1
|
Raïch I, Lillo J, Rebassa JB, Griñán-Ferré C, Bellver-Sanchis A, Reyes-Resina I, Franco R, Pallàs M, Navarro G. Cannabidiol as a multifaceted therapeutic agent: mitigating Alzheimer's disease pathology and enhancing cognitive function. Alzheimers Res Ther 2025; 17:109. [PMID: 40394655 PMCID: PMC12090481 DOI: 10.1186/s13195-025-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Cannabidiol (CBD), the second most abundant phytocannabinoid in Cannabis sativa, has garnered significant interest due to its non-psychoactive nature and diverse receptor interactions. METHODS This study employs in vitro and in vivo methodologies to validate CBD's potential as a treatment for Alzheimer's disease (AD) by addressing key hallmarks of the condition and promoting neuroprotective effects on spatial memory. RESULTS Our findings demonstrate CBD's ability to decrease pTau and Aβ aggregation and to mitigate their axonal transport between cortical and hippocampal neurons. Moreover, CBD treatment was shown to reduce neuroinflammation, as CBD was able to skew microglia towards a neuroprotective M2 phenotype while attenuating proinflammatory cytokine release in the 5xFAD AD mouse model. Notably, daily CBD injections (10 mg/Kg) for 28 days in 5xFAD mice resulted in significant improvements in both short- and long-term spatial memory. The study also reveals CBD's capacity to partially revert neurite formation loss induced by Aβ, Tau, and pTau proteins, suggesting a potential role in promoting neuronal plasticity. Additionally, CBD treatment led to a reduction in reactive oxygen species (ROS) formation and increased neuronal viability in the presence of AD-associated protein aggregates. CONCLUSIONS These multifaceted effects of CBD, ranging from molecular-level modulation to behavioral improvements, underscore its potential as a comprehensive therapeutic approach for AD. The findings not only support CBD's neuroprotective properties but also highlight its ability to target multiple pathological processes simultaneously, offering a promising avenue for future AD treatment strategies.
Collapse
Affiliation(s)
- Iu Raïch
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències UB, Campus Mundet, Barcelona, 08035, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències UB, Campus Mundet, Barcelona, 08035, Spain
| | - Joan Biel Rebassa
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències UB, Campus Mundet, Barcelona, 08035, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències UB, Campus Mundet, Barcelona, 08035, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain.
- Institut de Neurociències UB, Campus Mundet, Barcelona, 08035, Spain.
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain.
- School of Pharmacy and Food Science, University of Barcelona, Diagonal 643, Barcelona, 08027, Spain.
| |
Collapse
|
2
|
Malhotra S, Donneger F, Farrell JS, Dudok B, Losonczy A, Soltesz I. Integrating endocannabinoid signaling, CCK interneurons, and hippocampal circuit dynamics in behaving animals. Neuron 2025:S0896-6273(25)00188-6. [PMID: 40267911 DOI: 10.1016/j.neuron.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
The brain's endocannabinoid signaling system modulates a diverse range of physiological phenomena and is also involved in various psychiatric and neurological disorders. The basic components of the molecular machinery underlying endocannabinoid-mediated synaptic signaling have been known for decades. However, limitations associated with the short-lived nature of endocannabinoid lipid signals had made it challenging to determine the spatiotemporal specificity and dynamics of endocannabinoid signaling in vivo. Here, we discuss how novel technologies have recently enabled unprecedented insights into endocannabinoid signaling taking place at specific synapses in behaving animals. In this review, we primarily focus on cannabinoid-sensitive inhibition in the hippocampus in relation to place cell properties to illustrate the potential of these novel methodologies. In addition, we highlight implications of these approaches and insights for the unraveling of cannabinoid regulation of synapses in vivo in other brain circuits in both health and disease.
Collapse
Affiliation(s)
- Shreya Malhotra
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Florian Donneger
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Barna Dudok
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Sciences, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Li Y, Mori W, Chaudhary A, Zhao C, Yamasaki T, Zhang Z, Feng S, Ware T, Rong J, Fujinaga M, Chen J, Kumata K, Zhang Y, Hu K, Xie L, Zhou X, Song Z, Gao Y, Sun Z, Patel JS, Zhai C, Yuan KY, Collier TL, Ran C, Collin L, Haider A, Grether U, Wittwer MB, Cravatt BF, Zhang MR, Liang SH. Radiosynthesis and evaluation of novel 18F labeled PET ligands for imaging monoacylglycerol lipase. Eur J Med Chem 2025; 285:117246. [PMID: 39793441 DOI: 10.1016/j.ejmech.2025.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production. As such, MAGL is considered a potential target for treating neuropsychiatric disorders, metabolic syndromes, and cancer. Based on a novel spirocyclic system, we synthesized two fluorinated carbamate scaffolds as reversible MAGL inhibitors (epimers: (R)-6, IC50 = 18.6 nM and (S)-6, IC50 = 1.6 nM). In vitro autoradiography studies of [18F](R)-6 (codenamed [18F]MAGL-2304) and [18F](S)-6 (codenamed [18F]MAGL-2305) demonstrated heterogeneous distribution and specific binding affinity to MAGL-rich brain regions. Autoradiography with MAGL knockout mouse brain tissues confirmed the binding specificity of [18F](S)-6. Dynamic PET imaging studies revealed that [18F](S)-6 exhibited limited brain uptake and homogenous distribution in rat brains. In vivo P-gp inhibition enhanced [18F](S)-6 uptake in the brain, suggesting that [18F](S)-6 constitutes a P-gp efflux substrate. This research could provide new directions in the design of MAGL PET ligands that are based on spirocyclic scaffolds.
