1
|
Cui W, Wang H, Gao Y, Zhang X, Xin J, Li Z, Li G, Gao W, Zhang W. Deubiquitinase USP37 enhances the anti-HIV-2/SIV ability of the host restriction factor SAMHD1. J Virol 2025; 99:e0185824. [PMID: 39655951 PMCID: PMC11784012 DOI: 10.1128/jvi.01858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 02/01/2025] Open
Abstract
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains. Notably, USP37 deubiquitinates SAMHD1 by directly recognizing SAMHD1 rather than by targeting the E3 ubiquitin ligase. The deubiquitinase activity of USP37 and its ubiquitin interacting motifs are essential for the deubiquitination of SAMHD1, whereas the phosphorylation state of USP37 does not influence its activity. Additionally, USP37 enhances the suppression of the retrotransposition of LINE-1 elements by SAMHD1 via stabilizing SAMHD1. Our findings provide important evidence that enhancing the deubiquitinating activity of some DUBs results in the stability of the host restriction factor and might be a viable strategy against HIV/SIV infections.IMPORTANCESAMHD1 is a multifunctional protein, including restricting virus replication, maintaining genomic integrity through DNA repair, modulating the immune response by influencing the production of type I interferons and other cytokines, and affecting cancer cell proliferation and sensitivity to chemotherapy. However, HIV-2/simian immunodeficiency virus (SIV)-encoded Vpx and the host E3 ligase TRIM21 can induce the degradation of SAMHD1 via the ubiquitin-proteasome pathway. Therefore, it is necessary to find the strategy to stabilize SAMHD1. Our study demonstrates that the deubiquitinase USP37 reverses Vpx- and TRIM21-mediated degradation of SAMHD1, thereby inhibiting SIV replication and LINE-1 activity by stabilizing SAMHD1. Thus, we report a novel role of USP37, which represents a potentially useful target for the development of new drugs.
Collapse
Affiliation(s)
- Wenzhe Cui
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Hongfei Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jingguo Xin
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Politano D, Tonduti D, Battini R, Fazzi E, Orcesi S. Exploring emerging JAK inhibitors in the treatment of Aicardi-Goutières syndrome. Expert Opin Emerg Drugs 2024:1-19. [PMID: 39704072 DOI: 10.1080/14728214.2024.2445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION Aicardi-Goutières syndrome (AGS) is a genetically heterogeneous monogenic autoinflammatory disorder classified as an 'interferonopathy'. Nine genes have been implicated in AGS, encoding proteins involved in nucleic acid clearance, repair, sensing, or histone pre-mRNA processing. Dysregulation in these pathways leads to excessive type I interferon production, the primary driver of the disease. AGS typically presents with early-life neurological regression, followed by stabilization with varying degrees of neurological impairment and common extra-neurological features, such as chilblains. Advances in understanding AGS pathogenesis have enabled the development of new therapies, with JAK inhibitors emerging as the most studied option for reducing interferon-mediated effects. AREAS COVERED This review discusses the clinical features, genetic basis, and molecular pathways of AGS while tracing the evolution of its therapeutic strategies. Particular emphasis is placed on JAK inhibitors, which target proteins activated by type I interferons, providing a novel direction in treatment. EXPERT OPINION Inhibitors effectively reduce extra-neurological symptoms in AGS, though their impact on neurological outcomes remains unclear. The unknown natural history of AGS limits treatment evaluation. Despite growing insights, key aspects of pathogenesis and treatment optimization - including timing, administration, and long-term effects - remain unresolved, highlighting the need for further research.
Collapse
Affiliation(s)
- Davide Politano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, COALA Center for Diagnosis and Treatment of Leukodystrophies, V. Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Guo H, Yang W, Li H, Yang J, Huang Y, Tang Y, Wang S, Ni F, Yang W, Yu XF, Wei W. The SAMHD1-MX2 axis restricts HIV-1 infection at postviral DNA synthesis. mBio 2024; 15:e0136324. [PMID: 38888311 PMCID: PMC11253599 DOI: 10.1128/mbio.01363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
HIV-1 replication is tightly regulated in host cells, and various restriction factors have important roles in inhibiting viral replication. SAMHD1, a well-known restriction factor, suppresses HIV-1 replication by hydrolyzing intracellular dNTPs, thereby limiting the synthesis of viral cDNA in quiescent cells. In this study, we revealed an additional and distinct mechanism of SAMHD1 inhibition during the postviral cDNA synthesis stage. Using immunoprecipitation and mass spectrometry analysis, we demonstrated the interaction between SAMHD1 and MX2/MxB, an interferon-induced antiviral factor that inhibits HIV-1 cDNA nuclear import. The disruption of endogenous MX2 expression significantly weakened the ability of SAMHD1 to inhibit HIV-1. The crucial region within SAMHD1 that binds to MX2 has been identified. Notably, we found that SAMHD1 can act as a sensor that recognizes and binds to the incoming HIV-1 core, subsequently delivering it to the molecular trap formed by MX2, thereby blocking the nuclear entry of the HIV-1 core structure. SAMHD1 mutants unable to recognize the HIV-1 core showed a substantial decrease in antiviral activity. Certain mutations in HIV-1 capsids confer resistance to MX2 inhibition while maintaining susceptibility to suppression by the SAMHD1-MX2 axis. Overall, our study identifies an intriguing antiviral pattern wherein two distinct restriction factors, SAMHD1 and MX2, collaborate to establish an alternative mechanism deviating from their actions. These findings provide valuable insight into the complex immune defense networks against exogenous viral infections and have implications for the development of targeted anti-HIV therapeutics. IMPORTANCE In contrast to most restriction factors that directly bind to viral components to exert their antiviral effects, SAMHD1, the only known deoxynucleotide triphosphate (dNTP) hydrolase in eukaryotes, indirectly inhibits viral replication in quiescent cells by reducing the pool of dNTP substrates available for viral cDNA synthesis. Our study provides a novel perspective on the antiviral functions of SAMHD1. In addition to its role in dNTP hydrolysis, SAMHD1 cooperates with MX2 to inhibit HIV-1 nuclear import. In this process, SAMHD1 acts as a sensor for incoming HIV-1 cores, detecting and binding to them, before subsequently delivering the complex to the molecular trap formed by MX2, thereby immobilizing the virus. This study not only reveals a new antiviral pathway for SAMHD1 but also identifies a unique collaboration and interaction between two distinct restriction factors, establishing a novel line of defense against HIV-1 infection, which challenges the traditional view of restriction factors acting independently. Overall, our findings further indicate the intricate complexity of the host immune defense network and provide potential targets for promoting host antiviral immune defense.