1
|
Timilsina S, Huang JY, Abdelfattah N, Medina D, Singh D, Abdulsahib S, Subbarayalu P, Do TP, Venkata PP, Nirzhor S, Prochnau J, Bhandari M, Zheng S, Chen Y, Huang G, Mukherjee N, Hromas R, Sung P, Kaklamani V, Vadlamudi R, Zhang N, Rao MK. Epigenetic silencing of DNA sensing pathway by FOXM1 blocks stress ligand-dependent antitumor immunity and immune memory. Nat Commun 2025; 16:3967. [PMID: 40295473 PMCID: PMC12037779 DOI: 10.1038/s41467-025-59186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
The interplay between tumor cells and the microenvironment significantly influences cancer progression. Here, we report a significant role of the transcription factor FOXM1 in shaping the tumor immune landscape. Single-cell sequencing reveals that tumor-intrinsic FOXM1 creates an immune-suppressive tumor microenvironment by inhibiting expression of stress ligands (including ULBP1) on cancer cells, thereby blocking NKG2D-NKG2DL interactions critical for priming natural killer- and T cell-mediated cytotoxicity of cancer cells. FOXM1 suppresses ULBP1 expression by epigenetically silencing the DNA-sensing protein STING using a DNMT1-UHRF1 complex, which in turn inhibits the unfolded protein response protein CHOP from activating ULBP1. Importantly, cancer patients with higher levels of FOXM1 and DNMT1, and lower levels of STING and ULBP1, have worse survival and are less responsive to immunotherapy. Collectively, our findings provide key insight into how a tumor-intrinsic transcription factor epigenetically shapes the tumor immune microenvironment, with strong implications for refining existing and designing new cancer immunotherapies.
Collapse
Affiliation(s)
| | - Jian Yu Huang
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Daisy Medina
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Deepika Singh
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Shahad Abdulsahib
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Panneerdoss Subbarayalu
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Trong Phat Do
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saif Nirzhor
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Jack Prochnau
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Mukund Bhandari
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | | | - Robert Hromas
- Department of Medicine, UT Health, San Antonio, TX, USA
| | - Patrick Sung
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Biochemistry & Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Nu Zhang
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA.
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
2
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
3
|
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. BIOLOGY 2024; 13:929. [PMID: 39596884 PMCID: PMC11591944 DOI: 10.3390/biology13110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The Murciano-Granadina goat (MUG) is a renowned dairy breed, known for its adaptability and resilience, as well as for its exceptional milk traits characterized by high protein and fat content, along with low somatic cell counts. These traits are governed by complex biological processes, crucial in shaping phenotypic diversity. Thus, it is imperative to explore the factors regulating milk production and lactation for this breed. In this study, we investigated the genetic architecture of seven milk traits in MUGs, employing a two-step computational analysis to examine genotype-phenotype associations. Initially, a random forest algorithm identified the relative importance of each single-nucleotide polymorphism (SNP) in determining the traits of interest. The second step applied an information theory-based approach to exploring the complex genetic architecture of quantitative milk traits, focusing on epistatic interactions that may have been overlooked in the first step. These approaches allowed us to identify an almost distinct set of candidate genes for each trait. In contrast, by analyzing the promoter regions of these genes, we revealed common regulatory networks among the milk traits under study. These findings are crucial for understanding the molecular mechanisms underlying gene regulation, and they highlight the pivotal role of transcription factors (TFs) and their preferential interactions in the development of these traits. Notably, TFs such as DBP, HAND1E47, HOXA4, PPARA, and THAP1 were consistently identified for all traits, highlighting their important roles in immunity within the mammary gland and milk production during lactation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Dong Q, Wang D, Song C, Gong C, Liu Y, Zhou X, Yue J, Hu Y, Liu H, Zhu L, Niu X, Zheng T, Zhang X, Jin J, Wang T, Ju R, Wang C, Jiang Q, Gao T, Jin Y, Li P, Wang Y, Zhang C, Wang GF, Cao C, Liu X. ABL1-mediated phosphorylation promotes FOXM1-related tumorigenicity by Increasing FOXM1 stability. Cell Death Differ 2024; 31:1285-1301. [PMID: 39060421 PMCID: PMC11445503 DOI: 10.1038/s41418-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The transcription factor FOXM1, which plays critical roles in cell cycle progression and tumorigenesis, is highly expressed in rapidly proliferating cells and various tumor tissues, and high FOXM1 expression is related to a poor prognosis. However, the mechanism responsible for FOXM1 dysregulation is not fully understood. Here, we show that ABL1, a nonreceptor tyrosine kinase, contributes to the high expression of FOXM1 and FOXM1-dependent tumor development. Mechanistically, ABL1 directly binds FOXM1 and mediates FOXM1 phosphorylation at multiple tyrosine (Y) residues. Among these phospho-Y sites, pY575 is indispensable for FOXM1 stability as phosphorylation at this site protects FOXM1 from ubiquitin-proteasomal degradation. The interaction of FOXM1 with CDH1, a coactivator of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which is responsible for FOXM1 degradation, is significantly inhibited by Y575 phosphorylation. The phospho-deficient FOXM1(Y575F) mutant exhibited increased ubiquitination, a shortened half-life, and consequently a substantially decreased abundance. Compared to wild-type cells, a homozygous Cr-Y575F cell line expressing endogenous FOXM1(Y575F) that was generated by CRISPR/Cas9 showed obviously delayed mitosis progression, impeded colony formation and inhibited xenotransplanted tumor growth. Overall, our study demonstrates that ABL1 kinase is involved in high FOXM1 expression, providing clear evidence that ABL1 may act as a therapeutic target for the treatment of tumors with high FOXM1 expression.
Collapse
Affiliation(s)
- Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xinwei Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xiayang Niu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Tong Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Xun Zhang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Jing Jin
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China
| | - Yan Wang
- Clinical Biobank Center, Medical Innovation Research Division, Chinese PLA General Hospital, 100853, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guang-Fei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100850, Beijing, China.
| |
Collapse
|
5
|
Noonan ML, Muto Y, Yoshimura Y, Leckie-Harre A, Wu H, Kalinichenko VV, Humphreys BD, Chang-Panesso M. Injury-induced Foxm1 expression in the mouse kidney drives epithelial proliferation by a cyclin F-dependent mechanism. JCI Insight 2024; 9:e175416. [PMID: 38916959 PMCID: PMC11383596 DOI: 10.1172/jci.insight.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.