Collapse
Affiliation(s)
- Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Zachary Zhang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Siyan Feng
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Tim Ware
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Zhenkun Sun
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, 30322, United States
| | - Chuangyan Zhai
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Katherine Y Yuan
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Thomas L Collier
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| | - Ludovic Collin
- F. Hoffmann -La Roche Ltd, Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Achi Haider
- F. Hoffmann -La Roche Ltd, Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Uwe Grether
- F. Hoffmann -La Roche Ltd, Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Matthias B Wittwer
- F. Hoffmann -La Roche Ltd, Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States.
| |
Collapse
|
4
|
Pees A, Morrone CD, Tong J, Rong J, Shao T, Wear D, Liang SH, Yu WH, Vasdev N. Sex- and age-specific sensitivities of the endocannabinoid system in Alzheimer's disease revealed by PET imaging with [ 18F]FMPEP- d 2 and [ 18F]MAGL-2102. Theranostics 2025; 15:3368-3385. [PMID: 40093888 PMCID: PMC11905134 DOI: 10.7150/thno.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
The endocannabinoid system is a critical brain signaling pathway that is dysregulated in various brain disorders, including Alzheimer's disease (AD). Cannabinoid-targeted therapies and imaging approaches have gained increasing interest; however, the biological impact of the endocannabinoid system in disease needs further validation. We aimed to study changes in cannabinoid receptor 1 (CB1) and monoacylglycerol lipase (MAGL), components of endocannabinoid signaling and degradation, in a mouse model of AD by PET imaging. Methods: [18F]FMPEP-d 2 and [18F]MAGL-2102 were produced on a commercial radiosynthesis module. PET-CT images with both tracers were acquired in a knock-in mouse model of AD bearing mutated human amyloid precursor protein (AppNL-G-F ) at 3 ages, and compared to wild-type mice. Excised brains were used for in vitro autoradiography with [18F]FMPEP-d 2 and [18F]MAGL-2102, immunofluorescence, and western blotting. Male wild-type and 5xFAD mice were chronically treated with MAGL inhibitor JZL184 and imaged with [18F]MAGL-2102 two days after ending treatment. Results: PET imaging showed sex-, age- and genotype-dependent changes in CB1 and MAGL availability. At 4-months (early-stage β-amyloid pathology), female AppNL-G-F mice had lower CB1 availability, and MAGL availability was increased in male AppNL-G-F , compared to wild-types. At 8-months, no genotype differences in CB1 were observed, yet MAGL availability was reduced in AppNL-G-F frontal cortex, and male AppNL-G-F mice exhibited higher MAGL than transgenic females brain-wide. At 12-months (late-stage β-amyloid pathology), significantly lower uptake of [18F]FMPEP-d 2 was observed in AppNL-G-F compared to wild-type, with no changes in [18F]MAGL-2102 binding. AppNL-G-F plaque staging was confirmed by Thioflavin-S staining. Imaging findings were supplemented by autoradiography, immunofluorescence, and western blots. [18F]MAGL-2102 availability was responsive to target engagement of the MAGL inhibitor JZL184 in wild-type and 5xFAD mice. Conclusions: The present study showed dynamic age-, sex- and pathology-related changes in CB1 and MAGL availability from early-stage β-amyloid pathology, suggesting that the endocannabinoid system is a useful target for diagnostics and treatment of AD. Finally, these results highlight that endocannabinoid sex differences should be considered in diagnostics and drug development.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada, M5T 1R8
| | - Christopher Daniel Morrone
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada, M5T 1R8
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada, M5T 1R8
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tuo Shao
- Jiangsu Key Laboratory of Infection and Immunity, Suzhou Medical College, Suzhou, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Darcy Wear
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada, M5T 1R8
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wai Haung Yu
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada, M5T 1R8
- Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
5
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Tisi A, Scipioni L, Carozza G, Di Re L, Cimino G, Di Meo C, Palaniappan S, Valle FD, Fanti F, Giacovazzo G, Compagnone D, Maccarone R, Oddi S, Maccarrone M. Alterations of endocannabinoid signaling and microglia reactivity in the retinas of AD-like mice precede the onset of hippocampal β-amyloid plaques. J Neurochem 2025; 169:e16256. [PMID: 39556462 PMCID: PMC11808635 DOI: 10.1111/jnc.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Extra-cerebral manifestations of Alzheimer's disease (AD) develop in the retina, which is, therefore, considered a "window to the brain". Recent studies demonstrated the dysregulation of the endocannabinoid (eCB) system (ECS) in AD brain. Here, we explored the possible alterations of ECS and the onset of gliosis in the retina of AD-like mice. Tg2576 (TG) mice overexpressing the amyloid precursor protein (APP) were used at the age of 12 months, when hippocampal β-amyloid plaques had not been developed yet. Analysis of retinal gliosis showed a significant increase in the number of IBA1 (+) microglia cells in TG versus wild type (WT). Gliosis was not associated with retinal β-amyloid plaques, evident retinal degenerative signatures, or excitotoxicity; instead, oxidative stress burden was observed as increased acrolein levels. Analysis of the ECS (receptors/metabolic enzymes) through western blotting (WB) revealed the up-regulation of cannabinoid receptor 2 (CB2) and monoacylglycerol lipase (MAGL), the enzyme responsible for the degradation of 2-arachidonoylglycerol (2-AG), in TG retinas. Fluorescence intensity analysis of anti-CB2 and anti-MAGL immuno-stained cryosections was consistent with WB, showing their up-regulation throughout the retinal layers. No statistically significant differences were found for the other enzymes/receptors of the ECS under study. However, linear regression analysis for individual animals showed a significant correlation between CB2 and fatty acid amide hydrolase (FAAH), diacylglycerol lipase α/β (DAGLα/β), and APP; instead, a significant negative correlation was found between MAGL and APP. Finally, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) demonstrated a significant reduction of 2-AG in TG retinas (~0.34 ng/mg) compared to WT (~1.70 ng/mg), while a trend toward increase was found for the other eCB anandamide (AEA). Overall, our data indicate that gliosis and ECS dysregulation-in particular of CB2, MAGL and 2-AG-occur in the retina of AD-like mice before retinal degeneration and development of hippocampal β-amyloid plaques.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Scipioni
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Lucia Di Re
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Giacomo Cimino
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Camilla Di Meo
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Francesco Della Valle
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Giacomo Giacovazzo
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and EnvironmentUniversity of TeramoTeramoItaly
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
| | - Sergio Oddi
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
- Department of Veterinary MedicineUniversity of TeramoTeramoItaly
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaL'AquilaItaly
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC)Santa Lucia Foundation IRCCSRomeItaly
| |
Collapse
|
7
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
8
|
