1
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Cui BJ, Zhang C, Zhou CJ, Li ZC, Xu X, Wang YY, Chen DD, Zhou L, Lu LF, Li S. Cyprinid herpesvirus 2 (CyHV-2) ORF67 inhibits IFN expression by competitively obstructing STING phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110372. [PMID: 40306378 DOI: 10.1016/j.fsi.2025.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Cyprinid herpesvirus 2 (CyHV-2) caused hematopoietic necrosis in crucian carp (Carassius auratus) has resulted in huge economic losses to the carp aquaculture. Interferon (IFN) response serves as a crucial line of defense for fish against CyHV-2 infection; however, CyHV-2 frequently overcomes this defense, resulting in damage and even substantial mortality. The mechanism by which CyHV-2 evades the fish IFN antiviral response remains unclear. In this study, we chose the open reading frame 67 (ORF67) of CyHV-2 as the target of our research. Firstly, the results of Co-immunoprecipitation (Co-IP) assay and in vitro phosphorylation showed that the ORF67 inhibited the expression of IFN by binding to TBK1-A/B and competitively blocking STING-A/B phosphorylation. Then, we elaborated on the effect of ORF67 on the cell's antiviral function by cytopathic effect (CPE) and immunoblot analysis. In summary, this study has clarified the molecular mechanism of immune evasion by ORF67 through the inhibition of host IFN expression. This research enhances our understanding of the pathogenesis of CyHV-2 and provides theoretical references for the prevention and treatment of hematopoietic necrosis.
Collapse
Affiliation(s)
- Bao-Jie Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chu-Jing Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yang-Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China.
| |
Collapse
|
3
|
Luo C, Ma C, Xu G, Lu C, Ma J, Huang Y, Nie L, Yu C, Xia Y, Liu Z, Zhu Y, Liu S. Hepatitis B surface antigen hijacks TANK-binding kinase 1 to suppress type I interferon and induce early autophagy. Cell Death Dis 2025; 16:304. [PMID: 40234418 PMCID: PMC12000394 DOI: 10.1038/s41419-025-07605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
There are close links between innate immunity and autophagy. However, the crosstalk between innate immunity and autophagy in host cells infected with hepatitis B virus (HBV) remains unclear. Here, we reported that HBsAg suppressed type I interferon production and induced the accumulation of autophagosomes. HBsAg boosted TANK-binding kinase 1 (TBK1) phosphorylation and depressed interferon regulatory factor 3 (IRF3) phosphorylation ex vivo and in vivo. Mechanistic studies showed that HBsAg interaction with the kinase domain (KD) of TBK1 augmented its dimerization but disrupted TBK1-IRF3 complexes. Using the TBK1 inhibitor, BX795, we discovered that HBsAg-enhanced TBK1 dimerization, promoting sequestosome-1 (p62) phosphorylation, was necessary for HBV-induced autophagy and HBV replication. Moreover, HBsAg blocked autophagosome-lysosome fusion by inhibiting the synaptosomal-associated protein 29 (SNAP29) promoter. Notably, liver tissues from HBsAg transgenic mice or chronic HBV patients revealed that IFNβ signaling was inhibited and incomplete autophagy was induced. These findings suggest a novel mechanism by which HBsAg targets TBK1 to inhibit type I interferon and induce early autophagy, possibly leading to persistent HBV infection. Molecular mechanisms of HBsAg suppression of the IFNβ signaling pathway and triggering of early autophagy. HBsAg targets the kinase domain of TBK1, thereby disrupting the TBK1-IRF3 complex and inhibiting type I interferon production. On the other hand, HBsAg enhances TBK1 dimerization and phosphorylation, which upregulates the phosphorylation of p62 to induce p62-mediated autophagy. Furthermore, HBV infection causes the accumulation of autophagosomes. This is achieved by HBsAg suppressing the SNAP29 promoter activity, which blocks autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Raas Q, Haouy G, de Calbiac H, Pasho E, Marian A, Guerrera IC, Rosello M, Oeckl P, Del Bene F, Catanese A, Ciura S, Kabashi E. TBK1 is involved in programmed cell death and ALS-related pathways in novel zebrafish models. Cell Death Discov 2025; 11:98. [PMID: 40075110 PMCID: PMC11903655 DOI: 10.1038/s41420-025-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Pathogenic mutations within the TBK1 gene leading to haploinsufficiency are causative of amyotrophic lateral sclerosis (ALS). This gene is linked to autophagy and inflammation, two cellular mechanisms reported to be dysregulated in ALS patients, although its functional role in the pathogenesis could involve other players. We targeted the TBK1 ortholog in zebrafish, an optimal vertebrate model for investigating genetic defects in neurological disorders. We generated zebrafish models with invalidating tbk1 mutations using CRISPR-Cas9 or tbk1 knockdown models using antisense morpholino oligonucleotide (AMO). The early motor phenotype of zebrafish injected with tbk1 AMO beginning at 2 days post fertilization (dpf) is associated with the degeneration of motor neurons. In parallel, CRISPR-induced tbk1 mutants exhibit impaired motor function beginning at 5 dpf and increased lethality beginning at 9 dpf. A metabolomic analysis showed an association between tbk1 loss and severe dysregulation of nicotinamide metabolism, and incubation with nicotinamide riboside rescued the motor behavior of tbk1 mutant zebrafish. Furthermore, a proteomic analysis revealed increased levels of inflammatory markers and dysregulation of programmed cell death pathways. Necroptosis appeared to be strongly activated in TBK1 fish, and larvae treated with the necroptosis inhibitor necrosulfonamide exhibited improved survival. Finally, a combined analysis of mutant zebrafish and TBK1-mutant human motor neurons revealed dysregulation of the KEGG pathway "ALS", with disrupted nuclear-cytoplasmic transport and increased expression of STAT1. These findings point toward a major role for necroptosis in the degenerative features and premature lethality observed in tbk1 mutant zebrafish. Overall, the novel tbk1-deficient zebrafish models offer a great opportunity to better understand the cascade of events leading from the loss of tbk1 expression to the onset of motor deficits, with involvement of a metabolic defect and increased cell death, and for the development of novel therapeutic avenues for ALS and related neuromuscular diseases.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Gregoire Haouy
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Hortense de Calbiac
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Elena Pasho
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Anca Marian
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UAR 3633, Université Paris Cité, 75015, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Alberto Catanese
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sorana Ciura
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
5
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Sun J, Gu M, Peng L, Guo J, Chen P, Wen Y, Feng F, Chen X, Liu T, Chen Y, Lu X, Gao L, Yao SQ, Yuan P. A Self-Assembled Nano-Molecular Glue (Nano-mGlu) Enables GSH/H 2O 2-Triggered Targeted Protein Degradation in Cancer Therapy. J Am Chem Soc 2025; 147:372-383. [PMID: 39703105 DOI: 10.1021/jacs.4c11003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular glues are promising protein-degrading agents that hold great therapeutic potential but face significant challenges in rational design, effective synthesis, and precise targeting of tumor sites. In this study, we first overcame some of these limitations by introducing a fumarate-based molecular glue handle onto specific ligands of therapeutic kinases (TBK1, FGFR, and Bcr-Abl), resulting in the effective degradation of these important cancer targets. Despite the broad applicability of the strategy, we unexpectedly discovered potent and widespread cytotoxicity across various cell lines, including noncancerous ones, rendering it less effective in cancer therapy. To address this critical issue, we next developed a self-assembled nanoparticle-based molecular glue (nano-mGlu) based on one of the newly discovered Bcr-Abl-degrading molecular glues (H1-mGlu). We showed that the resulting nano-mGlu (named Cle-NP) was able to release H1-mGlu in vitro in the presence of a high concentration of GSH or H2O2 (commonly found in the tumor microenvironment). Subsequent in vivo antitumor studies with a K562-xenografted mouse model indicated that Cle-NP was highly effective in tumor-specific degradation of endogenous Bcr-Abl expressed in K562 cells, leading to eventual tumor regression while maintaining good biosafety profiles. With key advantages of generality in molecular glue design, targeted delivery (e.g., H1-mGlu), potent antitumor activity partially induced by target-specific degradation, and minimized collateral damage to healthy tissues, our self-assembled nano-mGlu strategy thus provides a novel approach that might hold a significant promise for effective and personalized cancer therapy.
