1
|
Craig R, McIntosh K, Ho Ho K, McCulloch A, Riley C, Lawson C, Mackay SP, Paul A, Coats P, Plevin R. IL-1β stimulates a novel axis within the NFκB pathway in endothelial cells regulated by IKKα and TAK-1. Biochem Pharmacol 2025; 232:116736. [PMID: 39710275 DOI: 10.1016/j.bcp.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In this study we examined the activation of the non-canonical NFκB signalling pathway in endothelial cells. In HUVECs, LIGHT stimulated a delayed induction of serine 866/870 p100 phosphorylation linked to p52 NFκB formation. Surprisingly, the canonical ligand, IL-1β, stimulated a rapid phosphorylation or p100 which was not associated with p52 formation. Inhibition of IKKα activity, using DN-IKKα adenovirus, IKKα siRNA or a novel first-in-class selective IKKα inhibitor, SU1261, revealed IL-1β induced p100 phosphorylation to be dependent on IKKα. In contrast, IKKβ inhibition was found to be without effect. The NIK inhibitor, CW15337, did not affect IL-1β induced p100 phosphorylation however, both p100 and pIKKα/β phosphorylation was substantially reduced by inhibition of the upstream kinase TAK-1, suggesting phosphorylation of p100 is mediated by IKKα from within the canonical NEMO/IKKβ /IKKα complex. IL-1β also stimulated a rapid increase in nuclear translocation of p52, which was not affected by NIK inhibition, suggesting a source of p52 independent of p100 processing. Inhibition of TAK-1 abolished p52 and p65 nuclear translocation in response to IL-1β. SiRNA deletion or inhibition with dominant-negative virus of IKKα activity partially reduced p52 translocation, however pharmacological inhibition of IKKα was without effect. Inhibition of IKKβ abolished both p52 and p65 translocation. Taken together these results show that IL-1β stimulates a novel IKKα -dependent axis within the non-canonical NFκB pathway in endothelial cells which is NIK-independent and regulated by TAK-1. However, this pathway is not primarily responsible for the early nuclear translocation of p52, which is dependent on IKKβ. Elucidation of both these new pathways may be significant for NFκB biology within the endothelium.
Collapse
Affiliation(s)
- Rachel Craig
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Ka Ho Ho
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Riley
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Simon P Mackay
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Paul Coats
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
2
|
Pan W, Biswas T, Shahabi S, Suryajaya W, Vasquez A, Du Q, Ghosh G, Wang VYF. Phosphorylation-induced flexibility of proto-oncogenic Bcl3 regulates transcriptional activation by NF-κB p52 homodimer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601400. [PMID: 38979190 PMCID: PMC11230411 DOI: 10.1101/2024.06.30.601400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
B cell lymphoma 3 (Bcl3), a member of the IκB family proteins, modulates transcription by primarily associating with NF-κB p50 and p52 homodimers. Bcl3 undergoes extensive phosphorylation, though the functions of many of these modifications remain unclear. We previously described that phosphorylation at Ser33, Ser114 and Ser446 partially switches Bcl3 from acting as an IκB-like inhibitor to a transcription regulator by associating with the (p52:p52):DNA binary complex. Here, we identified another critical phosphorylation site, Ser366. Substituting at all four residues to phospho-mimetic glutamate further enhances Bcl3's transcriptional activity. Phospho-modifications retain Bcl3's ability to stably bind p52 but induces reciprocal structural changes as revealed by HDX-MS experiments; the N-terminal region stiffens, while the C-terminus becomes more flexible. The increased flexibility allowed the Bcl3:(p52p52) binary complex to better accommodate DNA. The removal of the C-terminal 28-residues transformed Bcl3 into a transcriptional activator independent of phosphorylation. Notably, most identified mutations in Bcl3 from various cancers map to its C-terminus, suggesting the functional relevance of Bcl3 C-terminal structural flexibility and enhanced interaction with (p52p52):DNA complex to transcriptional potential and disease. Overall, this study uncovers the mechanistic basis by which phosphorylation-driven structural changes convert Bcl3 from an inhibitor to a transcriptional cofactor of NF-κB, and how deregulation of its activity through altered phosphorylation or mutation can lead to cancer.
Collapse
|
3
|
Li T, Shahabi S, Biswas T, Tsodikov OV, Pan W, Huang DB, Wang VYF, Wang Y, Ghosh G. Transient interactions modulate the affinity of NF-κB transcription factors for DNA. Proc Natl Acad Sci U S A 2024; 121:e2405555121. [PMID: 38805268 PMCID: PMC11161749 DOI: 10.1073/pnas.2405555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 μs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY40536
| | - Wenfei Pan
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - De-Bin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau Special Administrative Region999078, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region999077, China
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
5
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
6
|
Li J, Zhai Y, Tang M. Integrative function of histone deacetylase 3 in inflammation. Mol Biol Rep 2024; 51:83. [PMID: 38183491 DOI: 10.1007/s11033-023-09077-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 01/08/2024]
Abstract
Inflammation is a complex biological response triggered when an organism encounters internal or external stimuli. These triggers activate various signaling pathways, leading to the release of numerous inflammatory mediators aimed at the affected tissue. Ensuring precision and avoiding the excessive activation, the inflammatory process is subject to tight regulation. Histone deacetylase 3 (HDAC3), a member of class I HDACs family, stands out for its significant role in modulating various inflammatory signaling, including Nuclear Factor kappa B (NF-κB) signaling, Mitogen-activated protein kinase (MAPK) signaling and Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling. In this review, we illuminate the intricate molecular mechanisms of HDAC3 across these inflammatory pathways. We emphasize its importance in orchestrating a balanced inflammatory response and highlight its promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Junjie Li
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Yiyuan Zhai
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Min Tang
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
7
|
LIU F, WEI Y, WANG Z. β-D-Glucan promotes NF-κB activation and ameliorates high-LET carbon-ion irradiation-induced human umbilical vein endothelial cell injury. Turk J Med Sci 2023; 53:1621-1634. [PMID: 38813508 PMCID: PMC10760591 DOI: 10.55730/1300-0144.5731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 09/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Heavy-ion irradiation seriously perturbs cellular homeostasis and thus damages cells. Vascular endothelial cells (ECs) play an important role in the pathological process of radiation damage. Protecting ECs from heavy-ion radiation is of great significance in the radioprotection of normal tissues. In this study, the radioprotective effect of β-D-glucan (BG) derived from Saccharomyces cerevisiae on human umbilical vein endothelial cell (EA.hy926) cytotoxicity produced by carbon-ion irradiation was examined and the probable mechanism was established. Materials and methods EA.hy926 cells were divided into seven groups: a control group; 1, 2, or 4 Gy radiation; and 10 μg/mL BG pretreatment for 24 h before 1, 2, or 4 Gy irradiation. Cell survival was assessed by colony formation assay. Cell cycles, apoptosis, DNA damage, and reactive oxygen species (ROS) levels were measured through flow cytometry. The level of malondialdehyde and antioxidant enzyme activities were analyzed using assay kits. The activation of NF-κB was analyzed using western blotting and a transcription factor assay kit. The expression of downstream target genes was detected by western blotting. Results BG pretreatment significantly increased the survival of irradiated cells, improved cell cycle progression, and decreased DNA damage and apoptosis. The levels of ROS and malondialdehyde were also decreased by BG. Further study indicated that BG increased the antioxidant enzyme activities, activated Src, and promoted NF-κB activation, especially for the p65, p50, and RelB subunits. The activated NF-κB upregulated the expression of antioxidant protein MnSOD, DNA damage-response and repair-related proteins BRCA2 and Hsp90α, and antiapoptotic protein Bcl-2. Conclusion Our results demonstrated that BG protects EA.hy926 cells from high linear-energy-transfer carbon-ion irradiation damage through the upregulation of prosurvival signaling triggered by the interaction of BG with its receptor. This confirms that BG is a promising radioprotective agent for heavy-ion exposure.