Liu Y, Xing H, Zhang Y, Song Y. The Endocannabinoid System in Alzheimer's Disease: A Network Meta-Analysis. J Neurosci Res 2024; 102:e25380. [PMID: 39245959 DOI: 10.1002/jnr.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/03/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The findings concerning the association between endocannabinoid system (ECS) and Alzheimer's disease (AD) exhibited inconsistencies when examining the expression levels of endocannabinoids. This study aimed to provide a comprehensive summary of the studies regarding alterations of the ECS in AD. Six databases were thoroughly searched for literature to select relevant studies investigating the ECS in AD, including changes in cannabinoid receptors (CB1R and CB2R), endocannabinoids (2-AG and AEA), and their associated enzymes (FAAH and MAGL). Traditional meta-analysis evaluated the expression levels of the ECS in AD, and the results showed no significant differences in ECS components between healthy controls and AD patients. However, subgroup analysis revealed significantly lower expression levels of CB1R in AD than in controls, particularly in studies using western blot (SMD = -0.88, p < 0.01) and in studies testing CB1R of frontal cortex (SMD = -1.09, p < 0.01). For studies using HPLC, the subgroup analysis indicated significantly higher 2-AG levels in AD than in controls (SMD = 0.46, p = 0.02). Network meta-analysis examined the rank of ECS alterations in AD compared to controls, and the findings revealed that 2-AG and MAGL exhibited the largest increase and CB1R showed the largest decrease relative to the control group. Based on the findings of traditional meta-analysis and network meta-analysis, we proposed that AD patients may present decreased expression levels of CB1R and increased expression levels of 2-AG and its degrading enzyme MAGL. Our results may contribute to the growing body of research supporting the therapeutic potential of ECS modulation in the management of AD.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Xing
- Department of Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Song
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
10
|
Guida F, Iannotta M, Lauritano A, Infantino R, Salviati E, Verde R, Luongo L, Sommella EM, Iannotti FA, Campiglia P, Maione S, Di Marzo V, Piscitelli F. Early biomarkers in the presymptomatic phase of cognitive impairment: changes in the endocannabinoidome and serotonergic pathways in Alzheimer's-prone mice after mTBI. Acta Neuropathol Commun 2024; 12:113. [PMID: 38992700 PMCID: PMC11241935 DOI: 10.1186/s40478-024-01820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aβ1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Collapse
Affiliation(s)
- Francesca Guida
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Rosmara Infantino
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuela Salviati
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Livio Luongo
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Sabatino Maione
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
| |
Collapse
|
11
|
Wang M, Wei T, Yu C, Li R, Yin Y, Yang H, Di R, Xia X, Qin Q, Tang Y. Integrative Metabolomics and Whole Transcriptome Sequencing Reveal Role for TREM2 in Metabolism Homeostasis in Alzheimer's Disease. Mol Neurobiol 2024; 61:4188-4202. [PMID: 38066402 DOI: 10.1007/s12035-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide. Dysregulation of various metabolism pathways may mediate the development of AD pathology and cognitive dysfunction. Variants of triggering receptor expressed on myeloid cells-2 (TREM2) are known to increase the risk of developing AD. TREM2 plays a role in AD development by maintaining cellular energy and biosynthesis, but the precise mechanism through which it accomplishes this is unknown. Metabolomic analysis of hippocampal tissue from APP/PS1 and APP/PS1-TREM2 knockout (KO) mice found that TREM2 KO was associated with abnormalities in several metabolism pathways, and the effect was particularly pronounced in lipid metabolism and glucose metabolism pathways. Consistently, transcriptomic analysis of these mice determined that most differentially expressed genes were involved in energy metabolism pathways. We screened seven differentially expressed genes in APP/PS1-TREM2 KO mice that may influence AD development by altering energy metabolism. Integrative analysis of the metabolomic and transcriptomic profiles showed that TREM2 may regulate lipid metabolism and sphingolipid metabolism by affecting lipoprotein lipase (LPL) expression, thereby influencing AD progression. Our results prompt further studies of the interactions among TREM2, LPL, glucolipid metabolism, and sphingolipid metabolism in AD to identify new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Chaoji Yu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Ruiyang Li
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Hanchen Yang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
12
|
League AF, Yadav-Samudrala BJ, Kolagani R, Cline CA, Jacobs IR, Manke J, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. A helping HAND: therapeutic potential of MAGL inhibition against HIV-1-associated neuroinflammation. Front Immunol 2024; 15:1374301. [PMID: 38835765 PMCID: PMC11148243 DOI: 10.3389/fimmu.2024.1374301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.
Collapse
Affiliation(s)
- Alexis F. League
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J. Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ramya Kolagani
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Calista A. Cline
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian R. Jacobs
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Micah J. Niphakis
- Department of Chemistry, Scripps Research, La Jolla, CA, United States
| | | | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Chen C. TDP-43 is a key molecule accelerating development of Alzheimer's disease following traumatic brain injury. Neural Regen Res 2024; 19:955-956. [PMID: 37862186 PMCID: PMC10749594 DOI: 10.4103/1673-5374.385301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
He Y, Delparente A, Jie CVML, Keller C, Humm R, Heer D, Collin L, Schibli R, Gobbi L, Grether U, Mu L. Preclinical Evaluation of the Reversible Monoacylglycerol Lipase PET Tracer (R)-[ 11C]YH132: Application in Drug Development and Neurodegenerative Diseases. Chembiochem 2024; 25:e202300819. [PMID: 38441502 DOI: 10.1002/cbic.202300819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Indexed: 04/05/2024]
Abstract
Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Yingfang He
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
- Present address: Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Aro Delparente
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Caitlin V M L Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Roland Humm
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| |
Collapse
|
15
|
Zhang J, Zhang J, Yuan R, Han W, Chang Y, Kong L, Wei C, Zheng Q, Zhu X, Liu Z, Ren W, Han J. Inhibition of cannabinoid degradation enhances hippocampal contextual fear memory and exhibits anxiolytic effects. iScience 2024; 27:108919. [PMID: 38318362 PMCID: PMC10839683 DOI: 10.1016/j.isci.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Recent studies have demonstrated the pivotal involvement of endocannabinoids in regulating learning and memory, but the conclusions obtained from different paradigms or contexts are somewhat controversial, and the underlying mechanisms remain largely elusive. Here, we show that JZL195, a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase, can enhance the performance of mice in a contextual fear conditioning task and increase the time spent in open arms in the elevated zero maze (EZM). Although the effect of JZL195 on fear memory could not be inhibited by antagonists of cannabinoid receptors, the effect on the EZM seems to be mediated by CB1R. Simultaneously, hippocampal neurons are hyperactive, and theta oscillation power is significantly increased during the critical period of memory consolidation upon treatment with JZL195. These results suggest the feasibility of targeting the endocannabinoid system for the treatment of various mental disorders.