Collapse
Affiliation(s)
- Megan L Noonan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Vladimir V Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy. Cancers (Basel) 2024; 16:1558. [PMID: 38672640 PMCID: PMC11049207 DOI: 10.3390/cancers16081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The retinoblastoma (RB) transcriptional corepressor 1 (RB1) is a critical tumor suppressor gene, governing diverse cellular processes implicated in cancer biology. Dysregulation or deletion in RB1 contributes to the development and progression of various cancers, making it a prime target for therapeutic intervention. RB1's canonical function in cell cycle control and DNA repair mechanisms underscores its significance in restraining aberrant cell growth and maintaining genomic stability. Understanding the complex interplay between RB1 and cellular pathways is beneficial to fully elucidate its tumor-suppressive role across different cancer types and for therapeutic development. As a result, investigating vulnerabilities arising from RB1 deletion-associated mechanisms offers promising avenues for targeted therapy. Recently, several findings highlighted multiple methods as a promising strategy for combating tumor growth driven by RB1 loss, offering potential clinical benefits in various cancer types. This review summarizes the multifaceted role of RB1 in cancer biology and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yuan-Xin Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Rudzinskas SA, Goff AC, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Intrinsically dysregulated cellular stress signaling genes and gene networks in postpartum depression. Mol Psychiatry 2023; 28:3023-3032. [PMID: 36782063 PMCID: PMC10507674 DOI: 10.1038/s41380-023-01985-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Postpartum depression (PPD) is a leading cause of morbidity and mortality among women. Clinically, the administration and withdrawal of supraphysiologic estradiol and progesterone (E2 + P) can cause affective symptom reoccurrence in women with a history of PPD, but not matched controls. To investigate the cellular basis underlying this differential affective response, lymphoblastoid cell lines (LCLs) were derived from women with and without past PPD and compared transcriptomically in hormone conditions mimicking pregnancy and parturition: supraphysiologic E2 + P-addback; supraphysiologic E2 + P-withdrawal; and no added E2 + P (Baseline). RNA-sequencing identified unique differentially expressed genes (DEGs) in all hormone conditions, but the majority tended to be downregulated in PPD and observed in E2 + P-addback. Two of these DEGs were evolutionarily conserved cellular stress regulators: IMPACT, an integrative response protein maintaining translational homeostasis, and WWTR1, a transcriptional coactivator in the 'Hippo' pathway mediating cell proliferation and survival. Correspondingly, significant gene network modules were linked to cell cycle progression, estrogen response, and immune dysregulation, suggesting innate differences in intracellular signaling in PPD. In certain hormone conditions, PPD LCLs displayed increased GATA3 expression (an upstream regulator of IMPACT and WWTR1) and differentially phosphorylated eiF2α (the ultimate downstream target of IMPACT). Taken together, these transcriptomic data primarily implicate innately dysregulated cellular responses as potentially influencing mood and/or escalating PPD risk. Furthermore, the intrinsic downregulation of IMPACT's translation and WWTR1's transcription networks may suggest a novel link between PPD and a compromised ability to maintain homeostasis in the context of cellular stress occurring during pregnancy and parturition.
Collapse
Affiliation(s)
- Sarah A Rudzinskas
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | - Allison C Goff
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | - Maria A Mazzu
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| | | | | | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Peter J Schmidt
- Behavioral Endocrinology Branch, NIMH, Bldg. 10CRC, Room 25330, 10 Center Drive MSC 1277, Bethesda, 20892-1277, MD, USA.
| | - David Goldman
- Laboratory of Neurogenetics, NIAAA, Bethesda, MD, USA
| |
Collapse
|
8
|
Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA. Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res 2023; 25:76. [PMID: 37370117 DOI: 10.1186/s13058-023-01675-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
FOXM1 (Forkhead box M1) is an oncogenic transcription factor that is greatly upregulated in breast cancer and many other cancers where it promotes tumorigenesis, and cancer growth and progression. It is expressed in all subtypes of breast cancer and is the factor most associated with risk of poor patient survival, especially so in triple negative breast cancer (TNBC). Thus, new approaches to inhibiting FOXM1 and its activities, and combination therapies utilizing FOXM1 inhibitors in conjunction with known cancer drugs that work together synergistically, could improve cancer treatment outcomes. Targeting FOXM1 might prove especially beneficial in TNBC where few targeted therapies currently exist, and also in suppressing recurrent advanced estrogen receptor (ER)-positive and HER2-positive breast cancers for which treatments with ER or HER2 targeted therapies that were effective initially are no longer beneficial. We present these perspectives and future directions in the context of what is known about FOXM1, its regulation, and its key roles in promoting cancer aggressiveness and metastasis, while being absent or very low in most normal non-regenerating adult tissues. We discuss new inhibitors of FOXM1 and highlight FOXM1 as an attractive target for controlling drug-resistant and difficult-to-suppress breast cancers, and how blocking FOXM1 might improve outcomes for patients with all subtypes of breast cancer.
Collapse
Affiliation(s)
- Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Valeria Sanabria Guillen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Katzenellenbogen
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam AB, Frolov MV, Merrill BJ, Raychaudhuri P. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer. Cancer Res 2022; 82:2458-2471. [PMID: 35583996 PMCID: PMC9258028 DOI: 10.1158/0008-5472.can-22-0410] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
UNLABELLED The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eilidh O’Brien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria P. Zappia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B.M.M.K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Chand V, Liao X, Guzman G, Benevolenskaya E, Raychaudhuri P. Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene 2022; 41:3778-3790. [PMID: 35761036 PMCID: PMC9329203 DOI: 10.1038/s41388-022-02394-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Elizaveta Benevolenskaya
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA.
- Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Vini R, Rajavelu A, Sreeharshan S. 27-Hydroxycholesterol, The Estrogen Receptor Modulator, Alters DNA Methylation in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:783823. [PMID: 35360070 PMCID: PMC8961300 DOI: 10.3389/fendo.2022.783823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| |
Collapse
|
12
|
Ahmed M, Lai TH, Kim W, Kim DR. A Functional Network Model of the Metastasis Suppressor PEBP1/RKIP and Its Regulators in Breast Cancer Cells. Cancers (Basel) 2021; 13:6098. [PMID: 34885208 PMCID: PMC8657175 DOI: 10.3390/cancers13236098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Korea; (M.A.); (T.H.L.); (W.K.)
| |
Collapse
|
13
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
14
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
15
|
Vaz S, Ferreira FJ, Macedo JC, Leor G, Ben-David U, Bessa J, Logarinho E. FOXM1 repression increases mitotic death upon antimitotic chemotherapy through BMF upregulation. Cell Death Dis 2021; 12:542. [PMID: 34035233 PMCID: PMC8149823 DOI: 10.1038/s41419-021-03822-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
Inhibition of spindle microtubule (MT) dynamics has been effectively used in cancer treatment. Although the mechanisms by which MT poisons elicit mitotic arrest are fairly understood, efforts are still needed towards elucidating how cancer cells respond to antimitotic drugs owing to cytotoxicity and resistance side effects. Here, we identified the critical G2/M transcription factor Forkhead box M1 (FOXM1) as a molecular determinant of cell response to antimitotics. We found FOXM1 repression to increase death in mitosis (DiM) due to upregulation of the BCL-2 modifying factor (BMF) gene involved in anoikis, an apoptotic process induced upon cell detachment from the extracellular matrix. FOXM1 binds to a BMF intronic cis-regulatory element that interacts with both the BMF and the neighbor gene BUB1B promoter regions, to oppositely regulate their expression. This mechanism ensures that cells treated with antimitotics repress BMF and avoid DiM when FOXM1 levels are high. In addition, we show that this mechanism is partly disrupted in anoikis/antimitotics-resistant tumor cells, with resistance correlating with lower BMF expression but in a FOXM1-independent manner. These findings provide a stratification biomarker for antimitotic chemotherapy response.