Collapse
Affiliation(s)
- Fang LIU
- International Genome Center, Jiangsu University, Zhenjiang, Jiangsu, P.R.
China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Yanting WEI
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Zhuanzi WANG
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| |
Collapse
|
8
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
9
|
Pan W, Meshcheryakov VA, Li T, Wang Y, Ghosh G, Wang VYF. Structures of NF-κB p52 homodimer-DNA complexes rationalize binding mechanisms and transcription activation. eLife 2023; 12:e86258. [PMID: 36779700 PMCID: PMC9991059 DOI: 10.7554/elife.86258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Tianjie Li
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Yi Wang
- Department of Physics, Chinese University of Hong KongShatinHong Kong
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of MacauTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaMacao
- Cancer Centre, Faculty of Health Sciences, University of MacauTaipaChina
| |
Collapse
|
10
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
11
|
Bernal GM, Wu L, Voce DJ, Weichselbaum RR, Yamini B. p52 signaling promotes cellular senescence. Cell Biosci 2022; 12:43. [PMID: 35379326 PMCID: PMC8981737 DOI: 10.1186/s13578-022-00779-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background Nuclear factor-κB is a multi-subunit transcription factor that plays a central role in cellular senescence. We previously reported that an increase in the p52 subunit is seen in senescent cells and aged tissue. In the current work, we examined the mechanism by which p52 is activated and whether the increase in p52 promotes senescence. Results Using both primary mouse embryonic fibroblasts (MEFs) and WI-38 human lung fibroblasts, we examined cells after serial passage and following prolonged culture. An increase in p52 was found in the nucleus relative to pre-senescent cells. The increase in p52 protein was not reflected by an increase in NFKB2 mRNA or by an increase in the abundance of upstream activating kinases, IKKα and NIK. To examine whether p52 promotes senescence, we over-expressed mature p52 in primary MEFs. Significantly more senescence was seen compared to control, a finding not seen with p52 mutated at critical DNA binding residues. In addition, blocking p52 nuclear translocation with the peptide inhibitor, SN52, decreased β-galactosidase (β-gal) formation. Subsequent filtration studies demonstrated that proteins in conditioned media (CM) were necessary for the increase in p52 and mass spectrometry identified S100A4 and cyclophilin A (CYPA) as potential factors in CM necessary for induction of p52. The requirement of these proteins in CM for induction of p52 was confirmed using depletion and supplementation studies. In addition, we found that activation of STAT3 signaling was required for the increase in p52. Finally, genome wide ChIP-sequencing analysis confirmed that there is an increase in p52 chromatin enrichment with senescence and identified several downstream factors whose expression is regulated by increased p52 binding. Conclusions These results demonstrate that p52 nuclear translocation is increased in senescent cells by factors in conditioned media and that mature p52 induces cellular senescence. The data are consistent with the prior observation that p52 is elevated in aged tissue and support the hypothesis that p52 contributes to organismal aging. Supplementary information The online version contains supplementary material available at 10.1186/s13578-022-00779-6.
Collapse
|
12
|
Pan W, Deng L, Wang H, Wang VYF. Atypical IκB Bcl3 enhances the generation of the NF-κB p52 homodimer. Front Cell Dev Biol 2022; 10:930619. [PMID: 35990614 PMCID: PMC9389042 DOI: 10.3389/fcell.2022.930619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulate diverse biological functions. Their cellular expression profiles differ, which lead to different concentrations in different cell/tissue types. Although the activation mechanisms of different NF-κB dimers have been widely investigated, there is limited information on specific NF-κB dimers’ formation. The NF-κB p52:p52 homodimer regulates an important subset of target genes in cancer cells; however, the molecular mechanism of the generation of this specific homodimer remains unclear. Our study has revealed that the atypical IκB protein, Bcl3, plays an essential role in enhancing the p52:p52 homodimer population which is a unique mechanism to p52 within the NF-κB family. p52 was shown to heterodimerize with four other NF-κB subunits (RelA, RelB, cRel, and p50); all heterodimers, except p52:p50, are significantly more stable than the p52:p52 homodimer. Bcl3 is able to compete with all other NF-κB subunits in cells for efficient p52:p52 homodimer formation which consequently leads to the upregulation of target genes that are involved in cell proliferation, migration, and inflammation, which explain why aberrant activation of Bcl3 and p52 leads to cancer.
Collapse
Affiliation(s)
- Wenfei Pan
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Limei Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Haitao Wang
- Thoracic Surgery Branch, Clinical Research, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Macau SAR, China
- *Correspondence: Vivien Ya-Fan Wang,
| |
Collapse
|
13
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
14
|
Ghosh G, Wang VYF. Origin of the Functional Distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9:764164. [PMID: 34888310 PMCID: PMC8650618 DOI: 10.3389/fcell.2021.764164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription regulators of the NF-κB family have emerged as a critical factor affecting the function of various adult tissues. The NF-κB family transcription factors are homo- and heterodimers made up of five monomers (p50, p52, RelA, cRel and RelB). The family is distinguished by sequence homology in their DNA binding and dimerization domains, which enables them to bind similar DNA response elements and participate in similar biological programs through transcriptional activation and repression of hundreds of genes. Even though the family members are closely related in terms of sequence and function, they all display distinct activities. In this review, we discuss the sequence characteristics, protein and DNA interactions, and pathogenic involvement of one member of family, NF-κB/p52, relative to that of other members. We pinpoint the small sequence variations within the conserved region that are mostly responsible for its distinct functional properties.