Collapse
Affiliation(s)
- Jinming Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Junmin Zhang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Ruiqi Yuan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wenxin Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Yuan Chang
- Department of Histology and Embryology, School of Basic Medical Science, Xi’an Medical University, Xi’an 710000, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Chunling Wei
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Qiaohua Zheng
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Xingchao Zhu
- Heze Hospital of Traditional Chinese Medicine, Heze 274000, China
| | - Zhiqiang Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Wei Ren
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
- Faculty of Education, Shaanxi Normal University, Xi’an 710000, China
| | - Jing Han
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710000, China
| |
Collapse
|
16
|
He Y, Krämer SD, Grether U, Wittwer MB, Collin L, Kuhn B, Topp A, Heer D, O'Hara F, Honer M, Pavlovic A, Richter H, Ritter M, Rombach D, Keller C, Gobbi L, Mu L. Identification of ( R)-[ 18F]YH134 for Monoacylglycerol Lipase Neuroimaging and Exploration of Its Use for Central Nervous System and Peripheral Drug Development. J Nucl Med 2024; 65:300-305. [PMID: 38164615 DOI: 10.2967/jnumed.123.266426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias B Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas Topp
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fionn O'Hara
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anto Pavlovic
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hans Richter
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Ritter
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Didier Rombach
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
17
|
Madar P, Nagalapur P, Chaudhari S, Sharma D, Koparde A, Buchade R, Kshirsagar S, Uttekar P, Jadhav S, Chaudhari P. The Unveiling of Therapeutic Targets for Alzheimer's Disease: An Integrative Review. Curr Top Med Chem 2024; 24:850-868. [PMID: 38424435 DOI: 10.2174/0115680266282492240220101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.
Collapse
Affiliation(s)
- Pratiksha Madar
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Pooja Nagalapur
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Devesh Sharma
- Department of Biotechnology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Akshada Koparde
- Department of Pharmaceutical Chemistry, Krishna Foundation's Jaywant Institute of Pharmacy, Malkapur, Karad, India
| | - Rahul Buchade
- Department of Pharmaceutical Chemistry, Indira College of Pharmacy, Tathwade, Pune, India
| | - Sandip Kshirsagar
- Department of Pharmaceutical Chemistry, Dr. D Y Patil College of Pharmacy, Pune, India
| | - Pravin Uttekar
- Department of Pharmacuetics, Savitribai Phule Pune University, Pune, India
| | - Shailaja Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Praveen Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
18
|
Chen S, Lin Z, Shen X, Li L, Pan W. Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data. Genet Epidemiol 2023; 47:585-599. [PMID: 37573486 PMCID: PMC10840616 DOI: 10.1002/gepi.22535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
We propose structural equation models (SEMs) as a general framework to infer causal networks for metabolites and other complex traits. Traditionally SEMs are used only for individual-level data under the assumption that all instrumental variables (IVs) are valid. To overcome these limitations, we propose both one- and two-sample approaches for causal network inference based on SEMs that can: (1) perform causal analysis and discover causal relationships among multiple traits; (2) account for the possible presence of some invalid IVs; (3) allow for data analysis using only genome-wide association studies (GWAS) summary statistics when individual-level data are not available; (4) consider the possibility of bidirectional relationships between traits. Our method employs a simple stepwise selection to identify invalid IVs, thus avoiding false positives while possibly increasing true discoveries based on two-stage least squares (2SLS). We use both real GWAS data and simulated data to demonstrate the superior performance of our method over the standard 2SLS/SEMs. For real data analysis, our proposed approach is applied to a human blood metabolite GWAS summary data set to uncover putative causal relationships among the metabolites; we also identify some metabolites (putative) causal to Alzheimer's disease (AD), which, along with the inferred causal metabolite network, suggest some possible pathways of metabolites involved in AD.
Collapse
Affiliation(s)
- Siyi Chen
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Zhaotong Lin
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Xiaotong Shen
- School of Statistics, University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Wei Pan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
19
|
Hosseininia M, Rostami F, Delphi L, Ghasemzadeh Z, Kouhkan F, Rezayof A. Memory impairment was ameliorated by corticolimbic microinjections of arachidonylcyclopropylamide (ACPA) and miRNA-regulated lentiviral particles in a streptozotocin-induced Alzheimer's rat model. Exp Neurol 2023; 370:114560. [PMID: 37783412 DOI: 10.1016/j.expneurol.2023.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 μl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 μl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.
Collapse
Affiliation(s)
- Mohammad Hosseininia
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rostami
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, P.O. Box: 15856-36473, 15856-36473 Tehran, Iran.
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
21
|
Zhang L, Jia Z, Wu Q, Bai T, Wang B, Hu X, Li T, Liu X, Fu J, Chen Y, Ding X, Liu Z, Xu Z, Zhou H. Alleviating symptoms of neurodegenerative disorders by astrocyte-specific overexpression of TMEM164 in mice. Nat Metab 2023; 5:1787-1802. [PMID: 37679556 DOI: 10.1038/s42255-023-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Neuroinflammatory microglia secrete cytokines to induce neurotoxic reactive astrocytes, which are one of the major causes of neuronal death. However, the intrinsic key regulators underlying neurotoxic reactive astrocytes induction are unknown. Here we show that the transmembrane protein 164 (TMEM164) is an early-response intrinsic factor that regulates neurotoxic astrocyte reactivity. TMEM164 overexpression inhibits the induction of neurotoxic reactive astrocytes, maintains normal astrocytic functions and suppresses neurotoxic reactive astrocyte-mediated neuronal death by decreasing the secretion of neurotoxic saturated lipids. Adeno-associated virus-mediated, astrocyte-specific TMEM164 overexpression in male and female mice prevents the induction of neurotoxic reactive astrocytes, dopaminergic neuronal loss and motor deficits in a Parkinson's disease model. Notably, brain-wide astrocyte-specific TMEM164 overexpression prevents the induction of neurotoxic reactive astrocytes, amyloid β deposition, neurodegeneration and memory decline in the 5XFAD Alzheimer's disease mouse model, suggesting that TMEM164 could serve as a potential therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiheng Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiang Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tao Bai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinde Hu
- Genemagic Biosciences, Shanghai, China
| | - Tianwen Li
- Fudan University Huashan Hospital, Department of Neurosurgery, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Shanghai Key Library of Brain Function and Regeneration, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Shanghai Medical College-Fudan University, Shanghai, China
| | - Xingyu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuelei Chen