Collapse
Affiliation(s)
- Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Department of Pharmacy, Linyi People's Hospital, Linyi 276000, China
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Lvyang Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jing Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yalei Wen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Fang Feng
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tongzheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Paul S, Biswas SR, Milner JP, Tomsick PL, Pickrell AM. Adaptor-Mediated Trafficking of Tank Binding Kinase 1 During Diverse Cellular Processes. Traffic 2025; 26:e70000. [PMID: 40047067 PMCID: PMC11883510 DOI: 10.1111/tra.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
The serine/threonine kinase, Tank Binding Kinase 1 (TBK1), drives distinct cellular processes like innate immune signaling, selective autophagy, and mitosis. It is suggested that the translocation and activation of TBK1 at different subcellular locations within the cell, downstream of diverse stimuli, are driven by TBK1 adaptor proteins forming a complex directly or indirectly with TBK1. Various TBK1 adaptors and associated proteins like NAP1, TANK, SINTBAD, p62, optineurin (OPTN), TAX1BP1, STING, and NDP52 have been identified in facilitating TBK1 activation and recruitment with varying overlapping redundancy. This review focuses on what is known about these proteins, their interactions with TBK1, and the functional consequences of these associations. We shed light on underexplored areas of research on these TBK1 binding partners while emphasizing how future research is required to understand the function and flexibility of TBK1 signaling and crosstalk or regulation between different biological processes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Program in Biomedical and Veterinary SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Sahitya Ranjan Biswas
- Translational Biology, Medicine, and Health Graduate ProgramVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
| | - Julia P. Milner
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Porter L. Tomsick
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Alicia M. Pickrell
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| |
Collapse
|
8
|
Borar P, Biswas T, Chaudhuri A, Rao T P, Raychaudhuri S, Huxford T, Chakrabarti S, Ghosh G, Polley S. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546692. [PMID: 37732175 PMCID: PMC10508718 DOI: 10.1101/2023.06.27.546692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.
Collapse
Affiliation(s)
- Prateeka Borar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallavi Rao T
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, USA
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Smarajit Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
9
|
Kim MH, Subasinghe A, Kim Y, Kwon HI, Cho Y, Chathuranga K, Cha JW, Moon JY, Hong JH, Kim J, Lee SC, Dodantenna N, Gamage N, Chathuranga WAG, Kim Y, Yoon IJ, Lee JY, Mo IP, Jheong W, Yoo SS, Lee JS. Development and characterization of high-efficiency cell-adapted live attenuated vaccine candidate against African swine fever. Emerg Microbes Infect 2024; 13:2432372. [PMID: 39584308 DOI: 10.1080/22221751.2024.2432372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
African swine fever (ASF), a contagious and lethal haemorrhagic disease of domestic pigs and wild boars, poses a significant threat to the global pig industry. Although experimental vaccine candidates derived from naturally attenuated, genetically engineered, or cell culture-adapted ASF virus have been tested, no commercial vaccine is accepted globally. We developed a safe and effective cell-adapted live attenuated vaccine candidate (ASFV-MEC-01) by serial passage of a field isolate in CA-CAS-01-A cells. ASFV-MEC-01, isolated via repeated plaque purification using next-generation sequencing analysis, was obtained at passage 18 and showed significant attenuation in 4- and 6-week-old pigs. ASFV-MEC-01 conferred 100% protection against challenge with lethal parental ASFV, which correlated with high ASFV-specific humoral and cellular immune responses. Additionally, ASFV-MEC-01 was not detected in blood until 28 days post-inoculation. Global transcriptome analysis showed that ASFV-MEC-01 lacking 12 genes triggered stronger innate antiviral responses than the parental virus, as exemplified by high levels of mRNA encoding interferon regulatory and inflammatory genes in PAM cells. Ectopic expression of most deleted genes increased replication of DNA viruses by suppressing production of interferons and pro-inflammatory cytokines. Among the genes deleted from ASFV-MEC-01, MGF100-1R interacted specifically with the scaffold dimerization domain of TBK1, thereby preventing TBK1 dimerization and impairing TBK1-mediated type I IFN and NF-κB signalling. These results suggest that attenuation of ASFV-MEC-01 may be mediated by induction of stronger type I IFN and NF-κB signalling within the host innate immune system. Thus, ASFV-MEC-01 could be a safe and effective live attenuated ASFV vaccine candidate with commercial potential.
Collapse
Affiliation(s)
- Min Ho Kim
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Ashan Subasinghe
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Hyeok-Il Kwon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Yehjin Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Yoon Moon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Ji-Hyeon Hong
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Jin Kim
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Seung-Chul Lee
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Nuwan Gamage
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeonji Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - In-Joong Yoon
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Joo Young Lee
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - In Pil Mo
- AviNext, Cheongju, Republic of Korea
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, Republic of Korea
| | - Sung-Sik Yoo
- ChoongAng Vaccine Laboratories, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
11
|
Adriaenssens E, Nguyen TN, Sawa-Makarska J, Khuu G, Schuschnig M, Shoebridge S, Skulsuppaisarn M, Watts EM, Csalyi KD, Padman BS, Lazarou M, Martens S. Control of mitophagy initiation and progression by the TBK1 adaptors NAP1 and SINTBAD. Nat Struct Mol Biol 2024; 31:1717-1731. [PMID: 38918639 PMCID: PMC11564117 DOI: 10.1038/s41594-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
Collapse
Affiliation(s)
- Elias Adriaenssens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Thanh Ngoc Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Stephen Shoebridge
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Marvin Skulsuppaisarn
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily Maria Watts
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Kitti Dora Csalyi
- Max Perutz Labs BioOptics FACS Facility, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus (VBC), Vienna, Austria
| | - Benjamin Scott Padman
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Zhang SD, Li H, Zhou YL, Liu XC, Li DC, Hao CF, You QD, Xu XL. Protein-protein interactions in cGAS-STING pathway: a medicinal chemistry perspective. Future Med Chem 2024; 16:1801-1820. [PMID: 39263789 PMCID: PMC11457635 DOI: 10.1080/17568919.2024.2383164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024] Open
Abstract
Protein-protein interactions (PPIs) play pivotal roles in biological processes and are closely linked with human diseases. Research on small molecule inhibitors targeting PPIs provides valuable insights and guidance for novel drug development. The cGAS-STING pathway plays a crucial role in regulating human innate immunity and is implicated in various pathological conditions. Therefore, modulators of the cGAS-STING pathway have garnered extensive attention. Given that this pathway involves multiple PPIs, modulating PPIs associated with the cGAS-STING pathway has emerged as a promising strategy for modulating this pathway. In this review, we summarize an overview of recent advancements in medicinal chemistry insights into cGAS-STING PPI-based modulators and propose alternative strategies for further drug discovery based on the cGAS-STING pathway.