Collapse
Affiliation(s)
- Sara Vaz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,Programa doutoral em Biologia Molecular e Celular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Fábio J Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Joana C Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Gil Leor
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - José Bessa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Vertebrate Development and Regeneration Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| | - Elsa Logarinho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Aging and Aneuploidy Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
16
|
García-Cortés D, Hernández-Lemus E, Espinal-Enríquez J. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations. Front Genet 2021; 12:629475. [PMID: 33959148 PMCID: PMC8096206 DOI: 10.3389/fgene.2021.629475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Luminal A is the most common breast cancer molecular subtype in women worldwide. These tumors have characteristic yet heterogeneous alterations at the genomic and transcriptomic level. Gene co-expression networks (GCNs) have contributed to better characterize the cancerous phenotype. We have previously shown an imbalance in the proportion of intra-chromosomal (cis-) over inter-chromosomal (trans-) interactions when comparing cancer and healthy tissue GCNs. In particular, for breast cancer molecular subtypes (Luminal A included), the majority of high co-expression interactions connect gene-pairs in the same chromosome, a phenomenon that we have called loss of trans- co-expression. Despite this phenomenon has been described, the functional implication of this specific network topology has not been studied yet. To understand the biological role that communities of co-expressed genes may have, we constructed GCNs for healthy and Luminal A phenotypes. Network modules were obtained based on their connectivity patterns and they were classified according to their chromosomal homophily (proportion of cis-/trans- interactions). A functional overrepresentation analysis was performed on communities in both networks to observe the significantly enriched processes for each community. We also investigated possible mechanisms for which the loss of trans- co-expression emerges in cancer GCN. To this end we evaluated transcription factor binding sites, CTCF binding sites, differential gene expression and copy number alterations (CNAs) in the cancer GCN. We found that trans- communities in Luminal A present more significantly enriched categories than cis- ones. Processes, such as angiogenesis, cell proliferation, or cell adhesion were found in trans- modules. The differential expression analysis showed that FOXM1, CENPA, and CIITA transcription factors, exert a major regulatory role on their communities by regulating expression of their target genes in other chromosomes. Finally, identification of CNAs, displayed a high enrichment of deletion peaks in cis- communities. With this approach, we demonstrate that network topology determine, to at certain extent, the function in Luminal A breast cancer network. Furthermore, several mechanisms seem to be acting together to avoid trans- co-expression. Since this phenomenon has been observed in other cancer tissues, a remaining question is whether the loss of long distance co-expression is a novel hallmark of cancer.
Collapse
Affiliation(s)
- Diana García-Cortés
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Holliday H, Roden D, Junankar S, Wu SZ, Baker LA, Krisp C, Chan CL, McFarland A, Skhinas JN, Cox TR, Pal B, Huntington ND, Ormandy CJ, Carroll JS, Visvader J, Molloy MP, Swarbrick A. Inhibitor of Differentiation 4 (ID4) represses mammary myoepithelial differentiation via inhibition of HEB. iScience 2021; 24:102072. [PMID: 33554073 PMCID: PMC7851187 DOI: 10.1016/j.isci.2021.102072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inhibitor of differentiation (ID) proteins dimerize with basic HLH (bHLH) transcription factors, repressing transcription of lineage-specification genes across diverse cellular lineages. ID4 is a key regulator of mammary stem cells; however, the mechanism by which it achieves this is unclear. Here, we show that ID4 has a cell autonomous role in preventing myoepithelial differentiation of basal cells in mammary organoids and in vivo. ID4 positively regulates proliferative genes and negatively regulates genes involved in myoepithelial function. Mass spectrometry reveals that ID4 interacts with the bHLH protein HEB, which binds to E-box motifs in regulatory elements of basal developmental genes involved in extracellular matrix and the contractile cytoskeleton. We conclude that high ID4 expression in mammary basal stem cells antagonizes HEB transcriptional activity, preventing myoepithelial differentiation and allowing for appropriate tissue morphogenesis. Downregulation of ID4 during pregnancy modulates gene regulated by HEB, promoting specialization of basal cells into myoepithelial cells.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Daniel Roden
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Simon Junankar
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Sunny Z. Wu
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Laura A. Baker
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chia-Ling Chan
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrea McFarland
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna N. Skhinas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas R. Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Bhupinder Pal
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Nicholas D. Huntington
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Christopher J. Ormandy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Jane Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark P. Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| |
Collapse
|
18
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
19
|
Taurin S, Alkhalifa H. Breast cancers, mammary stem cells, and cancer stem cells, characteristics, and hypotheses. Neoplasia 2020; 22:663-678. [PMID: 33142233 PMCID: PMC7586061 DOI: 10.1016/j.neo.2020.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022]
Abstract
The cellular heterogeneity of breast cancers still represents a major therapeutic challenge. The latest genomic studies have classified breast cancers in distinct clusters to inform the therapeutic approaches and predict clinical outcomes. The mammary epithelium is composed of luminal and basal cells, and this seemingly hierarchical organization is dependent on various stem cells and progenitors populating the mammary gland. Some cancer cells are conceptually similar to the stem cells as they can self-renew and generate bulk populations of nontumorigenic cells. Two models have been proposed to explain the cell of origin of breast cancer and involve either the reprogramming of differentiated mammary cells or the dysregulation of mammary stem cells or progenitors. Both hypotheses are not exclusive and imply the accumulation of independent mutational events. Cancer stem cells have been isolated from breast tumors and implicated in the development, metastasis, and recurrence of breast cancers. Recent advances in single-cell sequencing help deciphering the clonal evolution within each breast tumor. Still, few clinical trials have been focused on these specific cancer cell populations.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Haifa Alkhalifa
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Roßwag S, Thiede G, Sleeman JP, Thaler S. RASSF1A Suppresses Estrogen-Dependent Breast Cancer Cell Growth through Inhibition of the Yes-Associated Protein 1 (YAP1), Inhibition of the Forkhead Box Protein M1 (FOXM1), and Activation of Forkhead Box Transcription Factor 3A (FOXO3A). Cancers (Basel) 2020; 12:cancers12092689. [PMID: 32967092 PMCID: PMC7566002 DOI: 10.3390/cancers12092689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
The estrogen receptor alpha (ERα) is expressed by the majority of breast cancers and plays an important role in breast cancer development and tumor outgrowth. Although ERα is well known to be a specific and efficient therapeutic target, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast cancer initiation and progression are complex and not completely elucidated. In previous work, we have demonstrated that the tumor suppressor RASSF1A inhibits ERα expression and function in ERα-positive breast cancer cells through an AKT-dependent mechanism. Transcriptional activators such as forkhead box protein M1 (FOXM1) and forkhead transcription factor 3A (FOXO3A) and signaling pathways such as the Hippo pathway are also known to modulate ERα expression and activity. Here we report that RASSF1A acts as an inhibitor of ERα-driven breast cancer cell growth through a complex, hierarchically organized network that initially involves suppression of the Hippo effector Yes-associated protein 1 (YAP1), which is followed by inhibition of AKT1 activity, increased FOXO3A activity as well as a blockade of FOXM1 and ERα expression. Together our findings provide important new mechanistic insights into how the loss of RASSF1A contributes to ERα+ breast cancer initiation and progression.
Collapse
Affiliation(s)
- Sven Roßwag
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
| | - Gitta Thiede
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
| | - Jonathan P. Sleeman
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
- KIT Campus Nord, Institute for Toxicology and Genetics, 76344 Karlsruhe, Germany
| | - Sonja Thaler
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (G.T.); (J.P.S.)
- Correspondence: ; Tel.: +49-621-383-71599; Fax: +49-621-383-71451
| |
Collapse
|
21
|
SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells. Sci Rep 2020; 10:2262. [PMID: 32042016 PMCID: PMC7010743 DOI: 10.1038/s41598-020-59057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In several carcinomas, the SET Domain Containing 3, Actin Histidine Methyltransferase (SETD3) is associated with oncogenesis. However, there is little knowledge about the role of SETD3 in the progression and prognosis of breast cancer. In this study, we first analyzed the prognostic value of SETD3 in breast cancer patients using the database of the public Kaplan-Meier plotter. Moreover, in vitro assays were performed to assess the role of SETD3 in the viability and capacity of invasion of human breast cancer cell lines. We observed that the high expression of SETD3 was associated with better relapse-free survival (RFS) of the whole collective of 3,951 patients, of Estrogen Receptor-positive, and of Luminal A-type breast cancer patients. However, in patients lacking expression of estrogen-, progesterone- and HER2-receptor, and those affected by a p53-mutation, SETD3 was associated with poor RFS. In vitro analysis showed that SETD3 siRNA depletion affects the viability of triple-negative cells as well as the cytoskeletal function and capacity of invasion of highly invasive MDA-MB-231 cells. Interestingly, SETD3 regulates the expression of other genes associated with cancer such as β-actin, FOXM1, FBXW7, Fascin, eNOS, and MMP-2. Our study suggests that SETD3 expression can act as a subtype-specific biomarker for breast cancer progression and prognosis.