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Ding
- Stem Cell Bank/Stem Cell Core Facility, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zhengzheng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
22
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
23
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
24
|
Kruk-Slomka M, Adamski B, Slomka T, Biala G. Inhibitors of Endocannabinoids' Enzymatic Degradation as a Potential Target of the Memory Disturbances in an Acute N-Methyl-D-Aspartate (NMDA) Receptor Hypofunction Model of Schizophrenia in Mice. Int J Mol Sci 2023; 24:11400. [PMID: 37511157 PMCID: PMC10380236 DOI: 10.3390/ijms241411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Treating schizophrenia with the available pharmacotherapy is difficult. One possible strategy is focused on the modulation of the function of the endocannabinoid system (ECS). The ECS is comprised of cannabinoid (CB) receptors, endocannabinoids and enzymes responsible for the metabolism of endocannabinoids (fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL)). Here, the aim of the experiments was to evaluate the impact of inhibitors of endocannabinoids' enzymatic degradation in the brain: KML-29 (MAGL inhibitor), JZL-195 (MAGL/FAAH inhibitor) and PF-3845 (FAAH inhibitor), on the memory disturbances typical for schizophrenia in an acute N-methyl-D-aspartate (NMDA) receptor hypofunction animal model of schizophrenia (i.e., injection of MK-801, an NMDA receptor antagonist). The memory-like responses were assessed in the passive avoidance (PA) test. A single administration of KML-29 or PF-3845 had a positive effect on the memory processes, but an acute administration of JZL-195 impaired cognition in mice in the PA test. Additionally, the combined administration of a PA-ineffective dose of KML-29 (5 mg/kg) or PF-3845 (3 mg/kg) attenuated the MK-801-induced cognitive impairment (0.6 mg/kg). Our results suggest that the indirect regulation of endocannabinoids' concentration in the brain through the use of selected inhibitors may positively affect memory disorders, and thus increase the effectiveness of modern pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Tomasz Slomka
- Department of Medical Informatics and Statistics with E-Health Lab, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Chandrashekar DV, Steinberg RA, Han D, Sumbria RK. Alcohol as a Modifiable Risk Factor for Alzheimer's Disease-Evidence from Experimental Studies. Int J Mol Sci 2023; 24:9492. [PMID: 37298443 PMCID: PMC10253673 DOI: 10.3390/ijms24119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can modulate cerebral AD pathology include Toll-like receptors, protein kinase-B (Akt)/mammalian target of rapamycin (mTOR) pathway, cyclic adenosine monophosphate (cAMP) response element-binding protein phosphorylation pathway, glycogen synthase kinase 3-β, cyclin-dependent kinase-5, insulin-like growth factor type-1 receptor, modulation of β-amyloid (Aβ) synthesis and clearance, microglial mediated, and brain endothelial alterations. Besides these brain-centric pathways, alcohol-mediated liver injury may significantly affect brain Aβ levels through alterations in the peripheral-to-central Aβ homeostasis. This article reviews published experimental studies (cell culture and AD rodent models) to summarize the scientific evidence and probable mechanisms (both cerebral and hepatic) by which alcohol promotes or protects against AD progression.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
27
|
Terradillos I, Bonilla-Del Río I, Puente N, Serrano M, Mimenza A, Lekunberri L, Anaut-Lusar I, Reguero L, Gerrikagoitia I, Ruiz de Martín Esteban S, Hillard CJ, Grande MT, Romero J, Elezgarai I, Grandes P. Altered glial expression of the cannabinoid 1 receptor in the subiculum of a mouse model of Alzheimer's disease. Glia 2023; 71:866-879. [PMID: 36437738 DOI: 10.1002/glia.24312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aβ)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Itziar Terradillos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Ilazki Anaut-Lusar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - María T Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
28
|
Zhu D, Zhang J, Gao F, Hu M, Hashem J, Chen C. Augmentation of 2-arachidonoylglycerol signaling in astrocytes maintains synaptic functionality by regulation of miRNA-30b. Exp Neurol 2023; 361:114292. [PMID: 36481187 PMCID: PMC9892245 DOI: 10.1016/j.expneurol.2022.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
2-Arachidonoylglycerol (2-AG), the most abundant endocannabinoid, displays anti-inflammatory and neuroprotective properties. Inhibition of 2-AG degradation by inactivation of monoacylglycerol lipase (MAGL), a key enzyme degrading 2-AG in the brain, alleviates neuropathology and improves synaptic and cognitive functions in animal models of neurodegenerative diseases. In particular, global inactivation of MAGL by genetic deletion of mgll enhances hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and memory. However, our understanding of the molecular mechanisms by which chronic inactivation of MAGL enhances synaptic activity is still limited. Here, we provide evidence that pharmacological inactivation of MAGL suppresses hippocampal expression of miR-30b, a small non-coding microRNA, and upregulates expression of its targets, including ephrin type-B receptor 2 (ephB2), sirtuin1 (sirt1), and glutamate ionotropic receptor AMPA type subunit 2 (GluA2). Importantly, suppression of miR-30b and increase of its targets by inactivation of MAGL result primarily from inhibition of 2-AG metabolism in astrocytes, rather than in neurons. Inactivation of MAGL in astrocytes prevents miR-30b overexpression-induced impairments in synaptic transmission and long-term potentiation (LTP) in the hippocampus. Suppression of miR-30b expression by inactivation of MAGL is apparently associated with augmentation of 2-AG signaling, as 2-AG induces a dose-dependent decrease in expression of miR-30b. 2-AG- or MAGL inactivation-suppressed expression of miR-30b is not mediated via CB1R, but by peroxisome proliferator-activated receptor γ (PPARγ). This is further supported by the results showing that MAGL inactivation-induced downregulation of miR-30b and upregulation of its targets are attenuated by antagonism of PPARγ, but mimicked by PPARγ agonists. In addition, we observed that 2-AG-induced reduction of miR-30b expression is mediated via NF-kB signaling. Our study provides evidence that 2-AG signaling in astrocytes plays an important role in maintaining the functional integrity of synapses in the hippocampus by regulation of miR-30b expression.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Fei Gao
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jack Hashem
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
29
|
Ferreira PC, Bellaver B, Povala G, Brum WS, Tissot C, Badji A, Sloan ME, Benedet AL, Rosa-Neto P, Ashton NJ, Pascoal TA, Leuzy A, Zimmer ER. Endocannabinoid System Biomarkers in Alzheimer's Disease. Cannabis Cannabinoid Res 2023; 8:77-91. [PMID: 36394442 PMCID: PMC10081722 DOI: 10.1089/can.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Alterations in the endocannabinoid system (ES) have been described in Alzheimer's disease (AD) pathophysiology. In the past years, multiple ES biomarkers have been developed, promising to advance our understanding of ES changes in AD. Discussion: ES biomarkers, including positron emission tomography with cannabinoid receptors tracers and biofluid-based endocannabinoids, are associated with AD disease progression and pathological features. Conclusion: Although not specific enough for AD diagnosis, ES biomarkers hold promise for prognosis, drug-target engagement, and a better understanding of the disease. Here, we summarize currently available ES biomarker findings and discuss their potential applications in the AD research field.
