous anaphylaxis. However, S1pr2(-/-) mice were slow to recover (or did not recover) from FcɛRI-mediated anaphylaxis, an outcome that mirrored their known impairment in histamine clearance due to defective vascular tone. A minor role for S1PR2 in mast cell degranulation was uncovered upon engagement of low affinity receptors for IgG and in the onset of IgG-mediated anaphylaxis. Our findings show that S1PR2 is dispensable for initiating IgE/Ag-mediated connective tissue mast cell degranulation and anaphylaxis, but it is required for normal recovery from anaphylaxis.
Collapse
Affiliation(s)
- Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskelatal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
Smrž D, Bandara G, Zhang S, Mock BA, Beaven MA, Metcalfe DD, Gilfillan AM. A novel KIT-deficient mouse mast cell model for the examination of human KIT-mediated activation responses. J Immunol Methods 2013; 390:52-62. [PMID: 23357051 DOI: 10.1016/j.jim.2013.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Activation of KIT, by its ligand, stem cell factor (SCF), results in the initiation of signal transduction pathways that influence mast cell survival and proliferation. Activating mutations in KIT have thus been linked to clonal MC proliferation associated with systemic mastocytosis. SCF also modulates MC function by inducing MC chemotaxis and by potentiating antigen (Ag)/IgE-mediated MC degranulation. Thus, mutations in KIT also have the potential to affect these processes in allergic and other mast cell-related diseases. Studies to determine how native and mutated KIT may modulate MC chemotaxis and activation have, however, been limited due to the lack of availability of a suitable functional MC line lacking native KIT which would allow transduction of KIT constructs. Here we describe a novel mouse MC line which allows the study of normal and mutated KIT constructs. These cells originated from a bone marrow-derived mouse MC culture out of which a rapidly dividing mast cell sub-population spontaneously arose. Over time, these cells lost KIT expression while continuing to express functional high affinity receptors for IgE (FcεRI). As a consequence, these cells degranulated in response to Ag/IgE but did not migrate nor show any evidence of potentiation of Ag/IgE degranulation in response to SCF. Retroviral transduction of the cells with a human (hu)KIT construct resulted in surface expression of huKIT which responded to huSCF by potentiation of Ag/IgE-induced degranulation and chemotaxis. This cell line thus presents a novel system to delineate how MC function is modulated by native and mutated KIT and for the identification of novel inhibitors of these processes.
Collapse
Affiliation(s)
- Daniel Smrž
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive, MSC 1881, Bethesda, MD 20892-1881, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Jung MY, Smrž D, Desai A, Bandara G, Ito T, Iwaki S, Kang JH, Andrade MV, Hilderbrand SC, Brown JM, Beaven MA, Metcalfe DD, Gilfillan AM. IL-33 induces a hyporesponsive phenotype in human and mouse mast cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:531-8. [PMID: 23248261 DOI: 10.4049/jimmunol.1201576] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-33 is elevated in afflicted tissues of patients with mast cell (MC)-dependent chronic allergic diseases. Based on its acute effects on mouse MCs, IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of prolonged IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. In this study, we found that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to Ag. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hyporesponsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation, including Ag-mediated calcium mobilization and cytoskeletal reorganization, potentially as a consequence of downregulation of the expression of phospholipase Cγ(1) and Hck. These findings suggest that IL-33 may play a protective, rather than a causative, role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to downregulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.