Collapse
|
22
|
Epigenetic deregulation of GATA3 in neuroblastoma is associated with increased GATA3 protein expression and with poor outcomes. Sci Rep 2019; 9:18934. [PMID: 31831790 PMCID: PMC6908619 DOI: 10.1038/s41598-019-55382-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023] Open
Abstract
To discover epigenetic changes that may underly neuroblastoma pathogenesis, we identified differentially methylated genes in neuroblastoma cells compared to neural crest cells, the presumptive precursors cells for neuroblastoma, by using genome-wide DNA methylation analysis. We previously described genes that were hypermethylated in neuroblastoma; in this paper we report on 67 hypomethylated genes, which were filtered to select genes that showed transcriptional over-expression and an association with poor prognosis in neuroblastoma, highlighting GATA3 for detailed studies. Specific methylation assays confirmed the hypomethylation of GATA3 in neuroblastoma, which correlated with high expression at both the RNA and protein level. Demethylation with azacytidine in cultured sympathetic ganglia cells led to increased GATA3 expression, suggesting a mechanistic link between GATA3 expression and DNA methylation. Neuroblastomas that had completely absent GATA3 methylation and/or very high levels of protein expression, were associated with poor prognosis. Knock-down of GATA3 in neuroblastoma cells lines inhibited cell proliferation and increased apoptosis but had no effect on cellular differentiation. These results identify GATA3 as an epigenetically regulated component of the neuroblastoma transcriptional control network, that is essential for neuroblastoma proliferation. This suggests that the GATA3 transcriptional network is a promising target for novel neuroblastoma therapies.
Collapse
|
23
|
Chiang HC, Zhang X, Li J, Zhao X, Chen J, Wang HTH, Jatoi I, Brenner A, Hu Y, Li R. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res 2019; 47:5086-5099. [PMID: 30982901 PMCID: PMC6547407 DOI: 10.1093/nar/gkz262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERα-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERα+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jerry Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Howard T-H Wang
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew Brenner
- Department of Medicine, The Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
24
|
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO J 2019; 38:e100330. [PMID: 31304632 PMCID: PMC6627240 DOI: 10.15252/embj.2018100330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.
Collapse
Affiliation(s)
- Davide Pellacani
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Susanna Tan
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Sylvain Lefort
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Connie J Eaves
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| |
Collapse
|
25
|
Chand V, Pandey A, Kopanja D, Guzman G, Raychaudhuri P. Opposing Roles of the Forkhead Box Factors FoxM1 and FoxA2 in Liver Cancer. Mol Cancer Res 2019; 17:1063-1074. [PMID: 30814128 PMCID: PMC6497570 DOI: 10.1158/1541-7786.mcr-18-0968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
The forkhead box transcription factor FoxM1 is essential for hepatocellular carcinoma (HCC) development, and its overexpression coincides with poor prognosis. Here, we show that the mechanisms by which FoxM1 drives HCC progression involve overcoming the inhibitory effects of the liver differentiation gene FoxA2. First, the expression patterns of FoxM1 and FoxA2 in human HCC are opposite. We show that FoxM1 represses expression of FoxA2 in G1 phase. Repression of FoxA2 in G1 phase is important, as it is capable of inhibiting expression of the pluripotency genes that are expressed mainly in S-G2 phases. Using a transgenic mouse model for oncogenic Ras-driven HCC, we provide genetic evidence for a repression of FoxA2 by FoxM1. Conversely, FoxA2 inhibits expression of FoxM1 and inhibits FoxM1-induced tumorigenicity. Also, FoxA2 inhibits Ras-induced HCC progression that involves FoxM1. IMPLICATIONS: The observations provide strong genetic evidence for an opposing role of FoxM1 and FoxA2 in HCC progression. Moreover, FoxM1 drives high-grade HCC progression partly by inhibiting the hepatocyte differentiation gene FoxA2.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, Illinois
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois.
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Zwick RK, Rudolph MC, Shook BA, Holtrup B, Roth E, Lei V, Van Keymeulen A, Seewaldt V, Kwei S, Wysolmerski J, Rodeheffer MS, Horsley V. Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nat Commun 2018; 9:3592. [PMID: 30181538 PMCID: PMC6123393 DOI: 10.1038/s41467-018-05911-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Adipocytes undergo pronounced changes in size and behavior to support diverse tissue functions, but the mechanisms that control these changes are not well understood. Mammary gland-associated white adipose tissue (mgWAT) regresses in support of milk fat production during lactation and expands during the subsequent involution of milk-producing epithelial cells, providing one of the most marked physiological examples of adipose growth. We examined cellular mechanisms and functional implications of adipocyte and lipid dynamics in the mouse mammary gland (MG). Using in vivo analysis of adipocyte precursors and genetic tracing of mature adipocytes, we find mature adipocyte hypertrophy to be a primary mechanism of mgWAT expansion during involution. Lipid tracking and lipidomics demonstrate that adipocytes fill with epithelial-derived milk lipid. Furthermore, ablation of mgWAT during involution reveals an essential role for adipocytes in milk trafficking from, and proper restructuring of, the mammary epithelium. This work advances our understanding of MG remodeling and tissue-specific roles for adipocytes.
Collapse
Affiliation(s)
- Rachel K Zwick
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado, Mail Stop F-8305; RC1 North, 12800 E. 19th Avenue P18-5107, Aurora, CO, 80045, USA
| | - Brett A Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Eve Roth
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Vivian Lei
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
| | - Alexandra Van Keymeulen
- WELBIO, Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles (ULB), 808, route de Lennik, BatC, C6-130, 1070, Brussels, Belgium
| | - Victoria Seewaldt
- Department of Population Sciences and Bekman Institute, City of Hope, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Stephanie Kwei
- Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University, 333 Ceder St., New Haven, CT, 06510, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect St., New Haven, CT, 06520, USA.
- Department of Dermatology, Yale University, 333 Ceder St., New Haven, CT, 06510, USA.
| |
Collapse
|
27
|
Li L, Guturi KKN, Gautreau B, Patel PS, Saad A, Morii M, Mateo F, Palomero L, Barbour H, Gomez A, Ng D, Kotlyar M, Pastrello C, Jackson HW, Khokha R, Jurisica I, Affar EB, Raught B, Sanchez O, Alaoui-Jamali M, Pujana MA, Hakem A, Hakem R. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest 2018; 128:4525-4542. [PMID: 30222135 DOI: 10.1172/jci120401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
The E3 ubiquitin ligase RNF8 plays critical roles in maintaining genomic stability by promoting the repair of DNA double-strand breaks (DSBs) through ubiquitin signaling. Abnormal activation of Notch signaling and defective repair of DSBs promote breast cancer risk. Here, we found that low expression of the full-length RNF8 correlated with poor prognosis for breast cancer patients. Our data revealed that in addition to its role in the repair of DSBs, RNF8 regulated Notch1 signaling and cell-fate determination of mammary luminal progenitors. Mechanistically, RNF8 acted as a negative regulator of Notch signaling by ubiquitylating the active NOTCH1 protein (N1ICD), leading to its degradation. Consistent with abnormal activation of Notch signaling and impaired repair of DSBs in Rnf8-mutant mammary epithelial cells, we observed increased risk of mammary tumorigenesis in mouse models for RNF8 deficiency. Notably, deficiency of RNF8 sensitized breast cancer cells to combination of pharmacological inhibitors of Notch signaling and poly(ADP-ribose) polymerase (PARP), suggesting implications for treatment of breast cancer associated with impaired RNF8 expression or function.
