1
|
Wu X, Zhang Z, Li J, Zong J, Yuan L, Shu L, Cheong LY, Huang X, Jiang M, Ping Z, Xu A, Hoo RL. Chchd10: A Novel Metabolic Sensor Modulating Adipose Tissue Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408763. [PMID: 39985288 PMCID: PMC12005791 DOI: 10.1002/advs.202408763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/30/2024] [Indexed: 02/24/2025]
Abstract
Dysregulation of adipose tissue (AT) homeostasis in obesity contributes to metabolic stress and disorders. Here, we identified that Coiled-coil-helix-coiled-coil-helix domain containing 10 (Chchd10) is a novel regulator of AT remodeling upon excess energy intake. Chchd10 is significantly reduced in the white adipose tissue (WAT) of mice in response to high-fat diet (HFD) feeding. AT-Chchd10 deficiency accelerates adipogenesis predominantly in subcutaneous AT of mice to store excess energy in response to short-term HFD feeding while upregulates glutathione S-transferase A4 (GSTA4) to facilitate 4-HNE clearance mainly in visceral AT to prevent protein carbonylation-induced cell dysfunction after long-term HFD feeding. Hence, Chchd10 deficiency attenuates diet-induced obesity and related metabolic disorders in mice. Mechanistically, Chchd10 deficiency enhances adipogenesis and GSTA4 expression by activating TDP43/Raptor/p62/Keap1/NRF2 axis. Notably, the beneficial effect of Chchd10 deficiency is eliminated in hypertrophic adipocytes, where p62 is strikingly reduced. Collectively, Chchd10 is a metabolic sensor maintaining AT homeostasis, and the loss of p62 in adipose tissue under obese conditions impairs Chchd10-mediated AT remodeling.
Collapse
Affiliation(s)
- Xiaoping Wu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zixuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Jingjing Li
- Department of Rehabilitation SciencesFaculty of Health and Social SciencesHong Kong Polytechnic UniversityHong Kong SARChina
| | - Jiuyu Zong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lufengzi Yuan
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerDepartment of Hematological OncologySun Yat‐sen University Cancer CenterChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Xiaowen Huang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Mengxue Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Zhihui Ping
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of MedicineThe University of Hong KongHong Kong SARChina
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong Kong SARChina
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong SARChina
| |
Collapse
|
2
|
Cui M, Tzioufa F, Bruton J, Westerblad H, Munic Kos V. The impact of bisphenol AF on skeletal muscle function and differentiation in vitro. Toxicol In Vitro 2025; 103:105975. [PMID: 39586365 DOI: 10.1016/j.tiv.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Various environmental chemicals have been identified as contributors to metabolic diseases. Bisphenol AF (BPAF), a substitute for bisphenol A, has been associated with changes in glucose metabolism and incidence of type 2 diabetes mellitus in humans. However, its mode of action remains unclear. Considering that skeletal muscle is the primary tissue for glucose utilization and the development of insulin resistance, yet largely neglected in toxicological assessments, we investigated the impact of BPAF on skeletal muscle function and differentiation. We examined the effects of BPAF (0.01-10 μM) on glucose uptake, response to insulin, production of reactive oxygen species (ROS), intracellular calcium, and myocyte differentiation, during hyperglycemia, insulin stimulation, and muscle contraction. We used the rat myoblast cell line L6 differentiated into myotubes, and murine primary isolated muscle fibers. In myotubes and contracting adult fibers, BPAF increased mitochondrial ROS. Basal glucose uptake was increased in myotubes while cells' ability to respond to insulin was decreased. Additionally, in developing myotubes, differentiation markers were downregulated with BPAF, along with impaired formation of tube structures. These effects were primarily observed at 10 μM concentration, which is markedly higher than reported human exposure concentrations. The results provide an insight into potential hazards associated with BPAF in terms of metabolic disruption in skeletal muscle. The developed in vitro methods show promise for future usage in assessments of new chemicals and their mixtures.