Collapse
Affiliation(s)
- Pâmela C.L. Ferreira
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Guilherme Povala
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wagner S. Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Theme Aging, Huddinge, Sweden
| | - Matthew E. Sloan
- Addictions Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
| | - Tharick A. Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC, Canada
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
30
|
Zhu D, Zhang J, Hashem J, Gao F, Chen C. Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation 2023; 20:17. [PMID: 36717883 PMCID: PMC9885699 DOI: 10.1186/s12974-023-02701-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dexiao Zhu
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jian Zhang
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Jack Hashem
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Fei Gao
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA
| | - Chu Chen
- grid.267309.90000 0001 0629 5880Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229 USA ,grid.267309.90000 0001 0629 5880Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
31
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
32
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
33
|
Shah AJ, Mohi-Ud-Din R, Sabreen S, Wani TU, Jan R, Javed MN, Mir PA, Mir RH, Masoodi MH. Clinical Biomarkers and Novel Drug Targets to Cut Gordian Knots of Alzheimer's Disease. Curr Mol Pharmacol 2023; 16:254-279. [PMID: 36056834 DOI: 10.2174/1874467215666220903095837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.
Collapse
Affiliation(s)
- Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar- 190011, Jammu and Kashmir, India
| | - Saba Sabreen
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| | - Taha Umair Wani
- Department of Pharmaceutical Sciences, Pharmaceutics Lab, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir India
| | - Rafia Jan
- Defence Research and Development Organization (DRDO), Hospital, Khonmoh, Srinagar 190001, Jammu & Kashmir, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmaceutics, KR Mangalam University, Gurugram, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Mohali, Punjab 140307, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar- 190006, Kashmir, India
| |
Collapse
|
34
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
35
|
Guo Y, Yan M, Li L, Zhao L, Li Y. Treadmill Exercise Prevents Cognitive Impairments in Adolescent Intermittent Ethanol Rats by Reducing the Excessive Activation of Microglia Cell in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314701. [PMID: 36499029 PMCID: PMC9740642 DOI: 10.3390/ijms232314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The excessive activation of microglia cell induced by adolescent intermittent ethanol (AIE) leads to neuroinflammation in the hippocampus. The endocannabinoid system plays a key role in the modulation of microglia activation. Accumulating evidence suggests that regular exercise improves learning and memory deficits in AIE models. The purpose of this study was to explore the effects of treadmill exercise intervention on the cognitive performance, activation of microglia cells and the expression of monoacylglycerol lipase (MAGL), cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) in the hippocampus of AIE rats. Here, we show that AIE rats exhibited cognitive impairments, whereas the treadmill exercise improves the cognitive performance in AIE rats. In order to explore the possible mechanisms for the exercise-induced attenuation of cognitive disorder, we examined the neuroinflammation in the hippocampus. We found that treadmill exercise led to the decrease in the level of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increase in the level of anti-inflammatory cytokine (IL-10). In addition, we found that treadmill exercise reduced the excessive activation of the microglia cell in the hippocampus of AIE rats. Finally, we found that AIE led to a decrease in the expression of CB1R and CB2R in the hippocampus; however, the treadmill exercise further decreased the expression of CB2R in the hippocampus of AIE rats. Our results suggest that treadmill exercise attenuates AIE-induced neuroinflammation and the excessive activation of hippocampus microglial cells, which may contribute to the exercise-induced improvement of cognitive performance in AIE rats.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Min Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
36
|
Schwab EDP, Queiroz R, Fiebrantz AKB, Bastos M, Bonini JS, Silva WCFND. Hypothesis on ontogenesis and pathophysiology of Alzheimer’s disease. EINSTEIN-SAO PAULO 2022; 20:eRW0170. [DOI: 10.31744/einstein_journal/2022rw0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/23/2022] [Indexed: 11/13/2022] Open
|
37
|
Cheng R, Fujinaga M, Yang J, Rong J, Haider A, Ogasawara D, Van RS, Shao T, Chen Z, Zhang X, Calderon Leon ER, Zhang Y, Mori W, Kumata K, Yamasaki T, Xie L, Sun S, Wang L, Ran C, Shao Y, Cravatt B, Josephson L, Zhang MR, Liang SH. A novel monoacylglycerol lipase-targeted 18F-labeled probe for positron emission tomography imaging of brown adipose tissue in the energy network. Acta Pharmacol Sin 2022; 43:3002-3010. [PMID: 35513432 PMCID: PMC9622914 DOI: 10.1038/s41401-022-00912-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
Monoacylglycerol lipase (MAGL) constitutes a serine hydrolase that orchestrates endocannabinoid homeostasis and exerts its function by catalyzing the degradation of 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA). As such, selective inhibition of MAGL represents a potential therapeutic and diagnostic approach to various pathologies including neurodegenerative disorders, metabolic diseases and cancers. Based on a unique 4-piperidinyl azetidine diamide scaffold, we developed a reversible and peripheral-specific radiofluorinated MAGL PET ligand [18F]FEPAD. Pharmacokinetics and binding studies on [18F]FEPAD revealed its outstanding specificity and selectivity towards MAGL in brown adipose tissue (BAT) - a tissue that is known to be metabolically active. We employed [18F]FEPAD in PET studies to assess the abundancy of MAGL in BAT deposits of mice and found a remarkable degree of specific tracer binding in the BAT, which was confirmed by post-mortem tissue analysis. Given the negative regulation of endocannabinoids on the metabolic BAT activity, our study supports the concept that dysregulation of MAGL is likely linked to metabolic disorders. Further, we now provide a suitable imaging tool that allows non-invasive assessment of MAGL in BAT deposits, thereby paving the way for detailed mechanistic studies on the role of BAT in endocannabinoid system (ECS)-related pathologies.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02125, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard S Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Erick R Calderon Leon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02125, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Benjamin Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
Chen C. Endocannabinoid control of neuroinflammation in traumatic brain injury by monoacylglycerol lipase in astrocytes. Neural Regen Res 2022; 18:1023-1024. [PMID: 36254984 PMCID: PMC9827788 DOI: 10.4103/1673-5374.355755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chu Chen
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Correspondence to: Chu Chen, or .