Collapse
Affiliation(s)
- Li Li
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kiran Kumar Naidu Guturi
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Gautreau
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Parasvi S Patel
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amine Saad
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mayako Morii
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Francesca Mateo
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Luis Palomero
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Haithem Barbour
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Antonio Gomez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Deborah Ng
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hartland W Jackson
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - El Bachir Affar
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Moulay Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Miguel A Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Razq Hakem
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Lu XF, Zeng D, Liang WQ, Chen CF, Sun SM, Lin HY. FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget 2018; 9:842-852. [PMID: 29416660 PMCID: PMC5787517 DOI: 10.18632/oncotarget.23182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023] Open
Abstract
Forkhead box protein M1(FoxM1) is a member of forkhead superfamily transcription factors. Emerging evidences have progressively contributed to our understanding on a central role of FoxM1 in human cancers. However, perspectives on the function of FoxM1 in breast cancer (BC) remain conflicting, and mostly were from basic research. Here, we explored the expression profile and prognostic values of FoxM1 based on analysis of pooled clinical datasets derived from online accessible databases, including ONCOMINE, Breast Cancer Gene-Expression Miner v4.0, and Kaplan-Meier plotter. It was found that, FoxM1 mRNA expression was significantly higher in breast tumor versus normal control. FoxM1expression profile presented a distinct pattern in different molecular subtypes of BC patients. Higher expression of FoxM1 was correlated to low mRNA expression of estrogen receptor 1 (ESR1), erb-B2 receptor tyrosine kinase 2 (ERBB2), and was inversely associated with the expression of classical luminal regulators forkhead box protein A1 (FoxA1) and GATA binding protein 3 (GATA3). Elevated FoxM1 expression predicted shorter distance metastasis free survival (DMFS) in BC patients, particularly with estrogen receptor (ER) positive and Luminal A, Luminal B subtypes of BC. More interestingly, elevated FoxM1 expression predicted poor survival in breast cancer patients, especially in the ER (+), progesterone receptor (PR) (+) subgroups and BC patients received adjuvant chemotherapy only or treated with tamoxifen only. These results implied that FoxM1 is an essential prognostic factor and promising candidate target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiao-Feng Lu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei-Quan Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Fa Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shu-Ming Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
29
|
An integrative method to decode regulatory logics in gene transcription. Nat Commun 2017; 8:1044. [PMID: 29051499 PMCID: PMC5715098 DOI: 10.1038/s41467-017-01193-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/25/2017] [Indexed: 12/27/2022] Open
Abstract
Modeling of transcriptional regulatory networks (TRNs) has been increasingly used to dissect the nature of gene regulation. Inference of regulatory relationships among transcription factors (TFs) and genes, especially among multiple TFs, is still challenging. In this study, we introduced an integrative method, LogicTRN, to decode TF–TF interactions that form TF logics in regulating target genes. By combining cis-regulatory logics and transcriptional kinetics into one single model framework, LogicTRN can naturally integrate dynamic gene expression data and TF-DNA-binding signals in order to identify the TF logics and to reconstruct the underlying TRNs. We evaluated the newly developed methodology using simulation, comparison and application studies, and the results not only show their consistence with existing knowledge, but also demonstrate its ability to accurately reconstruct TRNs in biological complex systems. Existing transcriptional regulatory networks models fall short of deciphering the cooperation between multiple transcription factors on dynamic gene expression. Here the authors develop an integrative method that combines gene expression and transcription factor-DNA binding data to decode transcription regulatory logics.
Collapse
|
30
|
Liu L, Shen H, Wang Y. CRY2 is suppressed by FOXM1 mediated promoter hypermethylation in breast cancer. Biochem Biophys Res Commun 2017; 490:44-50. [DOI: 10.1016/j.bbrc.2017.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/01/2017] [Indexed: 01/17/2023]
|
31
|
Mukhopadhyay NK, Chand V, Pandey A, Kopanja D, Carr JR, Chen YJ, Liao X, Raychaudhuri P. Plk1 Regulates the Repressor Function of FoxM1b by inhibiting its Interaction with the Retinoblastoma Protein. Sci Rep 2017; 7:46017. [PMID: 28387346 PMCID: PMC5384083 DOI: 10.1038/srep46017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression.
Collapse
Affiliation(s)
- Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Janai R. Carr
- Department of Hematology/Oncology, University of California, Los Angeles, CA, USA
| | - Yi-Ju Chen
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S, USA Ashland Ave., Chicago, IL-60607, USA
- Jesse Brown VA Medical Center, 820 S. Damen Ave., Chicago, IL-60612, USA
| |
Collapse
|
32
|
Youn M, Wang N, LaVasseur C, Bibikova E, Kam S, Glader B, Sakamoto KM, Narla A. Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors. Haematologica 2017; 102:826-834. [PMID: 28154085 PMCID: PMC5477601 DOI: 10.3324/haematol.2016.156257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
Forkhead box M1 (FOXM1) belongs to the forkhead/winged-helix family of transcription factors and regulates a network of proliferation-associated genes. Its abnormal upregulation has been shown to be a key driver of cancer progression and an initiating factor in oncogenesis. FOXM1 is also highly expressed in stem/progenitor cells and inhibits their differentiation, suggesting that FOXM1 plays a role in the maintenance of multipotency. However, the exact molecular mechanisms by which FOXM1 regulates human stem/progenitor cells are still uncharacterized. To understand the role of FOXM1 in normal hematopoiesis, human cord blood CD34+ cells were transduced with FOXM1 short hairpin ribonucleic acid (shRNA) lentivirus. Knockdown of FOXM1 resulted in a 2-fold increase in erythroid cells compared to myeloid cells. Additionally, knockdown of FOXM1 increased bromodeoxyuridine (BrdU) incorporation in erythroid cells, suggesting greater proliferation of erythroid progenitors. We also observed that the defective phosphorylation of FOXM1 by checkpoint kinase 2 (CHK2) or cyclin-dependent kinases 1/2 (CDK1/2) increased the erythroid population in a manner similar to knockdown of FOXM1. Finally, we found that an inhibitor of FOXM1, forkhead domain inhibitor-6 (FDI-6), increased red blood cell numbers through increased proliferation of erythroid precursors. Overall, our data suggest a novel function of FOXM1 in normal human hematopoiesis.