Collapse
Affiliation(s)
- Gourisankar Ghosh
- Department of Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
15
|
Basal and IL-1β enhanced chondrocyte chemotactic activity on monocytes are co-dependent on both IKKα and IKKβ NF-κB activating kinases. Sci Rep 2021; 11:21697. [PMID: 34737366 PMCID: PMC8568921 DOI: 10.1038/s41598-021-01063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
IKKα and IKKβ are essential kinases for activating NF-κB transcription factors that regulate cellular differentiation and inflammation. By virtue of their small size, chemokines support the crosstalk between cartilage and other joint compartments and contribute to immune cell chemotaxis in osteoarthritis (OA). Here we employed shRNA retroviruses to stably and efficiently ablate the expression of each IKK in primary OA chondrocytes to determine their individual contributions for monocyte chemotaxis in response to chondrocyte conditioned media. Both IKKα and IKKβ KDs blunted both the monocyte chemotactic potential and the protein levels of CCL2/MCP-1, the chemokine with the highest concentration and the strongest association with monocyte chemotaxis. These findings were mirrored by gene expression analysis indicating that the lowest levels of CCL2/MCP-1 and other monocyte-active chemokines were in IKKαKD cells under both basal and IL-1β stimulated conditions. We find that in their response to IL-1β stimulation IKKαKD primary OA chondrocytes have reduced levels of phosphorylated NFkappaB p65pSer536 and H3pSer10. Confocal microscopy analysis revealed co-localized p65 and H3pSer10 nuclear signals in agreement with our findings that IKKαKD effectively blunts their basal level and IL-1β dependent increases. Our results suggest that IKKα could be a novel OA disease target.
Collapse
|
16
|
Potentilla discolor ameliorates LPS-induced inflammatory responses through suppressing NF-κB and AP-1 pathways. Biomed Pharmacother 2021; 144:112345. [PMID: 34678721 DOI: 10.1016/j.biopha.2021.112345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Potentilla discolor Bunge (PD) is a traditional Chinese medicine which has been widely used for the treatment of various inflammatory diseases (e.g., diarrhea, fever and furuncle). However, few studies focused on its effect on classical inflammation. This study aimed to investigate the anti-inflammatory effect and potential mechanism of the ethanol extract of the whole herbs of PD (EPD) in lipopolysaccharide (LPS)-induced inflammatory models. The obtained results showed that EPD decreased supernatant NO, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in LPS-activated RAW264.7 cells and mouse peritoneal macrophages. Moreover, its effect on NO was attributed to the suppression of iNOS expression rather than its activity. At the transcriptional level, EPD suppressed iNOS, TNF-α and MCP-1 mRNA expressions in LPS-stimulated RAW264.7 cells. Further study showed that EPD didn't affect the phosphorylation and degradation of IκBα, but yet impeded the nuclear translocation of p65 to inhibit NF-κB activation. Meanwhile, it also prevented JNK, ERK1/2 and p38 phosphorylation to dampen the activation of AP-1. In endotoxemia mouse model, EPD not only decreased interleukin-6, TNF-α and MCP-1 levels in serum, but also potently ameliorated diarrhea. These findings provide the theoretical basis for PD to treat inflammatory diseases, especially intestinal inflammation.
Collapse
|
17
|
Ozawa T, Kaneko S, Szulzewsky F, Qiao Z, Takadera M, Narita Y, Kondo T, Holland EC, Hamamoto R, Ichimura K. C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathol Commun 2021; 9:36. [PMID: 33685520 PMCID: PMC7941712 DOI: 10.1186/s40478-021-01135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recurrent C11orf95-RELA fusions (RELAFUS) are the hallmark of supratentorial ependymomas. The presence of RELA as the fusion partner indicates a close association of aberrant NF-κB activity with tumorigenesis. However, the oncogenic role of the C11orf95 has not been determined. Here, we performed ChIP-seq analyses to explore genomic regions bound by RELAFUS and H3K27ac proteins in human 293T and mouse ependymoma cells. We then utilized published RNA-Seq data from human and mouse RELAFUS tumors and identified target genes that were directly regulated by RELAFUS in these tumors. Subsequent transcription factor motif analyses of RELAFUS target genes detected a unique GC-rich motif recognized by the C11orf95 moiety, that is present in approximately half of RELAFUS target genes. Luciferase assays confirmed that a promoter carrying this motif is sufficient to drive RELAFUS-dependent gene expression. Further, the RELAFUS target genes were found to be overlapped with Rela target genes primarily via non-canonical NF-κB binding sites. Using a series of truncation and substitution mutants of RELAFUS, we also show that the activation domain in the RELAFUS moiety is necessary for the regulation of gene expression of these RELAFUS target genes. Lastly, we performed an anti-cancer drug screening with mouse ependymoma cells and identified potential anti-ependymoma drugs that are related to the oncogenic mechanism of RELAFUS. These findings suggested that RELAFUS might induce ependymoma formation through oncogenic pathways orchestrated by both C11orf95 and RELA target genes. Thus, our study unveils a complex gene function of RELAFUS as an oncogenic transcription factor in RELAFUS positive ependymomas.
Collapse
|
18
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Struzik J, Szulc-Dąbrowska L, Mielcarska MB, Bossowska-Nowicka M, Koper M, Gieryńska M. First Insight into the Modulation of Noncanonical NF-κB Signaling Components by Poxviruses in Established Immune-Derived Cell Lines: An In Vitro Model of Ectromelia Virus Infection. Pathogens 2020; 9:pathogens9100814. [PMID: 33020446 PMCID: PMC7599462 DOI: 10.3390/pathogens9100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) and macrophages are the first line of antiviral immunity. Viral pathogens exploit these cell populations for their efficient replication and dissemination via the modulation of intracellular signaling pathways. Disruption of the noncanonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling has frequently been observed in lymphoid cells upon infection with oncogenic viruses. However, several nononcogenic viruses have been shown to manipulate the noncanonical NF-κB signaling in different cell types. This study demonstrates the modulating effect of ectromelia virus (ECTV) on the components of the noncanonical NF-κB signaling pathway in established murine cell lines: JAWS II DCs and RAW 264.7 macrophages. ECTV affected the activation of TRAF2, cIAP1, RelB, and p100 upon cell treatment with both canonical and noncanonical NF-κB stimuli and thus impeded DNA binding by RelB and p52. ECTV also inhibited the expression of numerous genes related to the noncanonical NF-κB pathway and RelB-dependent gene expression in the cells treated with canonical and noncanonical NF-κB activators. Thus, our data strongly suggest that ECTV influenced the noncanonical NF-κB signaling components in the in vitro models. These findings provide new insights into the noncanonical NF-κB signaling components and their manipulation by poxviruses in vitro.
Collapse
Affiliation(s)
- Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
- Correspondence: ; Tel.: +48-22-59-360-61
| | - Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Matylda B. Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, A. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (L.S.-D.); (M.B.M.); (M.B.-N.); (M.G.)
| |
Collapse
|
20
|
Chawla M, Roy P, Basak S. Role of the NF-κB system in context-specific tuning of the inflammatory gene response. Curr Opin Immunol 2020; 68:21-27. [PMID: 32898750 DOI: 10.1016/j.coi.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023]
Abstract
The canonical NF-κB pathway instructs the expression of inflammatory genes by the RelA:p50 transcription factor in response to diverse cell-activating stimuli. However, this mainstay RelA:p50 transcriptional output must also be curated so as to provide for stimulus-type-specific and cell-type-specific inflammatory responses adapted to the local tissue-microenvironment. Here, we summarize the fundamental mechanisms regulating RelA:p50-mediated gene expressions and discuss how the NF-κB system imparts specificity in the inflammatory gene program. We put forward a conceptual framework where the dynamical attributes and the composition of the nuclear NF-κB complexes cumulatively instruct context-specific inflammatory gene patterns. We propose that integrating mechanistic knowledge and systems-level analyses may offer further insights on NF-κB-mediated inflammatory gene control in the future.