Collapse
Affiliation(s)
- Mi-Yeon Jung
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Serra-Pages M, Olivera A, Torres R, Picado C, de Mora F, Rivera J. E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J Leukoc Biol 2012; 92:1155-65. [PMID: 22859831 PMCID: PMC3501892 DOI: 10.1189/jlb.0212109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 01/11/2023] Open
Abstract
The experimental administration of PGE(2) for the treatment of asthma dampens clinical symptoms, and similar efficacy has been found in dust mite-induced hypersensitivity reactions in animal models. Here, we investigate the mechanism by which PGE(2) mediates suppression of MC degranulation. We find that the effect of PGE(2) on FcεRI-dependent MC degranulation varies from activating to suppressing, depending on the relative ratio of EP(2) to EP(3) expression on these cells with suppression evident only in cells having increased EP(2) to EP(3) expression. Consistent with a role for EP(2) in suppressing MC responses in vitro, we found that a selective EP(2) agonist, Butaprost, inhibited MC-mediated FcεRI-induced immediate hypersensitivity in a model of PCA. EP(2) engagement on MCs increased cAMP production and inhibited FcεRI-mediated calcium influx. In addition, it also decreased the extent of FcεRI-induced Fyn kinase activity, leading to decreased phosphorylation of key signaling molecules such as Gab2 and Akt. Treatment with an antagonist of cAMP or shRNA down-regulation of PKA (the principal intracellular target of cAMP) reversed the EP(2)-mediated inhibitory effect on MC degranulation and restored calcium influx and phosphorylation of Akt. Collectively, the findings demonstrate that EP(2) suppresses the Fyn-mediated signals that are central to FcεRI-dependent MC degranulation, suggesting that engagement of the EP(2) on MCs may be beneficial in dampening allergic responses.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Calcium/metabolism
- Cell Degranulation/drug effects
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dinoprostone/pharmacology
- Female
- Gene Silencing
- Humans
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Mast Cells/drug effects
- Mast Cells/immunology
- Mast Cells/metabolism
- Mice
- Proto-Oncogene Proteins c-fyn/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/agonists
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Mariona Serra-Pages
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
| | - Ana Olivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosa Torres
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - César Picado
- Department of Pneumology and Respiratory Allergy, Hospital Clínic i Universitari de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain; and
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
GC–MS-based metabolic profiling reveals metabolic changes in anaphylaxis animal models. Anal Bioanal Chem 2012; 404:887-93. [DOI: 10.1007/s00216-012-6129-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 01/05/2023]
|
26
|
Rudich N, Ravid K, Sagi-Eisenberg R. Mast cell adenosine receptors function: a focus on the a3 adenosine receptor and inflammation. Front Immunol 2012; 3:134. [PMID: 22675325 PMCID: PMC3366457 DOI: 10.3389/fimmu.2012.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed.
Collapse
Affiliation(s)
- Noam Rudich
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | | | | |
Collapse
|
27
|
Ito T, Smrz D, Jung MY, Bandara G, Desai A, Smrzová S, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5428-37. [PMID: 22529299 PMCID: PMC3358494 DOI: 10.4049/jimmunol.1103366] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Tomonobu Ito
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Daniel Smrz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Mi-Yeon Jung
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Sárka Smrzová
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
28
|
mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood 2011; 118:6803-13. [PMID: 22053105 DOI: 10.1182/blood-2011-06-359984] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased mast cell burden is observed in the inflamed tissues and affected organs and tissues of patients with mast cell proliferative disorders. However, normal mast cells participate in host defense, so approaches to preferentially target clonally expanding mast cells are needed. We found that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) are up-regulated in neoplastic and developing immature mast cells compared with their terminally differentiated counterparts. Elevated mTOR mRNA was also observed in bone marrow mononuclear cells of patients exhibiting mast-cell hyperplasia. Selective inhibition of mTORC1 and mTORC2 through genetic and pharmacologic manipulation revealed that, whereas mTORC1 may contribute to mast-cell survival, mTORC2 was only critical for homeostasis of neoplastic and dividing immature mast cells. The cytostatic effect of mTORC2 down-regulation in proliferating mast cells was determined to be via inhibition of cell-cycle progression. Because mTORC2 was observed to play little role in the homeostasis of differentiated, nonproliferating, mature mast cells, these data provide a rationale for adopting a targeted approaching selectively inhibiting mTORC2 to effectively reduce the proliferation of mast cells associated with inflammation and disorders of mast cell proliferation while leaving normal differentiated mast cells largely unaffected.