Collapse
Affiliation(s)
- Minyoung Youn
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Corinne LaVasseur
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Elena Bibikova
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Sharon Kam
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | - Bertil Glader
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| | | | - Anupama Narla
- Department of Pediatrics, Stanford University School of Medicine, CA, USA
| |
Collapse
|
33
|
Mohapatra B, Zutshi N, An W, Goetz B, Arya P, Bielecki TA, Mushtaq I, Storck MD, Meza JL, Band V, Band H. An essential role of CBL and CBL-B ubiquitin ligases in mammary stem cell maintenance. Development 2017; 144:1072-1086. [PMID: 28100467 DOI: 10.1242/dev.138164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
The ubiquitin ligases CBL and CBL-B are negative regulators of tyrosine kinase signaling with established roles in the immune system. However, their physiological roles in epithelial tissues are unknown. Here, we used MMTV-Cre-mediated Cbl gene deletion on a Cbl-b null background, as well as a tamoxifen-inducible mammary stem cell (MaSC)-specific Cbl and Cbl-b double knockout (Cbl/Cbl-b DKO) using Lgr5-EGFP-IRES-CreERT2, to demonstrate a mammary epithelial cell-autonomous requirement of CBL and CBL-B in the maintenance of MaSCs. Using a newly engineered tamoxifen-inducible Cbl and Cbl-b deletion model with a dual fluorescent reporter (Cblflox/flox; Cbl-bflox/flox; Rosa26-CreERT; mT/mG), we show that Cbl/Cbl-b DKO in mammary organoids leads to hyperactivation of AKT-mTOR signaling with depletion of MaSCs. Chemical inhibition of AKT or mTOR rescued MaSCs from Cbl/Cbl-b DKO-induced depletion. Our studies reveal a novel, cell-autonomous requirement of CBL and CBL-B in epithelial stem cell maintenance during organ development and remodeling through modulation of mTOR signaling.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jane L Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA .,Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Baker LA, Holliday H, Swarbrick A. ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocr Relat Cancer 2016; 23:R381-92. [PMID: 27412917 DOI: 10.1530/erc-16-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Milevskiy MJG, Al-Ejeh F, Saunus JM, Northwood KS, Bailey PJ, Betts JA, McCart Reed AE, Nephew KP, Stone A, Gee JMW, Dowhan DH, Dray E, Shewan AM, French JD, Edwards SL, Clark SJ, Lakhani SR, Brown MA. Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Hum Mol Genet 2016; 25:3269-3283. [PMID: 27378691 PMCID: PMC5179926 DOI: 10.1093/hmg/ddw177] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023] Open
Abstract
Predicting response to endocrine therapy and survival in oestrogen receptor positive breast cancer is a significant clinical challenge and novel prognostic biomarkers are needed. Long-range regulators of gene expression are emerging as promising biomarkers and therapeutic targets for human diseases, so we have explored the potential of distal enhancer elements of non-coding RNAs in the prognostication of breast cancer survival. HOTAIR is a long non-coding RNA that is overexpressed, promotes metastasis and is predictive of decreased survival. Here, we describe a long-range transcriptional enhancer of the HOTAIR gene that binds several hormone receptors and associated transcription factors, interacts with the HOTAIR promoter and augments transcription. This enhancer is dependent on Forkhead-Box transcription factors and functionally interacts with a novel alternate HOTAIR promoter. HOTAIR expression is negatively regulated by oestrogen, positively regulated by FOXA1 and FOXM1, and is inversely correlated with oestrogen receptor and directly correlated with FOXM1 in breast tumours. The combination of HOTAIR and FOXM1 enables greater discrimination of endocrine therapy responders and non-responders in patients with oestrogen receptor positive breast cancer. Consistent with this, HOTAIR expression is increased in cell-line models of endocrine resistance. Analysis of breast cancer gene expression data indicates that HOTAIR is co-expressed with FOXA1 and FOXM1 in HER2-enriched tumours, and these factors enhance the prognostic power of HOTAIR in aggressive HER2+ breast tumours. Our study elucidates the transcriptional regulation of HOTAIR, identifies HOTAIR and its regulators as novel biomarkers of patient response to endocrine therapy and corroborates the importance of transcriptional enhancers in cancer.
Collapse
Affiliation(s)
- Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jodi M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Korinne S Northwood
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | - Peter J Bailey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joshua A Betts
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia
| | | | - Andrew Stone
- Epigenetics Research Laboratory, Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julia M W Gee
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Dennis H Dowhan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eloise Dray
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Juliet D French
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stacey L Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sunil R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, Australia.,The University of Queensland School of Medicine, Herston, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
The Role of Forkhead Box Protein M1 in Breast Cancer Progression and Resistance to Therapy. Int J Breast Cancer 2016; 2016:9768183. [PMID: 26942015 PMCID: PMC4752991 DOI: 10.1155/2016/9768183] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/10/2016] [Indexed: 01/30/2023] Open
Abstract
The Forkhead box M1 (FOXM1) is a transcription factor that has been implicated in normal cell growth and proliferation through control of cell cycle transition and mitotic spindle. It is implicated in carcinogenesis of various malignancies where it is activated by either amplification, increased stability, enhanced transcription, dysfunction of regulatory pathways, or activation of PI3K/AKT, epidermal growth factor receptor, Raf/MEK/MAPK, and Hedgehog pathways. This review describes the role of FOXM1 in breast cancer. This includes how FOXM1 impacts on different subtypes of breast cancer, that is, luminal/estrogen receptor positive (ER+), expressing human epidermal growth factor receptor 2 (HER2), basal-like breast cancer (BBC), and triple negative breast cancer (TNBC). The review also describes different tested preclinical therapeutic strategies targeting FOXM1. Developing clinically applicable therapies that specifically inhibit FOXM1 activity is a logical next step in biomarker-driven approaches against breast cancer but will not be without its challenges due to the unique properties of this transcription factor.
Collapse
|
37
|
CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia 2015; 30:1033-43. [PMID: 26707936 PMCID: PMC4856559 DOI: 10.1038/leu.2015.353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new_therapeutic approaches are needed. We showed previously that Cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest, and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T-leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression of CD25 is required for initiation of T-ALL by activated Notch1, and CD25 induction mediates the therapeutic response to CDK6 inhibition in established T-ALL. These results both validate CDK6 as a molecular target for therapy of this subset of T-ALL and suggest that CD25 expression could serve as a biomarker for responsiveness of T-ALL to CDK4/6 inhibitor therapy.
Collapse
|
38
|
A Gene Regulatory Program in Human Breast Cancer. Genetics 2015; 201:1341-8. [PMID: 26510790 DOI: 10.1534/genetics.115.180125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 12/31/2022] Open
Abstract
Molecular heterogeneity in human breast cancer has challenged diagnosis, prognosis, and clinical treatment. It is well known that molecular subtypes of breast tumors are associated with significant differences in prognosis and survival. Assuming that the differences are attributed to subtype-specific pathways, we then suspect that there might be gene regulatory mechanisms that modulate the behavior of the pathways and their interactions. In this study, we proposed an integrated methodology, including machine learning and information theory, to explore the mechanisms. Using existing data from three large cohorts of human breast cancer populations, we have identified an ensemble of 16 master regulator genes (or MR16) that can discriminate breast tumor samples into four major subtypes. Evidence from gene expression across the three cohorts has consistently indicated that the MR16 can be divided into two groups that demonstrate subtype-specific gene expression patterns. For example, group 1 MRs, including ESR1, FOXA1, and GATA3, are overexpressed in luminal A and luminal B subtypes, but lowly expressed in HER2-enriched and basal-like subtypes. In contrast, group 2 MRs, including FOXM1, EZH2, MYBL2, and ZNF695, display an opposite pattern. Furthermore, evidence from mutual information modeling has congruently indicated that the two groups of MRs either up- or down-regulate cancer driver-related genes in opposite directions. Furthermore, integration of somatic mutations with pathway changes leads to identification of canonical genomic alternations in a subtype-specific fashion. Taken together, these studies have implicated a gene regulatory program for breast tumor progression.
Collapse
|
39
|
Choudhary P, Dodsworth BT, Sidders B, Gutteridge A, Michaelides C, Duckworth JK, Whiting PJ, Benn CL. A FOXM1 Dependent Mesenchymal-Epithelial Transition in Retinal Pigment Epithelium Cells. PLoS One 2015; 10:e0130379. [PMID: 26121260 PMCID: PMC4488273 DOI: 10.1371/journal.pone.0130379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
The integrity of the epithelium is maintained by a complex but regulated interplay of processes that allow conversion of a proliferative state into a stably differentiated state. In this study, using human embryonic stem cell (hESC) derived Retinal Pigment Epithelium (RPE) cells as a model; we have investigated the molecular mechanisms that affect attainment of the epithelial phenotype. We demonstrate that RPE undergo a Mesenchymal–Epithelial Transition in culture before acquiring an epithelial phenotype in a FOXM1 dependent manner. We show that FOXM1 directly regulates proliferation of RPE through transcriptional control of cell cycle associated genes. Additionally, FOXM1 modulates expression of the signaling ligands BMP7 and Wnt5B which act reciprocally to enable epithelialization. This data uncovers a novel effect of FOXM1 dependent activities in contributing towards epithelial fate acquisition and furthers our understanding of the molecular regulators of a cell type that is currently being evaluated as a cell therapy.
