1
|
Craft K, Amanor A, Barnett I, Donaldson C, Anegon I, Madduri S, Tang Q, Bility MT. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int J Mol Sci 2025; 26:3082. [PMID: 40243710 PMCID: PMC11988357 DOI: 10.3390/ijms26073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, immunodeficient mouse models carrying human immune cells, with or without human lymphoid tissues, termed humanized immune system (HIS) rodent models, have been developed to recapitulate the human immune system and associated immune responses. HIS mouse models have successfully modeled many human-restricted viral infections, including those caused by human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV). HIS mouse models have also been used to model human cancer immunobiology, which exhibits differences from murine cancers in traditional mouse models. Variants of HIS mouse models that carry human liver cells, lung tissue, skin tissue, or human patient-derived tumor xenografts and human hematopoietic stem cells-derived-human immune cells with or without lymphoid tissue xenografts have been developed to probe human immune responses to infections and human tumors. HCMV-based vaccines are human-restricted, which poses limitations for mechanistic and efficacy studies using traditional animal models. The HCMV-based vaccine approach is a promising vaccine strategy as it induces robust effector memory T cell responses that may be critical in preventing and rapidly controlling persistent viral infections and cancers. Here, we review novel HIS mouse models with robust human immune cell development and primary and secondary lymphoid tissues that could address many of the limitations of HIS mice in their use as animal models for HCMV-based vaccine research. We also reviewed novel HIS rat models, which could allow long-term (greater than one year) vaccinology studies and better recapitulate human pathophysiology. Translating laboratory research findings to clinical application is a significant bottleneck in vaccine development; HIS rodents and related variants that more accurately model human immunology and diseases could increase the translatability of research findings.
Collapse
Affiliation(s)
- Kaci Craft
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Athina Amanor
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ian Barnett
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Clarke Donaldson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France;
| | - Srinivas Madduri
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1211 Geneva, Switzerland;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Moses T. Bility
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| |
Collapse
|
2
|
Rainwater RR, Azevedo-Pouly AC, Waldrip ZJ, Hicks BH, Callais NA, Koss B, Storey AJ, Burdine L, Burdine MS. DNA-PKcs governs LAT-dependent signaling in CD4 + and CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641745. [PMID: 40161607 PMCID: PMC11952348 DOI: 10.1101/2025.03.06.641745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Formation of the immune synapse (IS) following T cell antigen recognition includes recruitment of the Linker for Activation of T cells (LAT). Once at the IS, LAT tyrosines are phosphorylated allowing it to serve as a scaffold for formation of the "signalosome", a multiprotein complex that drives TCR signaling. Here, we show that upon T cell activation, DNA dependent protein kinase catalytic subunit (DNA-PKcs) interacts with LAT and localizes to the IS. Inhibition of DNA-PKcs diminishes LAT localization at the IS. We identified two LAT serines phosphorylated by DNA-PKcs, S224 and S241, that impact LAT tyrosine phosphorylation, protein binding, and cytokine production. Using our mouse model designed to delete DNA-PKcs expression within mature CD4 + or CD8 + T cells, we show loss of DNA-PKcs results in T cells unable to control tumor growth or induce allogeneic graft rejection. These data bring to the forefront DNA-PKcs as a pivotal protein in T cell function.
Collapse
|
3
|
Kim JI, Lim HJ, Kwon E, Mashimo T, Kang BC. Immune deficiency phenotypes of Il2rg, Rag2 or Il2rg/Rag2 double knockout rats; establishment of human leukemia xenograft models. Lab Anim Res 2024; 40:43. [PMID: 39731164 DOI: 10.1186/s42826-024-00231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan. We imported and investigated more detailed phenotypes of wild-type (WT) Il2rg knockout (KO), Rag2 KO and Il2rg/Rag2 KO rats for 20 weeks. RESULTS During experiments, Il2rg KO, Rag2 KO and Il2rg/Rag2 KO rats showed decreased white blood cells and systemic lymphopenia, with reduced CD4+, CD8+ T cells and CD161+ NK cells. Additionally, all KO strains exhibited reduced relative spleen weights, hypoplasia of the germinal center in the white pulp, and atrophy with the disappearance of the boundary between the cortex and medulla in the thymus, compared to WT rats. Furthermore, we established human acute lymphoblastic leukemia xenograft rat model by intravenously injecting 5.0 × 106 cells/kg of NALM6 cells into Il2rg/Rag2 KO rats. CONCLUSIONS These findings indicate that Il2rg KO, Rag2 KO, and Il2rg/Rag2 KO rats exhibited SCID phenotypes, suggesting their potential application as immunodeficient animal models for tumor xenograft studies.
Collapse
Affiliation(s)
- Joo-Il Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea
| | - Hyun-Jin Lim
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea.
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Institue of Laboratory Animal Resources, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Ménoret S, Renart-Depontieu F, Martin G, Thiam K, Anegon I. Efficient generation of human immune system rats using human CD34 + cells. Stem Cell Reports 2024; 19:1255-1263. [PMID: 39151431 PMCID: PMC11411320 DOI: 10.1016/j.stemcr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024] Open
Abstract
Human immune system (HIS) mice generated using human CD34+ hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34+ cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.
Collapse
Affiliation(s)
- Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France.
| | | | | | | | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France.
| |
Collapse
|
5
|
Yoshimi K, Kuno A, Yamauchi Y, Hattori K, Taniguchi H, Mikamo K, Iida R, Ishida S, Goto M, Takeshita K, Ito R, Takahashi R, Takahashi S, Mashimo T. Genome editing using type I-E CRISPR-Cas3 in mice and rat zygotes. CELL REPORTS METHODS 2024; 4:100833. [PMID: 39121862 PMCID: PMC11384072 DOI: 10.1016/j.crmeth.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
The type I CRISPR system has recently emerged as a promising tool, especially for large-scale genomic modification, but its application to generate model animals by editing zygotes had not been established. In this study, we demonstrate genome editing in zygotes using the type I-E CRISPR-Cas3 system, which efficiently generates deletions of several thousand base pairs at targeted loci in mice with 40%-70% editing efficiency without off-target mutations. To overcome the difficulties associated with detecting the variable deletions, we used a newly long-read sequencing-based multiplex genotyping approach. Demonstrating remarkable versatility, our Cas3-based technique was successfully extended to rats as well as mice, even by zygote electroporation methods. Knockin for SNP exchange and genomic replacement with a donor plasmid were also achieved in mice. This pioneering work with the type I CRISPR zygote editing system offers increased flexibility and broader applications in genetic engineering across different species.