Collapse
Affiliation(s)
- Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
21
|
Leão FB, Vaughn LS, Bhatt D, Liao W, Maloney D, Carvalho BC, Oliveira L, Ghosh S, Silva AM. Toll-like Receptor (TLR)-induced Rasgef1b expression in macrophages is regulated by NF-κB through its proximal promoter. Int J Biochem Cell Biol 2020; 127:105840. [PMID: 32866686 DOI: 10.1016/j.biocel.2020.105840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Abstract
Ras Guanine Exchange Factor (RasGEF) domain family member 1b is encoded by a Toll-like receptor (TLR)-inducible gene expressed in macrophages, but transcriptional mechanisms that govern its expression are still unknown. Here, we have functionally characterized the 5' flanking Rasgef1b sequence and analyzed its transcriptional activation. We have identified that the inflammation-responsive promoter is contained within a short sequence (-183 to +119) surrounding the transcriptional start site. The promoter sequence is evolutionarily conserved and harbors a cluster of five NF-κB binding sites. Luciferase reporter gene assay showed that the promoter is responsive to TLR activation and RelA or cRel, but not RelB, transcription factors. Besides, site-directed mutagenesis showed that the κB binding sites are required for maximal promoter activation induced by LPS. Analysis by Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that the promoter is located in an accessible chromatin region. More important, Chromatin Immunoprecipitation sequencing (ChIP-seq) showed that RelA is recruited to the promoter region upon LPS stimulation of bone marrow-derived macrophages. Finally, studies with Rela-deficient macrophages or pharmacological inhibition by Bay11-7082 showed that NF-κB is required for optimal Rasgef1b expression induced by TLR agonists. Our data provide evidence of the regulatory mechanism mediated by NF-κB that facilitates Rasgef1b expression after TLR activation in macrophages.
Collapse
Affiliation(s)
- Felipe B Leão
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lauren S Vaughn
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Dev Bhatt
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | | | - Brener C Carvalho
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo Oliveira
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10031, USA
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
22
|
Gan J, Giogha C, Hartland EL. Molecular mechanisms employed by enteric bacterial pathogens to antagonise host innate immunity. Curr Opin Microbiol 2020; 59:58-64. [PMID: 32862049 DOI: 10.1016/j.mib.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Many Gram-negative enteric pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC), Salmonella, Shigella, and Yersinia species have evolved strategies to combat host defence mechanisms. Critical bacterial virulence factors, which often include but are not limited to type III secreted effector proteins, are deployed to cooperatively interfere with key host defence pathways. Recent studies in this area have not only contributed to our knowledge of bacterial pathogenesis, but have also shed light on the host pathways that are critical for controlling bacterial infection. In this review, we summarise recent breakthroughs in our understanding of the mechanisms utilised by enteric bacterial pathogens to rewire critical host innate immune responses, including cell death and inflammatory signaling and cell-intrinsic anti-microbial responses such as xenophagy.
Collapse
Affiliation(s)
- Jiyao Gan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
23
|
Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel) 2020; 9:E743. [PMID: 32823544 PMCID: PMC7463655 DOI: 10.3390/antiox9080743] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer's disease, are a global public health burden with poorly understood aetiology. Neuroinflammation and oxidative stress (OS) are undoubtedly hallmarks of neurodegeneration, contributing to disease progression. Protein aggregation and neuronal damage result in the activation of disease-associated microglia (DAM) via damage-associated molecular patterns (DAMPs). DAM facilitate persistent inflammation and reactive oxygen species (ROS) generation. However, the molecular mechanisms linking DAM activation and OS have not been well-defined; thus targeting these cells for clinical benefit has not been possible. In microglia, ROS are generated primarily by NADPH oxidase 2 (NOX2) and activation of NOX2 in DAM is associated with DAMP signalling, inflammation and amyloid plaque deposition, especially in the cerebrovasculature. Additionally, ROS originating from both NOX and the mitochondria may act as second messengers to propagate immune activation; thus intracellular ROS signalling may underlie excessive inflammation and OS. Targeting key kinases in the inflammatory response could cease inflammation and promote tissue repair. Expression of antioxidant proteins in microglia, such as NADPH dehydrogenase 1 (NQO1), is promoted by transcription factor Nrf2, which functions to control inflammation and limit OS. Lipid droplet accumulating microglia (LDAM) may also represent a double-edged sword in neurodegenerative disease by sequestering peroxidised lipids in non-pathological ageing but becoming dysregulated and pro-inflammatory in disease. We suggest that future studies should focus on targeted manipulation of NOX in the microglia to understand the molecular mechanisms driving inflammatory-related NOX activation. Finally, we discuss recent evidence that therapeutic target identification should be unbiased and founded on relevant pathophysiological assays to facilitate the discovery of translatable antioxidant and anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Dominic S. A. Simpson
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L. Oliver
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxfordshire OX11 0RD, UK;
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
24
|
Rius-Pérez S, Pérez S, Martí-Andrés P, Monsalve M, Sastre J. Nuclear Factor Kappa B Signaling Complexes in Acute Inflammation. Antioxid Redox Signal 2020; 33:145-165. [PMID: 31856585 DOI: 10.1089/ars.2019.7975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
25
|
Mulero MC, Wang VYF, Huxford T, Ghosh G. Genome reading by the NF-κB transcription factors. Nucleic Acids Res 2019; 47:9967-9989. [PMID: 31501881 PMCID: PMC6821244 DOI: 10.1093/nar/gkz739] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Davis JL, Cox L, Shao C, Lyu C, Liu S, Aurora R, Veis DJ. Conditional Activation of NF-κB Inducing Kinase (NIK) in the Osteolineage Enhances Both Basal and Loading-Induced Bone Formation. J Bone Miner Res 2019; 34:2087-2100. [PMID: 31246323 PMCID: PMC6854278 DOI: 10.1002/jbmr.3819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Studies from global loss-of-function mutants suggest that alternative NF-κB downstream of NF-κB inducing kinase (NIK) is a cell-intrinsic negative regulator of osteogenesis. However, the interpretation of the osteoblast and/or osteocyte contribution to the bone phenotype is complicated by simultaneous osteoclast defects in these models. Therefore, we turned to a transgenic mouse model to investigate the direct role of NIK in the osteolineage. Osx-Cre;NT3 animals (NT3-Cre +), which bear a constitutively active NIK allele (NT3) driven by Osx-Cre, were compared with their Cre-negative, Control (Ctrl) littermates. NT3-Cre + mice had elevated serum P1NP and CTX levels. Despite this high turnover state, µCT showed that constitutive activation of NIK resulted in a net increase in basal bone mass in both cortical and cancellous compartments. Furthermore, NT3-Cre + mice exhibited a greater anabolic response following mechanical loading compared with controls. We next performed RNA-Seq on nonloaded and loaded tibias to elucidate possible mechanisms