Collapse
Affiliation(s)
- Minying Cui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Foteini Tzioufa
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
4
|
Blüher M. Understanding Adipose Tissue Dysfunction. J Obes Metab Syndr 2024; 33:275-288. [PMID: 39734091 PMCID: PMC11704217 DOI: 10.7570/jomes24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass. Rather than excess fat accumulation, AT dysfunction may represent the mechanistic link between obesity and comorbid diseases. There are people who remain metabolically healthy despite obesity, whereas people with normal weight or very low subcutaneous AT mass may develop typically obesity-related diseases. AT dysfunction is characterized by adipocyte hypertrophy, impaired subcutaneous AT expandability (ectopic fat deposition), hypoxia, a variety of stress, inflammatory processes, and the release of proinflammatory, diabetogenic, and atherogenic signals. Genetic and environmental factors might contribute to AT heterogeneity either alone or via interaction with intrinsic biological factors. However, many questions remain regarding the mechanisms of AT dysfunction initiation and whether and how it could be reversed. Do AT signatures define clinically relevant subtypes of obesity? Is the cellular composition of AT associated with variation in obesity phenotypes? What roles do environmental compounds play in the manifestation of AT dysfunction? Answers to these and other questions may explain AT disease mechanisms and help to define strategies for improving AT health. This review focuses on recent advances in our understanding of AT biology.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Odeniyi IA, Ahmed B, Anbiah B, Hester G, Abraham PT, Lipke EA, Greene MW. An improved in vitro 3T3-L1 adipocyte model of inflammation and insulin resistance. Adipocyte 2024; 13:2414919. [PMID: 39415617 PMCID: PMC11487959 DOI: 10.1080/21623945.2024.2414919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor necrosis factor alpha (TNF-α)/hypoxia-treated 3T3-L1 adipocytes have been used to model inflamed and insulin-resistant adipose tissue: this study examines gaps in the model. We tested whether modulating TNF-α/hypoxia treatment time could reduce cell death while still inducing inflammation and insulin resistance. Adipocytes were treated with TNF-α (12 h or 24 h) and incubated in a hypoxic chamber for 24 h. To examine maintenance of the phenotype over time, glucose and FBS were added at 24 h post initiation of treatment, and the cells were maintained for an additional 48 h. Untreated adipocytes were used as a control. Viability, insulin resistance, and inflammation were assessed using Live/Dead staining, RT-qPCR, ELISA, and glucose uptake assays. Treatment for 12 h with TNF-α in the presence of hypoxia resulted in an increase in the percentage of live cells compared to 24 h treated cells. Importantly, insulin resistance and inflammation were still induced in the 12 h treated adipocytes: the expression of the insulin sensitive and inflammatory genes was decreased and increased, respectively. In 72 h treated adipocytes, no significant differences were found in the viability, glucose uptake or insulin-sensitive and inflammatory gene expression. This study provides a modified approach to in vitro odeling adipocyte inflammation and insulin resistance. .
Collapse
Affiliation(s)
| | - Bulbul Ahmed
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Grace Hester
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Peter T. Abraham
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
6
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Panyod S, Wu WK, Chang CT, Wada N, Ho HC, Lo YL, Tsai SP, Chen RA, Huang HS, Liu PY, Chen YH, Chuang HL, Shen TCD, Tang SL, Ho CT, Wu MS, Sheen LY. Common dietary emulsifiers promote metabolic disorders and intestinal microbiota dysbiosis in mice. Commun Biol 2024; 7:749. [PMID: 38902371 PMCID: PMC11190199 DOI: 10.1038/s42003-024-06224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Kai Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Ting Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Ling Lo
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Sing-Ping Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Yi-Hsun Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan, ROC
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
8
|
Avelino TM, Provencio MGA, Peroni LA, Domingues RR, Torres FR, de Oliveira PSL, Leme AFP, Figueira ACM. Improving obesity research: Unveiling metabolic pathways through a 3D In vitro model of adipocytes using 3T3-L1 cells. PLoS One 2024; 19:e0303612. [PMID: 38820505 PMCID: PMC11142712 DOI: 10.1371/journal.pone.0303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024] Open
Abstract
Obesity, a burgeoning global health crisis, has tripled in prevalence over the past 45 years, necessitating innovative research methodologies. Adipocytes, which are responsible for energy storage, play a central role in obesity. However, most studies in this field rely on animal models or adipocyte monolayer cell cultures, which are limited in their ability to fully mimic the complex physiology of a living organism, or pose challenges in terms of cost, time consumption, and ethical considerations. These limitations prompt a shift towards alternative methodologies. In response, here we show a 3D in vitro model utilizing the 3T3-L1 cell line, aimed at faithfully replicating the metabolic intricacies of adipocytes in vivo. Using a workable cell line (3T3-L1), we produced adipocyte spheroids and differentiated them in presence and absence of TNF-α. Through a meticulous proteomic analysis, we compared the molecular profile of our adipose spheroids with that of adipose tissue from lean and obese C57BL/6J mice. This comparison demonstrated the model's efficacy in studying metabolic conditions, with TNF-α treated spheroids displaying a notable resemblance to obese white adipose tissue. Our findings underscore the model's simplicity, reproducibility, and cost-effectiveness, positioning it as a robust tool for authentically mimicking in vitro metabolic features of real adipose tissue. Notably, our model encapsulates key aspects of obesity, including insulin resistance and an obesity profile. This innovative approach has the potential to significantly impact the discovery of novel therapeutic interventions for metabolic syndrome and obesity. By providing a nuanced understanding of metabolic conditions, our 3D model stands as a transformative contribution to in vitro research, offering a pathway for the development of small molecules and biologics targeting these pervasive health issues in humans.