Collapse
Affiliation(s)
- Kazuto Yoshimi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yuko Yamauchi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kosuke Hattori
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromi Taniguchi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kouya Mikamo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuya Iida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Motohito Goto
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kohei Takeshita
- Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Medicine and Life Science, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
6
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
7
|
Tamura Y, Jee E, Kouzaki K, Kotani T, Nakazato K. Monocarboxylate transporter 4 deficiency enhances high-intensity interval training-induced metabolic adaptations in skeletal muscle. J Physiol 2024; 602:1313-1340. [PMID: 38513062 DOI: 10.1113/jp285719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.
Collapse
Affiliation(s)
- Yuki Tamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Sport Training Center, Nippon Sport Science University, Tokyo, Japan
- High Performance Center, Nippon Sport Science University, Tokyo, Japan
- Center for Coaching Excellence, Nippon Sport Science University, Tokyo, Japan
| | - Eunbin Jee
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
8
|
Hayashi Y, Ohnishi H, Kitano M, Kishimoto Y, Takezawa T, Okuyama H, Yoshimatsu M, Kuwata F, Tada T, Mizuno K, Omori K. Comparative Study of Immunodeficient Rat Strains in Engraftment of Human-Induced Pluripotent Stem Cell-Derived Airway Epithelia. Tissue Eng Part A 2024; 30:144-153. [PMID: 37950719 DOI: 10.1089/ten.tea.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023] Open
Abstract
The airway epithelia (AE) play a role in the clearance of foreign substances through ciliary motility and mucus secreted. We developed an artificial trachea that is made of collagen sponges and polypropylene mesh for the regeneration of the tracheal defect, and it was used for a clinical study. Then, a model in which the luminal surface of an artificial trachea was covered with a human-induced pluripotent stem cell-derived AE (hiPSC-AE) was transplanted into the tracheal defect of nude rats to promote epithelialization. In the future, this model was expected to be applied to research on infectious diseases and drug discovery as a trachea-humanized rat model. However, at present, sufficient engraftment has not been achieved to evaluate functional recovery in transplanted cells. Therefore, this study focused on immunosuppression in recipient rats. Nude rats lack T cell function and are widely used for transplantation experiments; however, more severe immunosuppressed recipients are preferred for xenotransplantation. Several strains of immunodeficient rats were created as rats that exhibit more severe immunodeficiency until now. In this study, to establish a trachea-humanized rat model in which human AE function can be analyzed to improve engraftment efficiency, engraftment efficiency in nude rats and X-linked severe combined immunodeficiency (X-SCID) rats following hiPSC-AE transplantation was compared. In the analysis of the proportion of engrafted cells in total cells at the graft site, the engraftment efficiency of epithelial cells tended to be high in X-SCID rats, although no statistical difference was found between the two groups, whereas the engraftment efficiency of mesenchymal cells was higher in X-SCID rats. Furthermore, the number of immune cells that accumulated in the grafts showed that a pan T cell marker, that is, CD3-positive cells, did not differ between the two strains; however, CD45-positive cells and major histocompatibility complex (MHC) class II-positive cells significantly decreased in X-SCID rats. These results indicate that X-SCID rats are more useful for the transplantation of hiPSC-AE into the tracheae to generate trachea-humanized rat models.
Collapse
Affiliation(s)
- Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Toshiaki Takezawa
- Faculty of Pharmacy, Chiba Institute of Science, Chiba, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Hideaki Okuyama
- Faculty of Medicine and Health Sciences, School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Masayoshi Yoshimatsu
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Tada
- Center for Inflammation, Immunity and Infection Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Udagawa D, Nagata S, Yagi H, Nishi K, Morisaku T, Adachi S, Nakano Y, Tanaka M, Hori S, Hasegawa Y, Abe Y, Kitago M, Kitagawa Y. A Novel Approach to Orthotopic Hepatocyte Transplantation Engineered With Liver Hydrogel for Fibrotic Livers, Enhancing Cell-Cell Interaction and Angiogenesis. Cell Transplant 2024; 33:9636897241253700. [PMID: 38770981 PMCID: PMC11110510 DOI: 10.1177/09636897241253700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Hepatocyte transplantation (HCT) is a potential bridging therapy or an alternative to liver transplantation. Conventionally, single-cell hepatocytes are injected via the portal vein. This strategy, however, has yet to overcome poor cell engraftment and function. Therefore, we developed an orthotopic HCT method using a liver-derived extracellular matrix (L-ECM) gel. PXB cells (flesh mature human hepatocytes) were dispersed into the hydrogel solution in vitro, and the gel solution was immediately gelated in 37°C incubators to investigate the affinity between mature human hepatocyte and the L-ECM gel. During the 3-day cultivation in hepatocyte medium, PXB cells formed cell aggregates via cell-cell interactions. Quantitative analysis revealed human albumin production in culture supernatants. For the in vivo assay, PXB cells were encapsulated in the L-ECM gel and transplanted between the liver lobes of normal rats. Pathologically, the L-ECM gel was localized at the transplant site and retained PXB cells. Cell survival and hepatic function marker expression were verified in another rat model wherein thioacetamide was administered to induce liver fibrosis. Moreover, cell-cell interactions and angiogenesis were enhanced in the L-ECM gel compared with that in the collagen gel. Our results indicate that L-ECM gels can help engraft transplanted hepatocytes and express hepatic function as a scaffold for cell transplantation.
Collapse
Affiliation(s)
- Daisuke Udagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Nagata
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kotaro Nishi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Shungo Adachi
- Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Nakano
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Tanaka
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Hasegawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Lee J, Wang J, Ally R, Trzaska S, Hickey J, Mujica A, Miloscio L, Mastaitis J, Morse B, Smith J, Atanasio A, Chiao E, Chen H, Latuszek A, Hu Y, Valenzuela D, Romano C, Zambrowicz B, Auerbach W. Production of large, defined genome modifications in rats by targeting rat embryonic stem cells. Stem Cell Reports 2023; 18:394-409. [PMID: 36525967 PMCID: PMC9860120 DOI: 10.1016/j.stemcr.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.