Collapse
Affiliation(s)
- Shi-Duo Zhang
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye-Ling Zhou
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Chun Liu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - De-Chang Li
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chuan-Feng Hao
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines, Jiang Su Key Laboratory of Drug Design & Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
13
|
Li X, Cheng K, Shang MD, Yang Y, Hu B, Wang X, Wei XD, Han YC, Zhang XG, Dong MH, Yang ZL, Wang JQ. MARCH1 negatively regulates TBK1-mTOR signaling pathway by ubiquitinating TBK1. BMC Cancer 2024; 24:902. [PMID: 39061024 PMCID: PMC11282859 DOI: 10.1186/s12885-024-12667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TBK1 positively regulates the growth factor-mediated mTOR signaling pathway by phosphorylating mTOR. However, it remains unclear how the TBK1-mTOR signaling pathway is regulated. Considering that STING not only interacts with TBK1 but also with MARCH1, we speculated that MARCH1 might regulate the mTOR signaling pathway by targeting TBK1. The aim of this study was to determine whether MARCH1 regulates the mTOR signaling pathway by targeting TBK1. METHODS The co-immunoprecipitation (Co-IP) assay was used to verify the interaction between MARCH1 with STING or TBK1. The ubiquitination of STING or TBK1 was analyzed using denatured co-immunoprecipitation. The level of proteins detected in the co-immunoprecipitation or denatured co-immunoprecipitation samples were determined by Western blotting. Stable knocked-down cells were constructed by infecting lentivirus bearing the related shRNA sequences. Scratch wound healing and clonogenic cell survival assays were used to detect the migration and proliferation of breast cancer cells. RESULTS We showed that MARCH1 played an important role in growth factor-induced the TBK1- mTOR signaling pathway. MARCH1 overexpression attenuated the growth factor-induced activation of mTOR signaling pathway, whereas its deficiency resulted in the opposite effect. Mechanistically, MARCH1 interacted with and promoted the K63-linked ubiquitination of TBK1. This ubiquitination of TBK1 then attenuated its interaction with mTOR, thereby inhibiting the growth factor-induced mTOR signaling pathway. Importantly, faster proliferation induced by MARCH1 deficiency was weakened by mTOR, STING, or TBK1 inhibition. CONCLUSION MARCH1 suppressed growth factors mediated the mTOR signaling pathway by targeting the STING-TBK1-mTOR axis.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Kai Cheng
- The Second Clinical Medical College , Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Meng-Di Shang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yong Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Bin Hu
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China
| | - Xi Wang
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Dan Wei
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Yan-Chun Han
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiao-Gang Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Meng-Hua Dong
- School of Basic Medical, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| | - Zhen-Lin Yang
- The First School of Clinical Medicine, Binzhou Medical University, Binzhou, Shandong, 256603, P.R. China.
| | - Jiu-Qiang Wang
- Peninsular Cancer Research Center, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China.
| |
Collapse
|
14
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. Cell Rep 2024; 43:114294. [PMID: 38814780 PMCID: PMC11216866 DOI: 10.1016/j.celrep.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
15
|
Nan H, Kim YJ, Chu M, Li D, Li J, Jiang D, Wu Y, Ohtsuka T, Wu L. Genetic and clinical landscape of Chinese frontotemporal dementia: dominance of TBK1 and OPTN mutations. Alzheimers Res Ther 2024; 16:127. [PMID: 38872230 PMCID: PMC11170894 DOI: 10.1186/s13195-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Our study aims to evaluate the genetic and phenotypic spectrum of Frontotemporal dementia (FTD) gene variant carriers in Chinese populations, investigate mutation frequencies, and assess the functional properties of TBK1 and OPTN variants. METHODS Clinically diagnosed FTD patients underwent genetic analysis through exome sequencing, repeat-primed polymerase chain reaction, and Sanger sequencing. TBK1 and OPTN variants were biologically characterized in vitro using immunofluorescence, immunoprecipitation, and immunoblotting analysis. The frequencies of genes implicated in FTD in China were analyzed through a literature review and meta-analysis. RESULTS Of the 261 Chinese FTD patients, 61 (23.4%) carried potential causative variants in FTD-related genes, including MAPT (n = 17), TBK1 (n = 7), OPTN (n = 6), GRN (n = 6), ANXA11 (n = 4), CHMP2B (n = 3), C9orf72 GGGGCC repeats (n = 2), CYLD (n = 2), PRNP (n = 2), SQSTM1 (n = 2), TARDBP (n = 2), VCP (n = 1), CCNF (n = 1), CHCHD10 (n = 1), SIGMAR1 (n = 1), CHCHD2 (n = 1), FUS (n = 1), TMEM106B (n = 1), and UBQLN2 (n = 1). 29 variants can be considered novel, including the MAPT p.D54N, p.E342K, p.R221P, p.T263I, TBK1 p.E696G, p.I37T, p.E232Q, p.S398F, p.T78A, p.Q150P, p.W259fs, OPTN p.R144G, p.F475V, GRN p.V473fs, p.C307fs, p.R101fs, CHMP2B p.K6N, p.R186Q, ANXA11 p.Q155*, CYLD p.T157I, SQSTM1 p.S403A, UBQLN2 p.P509H, CCNF p.S160N, CHCHD10 p.A8T, SIGMAR1 p.S117L, CHCHD2 p.P53fs, FUS p.S235G & p.S236G, and TMEM106B p.L144V variants. Patients with TBK1 and OPTN variants presented with heterogeneous clinical phenotypes. Functional analysis demonstrated that TBK1 I37T and E232Q mutants showed decreased autophosphorylation, and the OPTN phosphorylation was reduced by the TBK1 I37T mutant. The OPTN-TBK1 complex formation was enhanced by the TBK1 E696G mutant, while OPTN R144G and F475V mutants exhibited reduced recruitment to autophagosomes compared to the wild-type. The overall frequency of TBK1 and OPTN in Chinese FTD patients was 2.0% and 0.3%, respectively. CONCLUSIONS Our study demonstrates the extensive genetic and phenotypic heterogeneity of Chinese FTD patients. TBK1 mutations are the second most frequent cause of clinical FTD after MAPT in the Chinese.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yeon-Jeong Kim
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Dan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jieying Li
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yiming Wu
- The Experimental High School Attached to Beijing Normal University, Beijing, 100032, China
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
16
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
17
|
Miranda A, Shirley CA, Jenkins RW. Emerging roles of TBK1 in cancer immunobiology. Trends Cancer 2024; 10:531-540. [PMID: 38519366 PMCID: PMC11168882 DOI: 10.1016/j.trecan.2024.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a versatile serine/threonine protein kinase with established roles in innate immunity, metabolism, autophagy, cell death, and inflammation. While best known for its role in regulating innate immunity, TBK1 has emerged as a cancer cell-intrinsic immune evasion gene by virtue of its role in modulating cellular responses to inflammatory signals emanating from the immune system. Beyond its effect on cancer cells, TBK1 appears to regulate lymphoid and myeloid cells in the tumor immune microenvironment. In this review, we detail recent advances in our understanding of the tumor-intrinsic and -extrinsic roles and regulation of TBK1 in tumor immunity.
Collapse
Affiliation(s)
- Alex Miranda
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carl A Shirley
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell W Jenkins
- Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Siddiqui AJ, Jamal A, Zafar M, Jahan S. Identification of TBK1 inhibitors against breast cancer using a computational approach supported by machine learning. Front Pharmacol 2024; 15:1342392. [PMID: 38567349 PMCID: PMC10985244 DOI: 10.3389/fphar.2024.1342392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: The cytosolic Ser/Thr kinase TBK1 is of utmost importance in facilitating signals that facilitate tumor migration and growth. TBK1-related signaling plays important role in tumor progression, and there is need to work on new methods and workflows to identify new molecules for potential treatments for TBK1-affecting oncologies such as breast cancer. Methods: Here, we propose the machine learning assisted computational drug discovery approach to identify TBK1 inhibitors. Through our computational ML-integrated approach, we identified four novel inhibitors that could be used as new hit molecules for TBK1 inhibition. Results and Discussion: All these four molecules displayed solvent based free energy values of -48.78, -47.56, -46.78 and -45.47 Kcal/mol and glide docking score of -10.4, -9.84, -10.03, -10.06 Kcal/mol respectively. The molecules displayed highly stable RMSD plots, hydrogen bond patterns and MMPBSA score close to or higher than BX795 molecule. In future, all these compounds can be further refined or validated by in vitro as well as in vivo activity. Also, we have found two novel groups that have the potential to be utilized in a fragment-based design strategy for the discovery and development of novel inhibitors targeting TBK1. Our method for identifying small molecule inhibitors can be used to make fundamental advances in drug design methods for the TBK1 protein which will further help to reduce breast cancer incidence.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mubashir Zafar
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| |
Collapse
|
19
|
Hua F, Nass T, Parvatiyar K. TRIM28 facilitates type I interferon activation by targeting TBK1. Front Immunol 2024; 15:1279920. [PMID: 38495890 PMCID: PMC10940511 DOI: 10.3389/fimmu.2024.1279920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type I interferons play a fundamental role in innate host defense against viral infections by eliciting the induction of an antiviral gene program that serves to inhibit viral replication. Activation of type I interferon is regulated by the IRF3 transcription factor, which undergoes phosphorylation-dependent activation by the upstream kinase, TBK1, during viral infection. However, the mechanisms by which TBK1 achieves activation to support signaling to IRF3 remain incompletely understood. Here we identified the E3 ubiquitin ligase, tripartite motif containing 28 (TRIM28), as a positive regulator of type I interferon activation by facilitating TBK1 signaling. Genetic deletion of TRIM28 via CRISPR-Cas9 editing resulted in impaired type I interferon activation upon both RNA and DNA virus challenge, corresponding with increased susceptibility to virus infections in TRIM28 knockout cells. Mechanistically, TRIM28 interacted with TBK1 and mediated the assembly of K63-linked ubiquitin chains onto TBK1, a post-translational modification shown to augment TBK1 signal transmission events. TRIM28 knockout cells further displayed defective TBK1 phosphorylation and complex assembly with IRF3, resulting in impaired IRF3 phosphorylation. Altogether, our data demonstrate TBK1 to be a novel substrate for TRIM28 and identify TRIM28 as an essential regulatory factor in controlling innate antiviral immune responses.