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Wanying Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yuehan Huang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yubin Tang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Shijin Wang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | | | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Talley MJ, Longworth MS. Retrotransposons in embryogenesis and neurodevelopment. Biochem Soc Trans 2024; 52:1159-1171. [PMID: 38716891 PMCID: PMC11346457 DOI: 10.1042/bst20230757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Retrotransposable elements (RTEs) are genetic elements that can replicate and insert new copies into different genomic locations. RTEs have long been identified as 'parasitic genes', as their mobilization can cause mutations, DNA damage, and inflammation. Interestingly, high levels of retrotransposon activation are observed in early embryogenesis and neurodevelopment, suggesting that RTEs may possess functional roles during these stages of development. Recent studies demonstrate that RTEs can function as transcriptional regulatory elements through mechanisms such as chromatin organization and noncoding RNAs. It is clear, however, that RTE expression and activity must be restrained at some level during development, since overactivation of RTEs during neurodevelopment is associated with several developmental disorders. Further investigation is needed to understand the importance of RTE expression and activity during neurodevelopment and the balance between RTE-regulated development and RTE-mediated pathogenesis.
Collapse
Affiliation(s)
- Mary Jo Talley
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
| | - Michelle S. Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, U.S.A
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, U.S.A
| |
Collapse
|
5
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Li Y, Shen S, Guo H, Li H, Zhang L, Zhang B, Yu XF, Wei W. Pharmacological inhibition of neddylation impairs long interspersed element 1 retrotransposition. Cell Rep 2024; 43:113749. [PMID: 38329876 DOI: 10.1016/j.celrep.2024.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Siyu Shen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Haoran Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Huili Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lili Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
7
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
10
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
12
|
Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. Regulation of cGAS and STING signaling during inflammation and infection. J Biol Chem 2023; 299:104866. [PMID: 37247757 PMCID: PMC10316007 DOI: 10.1016/j.jbc.2023.104866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - W Alexander Stinson
- Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derek J Platt
- Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhajit Poddar
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
13
|
Moon S, Namkoong S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023; 13:1027. [PMID: 37509063 PMCID: PMC10377603 DOI: 10.3390/biom13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
14
|
Copley KE, Shorter J. Repetitive elements in aging and neurodegeneration. Trends Genet 2023; 39:381-400. [PMID: 36935218 PMCID: PMC10121923 DOI: 10.1016/j.tig.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
Repetitive elements (REs), such as transposable elements (TEs) and satellites, comprise much of the genome. Here, we review how TEs and (peri)centromeric satellite DNA may contribute to aging and neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Alterations in RE expression, retrotransposition, and chromatin microenvironment may shorten lifespan, elicit neurodegeneration, and impair memory and movement. REs may cause these phenotypes via DNA damage, protein sequestration, insertional mutagenesis, and inflammation. We discuss several TE families, including gypsy, HERV-K, and HERV-W, and how TEs interact with various factors, including transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) and the siRNA and piwi-interacting (pi)RNA systems. Studies of TEs in neurodegeneration have focused on Drosophila and, thus, further examination in mammals is needed. We suggest that therapeutic silencing of REs could help mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Xu B, Sui Q, Hu H, Hu X, Zhou X, Qian C, Li N. SAMHD1 Attenuates Acute Inflammation by Maintaining Mitochondrial Function in Macrophages via Interaction with VDAC1. Int J Mol Sci 2023; 24:7888. [PMID: 37175593 PMCID: PMC10177872 DOI: 10.3390/ijms24097888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Over-activation of Toll-like receptor 4 (TLR4) is the key mechanism in Gram-negative bacterial infection-induced sepsis. SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) inhibits multiple viruses, but whether it plays a role during bacterial invasion remains unelucidated. Monocyte-macrophage specific Samhd1 knockout (Samhd1-/-) mice and Samhd1-/- macrophage cell line RAW264.7 were constructed and used as research models to evaluate the role of SAMHD1 in TLR4-activated inflammation. In vivo, LPS-challenged Samhd1-/- mice showed higher serum inflammatory factors, accompanied with more severe inflammation infiltration and lower survival rate. In vitro, Samhd1-/- peritoneal macrophages had more activated TLR4 pathway upon LPS-stimulation, accompanied with mitochondrial depolarization and dysfunction and a higher tendency to be M1-polarized. These results could be rescued by overexpressing full-length wild-type SAMHD1 or its phospho-mimetic T634D mutant into Samhd1-/- RAW264.7 cells, whereas the mutants, dNTP hydrolase-function-deprived H238A and phospho-ablative T634A, did not exert the same effect. Lastly, co-IP and immunofluorescence assays confirmed that SAMHD1 interacted with an outer mitochondrial membrane-localized protein, voltage-dependent anion channel-1 (VDAC1). SAMHD1 inhibits TLR4-induced acute inflammation and M1 polarization of macrophages by interacting with VDAC1 and maintaining mitochondria function, which outlines a novel regulatory mechanism of TLR signaling upon LPS stimulation.