Collapse
Affiliation(s)
- Jeffrey Lee
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA.
| | | | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sean Trzaska
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Alejo Mujica
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Brian Morse
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Janell Smith
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Henry Chen
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Ying Hu
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | |
Collapse
|
11
|
Chen X, Niu X, Liu Y, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X, Liu M, Jing F, Liu M, Hu J, Wang L, Li D. Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics 2022; 49:1114-1126. [PMID: 35691554 DOI: 10.1016/j.jgg.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023]
Abstract
CRISPR/Cas9-mediated site-specific insertion of exogenous genes holds potential for clinical applications. However, it is still infeasible because homologous recombination (HR) is inefficient, especially for non-dividing cells. To overcome the challenge, we report that a homology-independent targeted integration (HITI) strategy is used for permanent integration of high-specificity-activity Factor IX variant (F9 Padua, R338L) at the albumin (Alb) locus in a novel hemophilia B (HB) rat model. The knock-in efficiency reaches 3.66%, as determined by droplet digital PCR (ddPCR). The clotting time is reduced to a normal level four weeks after treatment, and the circulating factor IX (FIX) level is gradually increased up to 52% of the normal level over nine months even after partial hepatectomy, demonstrating the amelioration of hemophilia. Through primer-extension-mediated sequencing (PEM-seq), no significant off-target effect is detected. This study not only provides a novel model for HB but also identifies a promising therapeutic approach for rare inherited diseases.
Collapse
Affiliation(s)
- Xi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuran Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Zheng
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Lu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Wei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahao Pan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ahmed Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Xueyun Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
12
|
Carbonaro M, Lee J, Pefanis E, Desclaux M, Wang K, Pennington A, Huang H, Mujica A, Rojas J, Ally R, Kennedy D, Brown M, Rogulin V, Moller-Tank S, Sabin L, Zambrowicz B, Thurston G, Li Z. Efficient engraftment and viral transduction of human hepatocytes in an FRG rat liver humanization model. Sci Rep 2022; 12:14079. [PMID: 35982097 PMCID: PMC9388686 DOI: 10.1038/s41598-022-18119-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Humanized liver rodent models, in which the host liver parenchyma is repopulated by human hepatocytes, have been increasingly used for drug development and disease research. Unlike the leading humanized liver mouse model in which Fumarylacetoacetate Hydrolase (Fah), Recombination Activating Gene (Rag)-2 and Interleukin-2 Receptor Gamma (Il2rg) genes were inactivated simultaneously, generation of similar recipient rats has been challenging. Here, using Velocigene and 1-cell-embryo-targeting technologies, we generated a rat model deficient in Fah, Rag1/2 and Il2rg genes, similar to humanized liver mice. These rats were efficiently engrafted with Fah-expressing hepatocytes from rat, mouse and human. Humanized liver rats expressed human albumin and complement proteins in serum and showed a normal liver zonation pattern. Further, approaches were developed for gene delivery through viral transduction of human hepatocytes either in vivo, or in vitro prior to engraftment, providing a novel platform to study liver disease and hepatocyte-targeted therapies.
Collapse
Affiliation(s)
| | - Jeffrey Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | - Kehui Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Hui Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Alejo Mujica
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jose Rojas
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | | | | - Leah Sabin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | - Zhe Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| |
Collapse
|
13
|
Miyasaka Y, Wang J, Hattori K, Yamauchi Y, Hoshi M, Yoshimi K, Ishida S, Mashimo T. A high-quality severe combined immunodeficiency (SCID) rat bioresource. PLoS One 2022; 17:e0272950. [PMID: 35960733 PMCID: PMC9374221 DOI: 10.1371/journal.pone.0272950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Immunodeficient animals are valuable models for the engraftment of exogenous tissues; they are widely used in many fields, including the creation of humanized animal models, as well as regenerative medicine and oncology. Compared with mice, laboratory rats have a larger body size and can more easily undergo transplantation of various tissues and organs. Considering the absence of high-quality resources of immunodeficient rats, we used the CRISPR/Cas9 genome editing system to knock out the interleukin-2 receptor gamma chain gene (Il2rg) in F344/Jcl rats—alone or together with recombination activating gene 2 (Rag2)—to create a high-quality bioresource that researchers can freely use: severe combined immunodeficiency (SCID) rats. We selected one founder rat with frame-shift mutations in both Il2rg (5-bp del) and Rag2 ([1-bp del+2-bp ins]/[7-bp del+2-bp ins]), then conducted mating to establish a line of immunodeficient rats. The immunodeficiency phenotype was preliminarily confirmed by the presence of severe thymic hypoplasia in Il2rg-single knockout (sKO) and Il2rg/Rag2-double knockout (dKO) rats. Assessment of blood cell counts in peripheral blood showed that the white blood cell count was significantly decreased in sKO and dKO rats, while the red blood cell count was unaffected. The decrease in white blood cell count was mainly caused by a decrease in lymphocytes. Furthermore, analyses of lymphocyte populations via flow cytometry showed that the numbers of B cells (CD3- CD45+) and natural killer cells (CD3- CD161+) were markedly reduced in both knockout rats. In contrast, T cells were markedly reduced but showed slightly different results between sKO and dKO rats. Notably, our immunodeficient rats do not exhibit growth retardation or gametogenesis defects. This high-quality SCID rat resource is now managed by the National BioResource Project in Japan. Our SCID rat model has been used in various research fields, demonstrating its importance as a bioresource.
Collapse
Affiliation(s)
- Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Jinxi Wang
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kosuke Hattori
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuko Yamauchi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Hoshi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuto Yoshimi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
16
|
Sekine K. Human Organoid and Supporting Technologies for Cancer and Toxicological Research. Front Genet 2021; 12:759366. [PMID: 34745227 PMCID: PMC8569236 DOI: 10.3389/fgene.2021.759366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the field of organoid-based cell culture systems has enabled the use of patient-derived cells in conditions that resemble those in cancer tissue, which are better than two-dimensional (2D) cultured cell lines. In particular, organoids allow human cancer cells to be handled in conditions that resemble those in cancer tissue, resulting in more efficient establishment of cells compared with 2D cultured cell lines, thus enabling the use of multiple patient-derived cells with cells from different genetic background, in keeping with the heterogeneity of the cells. One of the most valuable points of using organoids is that human cells from either healthy or cancerous tissue can be used. Using genome editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein, organoid genomes can be modified to, for example, cancer-prone genomes. The normal, cancer, or genome-modified organoids can be used to evaluate whether chemicals have genotoxic or non-genotoxic carcinogenic activity by evaluating the cancer incidence, cancer progression, and cancer metastasis. In this review, the organoid technology and the accompanying technologies were summarized and the advantages of organoid-based toxicology and its application to pancreatic cancer study were discussed.