underlying the increased bone anabolism seen in NT3-Cre + mice. Hierarchical clustering revealed two main transcriptional programs: one loading-responsive and the other NT3 transgene-driven. Gene ontology (GO) analysis indicated a distinct upregulation of receptor, kinase, and growth factor activities including Wnts, as well as a calcium-response signature in NT3-Cre + limbs. The promoters of these GO-term associated genes, including many known to be bone-anabolic, were highly enriched for multiple κB recognition elements (κB-RE) relative to the background frequency in the genome. The loading response in NT3-Cre + mice substantially overlapped (>90%) with Ctrl. Surprisingly, control animals had 10-fold more DEGs in response to loading. However, most top DEGs shared between genotypes had a high incidence of multiple κB-RE in their promoters. Therefore, both transcriptional programs (loading-responsive and NT3 transgene-driven) are modulated by NF-κB. Our studies uncover a previously unrecognized role for NF-κB in the promotion of both basal and mechanically stimulated bone formation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jennifer L Davis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine Shao
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheng Lyu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shaopeng Liu
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah J Veis
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
- Department of Patholgy, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Andrilenas KK, Ramlall V, Kurland J, Leung B, Harbaugh AG, Siggers T. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers: implications for dimer-specific gene regulation. Nucleic Acids Res 2019; 46:2509-2520. [PMID: 29361124 PMCID: PMC5861432 DOI: 10.1093/nar/gky002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
Transcription factors IRF3, IRF5 and IRF7 (IRF3/5/7) have overlapping, yet distinct, roles in the mammalian response to pathogens. To examine the role that DNA-binding specificity plays in delineating IRF3/5/7-specific gene regulation we used protein-binding microarrays (PBMs) to characterize the DNA binding of IRF3/5/7 homodimers. We identified both common and dimer-specific DNA binding sites, and show that DNA-binding differences can translate into dimer-specific gene regulation. Central to the antiviral response, IRF3/5/7 regulate type I interferon (IFN) genes. We show that IRF3 and IRF7 bind to many interferon-stimulated response element (ISRE)-type sites in the virus-response elements (VREs) of IFN promoters. However, strikingly, IRF5 does not bind the VREs, suggesting evolutionary selection against IRF5 homodimer binding. Mutational analysis reveals a critical specificity-determining residue that inhibits IRF5 binding to the ISRE-variants present in the IFN gene promoters. Integrating PBM and reporter gene data we find that both DNA-binding affinity and affinity-independent mechanisms determine the function of DNA-bound IRF dimers, suggesting that DNA-based allostery plays a role in IRF binding site function. Our results provide new insights into the role and limitations of DNA-binding affinity in delineating IRF3/5/7-specific gene expression.
Collapse
Affiliation(s)
| | | | - Jesse Kurland
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Brandon Leung
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
30
|
Frentzel S, Katsoulis-Dimitriou K, Jeron A, Schmitz I, Bruder D. Essential role of IκB NS for in vivo CD4 + T-cell activation, proliferation, and Th1-cell differentiation during Listeria monocytogenes infection in mice. Eur J Immunol 2019; 49:1391-1398. [PMID: 31049948 PMCID: PMC6771600 DOI: 10.1002/eji.201847961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Acquisition of effector functions in T cells is guided by transcription factors, including NF‐κB, that itself is tightly controlled by inhibitory proteins. The atypical NF‐κB inhibitor, IκBNS, is involved in the development of Th1, Th17, and regulatory T (Treg) cells. However, it remained unclear to which extend IκBNS contributed to the acquisition of effector function in T cells specifically responding to a pathogen during in vivo infection. Tracking of adoptively transferred T cells in Listeria monocytogenes infected mice antigen‐specific activation of CD4+ T cells following in vivo pathogen encounter to strongly rely on IκBNS. While IκBNS was largely dispensable for the acquisition of cytotoxic effector function in CD8+ T cells, IκBNS‐deficient Th1 effector cells exhibited significantly reduced proliferation, marked changes in the pattern of activation marker expression, and reduced production of the Th1‐cell cytokines IFN‐γ, IL‐2, and TNF‐α. Complementary in vitro analyses using cells from novel reporter and inducible knockout mice revealed that IκBNS predominantly affects the early phase of Th1‐cell differentiation while its function in terminally differentiated cells appears to be negligible. Our data suggest IκBNS as a potential target to modulate specifically CD4+ T‐cell responses.
Collapse
Affiliation(s)
- Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Systems-oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Schmitz
- Systems-oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
31
|
Prajoko YW, Aryandono T. The Effect of P-Glycoprotein (P-gp), Nuclear Factor-Kappa B (Nf-κb), and Aldehyde Dehydrogenase-1 (ALDH-1) Expression on Metastases, Recurrence and Survival in Advanced Breast Cancer Patients. Asian Pac J Cancer Prev 2019; 20:1511-1518. [PMID: 31128056 PMCID: PMC6857879 DOI: 10.31557/apjcp.2019.20.5.1511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective: To investigate the level of three drug resistance proteins; P-glycoprotein 1 (P-gp), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) and aldehyde dehydrogenase isoform 1 (ALDH1) expression
and their relationship to metastasis, recurrence and survival in advanced breast cancer patients that received neoadjuvant
chemotherapy. Methods: This study is a combination of prospective and retrospective cohort study involving one
hundred and thirty one cases of advanced stage invasive breast cancer that have received neoadjuvant chemotherapy.
Initial biopsy specimens (incisional biopsy or core biopsy) were taken from paraffin blocks. Immunohistochemistry
(IHC) was used to detect P-gp, NF-κB, and ALDH1 expression. Prospectively analysed patients were followed for five
years and evaluated for recurrence and death. Results: The expression of P-gp has no significant statistical correlation
to metastases (p = 0.659), recurrence (p = 0.862) and survival (p = 0.835) in advanced stage breast cancer patients
who received neoadjuvant chemotherapy. Similarly, ALDH1 was not correlated to metastases (p=0.120), recurrence
(p = 0.186) and survival (p = 0.254) statistically. We found that NF-κB expression showed a significant correlation to
metastases (p=0.004), recurrence (p = 0.016) and overall survival (p = 0.041) in advanced stage breast cancer patients
after neoadjuvant chemotherapy. Conclusion: NF-κB expression is a potential marker that can be used to assess or
to predict increasing risk of metastases, recurrence and survival in advanced stage breast cancer patients who receive
neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yan Wisnu Prajoko
- Department of Oncologic Surgery, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia.
| | - Teguh Aryandono
- Department of Oncologic Surgery, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia.
| |
Collapse
|
32
|
Brignall R, Moody AT, Mathew S, Gaudet S. Considering Abundance, Affinity, and Binding Site Availability in the NF-κB Target Selection Puzzle. Front Immunol 2019; 10:609. [PMID: 30984185 PMCID: PMC6450194 DOI: 10.3389/fimmu.2019.00609] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.