| |
Collapse
|
39
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
40
|
Deng H, Zhang Q, Lei Q, Yang N, Yang K, Jiang J, Yu Z. Discovering monoacylglycerol lipase inhibitors by a combination of fluorogenic substrate assay and activity-based protein profiling. Front Pharmacol 2022; 13:941522. [PMID: 36105202 PMCID: PMC9465256 DOI: 10.3389/fphar.2022.941522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid 2-arachidonoylglycerol (2-AG) is predominantly metabolized by monoacylglycerol lipase (MAGL) in the brain. Selective inhibitors of MAGL provide valuable insights into the role of 2-AG in a variety of (patho)physiological processes and are potential therapeutics for the treatment of diseases such as neurodegenerative disease and inflammation, pain, as well as cancer. Despite a number of MAGL inhibitors been reported, inhibitors with new chemotypes are still required. Here, we developed a substrate-based fluorescence assay by using a new fluorogenic probe AA-HNA and successfully screened a focused library containing 320 natural organic compounds. Furthermore, we applied activity-based protein profiling (ABPP) as an orthogonal method to confirm the inhibitory activity against MAGL in the primary substrate-based screening. Our investigations culminated in the identification of two major compound classes, including quinoid diterpene (23, cryptotanshinone) and β-carbolines (82 and 93, cis- and trans-isomers), with significant potency towards MAGL and good selectivity over other 2-AG hydrolases (ABHD6 and ABHD12). Moreover, these compounds also showed antiproliferative activities against multiple cancer cells, including A431, H1975, B16-F10, OVCAR-3, and A549. Remarkably, 23 achieved complete inhibition towards endogenous MAGL in most cancer cells determined by ABPP. Our results demonstrate the potential utility of the substrate-based fluorescence assay in combination with ABPP for rapidly discovering MAGL inhibitors, as well as providing an effective approach to identify potential targets for compounds with significant biological activities.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianwen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianbing Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyi Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|
42
|
Liu X, Yu H, Chen B, Friedman V, Mu L, Kelly TJ, Ruiz-Pérez G, Zhao L, Bai X, Hillard CJ, Liu QS. CB2 Agonist GW842166x Protected against 6-OHDA-Induced Anxiogenic- and Depressive-Related Behaviors in Mice. Biomedicines 2022; 10:1776. [PMID: 35892676 PMCID: PMC9329798 DOI: 10.3390/biomedicines10081776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
In addition to motor dysfunction, patients with Parkinson's disease (PD) are often affected by neuropsychiatric disorders, such as anxiety and depression. In animal models, activation of the endocannabinoid (eCB) system produces anxiolytic and antidepressant-like behavioral effects. CB2 agonists have demonstrated neuroprotective effects against neurotoxin-induced dopamine neuron loss and deficits in motor function. However, it remains unknown whether CB2 agonism ameliorates anxiogenic- and depressive-like behaviors in PD models. Here, we report that the selective CB2 agonist GW842166x exerted neuroprotective effects against 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic terminals and dopamine release in the striatum, which were blocked by the CB2 antagonist AM630. We found that 6-OHDA-treated mice exhibited anxiogenic- and depressive-like behaviors in the open-field, sucrose preference, novelty-suppressed feeding, marble burying, and forced swim tests but did not show significant changes in the elevated plus-maze and light-dark box test. GW842166x treatments ameliorated 6-OHDA-induced anxiogenic- and depressive-like behaviors, but the effects were blocked by CB2 antagonism, suggesting a CB2-dependent mechanism. These results suggest that the CB2 agonist GW842166x not only reduces 6-OHDA-induced motor function deficits but also anxiogenic- and depressive-like behaviors in 6-OHDA mouse models of PD.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China;
| | - Bixuan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Thomas J. Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Gonzalo Ruiz-Pérez
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China;
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (X.L.); (H.Y.); (B.C.); (V.F.); (L.M.); (T.J.K.); (G.R.-P.); (C.J.H.)
| |
Collapse
|
43
|
Yu WS, Aquili L, Wong KH, Lo ACY, Chan LLH, Chan YS, Lim LW. Transcorneal electrical stimulation enhances cognitive functions in aged and 5XFAD mouse models. Ann N Y Acad Sci 2022; 1515:249-265. [PMID: 35751874 DOI: 10.1111/nyas.14850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dementia is a major burden on global health for which there are no effective treatments. The use of noninvasive visual stimulation to ameliorate cognitive deficits is a novel concept that may be applicable for treating dementia. In this study, we investigated the effects of transcorneal electrical stimulation (TES) on memory enhancement using two mouse models, in aged mice and in the 5XFAD model of Alzheimer's disease. After 3 weeks of TES treatment, mice were subjected to Y-maze and Morris water maze tests to assess hippocampal-dependent learning and memory. Immunostaining of the hippocampus of 5XFAD mice was also performed to examine the effects of TES on amyloid plaque pathology. The results showed that TES improved the performance of both aged and 5XFAD mice in memory tests. TES also reduced hippocampal plaque deposition in male, but not female, 5XFAD mice. Moreover, TES significantly reversed the downregulated level of postsynaptic protein 95 in the hippocampus of male 5XFAD mice, suggesting the effects of TES involve a postsynaptic mechanism. Overall, these findings support further investigation of TES as a potential treatment for cognitive dysfunction and mechanistic studies of TES effects in other dementia models.
Collapse
Affiliation(s)
- Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Department of Anatomy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
45
|
Paes-Colli Y, Aguiar AFL, Isaac AR, Ferreira BK, Campos RMP, Trindade PMP, de Melo Reis RA, Sampaio LS. Phytocannabinoids and Cannabis-Based Products as Alternative Pharmacotherapy in Neurodegenerative Diseases: From Hypothesis to Clinical Practice. Front Cell Neurosci 2022; 16:917164. [PMID: 35707521 PMCID: PMC9189313 DOI: 10.3389/fncel.2022.917164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Historically, Cannabis is one of the first plants to be domesticated and used in medicine, though only in the last years the amount of Cannabis-based products or medicines has increased worldwide. Previous preclinical studies and few published clinical trials have demonstrated the efficacy and safety of Cannabis-based medicines in humans. Indeed, Cannabis-related medicines are used to treat multiple pathological conditions, including neurodegenerative disorders. In clinical practice, Cannabis products have already been introduced to treatment regimens of Alzheimer’s disease, Parkinson’s disease and Multiple Sclerosis’s patients, and the mechanisms of action behind the reported improvement in the clinical outcome and disease progression are associated with their anti-inflammatory, immunosuppressive, antioxidant, and neuroprotective properties, due to the modulation of the endocannabinoid system. In this review, we describe the role played by the endocannabinoid system in the physiopathology of Alzheimer, Parkinson, and Multiple Sclerosis, mainly at the neuroimmunological level. We also discuss the evidence for the correlation between phytocannabinoids and their therapeutic effects in these disorders, thus describing the main clinical studies carried out so far on the therapeutic performance of Cannabis-based medicines.