Collapse
Affiliation(s)
- Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Zhang L, Ge J, Zheng Y, Sun Z, Wang C, Peng Z, Wu B, Fang M, Furuya K, Ma X, Shao Y, Ohkohchi N, Oda T, Fan J, Pan G, Li D, Hui L. Survival-Assured Liver Injury Preconditioning (SALIC) Enables Robust Expansion of Human Hepatocytes in Fah -/- Rag2 -/- IL2rg -/- Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101188. [PMID: 34382351 PMCID: PMC8498896 DOI: 10.1002/advs.202101188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah-/- Rag2-/- IL2rg-/- (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 ± 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Jian‐Yun Ge
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
| | - Yun‐Wen Zheng
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
- Yokohama City University School of MedicineYokohamaKanagawa234‐0006Japan
| | - Zhen Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Zhaoliang Peng
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Mei Fang
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Jianglin Fan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Department of Molecular Pathology, Faculty of MedicineInterdisciplinary Graduate School of MedicineUniversity of YamanashiShimokatoYamanashi409‐3898Japan
| | - Guoyu Pan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Bio‐Research Innovation CenterShanghai Institute of Biochemistry and Cell BiologySuzhouJiangsu215121China
| |
Collapse
|
18
|
Park S, Park SJ, Lee HS, Ham J, Lee EJ, Kim J, Ryu S, Seol A, Lim W, Lee JC, Song G, Kim HS. Establishment of an Experimental System for Intraperitoneal Chemotherapy in a Rat Model. In Vivo 2021; 35:2703-2710. [PMID: 34410959 DOI: 10.21873/invivo.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 01/28/2023]
Abstract
AIM To establish an experimental system for comparing different methods of intraperitoneal chemotherapy in a rat model. MATERIALS AND METHODS We used six-week-old Sprague-Dawley rats, and created an early postoperative intraperitoneal chemotherapy (EPIC) system using 18-gauge syringes and evacuators, and a hyperthermic intraperitoneal chemotherapy (HIPEC) system using two peristaltic pumps which controlled the flow rate and temperature. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) was achieved using a nozzle for dispersing aerosols at a flow rate up to 41.5 ml/min. The distribution and intensity of 0.2% trypan blue dye was compared among three methods. RESULTS The distribution was limited and the intensity was weak after EPIC, and the dye stained moderately in gravity-dependent regions after HIPEC. On the other hand, the distribution was the most comprehensive, and the intensity was the greatest after PIPAC. CONCLUSION This experimental system in a rat model may reflect the comparative effect among EPIC, HIPEC and PIPAC in humans.
Collapse
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Su Lee
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Eun Ji Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junsik Kim
- Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Soomin Ryu
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea;
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea;
| | | |
Collapse
|
19
|
Matsumoto Y, Asa ADDC, Modak C, Shimada M. DNA-Dependent Protein Kinase Catalytic Subunit: The Sensor for DNA Double-Strand Breaks Structurally and Functionally Related to Ataxia Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081143. [PMID: 34440313 PMCID: PMC8394720 DOI: 10.3390/genes12081143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.
Collapse
|
20
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging (Albany NY) 2021; 13:12273-12293. [PMID: 33903283 PMCID: PMC8109069 DOI: 10.18632/aging.202934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 04/15/2023]
Abstract
Esophageal cancer (EC) represents a human malignancy, diagnosed often at the advanced stage of cancer and resulting in high morbidity and mortality. The development of precision medicine allows for the identification of more personalized therapeutic strategies to improve cancer treatment. By implanting primary cancer tissues into immunodeficient mice for expansion, patient-derived xenograft (PDX) models largely maintain similar histological and genetic representations naturally found in patients' tumor cells. PDX models of EC (EC-PDX) provide fine platforms to investigate the tumor microenvironment, tumor genomic heterogeneity, and tumor response to chemoradiotherapy, which are necessary for new drug discovery to combat EC in addition to optimization of current therapeutic strategies for EC. In this review, we summarize the methods used for establishing EC-PDX models and investigate the utilities of EC-PDX in screening predictive biomarkers and potential therapeutic targets. The challenge of this promising research tool is also discussed.
Collapse
Affiliation(s)
- Tianfeng Lan
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xia Xue
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- The Academy of Medical Science, Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, P.R. China
| | - Louisa Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jinxin Miao
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, P.R. China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Centre for Cancer Biomarkers and Biotherapeuitcs, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
23
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
24
|
Hoang Trung H, Yoshihara T, Nakao A, Hayashida K, Hirata Y, Shirasuna K, Kuwamura M, Nakagawa Y, Kaneko T, Mori Y, Asano M, Kuramoto T. Deficiency of the RIβ subunit of protein kinase A causes body tremor and impaired fear conditioning memory in rats. Sci Rep 2021; 11:2039. [PMID: 33479380 PMCID: PMC7820254 DOI: 10.1038/s41598-021-81515-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
The RIβ subunit of cAMP-dependent protein kinase (PKA), encoded by Prkar1b, is a neuronal isoform of the type I regulatory subunit of PKA. Mice lacking the RIβ subunit exhibit normal long-term potentiation (LTP) in the Schaffer collateral pathway of the hippocampus and normal behavior in the open-field and fear conditioning tests. Here, we combined genetic, electrophysiological, and behavioral approaches to demonstrate that the RIβ subunit was involved in body tremor, LTP in the Schaffer collateral pathway, and fear conditioning memory in rats. Genetic analysis of WTC-furue, a mutant strain with spontaneous tremors, revealed a deletion in the Prkar1b gene of the WTC-furue genome. Prkar1b-deficient rats created by the CRISPR/Cas9 system exhibited body tremor. Hippocampal slices from mutant rats showed deficient LTP in the Schaffer collateral-CA1 synapse. Mutant rats also exhibited decreased freezing time following contextual and cued fear conditioning, as well as increased exploratory behavior in the open field. These findings indicate the roles of the RIβ subunit in tremor pathogenesis and contextual and cued fear memory, and suggest that the hippocampal and amygdala roles of this subunit differ between mice and rats and that rats are therefore beneficial for exploring RIβ function.
Collapse
Affiliation(s)
- Hieu Hoang Trung
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Katsumi Hayashida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yoshiki Hirata
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-58 Rinkuuourai-kita, Izumisano, Osaka, 598-8531, Japan
| | - Yuki Nakagawa
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Takehito Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan. .,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
25
|
Noto FK, Sangodkar J, Adedeji BT, Moody S, McClain CB, Tong M, Ostertag E, Crawford J, Gao X, Hurst L, O’Connor CM, Hanson EN, Izadmehr S, Tohmé R, Narla J, LeSueur K, Bhattacharya K, Rupani A, Tayeh MK, Innis JW, Galsky MD, Evers BM, DiFeo A, Narla G, Jamling TY. The SRG rat, a Sprague-Dawley Rag2/Il2rg double-knockout validated for human tumor oncology studies. PLoS One 2020; 15:e0240169. [PMID: 33027304 PMCID: PMC7540894 DOI: 10.1371/journal.pone.0240169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.