Collapse
|
29
|
Rådinger M, Smrž D, Metcalfe DD, Gilfillan AM. Glycogen synthase kinase-3β is a prosurvival signal for the maintenance of human mast cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5587-95. [PMID: 22039301 DOI: 10.4049/jimmunol.1101257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homeostasis of mature tissue-resident mast cells is dependent on the relative activation of pro- and antiapoptotic regulators. In this study, we investigated the role of glycogen synthase kinase 3β (GSK3β) in the survival of neoplastic and nonneoplastic human mast cells. GSK3β was observed to be phosphorylated at the Y(216) activating residue under resting conditions in both the neoplastic HMC1.2 cell line and in peripheral blood-derived primary human mast cells (HuMCs), suggesting constitutive activation of GSK3β in these cells. Lentiviral-transduced short hairpin RNA knockdown of GSK3β in both the HMC1.2 cells and HuMCs resulted in a significant reduction in cell survival as determined with the MTT assay. The decrease in stem cell factor (SCF)-mediated survival in the GSK3β knockdown HuMCs was reflected by enhancement of SCF withdrawal-induced apoptosis, as determined by Annexin V staining and caspase cleavage, and this was associated with a pronounced reduction in SCF-mediated phosphorylation of Src homology 2 domain-containing phosphatase 2 and ERK1/2 and reduced expression of the antiapoptotic proteins Bcl-xl and Bcl-2. These data show that GSK3β is an essential antiapoptotic factor in both neopastic and nontransformed primary human mast cells through the regulation of SCF-mediated Src homology 2 domain-containing phosphatase 2 and ERK activation. Our data suggest that targeting of GSK3β with small m.w. inhibitors such as CHIR 99021 may thus provide a mechanism for limiting mast cell survival and subsequently decreasing the intensity of the allergic inflammatory response.
Collapse
Affiliation(s)
- Madeleine Rådinger
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | |
Collapse
|
30
|
Medic N, Desai A, Komarow H, Burch LH, Bandara G, Beaven MA, Metcalfe DD, Gilfillan AM. Examination of the role of TRPM8 in human mast cell activation and its relevance to the etiology of cold-induced urticaria. Cell Calcium 2011; 50:473-80. [PMID: 21906810 DOI: 10.1016/j.ceca.2011.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/29/2011] [Accepted: 08/08/2011] [Indexed: 11/29/2022]
Abstract
Mast cells are considered the primary initiators of allergic diseases as a consequence of the release of multiple inflammatory mediators on activation. Although predominately activated through antigen-mediated aggregation of IgE-occupied-FcɛRI, they can also be induced to release mediators by other receptors and environmental stimuli. Based on studies conducted in the RBL 2H3 rodent mast cell line, the transient receptor potential melastatin 8 (TRPM8) cation channel has been implicated in the activation of mast cells in response to cold and, by inference, the development of urticaria. Here we investigated the expression and role of TRPM8 receptor, in both human and mouse non-transformed cells, with the aim of exploring the potential link between TRPM8 and the pathology of cold urticaria in humans. Although expressed in mouse mast cells, we found no evidence of TRPM8 expression in human mast cells or functional mutations in TRPM8 in cold urticaria patients. Furthermore, neither mouse nor human primary cultured mast cells degranulated in response to cold challenge or TRPM8 agonists and mast cell reactivity was unaffected in Trpm8(-/-) mice. From these data, we conclude that TRPM8 is unlikely to directly regulate mast cell activation in cold urticaria. Thus, alternative mechanisms likely exist for the pathogenesis of this disease.