Collapse
Affiliation(s)
- Ruth Brignall
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Amy T Moody
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Laboratory for Systems Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, United States.,Department of Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Shibin Mathew
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Suzanne Gaudet
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| |
Collapse
|
33
|
Szołtysek K, Janus P, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Cockell S, Perkins ND, Kimmel M, Widlak P. RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation. BMC Genomics 2018; 19:813. [PMID: 30419821 PMCID: PMC6233266 DOI: 10.1186/s12864-018-5211-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. RESULTS We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors. CONCLUSIONS Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed.
Collapse
Affiliation(s)
- Katarzyna Szołtysek
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Patryk Janus
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Gracjana Zając
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Simon Cockell
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Neil D. Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | | | - Piotr Widlak
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
34
|
Jennings E, Esposito D, Rittinger K, Thurston TLM. Structure-function analyses of the bacterial zinc metalloprotease effector protein GtgA uncover key residues required for deactivating NF-κB. J Biol Chem 2018; 293:15316-15329. [PMID: 30049795 PMCID: PMC6166728 DOI: 10.1074/jbc.ra118.004255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Indexed: 12/03/2022] Open
Abstract
The closely related type III secretion system zinc metalloprotease effector proteins GtgA, GogA, and PipA are translocated into host cells during Salmonella infection. They then cleave nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factor subunits, dampening activation of the NF-κB signaling pathway and thereby suppressing host immune responses. We demonstrate here that GtgA, GogA, and PipA cleave a subset of NF-κB subunits, including p65, RelB, and cRel but not NF-κB1 and NF-κB2, whereas the functionally similar type III secretion system effector NleC of enteropathogenic and enterohemorrhagic Escherichia coli cleaved all five NF-κB subunits. Mutational analysis of NF-κB subunits revealed that a single nonconserved residue in NF-κB1 and NF-κB2 that corresponds to the P1' residue Arg-41 in p65 prevents cleavage of these subunits by GtgA, GogA, and PipA, explaining the observed substrate specificity of these enzymes. Crystal structures of GtgA in its apo-form and in complex with the p65 N-terminal domain explained the importance of the P1' residue. Furthermore, the pattern of interactions suggested that GtgA recognizes NF-κB subunits by mimicking the shape and negative charge of the DNA phosphate backbone. Moreover, structure-based mutational analysis of GtgA uncovered amino acids that are required for the interaction of GtgA with p65, as well as those that are required for full activity of GtgA in suppressing NF-κB activation. This study therefore provides detailed and critical insight into the mechanism of substrate recognition by this family of proteins important for bacterial virulence.
Collapse
Affiliation(s)
- Elliott Jennings
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| | - Diego Esposito
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Katrin Rittinger
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Teresa L M Thurston
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| |
Collapse
|
35
|
Zou Y, Uddin MM, Padmanabhan S, Zhu Y, Bu P, Vancura A, Vancurova I. The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 2018; 293:15483-15496. [PMID: 30135206 DOI: 10.1074/jbc.ra118.004084] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that Bcl3 expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1. The Bcl3 expression in OC cells is further increased by IFN, resulting in increased PD-L1 transcription. The mechanism consists of an IFN-induced, Bcl3- and p300-dependent PD-L1 promoter occupancy by Lys-314/315 acetylated p65 NF-κB. Blocking PD-L1 by neutralizing antibody reduces proliferation of OC cells overexpressing Bcl3, suggesting that the pro-proliferative effect of Bcl3 in OC cells is partly mediated by PD-L1. Together, this work identifies PD-L1 as a novel target of Bcl3, and links Bcl3 to IFNγ signaling and PD-L1-mediated immune escape.
Collapse
Affiliation(s)
- Yue Zou
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Mohammad M Uddin
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Sveta Padmanabhan
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Yan Zhu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| | - Ivana Vancurova
- From the Department of Biological Sciences, St. John's University, New York, New York 11439
| |
Collapse
|
36
|
Jones MR, Yue J, Wilson AK. Impact of intracellular ionic strength on dimer binding in the NF-kB Inducing kinase. J Struct Biol 2018; 202:183-190. [PMID: 29326084 DOI: 10.1016/j.jsb.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Improper signaling of the nuclear factor-κB (NF-κB) pathway plays a critical role in many inflammatory disease states including cancer, stroke, and viral infections. Although the signaling pathways are known, how these molecular mechanisms respond to changes in the intracellular microenvironment such as pH, ionic strength, and temperature, remains elusive. Molecular dynamics simulations were employed to differentiate the structural dynamics of the NF-κB Inducing Kinase (NIK), a protein kinase responsible for invoking the non-canonical NF-κB pathway, in its native and mutant form, and in the absence and presence of salt concentration in efforts to probe whether changes in the ionic environment stabilize or destabilize the NIK dimer. Analyses of structure-activity and conformational-activity relationships indicate that the protein-protein interactions are sensitive to changes in the ionic strength. Ligand binding pockets as well as regions between the oligomer interface either compress or expand, affecting both local and distal intermolecular interactions that result in stabilization or destabilization in the protein assembly.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824, United States
| | - Joshua Yue
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle #305070, Denton, TX 76203-5017, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824, United States; Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle #305070, Denton, TX 76203-5017, United States.
| |
Collapse
|
37
|
LPS-mediated cell surface expression of CD74 promotes the proliferation of B cells in response to MIF. Cell Signal 2018; 46:32-42. [PMID: 29476963 DOI: 10.1016/j.cellsig.2018.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/21/2023]
|
38
|
Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VYF, Amaro RE, Huxford T, Ghosh G. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 2018; 57:2943-2957. [PMID: 29708732 DOI: 10.1021/acs.biochem.8b00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Jamie M Schiffer
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - De-Bin Huang
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau SAR , China
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
39
|
Leu JS, Chang SY, Mu CY, Chen ML, Yan BS. Functional domains of SP110 that modulate its transcriptional regulatory function and cellular translocation. J Biomed Sci 2018; 25:34. [PMID: 29642903 PMCID: PMC5894228 DOI: 10.1186/s12929-018-0434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background SP110, an interferon-induced nuclear protein, belongs to the SP100/SP140 protein family. Very recently, we showed that SP110b, an SP110 isoform, controls host innate immunity to Mycobacterium tuberculosis infection by regulating nuclear factor-κB (NF-κB) activity. However, it remains unclear how the structure of SP110 relates to its cellular functions. In this study, we provide experimental data illustrating the protein domains that are responsible for its functions. Methods We examined the effects of SP110 isoforms and a series of deletion mutants of SP110 on transcriptional regulation by luciferase reporter assays. We also employed confocal microscopy to determine the cellular distributions of enhanced green fluorescent protein-tagged SP110 isoforms and SP110 mutants. In addition, we performed immunoprecipitation and Western blotting analyses to identify the regions of SP110 that are responsible for protein interactions. Results Using reporter assays, we first demonstrated that SP110 isoforms have different regulatory effects on NF-κB-mediated transcription, supporting the notion that SP110 isoforms may have distinct cellular functions. Analysis of deletion mutants of SP110 showed that the interaction of the N-terminal fragment (amino acids 1–276) of SP110 with p50, a subunit of NF-κB, in the cytoplasm plays a crucial role in the down-regulation of the p50-driven tumor necrosis factor-α (TNFα) promoter activity in the nucleus, while the middle and C-terminal regions of SP110 localize it to various cellular compartments. Surprisingly, a nucleolar localization signal (NoLS) that contains one monopartite nuclear localization signal (NLS) and one bipartite NLS was identified in the middle region of SP110. The identification of a cryptic NoLS in the SP110 suggests that although this protein forms nuclear speckles in the nucleoplasm, it may be directed into the nucleolus to carry out distinct functions under certain cellular conditions. Conclusions The findings from this study elucidating the multidomain structure of the SP110 not only identify functional domains of SP110 that are required for transcriptional regulation, cellular translocation, and protein interactions but also implicate that SP110 has additional functions through its unexpected activity in the nucleolus. Electronic supplementary material The online version of this article (10.1186/s12929-018-0434-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Shiun Leu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - So-Yi Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Chia-Yu Mu
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Ling Chen
- Graduate Institute of Oncology, National Taiwan University Medical College, Taipei, Taiwan.