Collapse
Affiliation(s)
- Fallon K. Noto
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
- * E-mail:
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Sam Moody
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
| | | | - Ming Tong
- Poseida Therapeutics Inc., San Diego, California, United States of America
| | - Eric Ostertag
- Poseida Therapeutics Inc., San Diego, California, United States of America
| | - Jack Crawford
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
| | - Xiaohua Gao
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lauren Hurst
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caitlin M. O’Connor
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika N. Hanson
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rita Tohmé
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jyothsna Narla
- Regional Medical Center, San Jose, California, United States of America
| | - Kristin LeSueur
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kajari Bhattacharya
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amit Rupani
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marwan K. Tayeh
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeffrey W. Innis
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Analisa DiFeo
- Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Goutham Narla
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
26
|
Abstract
Supplemental Digital Content is available in the text. Background. Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. Methods. We generated immunodeficient Rat Rag−/− Gamma chain−/− human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. Results. RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. Conclusions. hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.
Collapse
|
27
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
28
|
Konishi S, Tanaka N, Mashimo T, Yamamoto T, Sakuma T, Kaneko T, Tanaka M, Izawa T, Yamate J, Kuwamura M. Pathological characteristics of Ccdc85c knockout rats: a rat model of genetic hydrocephalus. Exp Anim 2019; 69:26-33. [PMID: 31341137 PMCID: PMC7004802 DOI: 10.1538/expanim.19-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spontaneous hhy mice show hydrocephalus and subcortical heterotopia, and
a mutation in the Ccdc85c gene has been identified. To contribute to the
comparison of the role of Ccdc85c in different species, we established a
Ccdc85c KO rat and investigated its pathological phenotypes.
Ccdc85c KO rats were produced by genomic engineering using
transcription activator-like effector nuclease (TALEN). The KO rats had an approximately
350-bp deletion in Ccdc85c and lacked CCDC85C protein expression. The KO
rats showed non-obstructive hydrocephalus, subcortical heterotopia, and intracranial
hemorrhage. The KO rats had many pathological characteristics similar to those in
hhy mice. These results indicate that CCDC85C plays an important role
in cerebral development in rats, and the function of CCDC85C in the cerebrum are similar
in rats and mice.
Collapse
Affiliation(s)
- Shizuka Konishi
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Natsuki Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Yamamoto
- Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takehito Kaneko
- Laboratory of Animal Reproduction and Development, Graduate School of Arts and Science, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Miyuu Tanaka
- Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
29
|
Van de Sande L, Willaert W, Cosyns S, De Clercq K, Shariati M, Remaut K, Ceelen W. Establishment of a rat ovarian peritoneal metastasis model to study pressurized intraperitoneal aerosol chemotherapy (PIPAC). BMC Cancer 2019; 19:424. [PMID: 31064330 PMCID: PMC6503553 DOI: 10.1186/s12885-019-5658-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND pressurized intraperitoneal aerosol chemotherapy (PIPAC), with or without electrostatic precipitation (ePIPAC), was recently introduced in the treatment of peritoneal metastases (PM) from ovarian cancer (OC). Preliminary clinical data are promising, but several methodological issues as well the anticancer efficacy of PIPAC remain unaddressed. Here, we propose a rat ePIPAC model that allows to study these issues in a clinically relevant, reproducible, and high throughput model. METHODS laparoscopy and PIPAC were established in healthy Wistar rats. Aerosol properties were measured using laser diffraction spectrometry based granulometric analyses. Electrostatic precipitation was accomplished using a commercially available generator (Ultravision™). A xenograft model of ovarian PM was created in athymic rats using intraperitoneal (IP) injection of SKOV-3 luciferase positive cells. Tumor growth was monitored weekly by in vivo bioluminescence imaging. RESULTS PIPAC and electrostatic precipitation were well tolerated using a capnoperitoneum of 8 mmHg. All rats survived the (e)PIPAC procedure and no gas or aerosol leakage was observed over the entire procedure. With an injection pressure of 20 bar, granulometry showed a mean droplet diameter (D(v,0.5)) of 47 μm with a flow rate of 0.5 mL/s, and a significantly lower diameter (30 μm) when a flow rate of 0.8 mL/s was used. Experiments using IP injection of SKOV-3 luciferase positive cells showed that after IP injection of 20 × 106 cells, miliary PM was observed in all animals. PIPAC was feasible and well supported in these tumor bearing animals. CONCLUSIONS we propose a reproducible and efficient rodent model to study PIPAC and ePIPAC in OC xenografts with widespread PM. This model allows to characterize and optimize pharmacokinetic and biophysical parameters, and to evaluate the anti-cancer efficacy of (e)PIPAC treatment.
Collapse
Affiliation(s)
- Leen Van de Sande
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wouter Willaert
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sarah Cosyns
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kaat De Clercq
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Molood Shariati
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium. .,Department of GI Surgery, Ghent University Hospital, route 1275, C. Heymanslaan 10, B-9000, Ghent, Belgium.
| |
Collapse
|
30
|
Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, Rumajogee P, Chio J, Fehlings MG. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One 2018; 13:e0208105. [PMID: 30485360 PMCID: PMC6261629 DOI: 10.1371/journal.pone.0208105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs.