Collapse
Affiliation(s)
- Thayna Mendonca Avelino
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Pharmacology Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Marta García-Arévalo Provencio
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luis Antonio Peroni
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Romênia Ramos Domingues
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felipe Rafael Torres
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Paulo Sergio Lopes de Oliveira
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Carolina Migliorini Figueira
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Pharmacology Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
10
|
Hiraike Y, Saito K, Oguchi M, Wada T, Toda G, Tsutsumi S, Bando K, Sagawa J, Nagano G, Ohno H, Kubota N, Kubota T, Aburatani H, Kadowaki T, Waki H, Yanagimoto S, Yamauchi T. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2308750120. [PMID: 37487068 PMCID: PMC10401007 DOI: 10.1073/pnas.2308750120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Adipose tissue is central to regulation of energy homeostasis. Adaptive thermogenesis, which relies on mitochondrial oxidative phosphorylation (Ox-Phos), dissipates energy to counteract obesity. On the other hand, chronic inflammation in adipose tissue is linked to type 2 diabetes and obesity. Here, we show that nuclear factor I-A (NFIA), a transcriptional regulator of brown and beige adipocytes, improves glucose homeostasis by upregulation of Ox-Phos and reciprocal downregulation of inflammation. Mice with transgenic expression of NFIA in adipocytes exhibited improved glucose tolerance and limited weight gain. NFIA up-regulates Ox-Phos and brown-fat-specific genes by enhancer activation that involves facilitated genomic binding of PPARγ. In contrast, NFIA in adipocytes, but not in macrophages, down-regulates proinflammatory cytokine genes to ameliorate adipose tissue inflammation. NFIA binds to regulatory region of the Ccl2 gene, which encodes proinflammatory cytokine MCP-1 (monocyte chemoattractant protein-1), to down-regulate its transcription. CCL2 expression was negatively correlated with NFIA expression in human adipose tissue. These results reveal the beneficial effect of NFIA on glucose and body weight homeostasis and also highlight previously unappreciated role of NFIA in suppressing adipose tissue inflammation.
Collapse
Affiliation(s)
- Yuta Hiraike
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
- The University of Tokyo Excellent Young Researcher Program, The University of Tokyo, Tokyo113-8654, Japan
| | - Kaede Saito
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Misato Oguchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Takahito Wada
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Gotaro Toda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| | - Shuichi Tsutsumi
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Junji Sagawa
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Gaku Nagano
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Haruya Ohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima734-8551, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo Hospital, Tokyo113-8655, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo103-0002, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo162-8636, Japan
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
| | | | - Hironori Waki
- Department of Diabetes and Endocrinology, Akita University Graduate School of Medicine, Akita010-8543, Japan
| | - Shintaro Yanagimoto
- Division for Health Service Promotion, The University of Tokyo, Tokyo113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo113-8655, Japan
| |
Collapse
|
11
|
Fazakerley DJ, van Gerwen J, Cooke KC, Duan X, Needham EJ, Díaz-Vegas A, Madsen S, Norris DM, Shun-Shion AS, Krycer JR, Burchfield JG, Yang P, Wade MR, Brozinick JT, James DE, Humphrey SJ. Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat Commun 2023; 14:923. [PMID: 36808134 PMCID: PMC9938909 DOI: 10.1038/s41467-023-36549-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue. Across a range of insults causing insulin resistance, we observe a marked rewiring of the insulin signaling network. This includes both attenuated insulin-responsive phosphorylation, and the emergence of phosphorylation uniquely insulin-regulated in insulin resistance. Identifying dysregulated phosphosites common to multiple insults reveals subnetworks containing non-canonical regulators of insulin action, such as MARK2/3, and causal drivers of insulin resistance. The presence of several bona fide GSK3 substrates among these phosphosites led us to establish a pipeline for identifying context-specific kinase substrates, revealing widespread dysregulation of GSK3 signaling. Pharmacological inhibition of GSK3 partially reverses insulin resistance in cells and tissue explants. These data highlight that insulin resistance is a multi-nodal signaling defect that includes dysregulated MARK2/3 and GSK3 activity.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaowen Duan
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexis Díaz-Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QL, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QL, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW, 2006, Australia
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, 2145, Australia
| | - Mark R Wade
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Medical School, University of Sydney, Sydney, 2006, Australia.