Collapse
Affiliation(s)
- Fang Hua
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tim Nass
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kislay Parvatiyar
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
20
|
Li Y, Huang L, Li H, Zhu Y, Yu Z, Zheng X, Weng C, Feng WH. ASFV pA151R negatively regulates type I IFN production via degrading E3 ligase TRAF6. Front Immunol 2024; 15:1339510. [PMID: 38449860 PMCID: PMC10914938 DOI: 10.3389/fimmu.2024.1339510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is a highly mortal and hemorrhagic infectious disease in pigs. Previous studies have indicated that ASFV modulates interferon (IFN) production. In this study, we demonstrated that ASFV pA151R negatively regulated type I IFN production. Ectopic expression of pA151R dramatically inhibited K63-linked polyubiquitination and Ser172 phosphorylation of TANK-binding kinase 1 (TBK1). Mechanically, we demonstrated that E3 ligase TNF receptor-associated factor 6 (TRAF6) participated in the ubiquitination of TBK1 in cGAS-STING signaling pathway. We showed that pA151R interacted with TRAF6 and degraded it through apoptosis pathway, leading to the disruption of TBK1 and TRAF6 interaction. Moreover, we clarified that the amino acids H102, C109, C132, and C135 in pA151R were crucial for pA151R to inhibit type I interferon production. In addition, we verified that overexpression of pA151R facilitated DNA virus Herpes simplex virus 1 (HSV-1) replication by inhibiting IFN-β production. Importantly, knockdown of pA151R inhibited ASFV replication and enhanced IFN-β production in porcine alveolar macrophages (PAMs). Our findings will help understand how ASFV escapes host antiviral immune responses and develop effective ASFV vaccines.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingqi Zhu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zilong Yu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojie Zheng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wen-hai Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Huang X, Huo L, Xiao B, Ouyang Y, Chen F, Li J, Zheng X, Wei D, Wu Y, Zhang R, Cao X, Kang T, Gao Y. Activating STING/TBK1 suppresses tumor growth via degrading HPV16/18 E7 oncoproteins in cervical cancer. Cell Death Differ 2024; 31:78-89. [PMID: 38007552 PMCID: PMC10781763 DOI: 10.1038/s41418-023-01242-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Cervical cancer is the most common gynecologic cancer, etiologically related to persistent infection of human papillomavirus (HPV). Both the host innate immunity system and the invading HPV have developed sophisticated and effective mechanisms to counteract each other. As a central innate immune sensing signaling adaptor, stimulator of interferon genes (STING) plays a pivotal role in antiviral and antitumor immunity, while viral oncoproteins E7, especially from HPV16/18, are responsible for cell proliferation in cervical cancer, and can inhibit the activity of STING as reported. In this report, we find that activation of STING-TBK1 (TANK-binding kinase 1) promotes the ubiquitin-proteasome degradation of E7 oncoproteins to suppress cervical cancer growth. Mechanistically, TBK1 is able to phosphorylate HPV16/18 E7 oncoproteins at Ser71/Ser78, promoting the ubiquitination and degradation of E7 oncoproteins by E3 ligase HUWE1. Functionally, activated STING inhibits cervical cancer cell proliferation via down-regulating E7 oncoproteins in a TBK1-dependent manner and potentially synergizes with radiation to achieve better effects for antitumor. Furthermore, either genetically or pharmacologically activation of STING-TBK1 suppresses cervical cancer growth in mice, which is independent on its innate immune defense. In conclusion, our findings represent a new layer of the host innate immune defense against oncovirus and provide that activating STING/TBK1 could be a promising strategy to treat patients with HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Xiaodan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Lanqing Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Beibei Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yi Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Foping Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Junyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xinping Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
22
|
Yang X, Liu Z. Role of TBK1 Inhibition in Targeted Therapy of Cancer. Mini Rev Med Chem 2024; 24:1031-1045. [PMID: 38314681 DOI: 10.2174/0113895575271977231115062803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 02/06/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a serine/threonine protein that plays a crucial role in various biological processes like immunity, autophagy, cell survival, and proliferation. The level and kinase activity of the TBK1 protein is regulated through post-translational modifications (PTMs). TBK1 mainly mediates the activation of IRF3/7 and NF-κB signaling pathways while also participating in the regulation of cellular activities such as autophagy, mitochondrial metabolism, and cell proliferation. TBK1 regulates immune, metabolic, inflammatory, and tumor occurrence and development within the body through these cellular activities. TBK1 kinase has emerged as a promising therapeutic target for tumor immunity. However, its molecular mechanism of action remains largely unknown. The identification of selective TBK1 small molecule inhibitors can serve as valuable tools for investigating the biological function of TBK1 protein and also as potential drug candidates for tumor immunotherapy. The current research progress indicates that some TBK1 inhibitors (compounds 15,16 and 21) exhibit certain antitumor effects in vitro culture systems. Here, we summarize the mechanism of action of TBK1 in tumors in recent years and the progress of small molecule inhibitors of TBK1.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
23
|
Shima T, Ogura M, Matsuda R, Nakamura S, Jin N, Yoshimori T, Kuma A. The TMEM192-mKeima probe specifically assays lysophagy and reveals its initial steps. J Cell Biol 2023; 222:e202204048. [PMID: 37801070 PMCID: PMC10558291 DOI: 10.1083/jcb.202204048] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Membrane rupture of lysosomes results in leakage of their contents, which is harmful to cells. Recent studies have reported that several systems contribute to the repair or elimination of damaged lysosomes. Lysophagy is a type of selective autophagy that plays a crucial role in the lysosomal damage response. Because multiple pathways are involved in this response, an assay that specifically evaluates lysophagy is needed. Here, we developed the TMEM192-mKeima probe to evaluate lysophagy. By comparing the use of this probe with the conventional galectin-3 assay, we showed that this probe is more specific to lysophagy. Using TMEM192-mKeima, we showed that TFEB and p62 are important for the lysosomal damage response but not for lysophagy, although they have previously been considered to be involved in lysophagy. We further investigated the initial steps in lysophagy and identified UBE2L3, UBE2N, TRIM10, 16, and 27 as factors involved in it. Our results demonstrate that the TMEM192-mKeima probe is a useful tool for investigating lysophagy.
Collapse
Affiliation(s)
- Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ruriko Matsuda
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Natsuko Jin
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Lin Y, Yang J, Yang Q, Zeng S, Zhang J, Zhu Y, Tong Y, Li L, Tan W, Chen D, Sun Q. PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling. Nat Commun 2023; 14:7567. [PMID: 37989995 PMCID: PMC10663505 DOI: 10.1038/s41467-023-43419-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key kinase in regulating antiviral innate immune responses. While the oligomerization of TBK1 is critical for its full activation, the molecular mechanism of how TBK1 forms oligomers remains unclear. Here, we show that protein tyrosine kinase 2 beta (PTK2B) acts as a TBK1-interacting protein and regulates TBK1 oligomerization. Functional assays reveal that PTK2B depletion reduces antiviral signaling in mouse embryonic fibroblasts, macrophages and dendritic cells, and genetic experiments show that Ptk2b-deficient mice are more susceptible to viral infection than control mice. Mechanistically, we demonstrate that PTK2B directly phosphorylates residue Tyr591 of TBK1, which increases TBK1 oligomerization and activation. In addition, we find that PTK2B also interacts with the stimulator of interferon genes (STING) and can promote its oligomerization in a kinase-independent manner. Collectively, PTK2B enhances the oligomerization of TBK1 and STING via different mechanisms, subsequently regulating STING-TBK1 activation to ensure efficient antiviral innate immune responses.