Collapse
Affiliation(s)
- Stephanie R. Beldick
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - James Hong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Anisha Hundal
- Life Sciences Program, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Mohammad-Masoud Zavvarian
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Jonathon Chio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Noto FK, Adjan-Steffey V, Tong M, Ravichandran K, Zhang W, Arey A, McClain CB, Ostertag E, Mazhar S, Sangodkar J, DiFeo A, Crawford J, Narla G, Jamling TY. Sprague Dawley Rag2-Null Rats Created from Engineered Spermatogonial Stem Cells Are Immunodeficient and Permissive to Human Xenografts. Mol Cancer Ther 2018; 17:2481-2489. [PMID: 30206106 DOI: 10.1158/1535-7163.mct-18-0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 (Rag2) gene, using genetically modified spermatogonial stem cells (SSC). We targeted the Rag2 gene in rat SSCs with TALENs and transplanted these Rag2-deficient SSCs into sterile recipients. Offspring were genotyped, and a founder with a 27 bp deletion mutation was identified and bred to homozygosity to produce the Sprague-Dawley Rag2 - Rag2 tm1Hera (SDR) knockout rat. We demonstrated that SDR rat lacks mature B and T cells. Furthermore, the SDR rat model was permissive to growth of human glioblastoma cell line subcutaneously resulting in successful growth of tumors. In addition, a human KRAS-mutant non-small cell lung cancer cell line (H358), a patient-derived high-grade serous ovarian cancer cell line (OV81), and a patient-derived recurrent endometrial cancer cell line (OV185) were transplanted subcutaneously to test the ability of the SDR rat to accommodate human xenografts from multiple tissue types. All human cancer cell lines showed efficient tumor uptake and growth kinetics indicating that the SDR rat is a viable host for a range of xenograft studies. Mol Cancer Ther; 17(11); 2481-9. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Min Tong
- Poseida Therapeutics Inc., San Diego, California
| | | | - Wei Zhang
- Hera BioLabs Inc., Lexington, Kentucky
| | | | | | - Eric Ostertag
- Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Sahar Mazhar
- Case Western Reserve University, Cleveland, Ohio
| | | | | | - Jack Crawford
- Hera BioLabs Inc., Lexington, Kentucky.,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| | - Goutham Narla
- Hera BioLabs Inc., Lexington, Kentucky.,The University of Michigan, Ann Arbor, Michigan
| | - Tseten Y Jamling
- Hera BioLabs Inc., Lexington, Kentucky. .,Transposagen Biopharmaceuticals Inc., Lexington, Kentucky
| |
Collapse
|
32
|
Generation of Immunodeficient Rats With Rag1 and Il2rg Gene Deletions and Human Tissue Grafting Models. Transplantation 2018; 102:1271-1278. [DOI: 10.1097/tp.0000000000002251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, Jiang T, Zhang Q, Fu X, Xu Y. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports 2018; 11:514-521. [PMID: 29983387 PMCID: PMC6092637 DOI: 10.1016/j.stemcr.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/04/2023] Open
Abstract
Due to its lack of both innate and acquired immune responses to human cells, the NODSCIDIl2rγ−/− (NSG) mouse model has become an important tool for human stem cell research. When compared with the mouse, the rat is physiologically more similar to humans and offers advantages in preclinical efficacy studies on human stem cells, particularly in evaluating neural, hepatic, and cardiac functions. Therefore, we generated a human SIRPα+Prdkc−/−Il2rγ−/− rat model, denoted NSG-like (NSGL) rat, which expresses human SIRPα and is abolished in the development of B, T, and natural killer cells. When compared with Prdkc−/−Il2rγ−/− (SG) rats, NSGL rats allow more efficient engraftment of human cancer cells and human pluripotent stem cells. In addition, only NSGL rats, but not SG rats, can be engrafted with human hematopoietic stem cells to reconstitute the human immune system. Therefore, NSGL rats represent an improved xenotransplantation model for efficacy studies of human stem cells. Generation of human SIRPα+Prkdc−/−Il2rγ−/− NSG-like (NSGL) rat model NSGL rats lack B, T, and NK cells but express human SIRPα NSGL rats can be efficiently engrafted with human stem cells NSGL rats can be reconstituted by human HSCs to generate a human immune system
Collapse
Affiliation(s)
- Xinglong Yang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianlong Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingjin He
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
| | - Jingfeng Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China
| | - Yachen Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Tao Jiang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China.
| | - Yang Xu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong 518033, China; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
34
|
He D, Zhang J, Wu W, Yi N, He W, Lu P, Li B, Yang N, Wang D, Xue Z, Zhang P, Fan G, Zhu X. A novel immunodeficient rat model supports human lung cancer xenografts. FASEB J 2018; 33:140-150. [PMID: 29944447 DOI: 10.1096/fj.201800102rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patient-derived xenograft (PDX) animal models allow the exogenous growth of human tumors, offering an irreplaceable preclinical tool for oncology research. Mice are the most commonly used host for human PDX models, however their small body size limits the xenograft growth, sample collection, and drug evaluation. Therefore, we sought to develop a novel rat model that could overcome many of these limitations. We knocked out Rag1, Rag2, and Il2rg in Sprague Dawley (SD) rats by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. The development of lymphoid organs is significantly impaired in Rag1-/-Rag2-/-Il2rg-/Y (designated as SD-RG) rats. Consequently, SD-RG rats are severely immunodeficient with an absence of mature T, B, and NK cells in the immune system. After subcutaneous injection of tumor cell lines of different origin, such as NCI-H460, U-87MG, and MDA-MB-231, the tumors grow significantly faster and larger in SD-RG rats than in nonobese diabetic- Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Most important of all, we successfully established a PDX model of lung squamous cell carcinoma in which the grafts recapitulate the histopathologic features of the primary tumor for several passages. In conclusion, the severely immunodeficient SD-RG rats support fast growth of PDX compared with mice, thus holding great potential to serve as a new model for oncology research.-He, D., Zhang, J., Wu, W., Yi, N., He, W., Lu, P., Li, B., Yang, N., Wang, D., Xue, Z., Zhang, P., Fan, G., Zhu, X. A novel immunodeficient rat model supports human lung cancer xenografts.
Collapse
Affiliation(s)
- Di He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Junhui Zhang
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Wanwan Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ning Yi
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Wen He
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Ping Lu
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Alphacait AL Biotech Company, Hangzhou, China
| | - Nan Yang
- PharmaLegacy Laboratories Company, Shanghai, China; and
| | - Di Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guoping Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Xianmin Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
35
|
Kaneko T. Reproductive technologies for the generation and maintenance of valuable animal strains. J Reprod Dev 2018; 64:209-215. [PMID: 29657233 PMCID: PMC6021608 DOI: 10.1262/jrd.2018-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many types of mutant and genetically engineered strains have been produced in various animal species. Their numbers have dramatically increased in recent years, with new strains being
rapidly produced using genome editing techniques. In the rat, it has been difficult to produce knockout and knock-in strains because the establishment of stem cells has been insufficient.