Collapse
Affiliation(s)
- Bowen Xu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qianyi Sui
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiangjia Hu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
16
|
Mathavarajah S, Vergunst KL, Habib EB, Williams SK, He R, Maliougina M, Park M, Salsman J, Roy S, Braasch I, Roger A, Langelaan D, Dellaire G. PML and PML-like exonucleases restrict retrotransposons in jawed vertebrates. Nucleic Acids Res 2023; 51:3185-3204. [PMID: 36912092 PMCID: PMC10123124 DOI: 10.1093/nar/gkad152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.
Collapse
Affiliation(s)
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Elias B Habib
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Shelby K Williams
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Raymond He
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Maria Maliougina
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mika Park
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QB, Canada
| | - Ingo Braasch
- Michigan State University, Department of Integrative Biology and Ecology, Evolution, and Behavior Program, East Lansing, MI, USA
| | - Andrew J Roger
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
18
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat Commun 2023; 14:966. [PMID: 36810738 PMCID: PMC9944888 DOI: 10.1038/s41467-023-36649-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Inter-cellular movement of "prion-like" proteins is thought to explain propagation of neurodegeneration between cells. For example, propagation of abnormally phosphorylated cytoplasmic inclusions of TAR-DNA-Binding protein (TDP-43) is proposed to underlie progression of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). But unlike transmissible prion diseases, ALS and FTD are not infectious and injection of aggregated TDP-43 is not sufficient to cause disease. This suggests a missing component of a positive feedback necessary to sustain disease progression. We demonstrate that endogenous retrovirus (ERV) expression and TDP-43 proteinopathy are mutually reinforcing. Expression of either Drosophila mdg4-ERV (gypsy) or the human ERV, HERV-K (HML-2) are each sufficient to stimulate cytoplasmic aggregation of human TDP-43. Viral ERV transmission also triggers TDP-43 pathology in recipient cells that express physiological levels of TDP-43, whether they are in contact or at a distance. This mechanism potentially underlies the TDP-43 proteinopathy-caused neurodegenerative propagation through neuronal tissue.
Collapse
|
20
|
Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses 2023; 171:111015. [PMID: 36718314 PMCID: PMC9876036 DOI: 10.1016/j.mehy.2023.111015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/08/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Therapeutic applications of synthetic mRNA were proposed more than 30 years ago, and are currently the basis of one of the vaccine platforms used at a massive scale as part of the public health strategy to get COVID-19 under control. To date, there are no published studies on the biodistribution, cellular uptake, endosomal escape, translation rates, functional half-life and inactivation kinetics of synthetic mRNA, rates and duration of vaccine-induced antigen expression in different cell types. Furthermore, despite the assumption that there is no possibility of genomic integration of therapeutic synthetic mRNA, only one recent study has examined interactions between vaccine mRNA and the genome of transfected cells, and reported that an endogenous retrotransposon, LINE-1 is unsilenced following mRNA entry to the cell, leading to reverse transcription of full length vaccine mRNA sequences, and nuclear entry. This finding should be a major safety concern, given the possibility of synthetic mRNA-driven epigenetic and genomic modifications arising. We propose that in susceptible individuals, cytosolic clearance of nucleotide modified synthetic (nms-mRNAs) is impeded. Sustained presence of nms-mRNA in the cytoplasm deregulates and activates endogenous transposable elements (TEs), causing some of the mRNA copies to be reverse transcribed. The cytosolic accumulation of the nms-mRNA and the reverse transcribed cDNA molecules activates RNA and DNA sensory pathways. Their concurrent activation initiates a synchronized innate response against non-self nucleic acids, prompting type-I interferon and pro-inflammatory cytokine production which, if unregulated, leads to autoinflammatory and autoimmune conditions, while activated TEs increase the risk of insertional mutagenesis of the reverse transcribed molecules, which can disrupt coding regions, enhance the risk of mutations in tumour suppressor genes, and lead to sustained DNA damage. Susceptible individuals would then expectedly have an increased risk of DNA damage, chronic autoinflammation, autoimmunity and cancer. In light of the current mass administration of nms-mRNA vaccines, it is essential and urgent to fully understand the intracellular cascades initiated by cellular uptake of synthetic mRNA and the consequences of these molecular events.