Collapse
Affiliation(s)
- Yongfang Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sha Zeng
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Yuxin Tong
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Weiqi Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, 650500, Kunming, China.
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Jia #3 Datun Road, Chaoyang District, 100101, Beijing, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
25
|
Reyahi A, Studahl M, Skouboe MK, Fruhwürth S, Narita R, Ren F, Bjerhem Viklund M, Iversen MB, Christiansen M, Svensson A, Mogensen TH, Eriksson K, Paludan SR. An IKBKE variant conferring functional cGAS/STING pathway deficiency and susceptibility to recurrent HSV-2 meningitis. JCI Insight 2023; 8:e173066. [PMID: 37937644 PMCID: PMC10721272 DOI: 10.1172/jci.insight.173066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
The mechanisms underlying susceptibility to recurrent herpes simplex virus type 2 (HSV-2) meningitis remain incompletely understood. In a patient experiencing multiple episodes of HSV-2 meningitis, we identified a monoallelic variant in the IKBKE gene, which encodes the IKKε kinase involved in induction of antiviral IFN genes. Patient cells displayed impaired induction of IFN-β1 (IFNB1) expression upon infection with HSV-2 or stimulation with double-stranded DNA (dsDNA) and failed to induce phosphorylation of STING, an activation marker of the DNA-sensing cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway. The patient allele encoded a truncated IKKε protein with loss of kinase activity and also capable of exerting dominant-negative activity. In stem cell-derived microglia, HSV-2-induced expression of IFNB1 was dependent on cGAS, TANK binding kinase 1 (TBK1), and IKBKE, but not TLR3, and supernatants from HSV-2-treated microglia exerted IKBKE-dependent type I IFN-mediated antiviral activity upon neurons. Reintroducing wild-type IKBKE into patient cells rescued IFNB1 induction following treatment with HSV-2 or dsDNA and restored antiviral activity. Collectively, we identify IKKε to be important for protection against HSV-2 meningitis and suggest a nonredundant role for the cGAS/STING pathway in human antiviral immunity.
Collapse
Affiliation(s)
- Azadeh Reyahi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Studahl
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Stefanie Fruhwürth
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Moa Bjerhem Viklund
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Søren R. Paludan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Saha B, Olsvik H, Williams GL, Oh S, Evjen G, Sjøttem E, Mandell MA. TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563195. [PMID: 37905089 PMCID: PMC10614974 DOI: 10.1101/2023.10.19.563195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Hallvard Olsvik
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Gry Evjen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Eva Sjøttem
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center
| |
Collapse
|
27
|
Zhang Y, Xin B, Liu Y, Jiang W, Han W, Deng J, Wang P, Hong X, Yan D. SARS-COV-2 protein NSP9 promotes cytokine production by targeting TBK1. Front Immunol 2023; 14:1211816. [PMID: 37854611 PMCID: PMC10580797 DOI: 10.3389/fimmu.2023.1211816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
SARS-COV-2 infection-induced excessive or uncontrolled cytokine storm may cause injury of host tissue or even death. However, the mechanism by which SARS-COV-2 causes the cytokine storm is unknown. Here, we demonstrated that SARS-COV-2 protein NSP9 promoted cytokine production by interacting with and activating TANK-binding kinase-1 (TBK1). With an rVSV-NSP9 virus infection model, we discovered that an NSP9-induced cytokine storm exacerbated tissue damage and death in mice. Mechanistically, NSP9 promoted the K63-linked ubiquitination and phosphorylation of TBK1, which induced the activation and translocation of IRF3, thereby increasing downstream cytokine production. Moreover, the E3 ubiquitin ligase Midline 1 (MID1) facilitated the K48-linked ubiquitination and degradation of NSP9, whereas virus infection inhibited the interaction between MID1 and NSP9, thereby inhibiting NSP9 degradation. Additionally, we identified Lys59 of NSP9 as a critical ubiquitin site involved in the degradation. These findings elucidate a previously unknown mechanism by which a SARS-COV-2 protein promotes cytokine storm and identifies a novel target for COVID-19 treatment.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bowen Xin
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinan Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenyi Jiang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wendong Han
- Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Jian Deng
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peihui Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Shao Q, Fu F, Zhu P, Xu M, Wang J, Wang Z, Yan Y, Wang H, Ma J, Cheng Y, Sun J. Pigeon TBK1 is involved in antiviral innate immunity by mediating IFN activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104758. [PMID: 37307868 DOI: 10.1016/j.dci.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in regulating type-I interferon (IFN) production in mammals and birds. We cloned pigeon TBK1 (PiTBK1) and conducted bioinformatics analyses to compare the protein homology of TBK1 from different species. Overexpression of PiTBK1 in DF-1 cells induced the activation of IFN-β, and this activation positively correlated with the dosage of transfected PiTBK1 plasmids. In pigeon embryonic fibroblasts (PEFs) cells, it does the same. And the STK and Ubl domain are essential for IFN-β activation. Consistent with the previous results, when PiTBK1 expressed more, NDV replication was lower. Our results suggest that PiTBK1 is an important regulator of IFNs and plays a pivotal role in antiviral innate immunity in pigeon.
Collapse
Affiliation(s)
- Qi Shao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Feiyu Fu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Pei Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Minzhi Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| |
Collapse
|
29
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
30
|
Zhang R, Yang W, Zhu H, Zhai J, Xue M, Zheng C. NLRC4 promotes the cGAS-STING signaling pathway by facilitating CBL-mediated K63-linked polyubiquitination of TBK1. J Med Virol 2023; 95:e29013. [PMID: 37537877 DOI: 10.1002/jmv.29013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
TANK-binding kinase 1 (TBK1) is crucial in producing type Ⅰ interferons (IFN-Ⅰ) that play critical functions in antiviral innate immunity. The tight regulation of TBK1, especially its activation, is very important. Here we identify NLRC4 as a positive regulator of TBK1. Ectopic expression of NLRC4 facilitates the activation of the IFN-β promoter, the mRNA levels of IFN-β, ISG54, and ISG56, and the nuclear translocation of interferon regulatory factor 3 induced by cGAS and STING. Consistently, under herpes simplex virus-1 (HSV-1) infection, knockdown or knockout of NLRC4 in BJ cells and primary peritoneal macrophages from Nlrc4-deficient (Nlrc4-/- ) mice show attenuated Ifn-β, Isg54, and Isg56 mRNA transcription, TBK1 phosphorylation, and augmented viral replications. Moreover, Nlrc4-/- mice show higher mortality upon HSV-1 infection. Mechanistically, NLRC4 facilitates the interaction between TBK1 and the E3 ubiquitin ligase CBL to enhance the K63-linked polyubiquitination of TBK1. Our study elucidates a previously uncharacterized function for NLRC4 in upregulating the cGAS-STING signaling pathway and antiviral innate immunity.