However, a large number of knockout and knock-in strains can currently be produced using genome editing techniques, including zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system. Microinjection technique has also
contributed widely to the production of various kinds of genome edited animal strains. A novel electroporation method, the “Technique for Animal Knockout system by Electroporation (TAKE)”
method, is a simple and highly efficient tool that has accelerated the production of new strains. Gamete preservation is extremely useful for maintaining large numbers of these valuable
strains as genetic resources in the long term. These reproductive technologies, including microinjection, TAKE method, and gamete preservation, strongly support biomedical research and the
bio-resource banking of animal models. In this review, we introduce the latest reproductive technologies used for the production of genetically engineered animals, especially rats, using
genome editing techniques and the efficient maintenance of valuable strains as genetic resources. These technologies can also be applied to other laboratory animals, including mice, and
domestic and wild animal species.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Science and Engineering, Graduate School of Arts and Science, Iwate University, Iwate 020-8551, Japan.,Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Iwate 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Iwate 020-8551, Japan
| |
Collapse
|
36
|
Fujii T, Hirota K, Yasoda A, Takizawa A, Morozumi N, Nakamura R, Yotsumoto T, Kondo E, Yamashita Y, Sakane Y, Kanai Y, Ueda Y, Yamauchi I, Yamanaka S, Nakao K, Kuwahara K, Jindo T, Furuya M, Mashimo T, Inagaki N, Serikawa T, Nakao K. Rats deficient C-type natriuretic peptide suffer from impaired skeletal growth without early death. PLoS One 2018; 13:e0194812. [PMID: 29566041 PMCID: PMC5864047 DOI: 10.1371/journal.pone.0194812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.
Collapse
Affiliation(s)
- Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| | - Akiko Takizawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | | | | | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | - Mayumi Furuya
- Asubio Pharma Co., Ltd., Kobe, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoji Mashimo
- Genome Editing Research and Development (R&D) Center and Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
37
|
Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, Chadly DM, Kobayashi S, Edelbrock AN, Mashimo T, Miller CA, McGuire TL, Stupp SI, Kessler JA. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017; 12:e0190150. [PMID: 29284013 PMCID: PMC5746215 DOI: 10.1371/journal.pone.0190150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Zafar A. Sayed
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Anil R. Wadhwani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zachery D. Morrissey
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Charles A. Miller
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
38
|
Application of genome editing technologies in rats for human disease models. J Hum Genet 2017; 63:115-123. [DOI: 10.1038/s10038-017-0346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 02/02/2023]
|
39
|
Besch-Williford C, Pesavento P, Hamilton S, Bauer B, Kapusinszky B, Phan T, Delwart E, Livingston R, Cushing S, Watanabe R, Levin S, Berger D, Myles M. A Naturally Transmitted Epitheliotropic Polyomavirus Pathogenic in Immunodeficient Rats: Characterization, Transmission, and Preliminary Epidemiologic Studies. Toxicol Pathol 2017; 45:593-603. [PMID: 28782456 DOI: 10.1177/0192623317723541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.
Collapse
Affiliation(s)
| | - Patricia Pesavento
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Beth Bauer
- 1 IDEXX BioResearch, Columbia, Missouri, USA
| | - Beatrix Kapusinszky
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Tung Phan
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Eric Delwart
- 3 Blood Systems Research Institute, San Francisco, California, USA.,4 Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | | | | | - Rie Watanabe
- 2 Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Stephen Levin
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | - Diana Berger
- 5 Center for Comparative Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
40
|
Jung IH, Chung YY, Jung DE, Kim YJ, Kim DH, Kim KS, Park SW. Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model. Neoplasia 2017; 18:468-79. [PMID: 27566103 PMCID: PMC5018095 DOI: 10.1016/j.neo.2016.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/06/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study.
Collapse
Affiliation(s)
- In Hye Jung
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Yoon Chung
- Research Institute of SMT Bio, SMT Bio Co., Ltd., Seoul, Republic of Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Jin Kim
- University of Rochester, Hajim School of Engineering and Applied Sciences, USA
| | - Do Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Woo Park
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Abstract
Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where ES culture and gene editing technologies can play complementary roles in generating accurate bespoke rat models for studying biological processes and modelling human disease.
Collapse
|
42
|
Jung CJ, Ménoret S, Brusselle L, Tesson L, Usal C, Chenouard V, Remy S, Ouisse LH, Poirier N, Vanhove B, de Jong PJ, Anegon I. Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Sci Rep 2016; 6:31455. [PMID: 27530248 PMCID: PMC4987655 DOI: 10.1038/srep31455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Chris J Jung
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Séverine Ménoret
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Lucas Brusselle
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laurent Tesson
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Claire Usal
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Vanessa Chenouard
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Séverine Remy
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laure-Hélène Ouisse
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Nicolas Poirier
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Bernard Vanhove
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Pieter J de Jong
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Ignacio Anegon
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| |
Collapse
|
43
|
Zhang L, Shao Y, Li L, Tian F, Cen J, Chen X, Hu D, Zhou Y, Xie W, Zheng Y, Ji Y, Liu M, Li D, Hui L. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Sci Rep 2016; 6:31460. [PMID: 27510266 PMCID: PMC4980609 DOI: 10.1038/srep31460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lu Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Feng Tian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| | - Dan Hu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yunwen Zheng
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academic of Sciences, Shanghai, China
| |
Collapse
|
44
|
Kaneko T, Mashimo T. Simple Genome Editing of Rodent Intact Embryos by Electroporation. PLoS One 2015; 10:e0142755. [PMID: 26556280 PMCID: PMC4640526 DOI: 10.1371/journal.pone.0142755] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE) method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN) comprised the edited targeted gene as a knockout (67% of mice and 88% of rats) or knock-in (both 33%). The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.
Collapse
Affiliation(s)
- Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Faculty of Medicine, Osaka University, Osaka, 565–0871, Japan
| |
Collapse
|
45
|
Lin X, Zhu H, Luo Z, Hong Y, Zhang H, Liu X, Ding H, Tian H, Yang Z. Near-infrared fluorescence imaging of non-Hodgkin's lymphoma CD20 expression using Cy7-conjugated obinutuzumab. Mol Imaging Biol 2015; 16:877-87. [PMID: 24833041 DOI: 10.1007/s11307-014-0742-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Obinutuzumab is the first fully humanized and glycoengineered monoclonal antibody (mAb) directly targeting CD20 antigen, which is expressed on B cell lymphocytes and the majority of non-Hodgkin's lymphoma (NHL). This study aims to design a diagnostic molecular probe, Cy7-Obinutuzumab (Cy7-Obi), in which Cy7 is a near-infrared fluorescent dye. This probe is used to noninvasively image CD20 antigen expressed in NHL cells. PROCEDURES Cy7-Obi probe was synthesized through nucleophilic substitution reaction between NHS-Cy7 and obinutuzumab. After purification, the conjugate was fully characterized by a series of methods. The immunoreactivity and molecular specificity of the probe were confirmed using flow cytometry and in vitro microscopy on Raji (CD20-positive) cells. For in vivo imaging, Cy7-Obi probe (1 nmol) was injected intravenously in severe combined immunodeficiency (SCID) mice bearing Raji tumors which overexpress CD20 (n = 3) and was imaged with near-infrared fluorescence (NIRF) at 6, 9, 12, 24, 60, and 96 h post-probe injection. For pre-block, obinutuzumab (3.25 mg) was injected intravenously in tumor-bearing mice 6 h before the administration of Cy7-Obi probe. RESULTS The synthesized Cy7-Obi probe in this paper mimics obinutuzumab in both structure and function. Flow cytometry analysis of the probe and obinutuzumab on Raji cells showed minor difference in binding affinity/specificity with CD20. The probe showed significant fluorescence signal when it was examined on Raji cells using in vitro microscopy. The fluorescence signal can be blocked by pretreatment with obinutuzumab. The probe Cy7-Obi also showed high tumor uptake when it was examined by in vivo optical imaging on Raji tumor-bearing mice. The tumor uptake can be blocked by pretreatment with obinutuzumab (n = 3, p < 0.05). The in vivo imaging results were also confirmed by ex vivo imaging of dissected organs. Finally, the probe Cy7-Obi has shown excellent tumor targeting and specificity through immunofluorescence analysis. CONCLUSIONS We have shown that humanized Cy7-Obi probe can be used for NIRF imaging successfully. The probe may be an effective and noninvasive diagnostic molecular probe capable of tracking CD20 overexpression in NHL.