Collapse
|
21
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
22
|
Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun 2023; 14:203. [PMID: 36639706 PMCID: PMC9839780 DOI: 10.1038/s41467-022-35757-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
23
|
Schumann T, Ramon SC, Schubert N, Mayo MA, Hega M, Maser KI, Ada SR, Sydow L, Hajikazemi M, Badstübner M, Müller P, Ge Y, Shakeri F, Buness A, Rupf B, Lienenklaus S, Utess B, Muhandes L, Haase M, Rupp L, Schmitz M, Gramberg T, Manel N, Hartmann G, Zillinger T, Kato H, Bauer S, Gerbaulet A, Paeschke K, Roers A, Behrendt R. Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. J Exp Med 2022; 220:213670. [PMID: 36346347 PMCID: PMC9648672 DOI: 10.1084/jem.20220829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Collapse
Affiliation(s)
- Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Santiago Costas Ramon
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohamad Aref Mayo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Melanie Hega
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Servi-Remzi Ada
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lukas Sydow
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Markus Badstübner
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Rupf
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Barbara Utess
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Dresden, Dresden, Germany
| | - Luise Rupp
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany,German Cancer Consortium, Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Manel
- Institut national de la santé et de la recherche médicale U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany,Correspondence to Rayk Behrendt:
| |
Collapse
|
24
|
Nef Suppresses LINE-1 Retrotransposition through Two Distinct Mechanisms. J Virol 2022; 96:e0114822. [PMID: 36197106 DOI: 10.1128/jvi.01148-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long interspersed element type 1 (LINE-1) is the only known type of retroelement that can replicate autonomously, and its retrotransposition activity can trigger interferon (IFN) production. IFN production suppresses the infectivity of exogenous viruses, such as human immunodeficiency virus (HIV). As a counteraction, HIV has been reported to use multiple proteins and mechanisms to suppress LINE-1 replication. However, the mechanisms of HIV-mediated LINE-1 regulation are not fully understood. In this study, we discovered that Nef protein, which is expressed by HIV and is important for HIV pathogenesis, inhibits LINE-1 retrotransposition. Two distinct mechanisms have been uncovered for Nef-induced LINE-1 suppression. Without direct interaction with LINE-1 DNA, Nef potently inhibits the promoter activity of the LINE-1 5'-untranslated region (5'-UTR) and reduces the expression levels of LINE-1 RNA and proteins. Alternatively, although Nef does not bind to the LINE-1 open reading frame 1 protein (ORF1p) or LINE-1 RNA, it significantly compromises the ORF1p-LINE-1 RNA interaction, which is essential for LINE-1 retrotransposition. Both mechanisms can be suppressed by the G2A mutation, which abolishes myristoylation of Nef, suggesting that membrane attachment is essential for Nef to suppress LINE-1. Consequently, through LINE-1 inhibition, Nef downregulates IFN production in host cells. Therefore, our data revealed that Nef is a potent LINE-1 suppressor and an effective innate immune regulator, which not only provides new information on the intricate interaction between HIV, LINE-1, and IFN signaling systems but also strengthens the importance of Nef in HIV infection and highlights the potential of designing novel Nef-targeting anti-HIV drugs. IMPORTANCE Human immunodeficiency viruses are pathogens of AIDS that were first discovered almost 40 years ago and continue to threaten human lives to date. While currently used anti-HIV drugs are sufficient to suppress viral loads in HIV-infected patients, both drug-resistant HIV strains and adverse side effects triggered by the long-term use of these drugs highlight the need to develop novel anti-HIV drugs targeting different viral proteins and/or different steps in viral replication. To achieve this, more information is required regarding HIV pathogenesis and especially its impact on cellular activities in host cells. In this study, we discovered that the Nef protein expressed by HIV potently inhibits LINE-1 retrotransposition. During our attempt to determine the mechanism of Nef-mediated LINE-1 suppression, two additional functions of Nef were uncovered. Nef effectively repressed the promoter activity of LINE-1 5'-UTR and destabilized the interaction between ORF1p and LINE-1 RNA. Consequently, Nef not only compromises LINE-1 replication but also reduces LINE-1-triggered IFN production. The reduction in IFN production, in theory, promotes HIV infectivity. Together with its previously known functions, these findings indicate that Nef is a potential target for the development of novel anti-HIV drugs. Notably, the G2 residue, which has been reported to be essential for most Nef functions, was found to be critical in the regulation of innate immune activation by Nef, suggesting that compromising myristoylation or membrane attachment of Nef may be a good strategy for the inhibition of HIV infection.
Collapse
|
25
|
Hepatitis B virus polymerase restricts LINE-1 mobility. Gene 2022; 850:146943. [PMID: 36198378 DOI: 10.1016/j.gene.2022.146943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Long interspersed element-1 (LINE-1, L1) transposable element (TE) composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, I found that HBV restricts L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. The L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol hijacked L1 ORF1p from P-body through an interaction with L1 ORF1p, when both proteins were co-expressed. Furthermore, HBV Pol repressed the L1 5' untranslated region (UTR). Altogether, HBV seems to restrict L1 mobility at multiple steps. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.
Collapse
|
26
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Young KC, Sedivy JM, Roberts MD. Translational Significance of the LINE-1 Jumping Gene in Skeletal Muscle. Exerc Sport Sci Rev 2022; 50:185-193. [PMID: 35749745 PMCID: PMC9651911 DOI: 10.1249/jes.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retrotransposons are gene segments that proliferate in the genome, and the Long INterspersed Element 1 (LINE-1 or L1) retrotransposon is active in humans. Although older mammals show enhanced skeletal muscle L1 expression, exercise generally reverses this trend. We hypothesize skeletal muscle L1 expression influences muscle physiology, and additional innovative investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthew A. Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California USA
| | - Petey W. Mumford
- Department of Exercise Science, Lindenwood University, St. Charles, Missouri USA
| | - Paul A. Roberson
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania USA
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| |
Collapse
|
27
|
Li Y, Yang J, Shen S, Wang W, Liu N, Guo H, Wei W. SARS-CoV-2-encoded inhibitors of human LINE-1 retrotransposition. J Med Virol 2022; 95:e28135. [PMID: 36085352 PMCID: PMC9538743 DOI: 10.1002/jmv.28135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Siyu Shen
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Nian Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Haoran Guo
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wei
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| |
Collapse
|
28
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
29
|
Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022; 10:826461. [PMID: 35602594 PMCID: PMC9114874 DOI: 10.3389/fcell.2022.826461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in understanding cancer pathogenesis and the development of many effective therapeutic agents, resistance to drug treatment remains a widespread challenge that substantially limits curative outcomes. The historical focus on genetic evolution under drug “pressure” as a key driver of resistance has uncovered numerous mechanisms of therapeutic value, especially with respect to acquired resistance. However, recent discoveries have also revealed a potential role for an ancient evolutionary balance between endogenous “viral” elements in the human genome and diverse factors involved in their restriction in tumor evolution and drug resistance. It has long been appreciated that the stability of genomic repeats such as telomeres and centromeres affect tumor fitness, but recent findings suggest that de-regulation of other repetitive genome elements, including retrotransposons, might also be exploited as cancer therapy. This review aims to present an overview of these recent findings.