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Taipei, Taiwan.
| |
Collapse
|
40
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
41
|
Targeting of NF-κB to Dendritic Spines Is Required for Synaptic Signaling and Spine Development. J Neurosci 2018; 38:4093-4103. [PMID: 29555853 DOI: 10.1523/jneurosci.2663-16.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/15/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
Long-term forms of brain plasticity share a requirement for changes in gene expression induced by neuronal activity. Mechanisms that determine how the distinct and overlapping functions of multiple activity-responsive transcription factors, including nuclear factor κB (NF-κB), give rise to stimulus-appropriate neuronal responses remain unclear. We report that the p65/RelA subunit of NF-κB confers subcellular enrichment at neuronal dendritic spines and engineer a p65 mutant that lacks spine enrichment (p65ΔSE) but retains inherent transcriptional activity equivalent to wild-type p65. Wild-type p65 or p65ΔSE both rescue NF-κB-dependent gene expression in p65-deficient murine hippocampal neurons responding to diffuse (PMA/ionomycin) stimulation. In contrast, neurons lacking spine-enriched NF-κB are selectively impaired in NF-κB-dependent gene expression induced by elevated excitatory synaptic stimulation (bicuculline or glycine). We used the setting of excitatory synaptic activity during development that produces NF-κB-dependent growth of dendritic spines to test physiological function of spine-enriched NF-κB in an activity-dependent response. Expression of wild-type p65, but not p65ΔSE, is capable of rescuing spine density to normal levels in p65-deficient pyramidal neurons. Collectively, these data reveal that spatial localization in dendritic spines contributes unique capacities to the NF-κB transcription factor in synaptic activity-dependent responses.SIGNIFICANCE STATEMENT Extensive research has established a model in which the regulation of neuronal gene expression enables enduring forms of plasticity and learning. However, mechanisms imparting stimulus specificity to gene regulation, ensuring biologically appropriate responses, remain incompletely understood. NF-κB is a potent transcription factor with evolutionarily conserved functions in learning and the growth of excitatory synaptic contacts. Neuronal NF-κB is localized in both synapse and somatic compartments, but whether the synaptic pool of NF-κB has discrete functions is unknown. This study reveals that NF-κB enriched in dendritic spines (the postsynaptic sites of excitatory contacts) is selectively required for NF-κB activation by synaptic stimulation and normal dendritic spine development. These results support spatial localization at synapses as a key variable mediating selective stimulus-response coupling.
Collapse
|
42
|
Li L, Han L, Sun F, Zhou J, Ohaegbulam KC, Tang X, Zang X, Steinbrecher KA, Qu Z, Xiao G. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8 + T cells for tumor promotion. Oncoimmunology 2018; 7:e1435250. [PMID: 29872577 DOI: 10.1080/2162402x.2018.1435250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022] Open
Abstract
Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8+ cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.
Collapse
Affiliation(s)
- Liwen Li
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lei Han
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Fan Sun
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingjiao Zhou
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kim C Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xudong Tang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kris A Steinbrecher
- Division of Pediatrics, Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zhaoxia Qu
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- Hillman Cancer Center, University of Pittsburgh Medical Centers, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Rinkenbaugh AL, Cogswell PC, Calamini B, Dunn DE, Persson AI, Weiss WA, Lo DC, Baldwin AS. IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget 2018; 7:69173-69187. [PMID: 27732951 PMCID: PMC5342468 DOI: 10.18632/oncotarget.12507] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia C Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Chordoma Foundation, Durham, NC, USA
| | - Barbara Calamini
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Denise E Dunn
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Anders I Persson
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - William A Weiss
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Wang Z, Potoyan DA, Wolynes PG. Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs). BMC SYSTEMS BIOLOGY 2018; 12:4. [PMID: 29382384 PMCID: PMC5791368 DOI: 10.1186/s12918-018-0525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. RESULTS In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. CONCLUSIONS The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Genentech Inc. 350 DNA Way, South San Francisco, 94080, CA, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Department of Chemistry, Iowa State University, Ames, 50011, IA, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA. .,Department of Chemistry, Rice University, Houston, 77005, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
45
|
Giuliani C, Bucci I, Napolitano G. The Role of the Transcription Factor Nuclear Factor-kappa B in Thyroid Autoimmunity and Cancer. Front Endocrinol (Lausanne) 2018; 9:471. [PMID: 30186235 PMCID: PMC6110821 DOI: 10.3389/fendo.2018.00471] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that is involved in inflammatory and immune responses, as well as in regulation of expression of many other genes related to cell survival, proliferation, and differentiation. In mammals, NF-κB comprises five subunits that can bind to promoter regions of target genes as homodimers or heterodimers. The most common dimer is the p50/p65 heterodimer. The several combinations of dimers that can be formed contribute to the heterogeneous regulation of NF-κB target genes, and this heterogeneity is further increased by interactions of the NF-κB dimers with other transcription factors, such as steroid hormone receptors, activator protein-1 (AP-1), and cAMP response element binding protein (CREB). In the thyroid, several studies have demonstrated the involvement of NF-κB in thyroid autoimmunity, thyroid cancer, and thyroid-specific gene regulation. The role of NF-κB in thyroid autoimmunity was hypothesized more than 20 years ago, after the finding that the binding of distinct NF-κB heterodimers to the major histocompatibility complex class I gene is hormonally regulated. Further studies have shown increased activity of NF-κB in thyroid autoimmune diseases and in thyroid orbitopathy. Increased activity of NF-κB has also been observed in thyroid cancer, where it correlates with a more aggressive pattern. Of particular interest, mutation of some oncogenes or tumor suppressor genes involved in thyroid carcinogenesis results in constitutive activation of the NF-κB pathway. More recently, it has been shown that NF-κB also has a role in thyroid physiology, as it is fundamental for the expression of the main thyroid-specific genes, such as sodium iodide symporter, thyroid peroxidase, thyroglobulin, Pax8, and TTF-1 (NKX2-1).