Collapse
Affiliation(s)
- Xinfeng Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Szalay CI, Erdélyi K, Kökény G, Lajtár E, Godó M, Révész C, Kaucsár T, Kiss N, Sárközy M, Csont T, Krenács T, Szénási G, Pacher P, Hamar P. Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain. PLoS One 2015; 10:e0127090. [PMID: 26086199 PMCID: PMC4473269 DOI: 10.1371/journal.pone.0127090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage.
Collapse
Affiliation(s)
- Csaba Imre Szalay
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Katalin Erdélyi
- National Institute of Health (NIH/NIAAA/DICBR), Laboratory of Physiological Studies, Section on Oxidative Stress and Tissue Injury, Bethesda, Maryland, United States of America
| | - Gábor Kökény
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Enikő Lajtár
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Mária Godó
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Csaba Révész
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Tamás Kaucsár
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Norbert Kiss
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Márta Sárközy
- University of Szeged, Faculty of Medicine, Department of Biochemistry, Szeged, Hungary
| | - Tamás Csont
- University of Szeged, Faculty of Medicine, Department of Biochemistry, Szeged, Hungary
| | - Tibor Krenács
- 1 Semmelweis University, Department of Pathology and Experimental Cancer Research; MTA-SE Tumor Progression Research Group, Budapest, Hungary
| | - Gábor Szénási
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| | - Pál Pacher
- National Institute of Health (NIH/NIAAA/DICBR), Laboratory of Physiological Studies, Section on Oxidative Stress and Tissue Injury, Bethesda, Maryland, United States of America
| | - Péter Hamar
- Semmelweis University, Institute of Pathophysiology, Budapest, Hungary
| |
Collapse
|
47
|
Genetically modified pigs to model human diseases. J Appl Genet 2015; 55:53-64. [PMID: 24234401 DOI: 10.1007/s13353-013-0182-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/06/2023]
Abstract
Genetically modified mice are powerful tools to investigate the molecular basis of many human diseases. Mice are, however, of limited value for preclinical studies, because they differ significantly from humans in size, general physiology, anatomy and lifespan. Considerable efforts are, thus, being made to develop alternative animal models for a range of human diseases. These promise powerful new resources that will aid the development of new diagnostics, medicines and medical procedures. Here, we provide a comprehensive review of genetically modified porcine models described in the scientific literature: various cancers, cystic fibrosis, Duchenne muscular dystrophy, autosomal polycystic kidney disease, Huntington’s disease, spinal muscular atrophy, haemophilia A, X-linked severe combined immunodeficiency, retinitis pigmentosa, Stargardt disease, Alzheimer’s disease, various forms of diabetes mellitus and cardiovascular diseases.
Collapse
|
48
|
New humanized mouse model of bronchiolitis obliterans syndrome. Transplantation 2015; 99:468-9. [PMID: 25695785 DOI: 10.1097/tp.0000000000000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humanized animals are transplanted with human tissues and cells to study their behavior as they do in the human body. This commentary briefly summarizes the recent developments and discusses the limitations of these humanized animal models.
Collapse
|
49
|
Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, Takagi Y, Miyamoto S, Narumiya S. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci 2014; 126:230-42. [PMID: 25341845 DOI: 10.1254/jphs.14148fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Intracranial aneurysm (IA) and aortic dissection are both complications of hypertension and characterized by degeneration of the media. Given the involvement of prostaglandin F2α and its receptor, FP, in extracellular matrix remodeling in a mouse model of pulmonary fibrosis, here we induced hypertension and IA in rats by salt loading and hemi-lateral ligation of renal and carotid arteries and examined effects of a selective FP antagonist, AS604872, on these vascular events. AS604872 significantly accelerated degeneration of the media in both cerebral artery and aorta as evidenced by thinning of the media and disruption of the elastic lamina and promoted IA and aortic dissection. Notably, AS604872 induced expression of pro-inflammatory genes such as E-selectin in lesions and significantly enhanced macrophage infiltration. Suppression of surface expression of E-selectin with cimetidine prevented macrophage infiltration and aortic dissection. Thus, AS604872 exacerbates vascular inflammation in hypertensive rats and facilitates IA and aortic dissection. These results demonstrate that both IA and aortic dissection are caused by chronic inflammation of the arterial wall, which is worsened by AS604872, cautioning that other FP antagonists may share such deleterious actions in vascular homeostasis and suggesting that AS604872 can be used to make models of these vascular diseases with extensive degeneration.
Collapse
Affiliation(s)
- Miyuki Fukuda
- Department of Neurosurgery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep 2014; 4:6382. [PMID: 25269785 PMCID: PMC4180828 DOI: 10.1038/srep06382] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/28/2014] [Indexed: 12/11/2022] Open
Abstract
Engineered endonucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system, provide a powerful approach for genome editing in animals. However, the microinjection of endonucleases into embryos requires a high skill level, is time consuming, and may cause damage to embryos. Here, we demonstrate that the electroporation of endonuclease mRNAs into intact embryos can induce editing at targeted loci and efficiently produce knockout rats. It is noteworthy that the electroporation of ZFNs resulted in an embryonic survival rate (91%) and a genome-editing rate (73%) that were more than 2-fold higher than the corresponding rates from conventional microinjection. Electroporation technology provides a simple and effective method to produce knockout animals.
Collapse
|