Collapse
Affiliation(s)
- Nevenka Medic
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ma HT, Beaven MA. Regulators of Ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:62-90. [PMID: 21713652 DOI: 10.1007/978-1-4419-9533-9_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM. Distinct PGE2-responder and non-responder phenotypes in human mast cell populations: "all or nothing" enhancement of antigen-dependent mediator release. Immunol Lett 2011; 141:45-54. [PMID: 21798286 DOI: 10.1016/j.imlet.2011.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED Reports indicate that prostaglandin (PG)E(2) markedly enhances antigen-mediated degranulation in mouse bone marrow-derived mast cells (BMMCs) but not in human mast cells (HuMCs). We have examined the underlying mechanism(s) for this disparity in HuMCs derived from the peripheral blood of multiple donors in addition to mouse BMMCs. HuMCs from half of these donors failed to respond to PGE(2) and the PGE(2) EP3 receptor agonist, sulprostone. However, HuMCs from the remaining donors and the LAD2 human MC line responded to PGE(2) and sulprostone with marked enhancement of antigen-mediated degranulation and IL-8 production in a similar manner to that observed in mouse BMMCs. The EP2 agonist, butaprost, failed to modulate antigen-mediated responses in any type of MCs. These distinct phenotypes could not be explained by differences in EP2 or EP3 expression nor by differences in the ability of PGE(2) to elevate levels of cAMP, a signal recognized to down-regulate mast cell activation. Moreover, both responder and non-responder HuMC populations exhibited similar activation of phosphatidylinositol 3-kinase, and MAP kinases. However, translocation of PLCγ(1) to the cell membrane and the associated calcium signal were enhanced only in the responder HuMC population indicating that the link between EP3 and PLCγ is impaired in the non-responder HuMCs. CONCLUSIONS These data provide a cautionary note for the translating of observations in the mouse to human mast cell-dependent disorders, but may also provide a basis for examining the effects of co-activating receptors in patients susceptible to allergic conditions.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA
| | | | | | | | | |
Collapse
|
33
|
Zhen-jin Z, Peng L, Fa-yu L, Liyan S, Chang-fu S. PKCα take part in CCR7/NF-κB autocrine signaling loop in CCR7-positive squamous cell carcinoma of head and neck. Mol Cell Biochem 2011; 357:181-7. [DOI: 10.1007/s11010-011-0888-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/17/2011] [Indexed: 01/29/2023]
|
34
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
35
|
Rehni AK, Singh TG, Chand P. Amisulpride-Induced Seizurogenic Effect: A Potential Role of Opioid Receptor-Linked Transduction Systems. Basic Clin Pharmacol Toxicol 2010; 108:310-7. [DOI: 10.1111/j.1742-7843.2010.00655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Smrž D, Iwaki S, McVicar DW, Metcalfe DD, Gilfillan AM. TLR-mediated signaling pathways circumvent the requirement for DAP12 in mast cells for the induction of inflammatory mediator release. Eur J Immunol 2010; 40:3557-69. [PMID: 21108475 PMCID: PMC3393881 DOI: 10.1002/eji.201040573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 02/06/2023]
Abstract
TLR, expressed on the surface of mast cells, respond to a variety of bacterial and viral components to induce and enhance high-affinity IgE receptor-mediated cytokine production. Recent reports have indicated that specific TLR-dependent responses in macrophages and dendritic cells are regulated by the ITAM-containing molecule, DAP12. When phosphorylated, DAP12 recruits Syk, which is a critical molecule for mast cell activation. We therefore examined whether DAP12 similarly regulates TLR-mediated responses in mast cells. DAP12 was confirmed to be expressed in both human and mouse mast cells and, upon phosphorylation, to recruit Syk. However, although TLR agonists induced cytokine production, and synergistically enhanced high-affinity IgE receptor-mediated cytokine production, surprisingly, they failed to increase DAP12 phosphorylation in mouse bone marrow-derived mast cells (BMMC). Furthermore, normal TLR-mediated responses were observed in DAP12(-/-) BMMC. However, DAP12 phosphorylation and subsequent Syk recruitment were observed in BMMC following Con A-induced aggregation of mannose-glycosylated receptors, and these responses, together with Con A-induced degranulation, were substantially reduced in the DAP12(-/-) BMMC. These data demonstrate that TLR have differential requirements for DAP12 for their function in different cell types and that the inability of TLR to influence mast cell degranulation may be linked to their inability to utilize DAP12 to recruit Syk.