Collapse
Affiliation(s)
- Yolanda Paes-Colli
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey F. L. Aguiar
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna K. Ferreira
- Instituto de Bioquímica Médica Leopoldo De Meis (IBqM), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria P. Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila Martins Pinheiro Trindade
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzia S. Sampaio
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luzia S. Sampaio,
| |
Collapse
|
46
|
Moayedi K, Orandi S, Ebrahimi R, Tanhapour M, Moradi M, Abbastabar M, Golestani A. A novel approach to type 3 diabetes mechanism: The interplay between noncoding RNAs and insulin signaling pathway in Alzheimer's disease. J Cell Physiol 2022; 237:2838-2861. [PMID: 35580144 DOI: 10.1002/jcp.30779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/06/2022]
Abstract
Today, growing evidence indicates that patients with type 2 diabetes (T2D) are at a higher risk of developing Alzheimer's disease (AD). Indeed, AD as one of the main causes of dementia in people aged more than 65 years can be aggravated by insulin resistance (IR) and other metabolic risk factors related to T2D which are also linked to the function of the brain. Remarkably, a new term called "type 3 diabetes" has been suggested for those people who are diagnosed with AD while also showing the symptoms of IR and T2D. In this regard, the role of genetic and epigenetic changes associated with AD has been confirmed by many studies. On the other hand, it should be noted that the insulin signaling pathway is highly regulated by various mechanisms, including epigenetic factors. Among these, the role of noncoding RNAs (ncRNAs), including microRNAs and long noncoding RNAs has been comprehensively studied with respect to the pathology of AD and the most well-known underlying mechanisms. Nevertheless, the number of studies exploring the association between ncRNAs and the downstream targets of the insulin signaling pathway in the development of AD has notably increased in recent years. With this in view, the present study aimed to review the interplay between different ncRNAs and the insulin signaling pathway targets in the pathogenesis of AD to find a new approach in the field of combining biomarkers or therapeutic targets for this disease.
Collapse
Affiliation(s)
- Kiana Moayedi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tanhapour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Moradi
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Scipioni L, Ciaramellano F, Carnicelli V, Leuti A, Lizzi AR, De Dominicis N, Oddi S, Maccarrone M. Microglial Endocannabinoid Signalling in AD. Cells 2022; 11:1237. [PMID: 35406803 PMCID: PMC8997504 DOI: 10.3390/cells11071237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| | - Francesca Ciaramellano
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| |
Collapse
|
48
|
Bajaj S, Zameer S, Jain S, Yadav V, Vohora D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer's Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem Neurosci 2022; 13:920-932. [PMID: 35316021 DOI: 10.1021/acschemneuro.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease is identified by pathological hallmarks such as intracellular neurofibrillary tangles (NFTs) and extracellular amyloid β plaques. Several hypotheses exist to define the neurodegeneration including microglial activation associated with neuroinflammatory processes. Recently, pharmacological inhibition of endocannabinoid (eCB)-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), is being investigated to modulate the pathology of Alzheimer's disease. While MAGL inhibitors upregulate 2-acyl glycerol (2-AG) levels and reduce neuroinflammation, FAAH inhibitors elevate anandamide (AEA) levels and prevent the degradation of HSP-70, thereby preventing the phosphorylation of tau protein and formation of NFTs in neural cells. We investigated the possible neuroprotective potential of the dual MAGL/FAAH inhibitor JZL-195 (20 mg/kg) against ICV-STZ-induced sporadic Alzheimer's disease (SAD) in Swiss albino mice using donepezil (5 mg/kg) as the standard. The protective effects of JZL-195 were observed by the reversal of altered levels of Aβ1-42, HSP-70, neuroinflammatory cytokines, and oxidative stress markers. However, JZL-195 expressed no cognitive improvement when assessed by spontaneous alternation behavior and Morris water maze tests and no effects on the AChE enzyme level in the hippocampal tissues of mice. Therefore, the findings of the present study indicate that although JZL-195 exhibited no improvement in cognitive deficits associated with sporadic Alzheimer's disease, it displayed significant reversal of the biochemical anomalies, thereby suggesting its therapeutic potential against the sporadic Alzheimer's disease model.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Zameer
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shreshta Jain
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vaishali Yadav
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Neurobehavioral Pharmacological Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
49
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
50
|
Vidal-Palencia L, Ramon-Duaso C, González-Parra JA, Busquets-Garcia A. Gene Expression Analysis of the Endocannabinoid System in Presymptomatic APP/PS1 Mice. Front Pharmacol 2022; 13:864591. [PMID: 35370697 PMCID: PMC8971609 DOI: 10.3389/fphar.2022.864591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and neurodegeneration. The actual cause of AD progression is still unknown and no curative treatment is available. Recently, findings in human samples and animal models pointed to the endocannabinoid system (ECS) as a promising therapeutic approach against AD. However, the specific mechanisms by which cannabinoid drugs induce potential beneficial effects are still undefined. For this reason, it is required a full characterization of the ECS at different time points of AD progression considering important factors such as sex or the analysis of different brain regions to improve future cannabinoid-dependent therapies in AD. Thus, the main aim of the present study is to expand our knowledge of the status of the ECS in a presymptomatic period (3 months of age) using the AD mouse model APP/PS1 mice. First, we evaluated different behavioral domains including anxiety, cognitive functions, and social interactions in male and female APP/PS1 mice at 4 months of age. Although a mild working memory impairment was observed in male APP/PS1 mice, in most of the behaviors assessed we found no differences between genotypes. At 3 months of age, we performed a characterization of the ECS in different brain regions of the APP/PS1 mice considering the sex variable. We assessed the expression of the ECS components by quantitative Real-Time Polymerase Chain Reaction in the hippocampus, prefrontal cortex, hypothalamus, olfactory bulb, and cerebellum. Interestingly, gene expression levels of the type-1 and type-2 cannabinoid receptors and the anabolic and catabolic enzymes, differed depending on the brain region and the sex analyzed. For example, CB1R expression levels decreased in both hippocampus and prefrontal cortex of male APP/PS1 mice but increased in female mice. In contrast, CB2R expression was decreased in females, whereas males tended to have higher levels. Overall, our data indicated that the ECS is already altered in APP/PS1 mice at the presymptomatic stage, suggesting that it could be an early event contributing to the pathophysiology of AD or being a potential predictive biomarker.
Collapse
|