Collapse
|
46
|
Ciribilli Y, Borlak J. Oncogenomics of c-Myc transgenic mice reveal novel regulators of extracellular signaling, angiogenesis and invasion with clinical significance for human lung adenocarcinoma. Oncotarget 2017; 8:101808-101831. [PMID: 29254206 PMCID: PMC5731916 DOI: 10.18632/oncotarget.21981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022] Open
Abstract
The c-Myc transcription factor is frequently deregulated in cancers. To search for disease diagnostic and druggable targets a transgenic lung cancer disease model was investigated. Oncogenomics identified c-Myc target genes in lung tumors. These were validated by RT-PCR, Western Blotting, EMSA assays and ChIP-seq data retrieved from public sources. Gene reporter and ChIP assays verified functional importance of c-Myc binding sites. The clinical significance was established by RT-qPCR in tumor and matched healthy control tissues, by RNA-seq data retrieved from the TCGA Consortium and by immunohistochemistry recovered from the Human Protein Atlas repository. In transgenic lung tumors 25 novel candidate genes were identified. These code for growth factors, Wnt/β-catenin and inhibitors of death receptors signaling, adhesion and cytoskeleton dynamics, invasion and angiogenesis. For 10 proteins over-expression was confirmed by IHC thus demonstrating their druggability. Moreover, c-Myc over-expression caused complete gene silencing of 12 candidate genes, including Bmp6, Fbln1 and Ptprb to influence lung morphogenesis, invasiveness and cell signaling events. Conversely, among the 75 repressed genes TNFα and TGF-β pathways as well as negative regulators of IGF1 and MAPK signaling were affected. Additionally, anti-angiogenic, anti-invasive, adhesion and extracellular matrix remodeling and growth suppressive functions were repressed. For 15 candidate genes c-Myc-dependent DNA binding and transcriptional responses in human lung cancer samples were confirmed. Finally, Kaplan-Meier survival statistics revealed clinical significance for 59 out of 100 candidate genes, thus confirming their prognostic value. In conclusion, previously unknown c-Myc target genes in lung cancer were identified to enable the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
47
|
Mulero MC, Huang DB, Nguyen HT, Wang VYF, Li Y, Biswas T, Ghosh G. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. J Biol Chem 2017; 292:18821-18830. [PMID: 28935669 DOI: 10.1074/jbc.m117.813980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/15/2017] [Indexed: 01/05/2023] Open
Abstract
The nuclear factor κB (NF-κB) transcription factor family regulates genes involved in cell proliferation and inflammation. The promoters of these genes often contain NF-κB-binding sites (κB sites) arranged in tandem. How NF-κB activates transcription through these multiple sites is incompletely understood. We report here an X-ray crystal structure of homodimers comprising the RelA DNA-binding domain containing the Rel homology region (RHR) in NF-κB bound to an E-selectin promoter fragment with tandem κB sites. This structure revealed that two dimers bind asymmetrically to the symmetrically arranged κB sites at which multiple cognate contacts between one dimer to the corresponding DNA are broken. Because simultaneous RelA-RHR dimer binding to tandem sites in solution was anti-cooperative, we inferred that asymmetric RelA-RHR binding with fewer contacts likely indicates a dissociative binding mode. We found that both κB sites are essential for reporter gene activation by full-length RelA homodimer, suggesting that dimers facilitate DNA binding to each other even though their stable co-occupation is not promoted. Promoter variants with altered spacing and orientation of tandem κB sites displayed unexpected reporter activities that were not explained by the solution-binding pattern of RelA-RHR. Remarkably, full-length RelA bound all DNAs with a weaker affinity and specificity. Moreover, the transactivation domain played a negative role in DNA binding. These observations suggest that other nuclear factors influence full-length RelA binding to DNA by neutralizing the transactivation domain negative effect. We propose that DNA binding by NF-κB dimers is highly complex and modulated by facilitated association-dissociation processes.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - De-Bin Huang
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - H Thien Nguyen
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Vivien Ya-Fan Wang
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and.,the Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yidan Li
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Tapan Biswas
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Gourisankar Ghosh
- From the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| |
Collapse
|
48
|
The NF-κB Family of Transcription Factors and Its Role in Thyroid Physiology. VITAMINS AND HORMONES 2017; 106:195-210. [PMID: 29407436 DOI: 10.1016/bs.vh.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nuclear factor (NF)-κB signaling pathway controls a variety of important biological functions, including immune and inflammatory responses, differentiation, cell growth, tumorigenesis, and apoptosis. Two distinct pathways of NF-κB activation are known. The classical, canonical pathway is found virtually in all mammalian cells and NF-κB activation is mediated by the IKK complex, consisting of the IKK1/IKKα and IKK2/IKKβ catalytic kinase subunits and the NF-κB essential modulator (NEMO)/IKKγ protein. The NF-κB-driven transcriptional responses to many different stimuli have been widely characterized in the pathophysiology of the mammalian immune system, mainly because this transcription factor regulates the expression of cytokines, growth factors, and effector enzymes in response to ligation of cellular receptors involved in immunity and inflammation. However, an impressive literature produced in the last two decades shows that NF-κB signaling plays an important role also outside of the immune system, performing different roles and functions depending on the type of tissue and organ. In thyroid, NF-κB signaling is crucial for thyrocytes survival and expression of critical thyroid markers, including Nis, Ttf1, Pax8, Tpo, and thyroglobulin, making this transcription factor essential for maintenance of normal thyroid function.
Collapse
|
49
|
Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Niño MD, Ortiz A. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med 2017; 49:e352. [PMID: 28684863 PMCID: PMC5565957 DOI: 10.1038/emm.2017.89] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.
Collapse
Affiliation(s)
- Jonay Poveda
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
50
|
Wang VYF, Li Y, Kim D, Zhong X, Du Q, Ghassemian M, Ghosh G. Bcl3 Phosphorylation by Akt, Erk2, and IKK Is Required for Its Transcriptional Activity. Mol Cell 2017; 67:484-497.e5. [PMID: 28689659 DOI: 10.1016/j.molcel.2017.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 01/02/2023]
Abstract
Unlike prototypical IκB proteins, which are inhibitors of NF-κB RelA, cRel, and RelB dimers, the atypical IκB protein Bcl3 is primarily a transcriptional coregulator of p52 and p50 homodimers. Bcl3 exists as phospho-protein in many cancer cells. Unphosphorylated Bcl3 acts as a classical IκB-like inhibitor and removes p50 and p52 from bound DNA. Neither the phosphorylation site(s) nor the kinase(s) phosphorylating Bcl3 is known. Here we show that Akt, Erk2, and IKK1/2 phosphorylate Bcl3. Phosphorylation of Ser33 by Akt induces switching of K48 ubiquitination to K63 ubiquitination and thus promotes nuclear localization and stabilization of Bcl3. Phosphorylation by Erk2 and IKK1/2 of Ser114 and Ser446 converts Bcl3 into a transcriptional coregulator by facilitating its recruitment to DNA. Cells expressing the S114A/S446A mutant have cellular proliferation and migration defects. This work links Akt and MAPK pathways to NF-κB through Bcl3 and provides mechanistic insight into how Bcl3 functions as an oncoprotein through collaboration with IKK1/2, Akt, and Erk2.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yidan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Daniel Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Xiangyang Zhong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Qian Du
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|