Collapse
|
30
|
Yan J, Zhao Y, Du J, Wang Y, Wang S, Wang Q, Zhao X, Xu W, Zhao K. RNA sensor MDA5 suppresses LINE-1 retrotransposition by regulating the promoter activity of LINE-1 5'-UTR. Mob DNA 2022; 13:10. [PMID: 35414110 PMCID: PMC9003951 DOI: 10.1186/s13100-022-00268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Background Type 1 long interspersed elements, or LINE-1, are the only retroelements that replicate autonomously in human cells. The retrotransposition process of LINE-1 can trigger the activation of the innate immune system and has been proposed to play a role in the development of several autoimmune diseases, including Aicardi-Goutières syndrome (AGS). In contrast, all known AGS-associated proteins, except MDA5, have been reported to affect LINE-1 activity. Thus, MDA5 is likely to also function as a LINE-1 suppressor. Results MDA5 was found to potently suppress LINE-1 activity in a reporter-based LINE-1 retrotransposition assay. Although MDA5 is an endogenous RNA sensor able to activate the innate immune system, increased interferon (IFN) expression only contributed in part to MDA5-mediated LINE-1 suppression. Instead, MDA5 potently regulated the promoter activity of LINE-1 5′-UTR, as confirmed by transiently expressed myc-tagged MDA5 or knockdown of endogenous MDA5 expression. Consequently, MDA5 effectively reduced the generation of LINE-1 RNA and the subsequent expression of LINE-1 ORF1p and ORF2p. Interestingly, despite MDA5 being a multi-domain protein, the N-terminal 2CARD domain alone is sufficient to interact with LINE-1 5′-UTR and inhibit LINE-1 promoter activity. Conclusion Our data reveal that MDA5 functions as a promoter regulator; it directly binds to the LINE-1 5′-UTR and suppresses its promoter activity. Consequently, MDA5 reduces LINE-1 RNA and protein levels, and ultimately inhibits LINE-1 retrotransposition. In contrast, MDA5-induced IFN expression only plays a mild role in MDA5-mediated LINE-1 suppression. In addition, the N-terminal 2CARD domain was found to be a functional region for MDA5 upon inhibition of LINE-1 replication. Thus, our data suggest that besides being an initiator of the innate immune system, MDA5 is also an effector against LINE-1 activity, potentially forming a feedback loop by suppressing LINE-1-induced innate immune activation. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00268-0.
Collapse
Affiliation(s)
- Jiaxiu Yan
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Neonatology, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yifei Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China.,Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xu Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Xu
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China. .,Center for Pathogen Biology and Infectious Diseases, First Hospital of Jilin University, Changchun, Jilin, China. .,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
31
|
Wang Q, Du J, Hua S, Zhao K. TREX1 Plays Multiple Roles in Human Diseases. Cell Immunol 2022; 375:104527. [DOI: 10.1016/j.cellimm.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
32
|
Huang Y, Xu F, Mei S, Liu X, Zhao F, Wei L, Fan Z, Hu Y, Wang L, Ai B, Cen S, Liang C, Guo F. MxB inhibits long interspersed element type 1 retrotransposition. PLoS Genet 2022; 18:e1010034. [PMID: 35171907 PMCID: PMC8849481 DOI: 10.1371/journal.pgen.1010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, also L1 for short) is the only autonomously transposable element in the human genome. Its insertion into a new genomic site may disrupt the function of genes, potentially causing genetic diseases. Cells have thus evolved a battery of mechanisms to tightly control LINE-1 activity. Here, we report that a cellular antiviral protein, myxovirus resistance protein B (MxB), restricts the mobilization of LINE-1. This function of MxB requires the nuclear localization signal located at its N-terminus, its GTPase activity and its ability to form oligomers. We further found that MxB associates with LINE-1 protein ORF1p and promotes sequestration of ORF1p to G3BP1-containing cytoplasmic granules. Since knockdown of stress granule marker proteins G3BP1 or TIA1 abolishes MxB inhibition of LINE-1, we conclude that MxB engages stress granule components to effectively sequester LINE-1 proteins within the cytoplasmic granules, thus hindering LINE-1 from accessing the nucleus to complete retrotransposition. Thus, MxB protein provides one mechanism for cells to control the mobility of retroelements. Retrotransposons occupy more than 40% of human genome, and have co-evolved with humans for millions of years. Long interspersed element type 1 (LINE-1, or L1) is the only retrotransposon that is able to jump to a new locus. LINE-1 retrotransposition causes genome instability, and is associated with genetic diseases including autoimmune diseases and cancer. To suppress this genome toxicity caused by LINE-1, humans have developed multi-layered mechanisms to control LINE-1 activity. MxB has been previously shown to inhibit LINE-1 mobility, thus contributing to host restriction of LINE-1. Here, we further demonstrate that MxB effectively restricts LINE-1 retrotransposition by sequestering LINE-1 ribonucleoprotein (RNP) within the cytoplasmic stress granules, thus guards genome stability. Hence our data attribute the restriction function of MxB to sequestering LINE-1 RNP to stress granules.