Collapse
Affiliation(s)
- Daniel Smrž
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Shoko Iwaki
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Daniel W. McVicar
- Laboratory for Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick MD, 21702
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
37
|
Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM. Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 2010; 286:391-402. [PMID: 20980255 DOI: 10.1074/jbc.m110.164772] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostaglandin (PG) E(2), a potent mediator produced in inflamed tissues, can substantially influence mast cell responses including adhesion to basement membrane proteins, chemotaxis, and chemokine production. However, the signaling pathways by which PGE(2) induces mast cell chemotaxis and chemokine production remains undefined. In this study, we identified the downstream target of phosphatidylinositol 3-kinase, mammalian target of rapamycin (mTOR), as a key regulator of these responses. In mouse bone marrow-derived mast cells, PGE(2) was found to induce activation of mTORC1 (mTOR complexed to raptor) as indicated by increased p70S6K and 4E-BP1 phosphorylation, and activation of mTORC2 (mTOR complexed to rictor), as indicated by increased phosphorylation of AKT at position Ser(473). Selective inhibition of the mTORC1 cascade by rapamycin or by the use of raptor-targeted shRNA failed to decrease PGE(2)-mediated chemotaxis or chemokine generation. However, inhibition of the mTORC2 cascade through the dual mTORC1/mTORC2 inhibitor Torin, or through rictor-targeted shRNA, resulted in a significant attenuation in PGE(2)-mediated chemotaxis, which was associated with a comparable decrease in actin polymerization. Furthermore, mTORC2 down-regulation decreased PGE(2)-induced production of the chemokine monocyte chemoattractant protein-1 (CCL2), which was linked to a significant reduction in ROS production. These findings are consistent with the conclusion that activation of mTORC2, downstream of PI3K, represents a critical signaling locus for chemotaxis and chemokine release from PGE(2)-activated mast cells.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Kuehn HS, Rådinger M, Brown JM, Ali K, Vanhaesebroeck B, Beaven MA, Metcalfe DD, Gilfillan AM. Btk-dependent Rac activation and actin rearrangement following FcepsilonRI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci 2010; 123:2576-85. [PMID: 20587594 DOI: 10.1242/jcs.071043] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mast cells infiltrate the sites of inflammation associated with chronic atopic disease and during helminth and bacterial infection. This process requires receptor-mediated cell chemotaxis across a concentration gradient of their chemotactic ligands. In vivo, mast cells are likely to be exposed to several such agents, which can cooperate in a synergistic manner to regulate mast cell homing. Here, we report that chemotaxis of mouse bone-marrow-derived mast cells (BMMCs) in response to the chemoattractants stem-cell factor (SCF) and prostaglandin (PG)E(2), is substantially enhanced following antigen-dependent ligation of the high-affinity receptor for IgE (FcεRI). These responses were associated with enhanced activation of phosphoinositide 3-kinase (PI3K), and downstream activation of the tyrosine protein kinase Btk, with subsequent enhanced phospholipase (PL)Cγ-mediated Ca(2+) mobilization, Rac activation and F-actin rearrangement. Antigen-induced chemotaxis, and the ability of antigen to amplify responses mediated by SCF, adenosine and PGE(2) were suppressed following inhibition of PI3K, and were impaired in BMMCs derived from Btk(-/-) mice. There were corresponding decreases in the PLCγ-mediated Ca(2+) signal, Rac activation and F-actin rearrangement, which, as they are essential for BMMC chemotaxis, accounts for the impaired migration of Btk-deficient cells. Taken together, these data demonstrate that, by regulating signaling pathways that control F-actin rearrangement, Btk is crucial for the ability of antigen to amplify mast-cell chemotactic responses.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rebres RA, Moon C, Decamp D, Lin KM, Fraser ID, Milne SB, Roach TIA, Brown HA, Seaman WE. Clostridium difficile toxin B differentially affects GPCR-stimulated Ca2+ responses in macrophages: independent roles for Rho and PLA2. J Leukoc Biol 2010; 87:1041-57. [PMID: 20200401 PMCID: PMC2872536 DOI: 10.1189/jlb.1108708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 02/02/2023] Open