Collapse
Affiliation(s)
- Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Reinhardt R, Leonard TA. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. eLife 2023; 12:e88210. [PMID: 37470698 PMCID: PMC10359097 DOI: 10.7554/elife.88210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Phosphorylation of proteins is a ubiquitous mechanism of regulating their function, localization, or activity. Protein kinases, enzymes that use ATP to phosphorylate protein substrates are, therefore, powerful signal transducers in eukaryotic cells. The mechanism of phosphoryl-transfer is universally conserved among protein kinases, which necessitates the tight regulation of kinase activity for the orchestration of cellular processes with high spatial and temporal fidelity. In response to a stimulus, many kinases enhance their own activity by autophosphorylating a conserved amino acid in their activation loop, but precisely how this reaction is performed is controversial. Classically, kinases that autophosphorylate their activation loop are thought to perform the reaction in trans, mediated by transient dimerization of their kinase domains. However, motivated by the recently discovered regulation mechanism of activation loop cis-autophosphorylation by a kinase that is autoinhibited in trans, we here review the various mechanisms of autoregulation that have been proposed. We provide a framework for critically evaluating biochemical, kinetic, and structural evidence for protein kinase dimerization and autophosphorylation, and share some thoughts on the implications of these mechanisms within physiological signaling networks.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| |
Collapse
|
32
|
Huang J, Chen Z, Ye Y, Shao Y, Zhu P, Li X, Ma Y, Xu F, Zhou J, Wu M, Gao X, Yang Y, Zhang J, Hao C. DTX3L Enhances Type I Interferon Antiviral Response by Promoting the Ubiquitination and Phosphorylation of TBK1. J Virol 2023; 97:e0068723. [PMID: 37255478 PMCID: PMC10308958 DOI: 10.1128/jvi.00687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
Studies already revealed that some E3 ubiquitin ligases participated in the immune response after viral infection by regulating the type I interferon (IFN) pathway. Here, we demonstrated that type I interferon signaling enhanced the translocation of ETS1 to the nucleus and the promoter activity of E3 ubiquitin ligase DTX3L (deltex E3 ubiquitin ligase 3L) after virus infection and thus increased the expression of DTX3L. Further experiments suggested that DTX3L ubiquitinated TBK1 at K30 and K401 sites on K63-linked ubiquitination pathway. DTX3L was also necessary for mediating the phosphorylation of TBK1 through binding with the tyrosine kinase SRC: both together enhanced the activation of TBK1. Therefore, DTX3L, being an important positive-feedback regulator of type I interferon, exerted a key role in antiviral response. IMPORTANCE Our present study evaluated DTX3L as an antiviral molecule by promoting IFN production and establishing an IFN-β-ETS1-DTX3L-TBK1 positive-feedback loop as a novel immunomodulatory step to enhance interferon signaling and inhibit respiratory syncytial virus (RSV) infection. Our finding enriches and complements the biological function of DTX3L and provides a new strategy to protect against lung diseases such as bronchiolitis and pneumonia that develop with RSV.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yunfei Ye
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yu Shao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Peijie Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xiaoping Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
- Reproductive Medicine Center, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yu Ma
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ji Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Mengyun Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xiu Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
33
|
Wang G, Li Z, Tian M, Cui X, Ma J, Liu S, Ye C, Yuan L, Qudus MS, Afaq U, Wu K, Liu X, Zhu C. β-Glucan Induces Training Immunity to Promote Antiviral Activity by Activating TBK1. Viruses 2023; 15:1204. [PMID: 37243289 PMCID: PMC10221698 DOI: 10.3390/v15051204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Many studies have shown that β-glucan induces a trained immune phenotype in innate immune cells to defend against bacterial and fungal infections. The specific mechanism involves cellular metabolism and epigenetic reprogramming. However, it is unclear whether β-glucan plays a role in antiviral infection. Therefore, this study investigated the role of trained immunity induced by Candida albicans and β-glucan in antiviral innate immunity. It showed that C. albicans and β-glucan promoted the expression of interferon-β (IFN-β) and interleukin-6 (IL-6) in mouse macrophages triggered by viral infection. In addition, β-glucan pretreatment attenuated the pathological damage induced by the virus in mouse lungs and promoted the expression of IFN-β. Mechanistically, β-glucan could promote the phosphorylation and ubiquitination of TANK Binding Kinase 1 (TBK1), a key protein of the innate immune pathway. These results suggest that β-glucan can promote innate antiviral immunity, and this bioactive material may be a potential therapeutic target for antiviral treatment.
Collapse
Affiliation(s)
- Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenglin Ye
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Yuan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430060, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai 200135, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
34
|
Guo R, Wang J, Tang W, Xiao D. Rnf144b alleviates the inflammatory responses and cardiac dysfunction in sepsis. ESC Heart Fail 2023. [PMID: 37088470 PMCID: PMC10375149 DOI: 10.1002/ehf2.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
AIMS Sepsis is an inflammatory disease with high mortality and morbidity. Inflammation plays an essential role in sepsis, and suppressing inflammation has been shown to ameliorate sepsis. Rnf144b is an ubiquitin E3 ligation with anti-inflammation activities. Its precise roles in sepsis remain unknown. Here, we explored the function of Rnf144b in sepsis. METHODS AND RESULTS We generated conditional knockout mice with Rnf144b deficiency in the myeloid cells. We monitored the Rnf144b expression in peripheral blood mononuclear cells from healthy donor and patients with sepsis, and in lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDMs). The cytokine expression between wild-type BMDMs and Rnf144b-deficient BMDMs after LPS and CpG treatments was compared. The survival rate and cardiac function were monitored. The activation of TANK binding kinase 1 and nuclear factor kappa-B was examined by Western blot and real-time PCR. Up-regulated expression of Rnf144b was observed in peripheral blood mononuclear cells from patients with sepsis. LPS induced the expression of Rnf144b in BMDMs. Rnf144b-deficient BMDMs produced more inflammatory cytokines after LPS or CpG stimulation. Septic mice with Rnf144b deficiency in myeloid cells had higher mortality and exacerbated cardiac dysfunction. Rnf144b interacted with TANK binding kinase 1 and Rnf144b deficiency resulted in impaired activation of TBK1 but enhanced activation of nuclear factor kappa-B. CONCLUSIONS Rnf144b prevents inflammatory responses and cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Jingjing Wang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Dong Xiao
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| |
Collapse
|
35
|
Wen H, Zuo Y, Li L, Zhan L, Xue J, Sun W, Xu E. Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiol Dis 2023; 179:106043. [PMID: 36805078 DOI: 10.1016/j.nbd.2023.106043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Hypoxic postconditioning (HPC) has been reported to enhance Parkin-catalyzed mitochondrial ubiquitination to restore mitophagy in hippocampal CA1 against transient global cerebral ischemia (tGCI). However, the molecular mechanism leading ubiquitinated mitochondria to final clearance during HPC-mediated mitophagy after tGCI is unclear. This study aims to investigate whether HPC restores mitophagy after tGCI through Parkin-induced K63-linked poly-ubiquitination (K63-Ub) to activate tumor necrosis factor associated factor family member associated nuclear factor κB activator -binding kinase 1 (TBK1) in CA1 of male rats. We found that HPC maintained TBK1 expression, promoted p62 and TBK1 phosphorylation in mitochondria, and enhanced their recruitments to mitochondria in CA1 after tGCI. However, these effects were partially abolished by TBK1 inhibitor BX795. K63-Ub of mitochondrial TBK1 was disturbed at 26 h of reperfusion after tGCI, which was reversed by HPC. The maintenance of K63-Ub of mitochondrial TBK1 induced by HPC was counteracted under Parkin knockdown with AAV-mediated Prkn small-interfering RNA, accompanied by the suppression on TBK1 activation and the reduction of mitochondrial p62 phosphorylation. This innovative study indicated that HPC maintained K63-Ub of TBK1 in a Parkin-dependent manner to promote TBK1 phosphorylation, and then phosphorylated TBK1 activated p62 to restore mitophagy, thereby alleviating neuronal damage in CA1 after tGCI.
Collapse
Affiliation(s)
- Haixia Wen
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yunyan Zuo
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Luxi Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China; Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Jiahui Xue
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - Weiwen Sun
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China
| | - En Xu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, PR China.
| |
Collapse
|
36
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Porras G, Ruiz S, Maestro I, Borrego-Hernández D, Redondo AG, Martínez A, Martín-Requero Á. Functional Characterization of a Familial ALS-Associated Missense TBK1 (p-Arg573Gly) Mutation in Patient-Derived Lymphoblasts. Int J Mol Sci 2023; 24:ijms24032847. [PMID: 36769169 PMCID: PMC9917786 DOI: 10.3390/ijms24032847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The goal of this work was to elucidate the pathogenic mechanism of an ALS-associated missense mutation, p.Arg573Gly (R573G), in the TBK1 gene. In particular, we seek to analyze the influence of this variant on the cellular levels and the function of TBK1 in immortalized cells from an ALS patient. The patient (Code# E7) belonged to a Spanish family with autosomal dominant disease manifesting in the sixth decade as either dementia or ALS. Four control individuals without signs of neurological disease were also included in this study. Our results indicate that the R375G TBK1 mutation did not affect the levels of mRNA nor the total TBK1 content; however, we observed a significant decrease in the levels of TBK1 phosphorylation, which is essential for TBK1 activity, as well as a significant reduction in the phosphorylation of p62 and RIPK1, known substrates for TBK1. Lymphoblasts from the R573G TBK1 mutation carrier patient display pathological TDP-43 homeostasis, showing elevated levels of phosphorylated TDP-43 and accumulation of the protein in the cytosolic compartment. In addition, the functional decrease in TBK1 activity observed in the E7 patient did not alter the autophagy flux, but it seems to be enough to increase ROS levels as well as the expression of pro-inflammatory cytokine IL-6.