Collapse
Affiliation(s)
- Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Liming Wang
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Bin Ai
- Department of Medical Oncology, Beijing Hospital, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- McGill Centre for Viral Diseases, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- * E-mail: (CL); (FG)
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- * E-mail: (CL); (FG)
| |
Collapse
|
33
|
Li Y, Shen S, Guo H, Zhang Z, Zhang L, Yang Q, Gao Y, Niu J, Wei W. Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Front Microbiol 2021; 12:706241. [PMID: 34733242 PMCID: PMC8559978 DOI: 10.3389/fmicb.2021.706241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long interspersed element 1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome that can serve as an endogenous upstream activator of cytoplasmic nucleic acid sensing pathways to elicit an antiviral immune response. In this study, we investigated the influence of enteroviral infection on L1 mobility. The results showed that infection with different enteroviruses, both EV-D68 and EV-A71, blocked L1 transposition. We screened diverse viral accessory proteins for L1 activity and identified EV-D68 2A, 3A, 3C, and EV-A71 ORF2p proteins as viral L1 inhibitors. EV-D68 2A suppressed L1 mobility by expression suppression of L1 proteins. Viral proteins 3A and 3C restricted ORF2p-mediated L1 reverse transcription in isolated L1 ribonucleoproteins. The newly identified enteroviral protein ORF2p inhibited the expression of L1 ORF1p. Altogether, our findings shed light on the strict modulation of L1 retrotransposons during enterovirus replication.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
34
|
Abstract
Endogenous retrotransposons are considered the “molecular fossils” of ancient retroviral insertions. Several studies have indicated that host factors restrict both retroviruses and retrotransposons through different mechanisms. Type 1 long interspersed elements (LINE-1 or L1) are the only active retroelements that can replicate autonomously in the human genome. A recent study reported that LINE-1 retrotransposition is potently suppressed by BST2, a host restriction factor that prevents viral release mainly by physically tethering enveloped virions (such as HIV) to the surface of producer cells. However, no endoplasmic membrane structure has been associated with LINE-1 replication, suggesting that BST2 may utilize a distinct mechanism to suppress LINE-1. In this study, we showed that BST2 is a potent LINE-1 suppressor. Further investigations suggested that BST2 reduces the promoter activity of LINE-1 5′ untranslated region (UTR) and lowers the levels of LINE-1 RNA, proteins, and events during LINE-1 retrotransposition. Surprisingly, although BST2 apparently uses different mechanisms against HIV and LINE-1, two membrane-associated domains that are essential for BST2-mediated HIV tethering also proved important for BST2-induced inhibition of LINE-1 5′ UTR. Additionally, by suppressing LINE-1, BST2 prevented LINE-1-induced genomic DNA damage and innate immune activation. Taken together, our data uncovered the mechanism of BST2-mediated LINE-1 suppression and revealed new roles of BST2 as a promoter regulator, genome stabilizer, and innate immune suppressor. IMPORTANCE BST2 is a potent antiviral protein that suppresses the release of several enveloped viruses, mainly by tethering the envelope of newly synthesized virions and restraining them on the surface of producer cells. In mammalian cells, there are numerous DNA elements replicating through reverse transcription, among which LINE-1 is the only retroelement that can replicate autonomously. Although LINE-1 retrotransposition does not involve the participation of a membrane structure, BST2 has been reported as an efficient LINE-1 suppressor, suggesting a different mechanism for BST2-mediated LINE-1 inhibition and a new function for BST2 itself. We found that BST2 specifically represses the promoter activity of LINE-1 5′ UTR, resulting in decreased levels of LINE-1 transcription, translation, and subsequent retrotransposition. Additionally, by suppressing LINE-1 activity, BST2 maintains genome stability and regulates innate immune activation. These findings expand our understanding of BST2 and its biological significance.
Collapse
|
35
|
Bowen NE, Temple J, Shepard C, Oo A, Arizaga F, Kapoor-Vazirani P, Persaud M, Yu CH, Kim DH, Schinazi RF, Ivanov DN, Diaz-Griffero F, Yu DS, Xiong Y, Kim B. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. J Biol Chem 2021; 297:101170. [PMID: 34492268 PMCID: PMC8497992 DOI: 10.1016/j.jbc.2021.101170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023] Open
Abstract
Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.
Collapse
Affiliation(s)
- Nicole E Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Joshua Temple
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Fidel Arizaga
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Corey H Yu
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dong-Hyun Kim
- School of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David S Yu
- Department of Radiation Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, Connecticut, USA.
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
36
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|
37
|
Zhao X, Zhao Y, Du J, Gao P, Zhao K. The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Front Immunol 2021; 12:732775. [PMID: 34566998 PMCID: PMC8459832 DOI: 10.3389/fimmu.2021.732775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency viruses (HIVs) are retroviruses that replicate effectively in human CD4+ cells and cause the development of acquired immune deficiency syndrome (AIDS). On the other hand, type 1 long interspersed elements (LINE-1s or L1s) are the only active retroelements that can replicate autonomously in human cells. They, along with other active yet nonautonomous retroelements, have been associated with autoimmune diseases. There are many similarities between HIV and LINE-1. Being derived (or evolved) from ancient retroviruses, both HIV and LINE-1 replicate through a process termed reverse transcription, activate endogenous DNA and RNA sensors, trigger innate immune activation to promote interferon (IFN) expression, and are suppressed by protein products of interferon-stimulated genes (ISGs). However, these similarities make it difficult to decipher or even speculate the relationship between HIV and LINE-1, especially regarding the involvement of the IFN signaling system. In this review, we summarize previous findings on the relationships between HIV and innate immune activation as well as between LINE-1 and IFN upregulation. We also attempt to elucidate the interplay among HIV, LINE-1, and the IFN signaling system in hopes of guiding future research directions for viral suppression and immune regulation.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Schott K, Majer C, Bulashevska A, Childs L, Schmidt MHH, Rajalingam K, Munder M, König R. SAMHD1 in cancer: curse or cure? J Mol Med (Berl) 2021; 100:351-372. [PMID: 34480199 PMCID: PMC8843919 DOI: 10.1007/s00109-021-02131-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Alla Bulashevska
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Liam Childs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
| |
Collapse
|
39
|
Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ. No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 2021; 36:109530. [PMID: 34380018 PMCID: PMC8316065 DOI: 10.1016/j.celrep.2021.109530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.
Collapse
Affiliation(s)
- Nathan Smits
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gabriela O Bodea
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
40
|
Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, Linker SB, Gage FH, Kreiling JA, Petrashen AP, Woodham TA, Taylor JR, Helfand SL, Sedivy JM. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021; 596:43-53. [PMID: 34349292 PMCID: PMC8600649 DOI: 10.1038/s41586-021-03542-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.