Abstract
Clostridium difficile toxins cause acute colitis by disrupting the enterocyte barrier and promoting inflammation. ToxB from C. difficile inactivates Rho family GTPases and causes release of cytokines and eicosanoids by macrophages. We studied the effects of ToxB on GPCR signaling in murine RAW264.7 macrophages and found that ToxB elevated Ca(2+) responses to Galphai-linked receptors, including the C5aR, but reduced responses to Galphaq-linked receptors, including the UDP receptors. Other Rho inhibitors also reduced UDP Ca(2+) responses, but they did not affect C5a responses, suggesting that ToxB inhibited UDP responses by inhibiting Rho but enhanced C5a responses by other mechanisms. By using PLCbeta isoform-deficient BMDM, we found that ToxB inhibited Ca(2+) signaling through PLCbeta4 but enhanced signaling through PLCbeta3. Effects of ToxB on GPCR Ca(2+) responses correlated with GPCR use of PLCbeta3 versus PLCbeta4. ToxB inhibited UDP Ca(2+) signaling without reducing InsP3 production or the sensitivity of cellular Ca(2+) stores to exogenous InsP3, suggesting that ToxB impairs UDP signaling at the level of InsP3/Ca(2+)coupling. In contrast, ToxB elevated InsP3 production by C5a, and the enhancement of Ca(2+) signaling by C5a was prevented by inhibition of PLA(2) or 5-LOX but not COX, implicating LTs but not prostanoids in the mechanism. In sum, ToxB has opposing, independently regulated effects on Ca(2+) signaling by different GPCR-linked PLCbeta isoforms in macrophages.
Collapse
Affiliation(s)
- Robert A Rebres
- Alliance for Cellular Signaling at Northern California Institute for Research and Education, VA Medical Center, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nunomura S, Gon Y, Yoshimaru T, Kashiwakura J, Kawakami T, Ra C. FcεRI β-chain ITAM amplifies PI3K-signaling to ensure synergistic degranulation responseviaFcεRI and adenosine receptors. Eur J Immunol 2010; 40:1205-17. [DOI: 10.1002/eji.200939651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Insulin potentiates FcepsilonRI-mediated signaling in mouse bone marrow-derived mast cells. Mol Immunol 2009; 47:1039-46. [PMID: 20004975 DOI: 10.1016/j.molimm.2009.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/03/2009] [Accepted: 11/13/2009] [Indexed: 11/20/2022]
Abstract
Factors contained in physiological microenvironments in tissues where mast cells differentiate and reside may influence mast cell responsiveness and modify antigen-dependent activation. A possible direct or indirect role of mast cell responses in diabetes mellitus prompted us to study the impact of insulin treatment on antigen triggered signaling pathways downstream of FcepsilonRI in bone marrow-derived mouse mast cells (BMMCs). We found that insulin alone stimulates tyrosine phosphorylation of tyrosine kinases Lyn, Syk, Fyn, the adapter protein Gab2 (Grb2-associated binding protein 2), Akt and activates ERK, JNK and p38 kinase. Effect of insulin on FcepsilonRI signaling pathways was marked by enhanced phosphorylation of Lyn, Fyn, Gab2 and Akt. Furthermore, BMMC stimulated with antigen in the presence of insulin responded with enhanced protein kinase theta (PKCtheta) activity and increased JNK phosphorylation when compared to BMMC triggered with antigen alone. Functional studies reveal enhanced degranulation and altered cytoskeletal rearrangement when BMMCs were treated simultaneously with insulin and antigen. Our results suggest that insulin tunes antigen-mediated responses of mast cells.