Collapse
Affiliation(s)
- Gracia Porras
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Silvana Ruiz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Alberto G. Redondo
- ALS Research Lab, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain
| | - Ana Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (A.M.); (Á.M.-R.)
| | - Ángeles Martín-Requero
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (A.M.); (Á.M.-R.)
| |
Collapse
|
38
|
Scrima N, Le Bars R, Nevers Q, Glon D, Chevreux G, Civas A, Blondel D, Lagaudrière-Gesbert C, Gaudin Y. Rabies virus P protein binds to TBK1 and interferes with the formation of innate immunity-related liquid condensates. Cell Rep 2023; 42:111949. [PMID: 36640307 DOI: 10.1016/j.celrep.2022.111949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Viruses must overcome the interferon-mediated antiviral response to replicate and propagate into their host. Rabies virus (RABV) phosphoprotein P is known to inhibit interferon induction. Here, using a global mass spectrometry approach, we show that RABV P binds to TBK1, a kinase located at the crossroads of many interferon induction pathways, resulting in innate immunity inhibition. Mutations of TBK1 phosphorylation sites abolish P binding. Importantly, we demonstrate that upon RABV infection or detection of dsRNA by innate immunity sensors, TBK1 and its adaptor proteins NAP1 and SINTBAD form dynamic cytoplasmic condensates that have liquid properties. These condensates can form larger aggregates having ring-like structures in which NAP1 and TBK1 exhibit locally restricted movement. P binding to TBK1 interferes with the formation of these structures. This work demonstrates that proteins of the signaling pathway leading to interferon induction transiently form liquid organelles that can be targeted by viruses.
Collapse
Affiliation(s)
- Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Ahmet Civas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
39
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
40
|
Li L, Luo J, Zhu Z, Xu Q, Wang P, Chang B, Wang D, Yu L, Lu X, Zhou J, Zuo D, Chen Q. SRA Suppresses Antiviral Innate Immune Response in Macrophages by Limiting TBK1 K63 Ubiquitination via Deubiquitinase USP15. Microbiol Spectr 2022; 10:e0202822. [PMID: 36342281 PMCID: PMC9769732 DOI: 10.1128/spectrum.02028-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The innate immune system is the first line of host defense against microbial infections. During virus infection, pattern recognition receptors (PRRs) are engaged to detect specific viral components, such as viral RNA or DNA, and regulate the innate immune response in the infected cells or immune cells. Our previous study demonstrated that scavenger receptor A (SRA), an important innate PRR, impaired the anti-hepatitis B virus (HBV) response in hepatocytes. Given that SRA is primarily expressed in macrophages, here, we assessed the function of SRA expressed in macrophages in response to RNA or DNA viral infection. SRA-deficient (SRA-/-) mice showed reduced susceptibility to viral infection caused by vesicular stomatitis virus (VSV) or herpes simplex virus 1 (HSV-1). In the virus-infected SRA-/- mice, compared with their wild-type (WT) counterparts, we observed low amounts of virus accompanied by enhanced interferon (IFN) production. Furthermore, SRA significantly inhibited the phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). We provided biochemical evidence showing that SRA directly interacts with the N-terminal kinase domain (KD) of TBK1, resulting in the limitation of its K63-linked ubiquitination. Moreover, we demonstrated that SRA negatively regulates the activity of TBK1 by promoting the recruitment of ubiquitin-specific protease 15 (USP15) to deubiquitinate TBK1. In summary, we have identified the connection between SRA and the TBK1/IRF3 signaling pathway in macrophages, indicating a critical role of SRA in the regulation of host antiviral immunity. IMPORTANCE During virus infection, PRRs are engaged to detect specific viral components, such as viral RNA or DNA, and regulate the innate immune response in the infected cells or other immune cells. We reported that deficiency of SRA, an important innate PRR, promoted IRF3 activation, type I IFN production, and innate antiviral responses against RNA and DNA viruses in vivo and in vitro. Furthermore, the biochemical analysis showed that SRA directly interacts with the KD domain of TBK1 and limits its K63-linked polyubiquitination, reducing TBK1 activation. Further analyses determined that SRA is a modulator for TBK1 activation via the recruitment of USP15, which delineated a previously unrecognized function for SRA in innate antiviral immunity.
Collapse
Affiliation(s)
- Lei Li
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jialiang Luo
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhengyumeng Zhu
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qishan Xu
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Wang
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Lu Yu
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Daming Zuo
- Department of Medical Laboratory, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
41
|
Berth SH, Rich DJ, Lloyd TE. The role of autophagic kinases in regulation of axonal function. Front Cell Neurosci 2022; 16:996593. [PMID: 36226074 PMCID: PMC9548526 DOI: 10.3389/fncel.2022.996593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Autophagy is an essential process for maintaining cellular homeostasis. Highlighting the importance of proper functioning of autophagy in neurons, disruption of autophagy is a common finding in neurodegenerative diseases. In recent years, evidence has emerged for the role of autophagy in regulating critical axonal functions. In this review, we discuss kinase regulation of autophagy in neurons, and provide an overview of how autophagic kinases regulate axonal processes, including axonal transport and axonal degeneration and regeneration. We also examine mechanisms for disruption of this process leading to neurodegeneration, focusing on the role of TBK1 in pathogenesis of Amyotrophic Lateral Sclerosis.
Collapse
|
42
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
43
|
Xu G, Wu Y, Xiao T, Qi F, Fan L, Zhang S, Zhou J, He Y, Gao X, Zeng H, Li Y, Zhang Z. Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal Transduct Target Ther 2022; 7:312. [PMID: 36071039 PMCID: PMC9449932 DOI: 10.1038/s41392-022-01156-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global pandemic that seriously threatens health and socioeconomic development, but the existed antiviral drugs and vaccines still cannot yet halt the spread of the epidemic. Therefore, a comprehensive and profound understanding of the pathogenesis of SARS-CoV-2 is urgently needed to explore effective therapeutic targets. Here, we conducted a multiomics study of SARS-CoV-2-infected lung epithelial cells, including transcriptomic, proteomic, and ubiquitinomic. Multiomics analysis showed that SARS-CoV-2-infected lung epithelial cells activated strong innate immune response, including interferon and inflammatory responses. Ubiquitinomic further reveals the underlying mechanism of SARS-CoV-2 disrupting the host innate immune response. In addition, SARS-CoV-2 proteins were found to be ubiquitinated during infection despite the fact that SARS-CoV-2 itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could significantly enhance viral infection. Further screening of the E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) library revealed four E3 ligases influencing SARS-CoV-2 infection, thus providing several new antiviral targets. This multiomics combined with high-throughput screening study reveals that SARS-CoV-2 not only modulates innate immunity, but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting potential antiviral and anti-inflammation targets.