Collapse
Affiliation(s)
- Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, New York 14627, USA
| | - Paolo Mita
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - David Fenyö
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA
| | - Jef D. Boeke
- Institute for Systems Genetics, and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, New York 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY, USA
| | - Sara B. Linker
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jill A. Kreiling
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Anna P. Petrashen
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Trenton A. Woodham
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jackson R. Taylor
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L. Helfand
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - John M. Sedivy
- Center on the Biology of Aging, and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Corresponding author
| |
Collapse
|
41
|
Gazquez-Gutierrez A, Witteveldt J, R Heras S, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA (NEW YORK, N.Y.) 2021; 27:rna.078721.121. [PMID: 33888553 PMCID: PMC8208052 DOI: 10.1261/rna.078721.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/17/2021] [Indexed: 05/15/2023]
Abstract
Around half of the genome in mammals is composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterised by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defence. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterised by aberrant TE expression and/or type I IFN activation.
Collapse
Affiliation(s)
| | - Jeroen Witteveldt
- University of Edinburgh - Institute of Immunology and Infection Research
| | - Sara R Heras
- GENYO. Centre for Genomics and Oncological Research, Pfizer University of Granada
| | - Sara Macias
- Institute of Immunology and Infection Research
| |
Collapse
|
42
|
Dual roles of SAMHD1 in tumor development and chemoresistance to anticancer drugs. Oncol Lett 2021; 21:451. [PMID: 33907561 PMCID: PMC8063254 DOI: 10.3892/ol.2021.12712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/10/2021] [Indexed: 11/05/2022] Open
Abstract
Human sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) has been identified as a GTP or dGTP-dependent deoxynucleotide triphosphohydrolase (dNTPase) and acts as an antiviral factor against certain retroviruses and DNA viruses. Genetic mutation in SAMHD1 causes the inflammatory Aicardi-Goutières Syndrome and abnormal intracellular deoxyribonucleoside triphosphates (dNTPs) pool. At present, the role of SAMHD1 in numerous types of cancer, such as chronic lymphocytic leukemia, lung cancer and colorectal cancer, is highly studied. Furthermore, it has been found that methylation, acetylation and phosphorylation are involved in the regulation of SAMHD1 expression, and that genetic mutations can cause changes in its activities, including dNTPase activity, long interspersed element type 1 (LINE-1) suppression and DNA damage repair, which could lead to uncontrolled cell cycle progression and cancer development. In addition, SAMHD1 has been reported to have a negative regulatory role in the chemosensitivity to anticancer drugs through its dNTPase activity. The present review aimed to summarize the regulation of SAMHD1 expression in cancer and its function in tumor growth and chemotherapy sensitivity, and discussed controversial points and future directions.
Collapse
|
43
|
Akimova E, Gassner FJ, Schubert M, Rebhandl S, Arzt C, Rauscher S, Tober V, Zaborsky N, Greil R, Geisberger R. SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Res 2021; 49:2598-2608. [PMID: 33591315 PMCID: PMC7969033 DOI: 10.1093/nar/gkab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Claudia Arzt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefanie Rauscher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Vanessa Tober
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
44
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
45
|
Abstract
Exogenous retroviruses are RNA viruses that require reverse transcription for their replication. Among these viruses, human immunodeficiency virus (HIV) is infectious to humans and causes the development of acquired immune deficiency syndrome (AIDS). There are also endogenous retroelements that require reverse transcription for their retrotransposition, among which the type 1 long interspersed element (LINE-1) is the only type of retroelement that can replicate autonomously. It was once believed that retroviruses like HIV and retroelements like LINE-1 share similarities in processes such as reverse transcription and integration. Accordingly, many HIV suppressors are also potent LINE-1 inhibitors. However, in many cases, one suppressor uses two or more distinct mechanisms to repress HIV and LINE-1. In this review, we discuss some of these suppressors, focusing on their alternative mechanisms opposing the replication of HIV and LINE-1. Based on the differences in HIV and LINE-1 activity, the subcellular localization of these suppressors, and the impact of LINE-1 retrotransposition on human cells, we propose possible reasons for the inhibition of HIV and LINE-1 through different pathways by these suppressors, with the hope of accelerating future studies in associated research fields.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Yu CH, Bhattacharya A, Persaud M, Taylor AB, Wang Z, Bulnes-Ramos A, Xu J, Selyutina A, Martinez-Lopez A, Cano K, Demeler B, Kim B, Hardies SC, Diaz-Griffero F, Ivanov DN. Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification. Nat Commun 2021; 12:731. [PMID: 33531504 PMCID: PMC7854603 DOI: 10.1038/s41467-021-21023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
SAMHD1 impedes infection of myeloid cells and resting T lymphocytes by retroviruses, and the enzymatic activity of the protein-dephosphorylation of deoxynucleotide triphosphates (dNTPs)-implicates enzymatic dNTP depletion in innate antiviral immunity. Here we show that the allosteric binding sites of the enzyme are plastic and can accommodate oligonucleotides in place of the allosteric activators, GTP and dNTP. SAMHD1 displays a preference for oligonucleotides containing phosphorothioate bonds in the Rp configuration located 3' to G nucleotides (GpsN), the modification pattern that occurs in a mechanism of antiviral defense in prokaryotes. In the presence of GTP and dNTPs, binding of GpsN-containing oligonucleotides promotes formation of a distinct tetramer with mixed occupancy of the allosteric sites. Mutations that impair formation of the mixed-occupancy complex abolish the antiretroviral activity of SAMHD1, but not its ability to deplete dNTPs. The findings link nucleic acid binding to the antiretroviral activity of SAMHD1, shed light on the immunomodulatory effects of synthetic phosphorothioated oligonucleotides and raise questions about the role of nucleic acid phosphorothioation in human innate immunity.