Collapse
|
42
|
Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine H1 receptor activation-linked mechanism. Naunyn Schmiedebergs Arch Pharmacol 2009; 381:11-9. [PMID: 20012267 DOI: 10.1007/s00210-009-0476-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/13/2009] [Indexed: 12/17/2022]
Abstract
The present study has been designed to investigate the role of opioid receptors, mast cells, and histamine receptors (H(1) subtype) in the seizurogenic effect of tramadol on pentylenetetrazole-treated mice. A single injection of pentylenetetrazole (80 mg kg(-1)) was used to elicit seizure activity in mice. Seizures were assessed in terms of the time latency of the onset of Straub-like tail, onset of jerky movements of whole body, convulsions, and death. Tramadol administration (50 mg kg (-1)) caused a marked increase in seizurogenic activity of pentylenetetrazole as measured in terms of a significant decrease in the time latency of the onset of Straub-like tail, jerky movements of whole body, convulsions, and death. Moreover, prior administration of naloxone (2 mg kg(-1)), fexofenadine (100 mg kg(-1)), cetrizine, sodium cromoglycate, and ketotifen (10 mg kg(-1)), respectively, attenuated the seizurogenic activity that tramadol exerted on pentylenetetrazole-treated mice. Therefore, it may be suggested that tramadol exerts a seizurogenic effect on mice via an H(1) receptor activation-linked pathway possibly through an opioid receptor-dependent release of histamine from the mast cells.
Collapse
|
43
|
UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. Biochem Pharmacol 2009; 79:873-9. [PMID: 19896471 DOI: 10.1016/j.bcp.2009.10.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/21/2022]
Abstract
UDP-glucose (UDPG), a glycosyl donor in the biosynthesis of carbohydrates, is an endogenous agonist of the G protein-coupled P2Y(14) receptor. RBL-2H3 mast cells endogenously express a P2Y(14) receptor at which UDPG mediates degranulation as indicated by beta-hexosaminidase (HEX) release. Both UDPG and a more potent, selective 2-thio-modified UDPG analog, MRS2690 (diphosphoric acid 1-alpha-d-glucopyranosyl ester 2-[(2-thio)uridin-5''-yl] ester), caused a substantial calcium transient in RBL-2H3 cells, which was blocked by pertussis toxin, indicating the presence of the G(i)-coupled P2Y(14) receptor, supported also by quantitative detection of abundant mRNA. Expression of the closely related P2Y(6) receptor was over 100 times lower than the P2Y(14) receptor, and the P2Y(6) agonist 3-phenacyl-UDP was inactive in RBL-2H3 cells. P2Y(14) receptor agonists also induced [(35)S]GTPgammaS binding to RBL-2H3 cell membranes, and phosphorylation of ERK1/2, P38 and JNK. UDPG and MRS2690 concentration-dependently enhanced HEX release with EC(50) values of 1150+/-320 and 103+/-18nM, respectively. The enhancement was completely blocked by pertussis toxin and significantly diminished by P2Y(14) receptor-specific siRNA. Thus, mast cells express an endogenous P2Y(14) receptor, which mediates G(i)-dependent degranulation and is therefore a potential novel therapeutic target for allergic conditions.
Collapse
|
44
|
Liu C, Liu Z, Li Z, Wu Y. Molecular regulation of mast cell development and maturation. Mol Biol Rep 2009; 37:1993-2001. [PMID: 19644767 DOI: 10.1007/s11033-009-9650-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Mast cells play a crucial role in the pathogenesis of allergic diseases. In recent years, tremendous progresses have been made in studies of mast cell origination, migration, proliferation, maturation and survival, and the cytokines regulating these activities. These advances have significantly improved our understandings to mast cell biology and to the molecular mechanisms of mast cells in the pathogenesis of allergic diseases.