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
12
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
13
|
Choi M, Kwon H, Pak Y. Caveolin-2 in association with nuclear lamina controls adipocyte hypertrophy. FASEB J 2023; 37:e22745. [PMID: 36637913 DOI: 10.1096/fj.202201028rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
14
|
Liu Y, Gan L, Zhao B, Yu K, Wang Y, Männistö S, Weinstein SJ, Huang J, Albanes D. Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Am J Physiol Endocrinol Metab 2023; 324:E167-E175. [PMID: 36516224 PMCID: PMC9925157 DOI: 10.1152/ajpendo.00287.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold (P < 3.5 × 10-5). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all P < 10-75). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates (P = 1.3 × 10-11), amino acids (P = 2.7 × 10-6), energy (P = 1.5 × 10-4), and xenobiotics (P = 1.2 × 10-3). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all P < 10-8). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction.NEW & NOTEWORTHY These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Gan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
15
|
Caroleo M, Carbone EA, Arcidiacono B, Greco M, Primerano A, Mirabelli M, Fazia G, Rania M, Hribal ML, Gallelli L, Foti DP, De Fazio P, Segura-Garcia C, Brunetti A. Does NUCB2/Nesfatin-1 Influence Eating Behaviors in Obese Patients with Binge Eating Disorder? Toward a Neurobiological Pathway. Nutrients 2023; 15:nu15020348. [PMID: 36678225 PMCID: PMC9864089 DOI: 10.3390/nu15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Nesfatin-1 is a new anorexigenic neuropeptide involved in the regulation of hunger/satiety, eating, and affective disorders. We aimed to investigate nesfatin-1 secretion in vitro, in murine adipose cells, and in human adipose fat samples, as well as to assess the link between circulating nesfatin-1 levels, NUCB2 and Fat Mass and Obesity Gene (FTO) polymorphisms, BMI, Eating Disorders (EDs), and pathological behaviors. Nesfatin-1 secretion was evaluated both in normoxic fully differentiated 3T3-L1 mouse adipocytes and after incubation under hypoxic conditions for 24 h. Omental Visceral Adipose tissue (VAT) specimens of 11 obese subjects, and nesfatin-1 serum levels' evaluation, eating behaviors, NUCB2 rs757081, and FTO rs9939609 polymorphisms of 71 outpatients seeking treatment for EDs with different Body Mass Index (BMI) were studied. Significantly higher levels of nesfatin-1 were detected in hypoxic 3T3-L1 cultured adipocytes compared to normoxic ones. Nesfatin-1 was highly detectable in the VAT of obese compared to normal-weight subjects. Nesfatin-1 serum levels did not vary according to BMI, sex, and EDs diagnosis, but correlations with grazing; emotional, sweet, and binge eating; hyperphagia; social eating; childhood obesity were evident. Obese subjects with CG genotype NUCB2 rs757081 and AT genotype FTO rs9939609 polymorphisms had higher nesfatin-1 levels. It could represent a new biomarker of EDs comorbidity among obese patients.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Maria Mirabelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- University Hospital Mater Domini of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-171-2408; Fax: +39-096-171-2393
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Poonprasartporn A, Chan KA. Label-free study of intracellular glycogen level in metformin and resveratrol-treated insulin-resistant HepG2 by live-cell FTIR spectroscopy. Biosens Bioelectron 2022; 212:114416. [DOI: 10.1016/j.bios.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
|
17
|
Hertzel AV, Yong J, Chen X, Bernlohr DA. Immune Modulation of Adipocyte Mitochondrial Metabolism. Endocrinology 2022; 163:6618136. [PMID: 35752995 PMCID: PMC9653008 DOI: 10.1210/endocr/bqac094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Immune cells infiltrate adipose tissue as a function of age, sex, and diet, leading to a variety of regulatory processes linked to metabolic disease and dysfunction. Cytokines and chemokines produced by resident macrophages, B cells, T cells and eosinophils play major role(s) in fat cell mitochondrial functions modulating pyruvate oxidation, electron transport and oxidative stress, branched chain amino acid metabolism, fatty acid oxidation, and apoptosis. Indeed, cytokine-dependent downregulation of numerous genes affecting mitochondrial metabolism is strongly linked to the development of the metabolic syndrome, whereas the potentiation of mitochondrial metabolism represents a counterregulatory process improving metabolic outcomes. In contrast, inflammatory cytokines activate mitochondrially linked cell death pathways such as apoptosis, pyroptosis, necroptosis, and ferroptosis. As such, the adipocyte mitochondrion represents a major intersection point for immunometabolic regulation of central metabolism.