Collapse
Affiliation(s)
- Corey H Yu
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Akash Bhattacharya
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Zhonghua Wang
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Angel Bulnes-Ramos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joella Xu
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Anastasia Selyutina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kristin Cano
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA
| | - Baek Kim
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Dmitri N Ivanov
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
47
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
48
|
Piccoli C, Bronner N, Gavazzi F, Dubbs H, De Simone M, De Giorgis V, Orcesi S, Fazzi E, Galli J, Masnada S, Tonduti D, Varesio C, Vanderver A, Vossough A, Adang L. Late-Onset Aicardi-Goutières Syndrome: A Characterization of Presenting Clinical Features. Pediatr Neurol 2021; 115:1-6. [PMID: 33307271 PMCID: PMC7856674 DOI: 10.1016/j.pediatrneurol.2020.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy characterized by early onset of severe neurological injury with intracranial calcifications, leukoencephalopathy, and systemic inflammation. Increasingly, a spectrum of neurological dysfunction and presentation beyond the infantile period is being recognized in AGS. The aim of this study was to characterize late-infantile and juvenile-onset AGS. METHODS We conducted a multi-institution review of individuals with AGS who were older than one year at the time of presentation, including medical history, imaging characteristics, and suspected diagnoses at presentation. RESULTS Thirty-four individuals were identified, all with pathogenic variants in RNASEH2B, SAMHD1, ADAR1, or IFIH1. Most individuals had a history of developmental delay and/or systemic symptoms, such as sterile pyrexias and chilblains, followed by a prodromal period associated with increasing symptoms. This was followed by an abrupt onset of neurological decline (fulminant phase), with a median onset at 1.33 years (range 1.00 to 17.68 years). Most individuals presented with a change in gross motor skills (97.0%), typically with increased tone (78.8%). Leukodystrophy was the most common magnetic resonance imaging finding (40.0%). Calcifications were less common (12.9%). CONCLUSIONS This is the first study to characterize the presentation of late-infantile and juvenile onset AGS and its phenotypic spectrum. Late-onset AGS can present insidiously and lacks classical clinical and neuroimaging findings. Signs of early systemic dysfunction before fulminant disease onset and loss of motor symptoms were common. We strongly recommend genetic testing when there is concern for sustained inflammation of unknown origins or changes in motor skills in children older than one year.
Collapse
Affiliation(s)
- Cara Piccoli
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nowa Bronner
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Holly Dubbs
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Micaela De Simone
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | | | | | - Elisa Fazzi
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Jessica Galli
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Masnada
- Vittore Buzzi Children’s Hospital, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | - Davide Tonduti
- Vittore Buzzi Children’s Hospital, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | | | | | | | - Laura Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Rutherford HA, Kasher PR, Hamilton N. Dirty Fish Versus Squeaky Clean Mice: Dissecting Interspecies Differences Between Animal Models of Interferonopathy. Front Immunol 2021; 11:623650. [PMID: 33519829 PMCID: PMC7843416 DOI: 10.3389/fimmu.2020.623650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Autoimmune and autoinflammatory diseases are rare but often devastating disorders, underpinned by abnormal immune function. While some autoimmune disorders are thought to be triggered by a burden of infection throughout life, others are thought to be genetic in origin. Among these heritable disorders are the type I interferonopathies, including the rare Mendelian childhood-onset encephalitis Aicardi-Goutières syndrome. Patients with Aicardi Goutières syndrome are born with defects in enzymes responsible for nucleic acid metabolism and develop devastating white matter abnormalities resembling congenital cytomegalovirus brain infection. In some cases, common infections preceded the onset of the disease, suggesting immune stimulation as a potential trigger. Thus, the antiviral immune response has been actively studied in an attempt to provide clues on the pathological mechanisms and inform on the development of therapies. Animal models have been fundamental in deciphering biological mechanisms in human health and disease. Multiple rodent and zebrafish models are available to study type I interferonopathies, which have advanced our understanding of the human disease by identifying key pathological pathways and cellular drivers. However, striking differences in phenotype have also emerged between these vertebrate models, with zebrafish models recapitulating key features of the human neuropathology often lacking in rodents. In this review, we compare rodent and zebrafish models, and summarize how they have advanced our understanding of the pathological mechanisms in Aicardi Goutières syndrome and similar disorders. We highlight recent discoveries on the impact of laboratory environments on immune stimulation and how this may inform the differences in pathological severity between mouse and zebrafish models of type I interferonopathies. Understanding how these differences arise will inform the improvement of animal disease modeling to accelerate progress in the development of therapies for these devastating childhood disorders.
Collapse
Affiliation(s)
- Holly A. Rutherford
- The Bateson Centre, Institute of Neuroscience, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Paul R. Kasher
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, United Kingdom
| | - Noémie Hamilton
- The Bateson Centre, Institute of Neuroscience, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
50
|
Recognize Yourself-Innate Sensing of Non-LTR Retrotransposons. Viruses 2021; 13:v13010094. [PMID: 33445593 PMCID: PMC7827607 DOI: 10.3390/v13010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Although mobile genetic elements, or transposons, have played an important role in genome evolution, excess activity of mobile elements can have detrimental consequences. Already, the enhanced expression of transposons-derived nucleic acids can trigger autoimmune reactions that may result in severe autoinflammatory disorders. Thus, cells contain several layers of protective measures to restrict transposons and to sense the enhanced activity of these “intragenomic pathogens”. This review focuses on our current understanding of immunogenic patterns derived from the most active elements in humans, the retrotransposons long interspersed element (LINE)-1 and Alu. We describe the role of known pattern recognition receptors in nucleic acid sensing of LINE-1 and Alu and the possible consequences for autoimmune diseases.
Collapse
|