Collapse
Affiliation(s)
- Parul Choudhary
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
- * E-mail: (PC); (CLB)
| | | | - Ben Sidders
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Alex Gutteridge
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Christos Michaelides
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Joshua Kane Duckworth
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Paul John Whiting
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
| | - Caroline Louise Benn
- Neusentis, Pfizer Ltd, The Portway, Granta Park, Great Abington, Cambridge, United Kingdom
- * E-mail: (PC); (CLB)
| |
Collapse
|
40
|
Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol 2015; 16:130. [PMID: 26100407 PMCID: PMC4492089 DOI: 10.1186/s13059-015-0696-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. Results An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. Conclusions A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0696-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah A Sanders
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Present address: Domainex, 162 Cambridge Science Park, Milton Road, Cambridge, CB4 0GH, UK.
| | - Michael V Gormally
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Giovanni Marsico
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - David Tannahill
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0SP, UK.
| |
Collapse
|
41
|
Xue J, Zhou A, Tan C, Wu Y, Lee HT, Li W, Xie K, Huang S. Forkhead Box M1 Is Essential for Nuclear Localization of Glioma-associated Oncogene Homolog 1 in Glioblastoma Multiforme Cells by Promoting Importin-7 Expression. J Biol Chem 2015; 290:18662-70. [PMID: 26085085 DOI: 10.1074/jbc.m115.662882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
The transcription factors glioma-associated oncogene homolog 1 (GLI1), a primary marker of Hedgehog pathway activation, and Forkhead box M1 (FOXM1) are aberrantly activated in a wide range of malignancies, including glioma. However, the mechanism of nuclear localization of GLI1 and whether FOXM1 regulates the Hedgehog signaling pathway are poorly understood. Here we found that FOXM1 promotes nuclear import of GLI1 in glioblastoma multiforme cells and thus increases the expression of its target genes. Conversely, knockdown of FOXM1 expression with FOXM1 siRNA abrogated its nuclear import and inhibited the expression of its target genes. Also, genetic deletion of FOXM1 in mouse embryonic fibroblasts abolished nuclear localization of GLI1. We observed that FOXM1 directly binds to the importin-7 (IPO7) promoter and increases its promoter activity. IPO7 interacted with GLI1, leading to enhanced nuclear import of GLI1. Depletion of IPO7 by IPO7 siRNA reduced nuclear accumulation of GLI1. In addition, FOXM1 induced nuclear import of GLI1 by promoting IPO7 expression. Moreover, the FOXM1/IPO7/GLI1 axis promoted cell proliferation, migration, and invasion in vitro. Finally, expression of FOXM1 was markedly correlated with that of GLI1 in human glioblastoma specimens. These data suggest that FOXM1 and GLI1 form a positive feedback loop that contributes to glioblastoma development. Furthermore, our study revealed a mechanism that controls nuclear import of GLI1 in glioblastoma multiforme cells.
Collapse
Affiliation(s)
- Jianfei Xue
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| | - Aidong Zhou
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Christina Tan
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yamei Wu
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hsueh-Te Lee
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Wenliang Li
- the Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and the Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China, and
| | - Keping Xie
- the Departments of Gastroenterology, Hepatology & Nutrition and Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Suyun Huang
- From the Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
42
|
Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 2015; 8:25. [PMID: 26008846 PMCID: PMC4446831 DOI: 10.1186/s12920-015-0101-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Molecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized. Methods In this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma. Results We identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types. Conclusions At the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Fredrik Liedberg
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| |
Collapse
|
43
|
Robichaux JP, Hallett RM, Fuseler JW, Hassell JA, Ramsdell AF. Mammary glands exhibit molecular laterality and undergo left-right asymmetric ductal epithelial growth in MMTV-cNeu mice. Oncogene 2015; 34:2003-10. [PMID: 24909172 PMCID: PMC4261057 DOI: 10.1038/onc.2014.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/01/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Significant left-right (L-R) differences in tumor incidence and disease outcome occur for cancers of paired organs, including the breasts; however, the basis for this laterality is unknown. Here, we show that despite their morphologic symmetry, left versus right mammary glands in wild-type mice have baseline differences in gene expression that are L-R independently regulated during pubertal development, including genes that regulate luminal progenitor cell renewal, luminal cell differentiation, mammary tumorigenesis, tamoxifen sensitivity and chemotherapeutic resistance. In MMTV-cNeu(Tg/Tg) mice, which model HER2/Neu-amplified breast cancer, baseline L-R differences in mammary gene expression are amplified, sustained or inverted in a gene-specific manner and the mammary ductal epithelium undergoes L-R asymmetric growth and patterning. Comparative genomic analysis of mouse L-R mammary gene expression profiles with gene expression profiles of human breast tumors revealed significant linkage between right-sided gene expression and decreased breast cancer patient survival. Collectively, these findings are the first to demonstrate that mammary glands are lateralized organs, and, moreover, that mammary glands have L-R differential susceptibility to HER2/Neu oncogene-mediated effects on ductal epithelial growth and differentiation. We propose that intrinsic molecular laterality may have a role in L-R asymmetric breast tumor incidence and, furthermore, that interplay between the L-R molecular landscape and oncogene activity may contribute to the differential disease progression and patient outcome that are associated with tumor situs.
Collapse
Affiliation(s)
- Jacqulyne P. Robichaux
- Department of Regenerative Medicine and Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Robin M. Hallett
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Ontario, Canada
| | - John W. Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Ontario, Canada
| | - Ann F. Ramsdell
- Department of Regenerative Medicine and Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208
- Program In Women’s and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
44
|
ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nat Commun 2015; 6:6548. [DOI: 10.1038/ncomms7548] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/04/2015] [Indexed: 01/22/2023] Open
|
45
|
Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield GW, White-Baer LS, O’Malley YQ, Sugg SL, Olivier AK, Zhang W, Domann FE, Weigel RJ. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis. Oncogene 2015; 34:436-44. [PMID: 24469049 PMCID: PMC4112181 DOI: 10.1038/onc.2013.569] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 02/07/2023]
Abstract
Molecular subtypes of breast cancer are characterized by distinct patterns of gene expression that are predictive of outcome and response to therapy. The luminal breast cancer subtypes are defined by the expression of estrogen receptor-alpha (ERα)-associated genes, many of which are directly responsive to the transcription factor activator protein 2C (TFAP2C). TFAP2C participates in a gene regulatory network controlling cell growth and differentiation during ectodermal development and regulating ESR1/ERα and other luminal cell-associated genes in breast cancer. TFAP2C has been established as a prognostic factor in human breast cancer, however, its role in the establishment and maintenance of the luminal cell phenotype during carcinogenesis and mammary gland development have remained elusive. Herein, we demonstrate a critical role for TFAP2C in maintaining the luminal phenotype in human breast cancer and in influencing the luminal cell phenotype during normal mammary development. Knockdown of TFAP2C in luminal breast carcinoma cells induced epithelial-mesenchymal transition with morphological and phenotypic changes characterized by a loss of luminal-associated gene expression and a concomitant gain of basal-associated gene expression. Conditional knockout of the mouse homolog of TFAP2C, Tcfap2c, in mouse mammary epithelium driven by MMTV-Cre promoted aberrant growth of the mammary tree leading to a reduction in the CD24(hi)/CD49f(mid) luminal cell population and concomitant gain of the CD24(mid)/CD49f(hi) basal cell population at maturity. Our results establish TFAP2C as a key transcriptional regulator for maintaining the luminal phenotype in human breast carcinoma. Furthermore, Tcfap2c influences development of the luminal cell type during mammary development. The data suggest that TFAP2C has an important role in regulated luminal-specific genes and may be a viable therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Anthony R Cyr
- Department of Surgery, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Jung M. Park
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | - Sonia L. Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | | | - Weizhou Zhang
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Frederick E. Domann
- Department of Surgery, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Ronald J. Weigel
- Department of Surgery, University of Iowa, Iowa City, IA, USA
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
46
|
Granit RZ, Slyper M, Ben-Porath I. Axes of differentiation in breast cancer: untangling stemness, lineage identity, and the epithelial to mesenchymal transition. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:93-106. [PMID: 24741710 DOI: 10.1002/wsbm.1252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Differentiation-associated regulatory programs are central in determining tumor phenotype, and contribute to heterogeneity between tumors and between individual cells within them. The transcriptional programs that control luminal and basal lineage identity in the normal mammary epithelium, as well as progenitor and stem cell function, are active in breast cancers, and show distinct associations with different disease subtypes. Also active in some tumors is the epithelial to mesenchymal transition (EMT) program, which endows carcinoma cells with mesenchymal as well as stem cell traits. The differentiation state of breast cancer cells is thus dictated by the complex combination of regulatory programs, and these can dramatically affect tumor growth and metastatic capacity. Breast cancer differentiation is often viewed along an axis between a basal–mesenchymal–stem cell state and a luminal–epithelial–differentiated state. Here we consider the links, as well as the distinctions, between the three components of this axis: basal versus luminal, mesenchymal versus epithelial, and stem cell versus differentiated identity. Analysis on a multidimensional scale, in which each of these axes is assessed separately, may offer increased resolution of tumor differentiation state. Cancer cells possessing a high degree of stemness would display increased capacity to shift between positions on such a multidimensional scale, and to acquire intermediate phenotypes on its different axes. Further molecular analysis of breast cancer cells with a focus on single-cell profiling, and the development of improved tools for dissection of the circuits controlling gene activity, are essential for the elucidation of the programs dictating breast cancer differentiation state.