Collapse
Affiliation(s)
- Chenxiong Liu
- Allergy and Immunology Institute, School of Medicine, Shenzhen University, Shenzhen, China
| | | | | | | |
Collapse
|
45
|
Boehme SA, Franz-Bacon K, Chen EP, Ly TW, Kawakami Y, Bacon KB. Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2). Int Immunol 2009; 21:621-32. [DOI: 10.1093/intimm/dxp031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Gilfillan AM, Peavy RD, Metcalfe DD. Amplification mechanisms for the enhancement of antigen-mediated mast cell activation. Immunol Res 2009; 43:15-24. [PMID: 18827981 PMCID: PMC2709785 DOI: 10.1007/s12026-008-8046-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of mast cells in the allergic inflammatory response occurs via the high affinity receptor for IgE (FcepsilonRI) following receptor aggregation induced by antigen-mediated cross-linking of IgE-occupied FcepsilonRI. Recent observations suggest this response is profoundly influenced by other factors that reduce the threshold for, and increase the extent of, mast cell activation. For example, under experimental conditions, cell surface receptors such as KIT and specific G protein-coupled receptors synergistically enhance FcepsilonRI-mediated mast cell degranulation and cytokine production. Activating mutations in critical signaling molecules may also contribute to such responses. In this review, we describe our research exploring the mechanisms regulating these synergistic interactions and, furthermore, discuss the relevance of our observations in the context of clinical considerations.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD, 20892-1881, USA
| | | | | |
Collapse
|
47
|
Kuehn HS, Swindle EJ, Kim MS, Beaven MA, Metcalfe DD, Gilfillan AM. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7706-12. [PMID: 19017959 PMCID: PMC2709775 DOI: 10.4049/jimmunol.181.11.7706] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated mast cells are a major source of the eicosanoids PGD(2) and leukotriene C(4) (LTC(4)), which contribute to allergic responses. These eicosanoids are produced following the ERK1/2-dependent activation of cytosolic phospholipase A(2), thus liberating arachidonic acid, which is subsequently metabolized by the actions of 5-lipoxygenase and cyclooxygenase to form LTC(4) and PGD(2), respectively. These pathways also generate reactive oxygen species (ROS), which have been proposed to contribute to FcepsilonRI-mediated signaling in mast cells. In this study, we demonstrate that, in addition to ERK1/2-dependent pathways, ERK1/2-independent pathways also regulate FcepsilonRI-mediated eicosanoid and ROS production in mast cells. A role for the Tec kinase Btk in the ERK1/2-independent regulatory pathway was revealed by the significantly attenuated FcepsilonRI-dependent PGD(2), LTC(4), and ROS production in bone marrow-derived mast cells of Btk(-/-) mice. The FcepsilonRI-dependent activation of Btk and eicosanoid and ROS generation in bone marrow-derived mast cells and human mast cells were similarly blocked by the PI3K inhibitors, Wortmannin and LY294002, indicating that Btk-regulated eicosanoid and ROS production occurs downstream of PI3K. In contrast to ERK1/2, the PI3K/Btk pathway does not regulate cytosolic phospholipase A(2) phosphorylation but rather appears to regulate the generation of ROS, LTC(4), and PGD(2) by contributing to the necessary Ca(2+) signal for the production of these molecules. These data demonstrate that strategies to decrease mast cell production of ROS and eicosanoids would have to target both ERK1/2- and PI3K/Btk-dependent pathways.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Emily J. Swindle
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Mi-Sun Kim
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
48
|
Kim MS, Rådinger M, Gilfillan AM. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol 2008; 29:493-501. [PMID: 18775670 PMCID: PMC2706663 DOI: 10.1016/j.it.2008.07.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
Abstract
Mast cells play a central role in the initiation of inflammatory responses associated with asthma and other allergic disorders. Receptor-mediated mast cell growth, differentiation, homing to their target tissues, survival and activation are all controlled, to varying degrees, by phosphoinositide-3-kinase (PI3K)-driven pathways. It is not fully understood how such diverse responses can be differentially regulated by PI3K. However, recent studies have provided greater insight into the mechanisms that control, and those that are controlled by, different PI3K subunit isoforms in mast cells. In this review, we discuss how PI3K influences the mast cell processes described above. Furthermore, we describe how different mast cell receptors use alternative isoforms of PI3K for these functions and discuss potential downstream targets of these isoforms.
Collapse
Affiliation(s)
- Mi-Sun Kim
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| | - Madeleine Rådinger
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MD 20892, USA
| |
Collapse
|