Collapse
Affiliation(s)
- Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Tongyang Xiao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Shengyuan Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, 200433, Shanghai, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Hongxiang Zeng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong Province, China. .,Guangdong Key laboratory for anti-infection Drug Quality Evaluation, 518112, Shenzhen, Guangdong Province, China. .,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong Province, China.
| |
Collapse
|
44
|
Erol A. Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation. Cancer Manag Res 2022; 14:2339-2356. [PMID: 35958947 PMCID: PMC9362849 DOI: 10.2147/cmar.s373557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress, which can cause DNA damage, can both activate TNF-R1 directly in the absence of TNF stimulation and phosphorylate c-Abl, thus promoting its cytoplasmic translocation. Persistent cytoplasmic localization of c-Abl has been associated with cellular transformation. c-Abl phosphorylates OTULIN at tyrosine 56, thereby disrupting its relationship with LUBAC. OTULIN-released LUBAC interacts with SPATA2 and is recruited to the TNF-R1sc, facilitating SPATA2-CYLD interaction. All these interactions are required for the activation of IKKβ to stimulate NF-κB transcriptional activity following genotoxic stress. IKKβ also induces the critical phosphorylation of CYLD at serine 568 to increase its deubiquitinating (DUB) activity required for the termination of signaling cascades. Contrary to the widespread belief that CYLD is an absolute tumor suppressor, CYLD initiates and terminates NF-κB activity by alternately using its oncoprotein and tumor suppressor activities, respectively. If IKKβ fails to achieve the DUB activity-inducing phosphorylation at serine 568, CYLD would operate in a sustained mode of oncogenic activity. The resulting dysregulated NF-κB activation and other accompanying pathologies will disrupt cellular homeostasis in favor of transformation.
Collapse
Affiliation(s)
- Adnan Erol
- Independent Researcher, Istanbul, Turkey
| |
Collapse
|
45
|
He J, Hu S, Xie Y, Wei Y, Zhang Q, Pi X, Qi Z. Molecular characterization and expression analysis of TRIF, TRAF6, and TBK1 of golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:604-610. [PMID: 35809882 DOI: 10.1016/j.fsi.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF), tumor necrosis factor receptor-associated factor 6 (TRAF6) and TANK-binding kinase 1 (TBK1) are critical signal transducers in toll-like receptors (TLRs) signaling pathway. In the present study, TRIF, TRAF6 and TBK1 were characterized from golden pompano (Trachinotus ovatus), named as TroTRIF, TroTRAF6 and TroTBK1, respectively. The full cDNA length of TroTRIF, TroTRAF6 and TroTBK1 was 2297 bp, 2293 bp, and 2482 bp, which respectively encoded 589, 573 and 723 amino acids. The deduced amino acids sequences of TroTRIF, TroTRAF6 and TroTBK1 contained conserved motifs, similar to their counterparts in other vertebrates. Phylogenetic tree analysis revealed that TroTRIF, TroTRAF6 and TroTBK1 were well clustered with their counterparts in other fish species. Quantitative Real-Time PCR (qPCR) analysis showed that TroTRIF, TroTBK1 and TroTRAF6 were detected in all examined tissues of healthy fish, but shared distinct transcript levels. Moreover, the expressions of TroTRIF, TroTBK1 and TroTRAF6 were generally induced by polyriboinosinic-polyribocytidylic acid (polyI:C), lipopolysaccharide (LPS), and Vibrio alginolyticus stimulation in vivo, indicating their critical roles in the immune defense of golden pompano against pathogen invasion. Our results provide valuable information for understanding the functions of these genes in golden pompano.
Collapse
Affiliation(s)
- Jinquan He
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Shu Hu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Yushuai Xie
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China.
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| |
Collapse
|
46
|
Khatoon F, Kumar V, Anjum F, Shafie A, Adnan M, Hassan MI. Frustration analysis of TBK1 missense mutations reported in ALS/FTD and cancer patients. 3 Biotech 2022; 12:174. [PMID: 35845111 PMCID: PMC9283588 DOI: 10.1007/s13205-022-03240-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tank-binding kinase 1 (TBK1) is a multifunctional kinase having essential roles in cellular processes, autophagy/mitophagy, and selective clearance of damaged proteins. More than 90 mutations in the TBK1 gene are linked with multiple cancer types, amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Some of these missense mutations disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. Some mutations may cause severe dysregulation of the pathway, while others induce a limited disruption. Here, we have studied those mutations reported in cancer, ALS and FTD, and subsequently investigated the effect of missense mutations on the structure and function of TBK1 for localized residual frustration change. Out of 33 ALS/FTD causing mutations and 28 oncogenic mutations, 10 mutations and 12 oncogenic mutations showed significant change in the residual frustration. The local frustration plays an important role in the conformation of protein structure in active and inactive kinases. Our analysis reports the change in residual frustration state, conformational change and effect on active and inactive TBK1 function due to ALS/FTD causing and oncogenic missense mutations. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03240-0.
Collapse
|
47
|
Zhang J, Li S, Zhang J, Zhang W, Jiang J, Wu H, Wu E, Feng Y, Yang L, Li Z. Docetaxel resistance-derived LINC01085 contributes to the immunotherapy of hormone-independent prostate cancer by activating the STING/MAVS signaling pathway. Cancer Lett 2022; 545:215829. [PMID: 35868534 DOI: 10.1016/j.canlet.2022.215829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
Acquired docetaxel (doc) resistance, one of the major reasons for unfavorable prognosis in patients with aggressive hormone-independent prostate cancer (HIPC), is a major obstacle for patient treatment. Dysregulation of long non-coding RNAs promotes or suppresses chemoresistance in multiple cancers; however, the specific molecular mechanisms underlying HIPC remain unknown. In this study, we found that the LINC01085, as a tumor-suppressor, which showed significant clinically relevant in HIPC patients with doc-resistance. Mechanistically, in docetaxel-sensitive cells, LINC01085 could specifically bind to both TANK-binding kinase 1 (TBK1) and glycogen synthase kinase 3β (GSK3β), and higher LINC01085 RNA levels could inhibit TBK1 dimerization. Whereas, in doc-resistant cells, lower LINC01085 RNA level lost the strong binding with both, meanwhile, the interaction between TBK1 and GSK3β enhanced which accelerated TBK1 phosphorylation at the Ser-172 site, resulting in decreased expression levels of PD-L1 and NF-κB as well as the secretion of type I/III interferons. Thus, Overexpression of LINC01085 combined with immune checkpoint blockade is an effective strategy for the treatment of HIPC patients.
Collapse
Affiliation(s)
- Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Jianian Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Wen Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiawen Jiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yutao Feng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
48
|
Sun Y, Tang H, Wang X, Feng F, Fan T, Zhao D, Xiong B, Xie H, Liu T. Identification of 1 H-pyrazolo[3,4-b]pyridine derivatives as novel and potent TBK1 inhibitors: design, synthesis, biological evaluation, and molecular docking study. J Enzyme Inhib Med Chem 2022; 37:1411-1425. [PMID: 35587686 PMCID: PMC9132415 DOI: 10.1080/14756366.2022.2076674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TANK-binding kinase 1 (TBK1), a noncanonical member of the inhibitor-kappaB kinases (IKKs) family, plays a vital role in coordinating the signalling pathways of innate immunity, involving in the process of neuroinflammation, autophagy, and oncogenesis. In current study, based on rational drug design strategy, we discovered a series of 1H-pyrazolo[3,4-b]pyridine derivatives as potent TBK1 inhibitors and dissected the structure–activity relationships (SARs). Through the several rounds of optimisation, compound 15y stood out as a potent inhibitor on TBK1 with an IC50 value of 0.2 nM and also displayed good selectivity. The mRNA detection of TBK1 downstream genes showed that compound 15y effectively inhibited TBK1 downstream IFN signalling in stimulated THP-1 and RAW264.7 cells. Meanwhile, compound 15y exhibited a micromolar antiproliferation effect on A172, U87MG, A375, A2058, and Panc0504 cell lines. Together, current results provided a promising TBK1 inhibitor 15y as lead compound for immune- and cancer-related drug discovery.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haotian Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Fang Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tiantian Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bing Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tongchao Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
49
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
50
|
Ko MS, Cohen SN, Polley S, Mahata SK, Biswas T, Huxford T, Ghosh G. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. J Biol Chem 2022; 298:101864. [PMID: 35339487 PMCID: PMC9035715 DOI: 10.1016/j.jbc.2022.101864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.
Collapse
Affiliation(s)
- Myung Soo Ko
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA; Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Samantha N Cohen
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Smarajit Polley
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California, USA; Medicine, VA San Diego Health Care System, San Diego, California, USA
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|