Collapse
|
47
|
The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells. Breast Cancer Res 2014; 16:436. [PMID: 25213081 PMCID: PMC4303117 DOI: 10.1186/s13058-014-0436-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The forkhead transcription factor FOXM1 coordinates expression of cell cycle-related genes and plays a pivotal role in tumorigenesis and cancer progression. We previously showed that FOXM1 acts downstream of 14-3-3ζ signaling, the elevation of which correlates with a more aggressive tumor phenotype. However, the role that FOXM1 might play in engendering resistance to endocrine treatments in estrogen receptor-positive (ER+) patients when tumor FOXM1 is high has not been clearly defined yet. METHODS We analyzed FOXM1 protein expression by immunohistochemistry in 501 ER-positive breast cancers. We also mapped genome-wide FOXM1, extracellular signal-regulated kinase 2 and ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in hormone-sensitive and resistant breast cancer cells after tamoxifen treatment. These binding profiles were integrated with gene expression data derived from cells before and after FOXM1 knockdown to highlight specific FOXM1 transcriptional networks. We also modulated the levels of FOXM1 and newly discovered FOXM1-regulated genes and examined their impact on the cancer stem-like cell population and on cell invasiveness and resistance to endocrine treatments. RESULTS FOXM1 protein expression was high in 20% of the tumors, which correlated with significantly reduced survival in these patients (P = 0.003 by logrank Mantel-Cox test). ChIP-seq analyses revealed that FOXM1 binding sites were enriched at the transcription start site of genes involved in cell-cycle progression, maintenance of stem cell properties, and invasion and metastasis, all of which are associated with a poor prognosis in ERα-positive patients treated with tamoxifen. Integration of binding profiles with gene expression highlighted FOXM1 transcriptional networks controlling cell proliferation, stem cell properties, invasion and metastasis. Increased expression of FOXM1 was associated with an expansion of the cancer stem-like cell population and with increased cell invasiveness and resistance to endocrine treatments. Use of a selective FOXM1 inhibitor proved very effective in restoring endocrine therapy sensitivity and decreasing breast cancer aggressiveness. CONCLUSIONS Collectively, our findings uncover novel roles for FOXM1 and FOXM1-regulated genes in promoting cancer stem-like cell properties and therapy resistance. They highlight the relevance of FOXM1 as a therapeutic target to be considered for reducing invasiveness and enhancing breast cancer response to endocrine treatments.
Collapse
|
48
|
Manavathi B, Samanthapudi VSK, Gajulapalli VNR. Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol 2014; 2:34. [PMID: 25364741 PMCID: PMC4207046 DOI: 10.3389/fcell.2014.00034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
The steroid hormone, 17β-estradiol (E2), plays critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, and is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor α and β (ERs). The activity of ERs depends on the coordinated activity of ligand binding, post-translational modifications (PTMs), and importantly the interaction with their partner proteins called “coregulators.” Because coregulators are proved to be crucial for ER transcriptional activity, and majority of breast cancers are ERα positive, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud (TEB) formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, coregulators along with the other ER partner proteins called “pioneer factors” together contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator and pioneer factor mediated action on ER functions, in particular their role in mammary gland cell fate and development.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | | |
Collapse
|
49
|
Abstract
Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. In this review, Visvader and Stingl integrate recent data on the mammary stem cell differentiation hierarchy and its control at the transcriptional and epigenetic levels. They also discuss the relevance of the evolving hierarchy to the identification of “cells of origin” of breast cancer. The mammary epithelium is highly responsive to local and systemic signals, which orchestrate morphogenesis of the ductal tree during puberty and pregnancy. Based on transplantation and lineage tracing studies, a hierarchy of stem and progenitor cells has been shown to exist among the mammary epithelium. Lineage tracing has highlighted the existence of bipotent mammary stem cells (MaSCs) in situ as well as long-lived unipotent cells that drive morphogenesis and homeostasis of the ductal tree. Moreover, there is accumulating evidence for a heterogeneous MaSC compartment comprising fetal MaSCs, slow-cycling cells, and both long-term and short-term repopulating cells. In parallel, diverse luminal progenitor subtypes have been identified in mouse and human mammary tissue. Elucidation of the normal cellular hierarchy is an important step toward understanding the “cells of origin” and molecular perturbations that drive breast cancer.
Collapse
Affiliation(s)
- Jane E Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville VIC 3010, Australia
| | - John Stingl
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
50
|
Bogachek MV, Chen Y, Kulak MV, Woodfield GW, Cyr AR, Park JM, Spanheimer PM, Li Y, Li T, Weigel RJ. Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell 2014; 25:748-61. [PMID: 24835590 PMCID: PMC4096794 DOI: 10.1016/j.ccr.2014.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 01/28/2023]
Abstract
The TFAP2C/AP-2γ transcription factor regulates luminal breast cancer genes, and loss of TFAP2C induces epithelial-mesenchymal transition. By contrast, the highly homologous family member, TFAP2A, lacks transcriptional activity at luminal gene promoters. A detailed structure-function analysis identified that sumoylation of TFAP2A blocks its ability to induce the expression of luminal genes. Disruption of the sumoylation pathway by knockdown of sumoylation enzymes, mutation of the SUMO-target lysine of TFAP2A, or treatment with sumoylation inhibitors induced a basal-to-luminal transition, which was dependent on TFAP2A. Sumoylation inhibitors cleared the CD44(+/hi)/CD24(-/low) cell population characterizing basal cancers and inhibited tumor outgrowth of basal cancer xenografts. These findings establish a critical role for sumoylation in regulating the transcriptional mechanisms that maintain the basal cancer phenotype.
Collapse
Affiliation(s)
- Maria V Bogachek
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Yizhen Chen
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Anthony R Cyr
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Jung M Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Yingyue Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|