Collapse
Affiliation(s)
- Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, The University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Bernlohr
- Correspondence: David A. Bernlohr, PhD, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Du Y, Zhu YJ, Zeng B, Mu XL, Liu JY. Super-Resolution Quantification of T2DM-Induced Mitochondrial Morphology Changes and Their Implications in Pharmacodynamics of Metformin and Sorafenib. Front Pharmacol 2022; 13:932116. [PMID: 35873543 PMCID: PMC9298863 DOI: 10.3389/fphar.2022.932116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Mitochondria, as the powerhouse of cells, are involved in various processes of cellular homeostasis, especially energy metabolism. The morphology of mitochondria is a critical indicator for their functions, referring to mitochondrial fusion and fission. Here, we performed structured illumination microscopy (SIM) to measure the mitochondrial morphology in living cells. Benefitting from its nano-scale resolution, this SIM-based strategy can quantify the fusion and fission of mitochondria with high sensitivity. Furthermore, as type 2 diabetes mellitus (T2DM) is caused by a disorder of energy substrate utilization, this strategy has the potential to study T2DM by analyzing the mitochondrial morphology of insulin-resistant (IR) cells. With SIM, we found that mitochondrial fission was increased in IR MRC-5, LO2, FHs 74 Int, and HepG2 cells but not in IR Huh7 cells with high-invasiveness ability. Furthermore, we found that metformin could inhibit mitochondrial fission in IR cells, and sorafenib could promote mitochondrial fusion in HepG2 cancer cells, especially in those IR cells. To conclude, mitochondrial fission is involved in T2DM, and cancer cells with high-invasiveness ability may be equipped with stronger resistance to energy metabolism disorder. In addition, the pharmacodynamics of metformin and sorafenib in cancer may be related to the inhibition of mitochondrial fission, especially for patients with T2DM.
Collapse
Affiliation(s)
- Yang Du
- Cancer Center, State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ya-Juan Zhu
- Cancer Center, State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Zeng
- Dean's Office, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Li Mu
- Cancer Center, State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Cancer Center, State Key Laboratory of Biotherapy, Department of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Puente-Santamaría L, Sanchez-Gonzalez L, Ramos-Ruiz R, del Peso L. Hypoxia classifier for transcriptome datasets. BMC Bioinformatics 2022; 23:204. [PMID: 35641902 PMCID: PMC9153107 DOI: 10.1186/s12859-022-04741-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
Molecular gene signatures are useful tools to characterize the physiological state of cell populations, but most have developed under a narrow range of conditions and cell types and are often restricted to a set of gene identities. Focusing on the transcriptional response to hypoxia, we aimed to generate widely applicable classifiers sourced from the results of a meta-analysis of 69 differential expression datasets which included 425 individual RNA-seq experiments from 33 different human cell types exposed to different degrees of hypoxia (0.1-5%[Formula: see text]) for 2-48 h. The resulting decision trees include both gene identities and quantitative boundaries, allowing for easy classification of individual samples without control or normoxic reference. Each tree is composed of 3-5 genes mostly drawn from a small set of just 8 genes (EGLN1, MIR210HG, NDRG1, ANKRD37, TCAF2, PFKFB3, BHLHE40, and MAFF). In spite of their simplicity, these classifiers achieve over 95% accuracy in cross validation and over 80% accuracy when applied to additional challenging datasets. Our results indicate that the classifiers are able to identify hypoxic tumor samples from bulk RNAseq and hypoxic regions within tumor from spatially resolved transcriptomics datasets. Moreover, application of the classifiers to histological sections from normal tissues suggest the presence of a hypoxic gene expression pattern in the kidney cortex not observed in other normoxic organs. Finally, tree classifiers described herein outperform traditional hypoxic gene signatures when compared against a wide range of datasets. This work describes a set of hypoxic gene signatures, structured as simple decision tress, that identify hypoxic samples and regions with high accuracy and can be applied to a broad variety of gene expression datasets and formats.
Collapse
Affiliation(s)
- Laura Puente-Santamaría
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Genomics Unit Cantoblanco, Fundación Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | | | - Ricardo Ramos-Ruiz
- Genomics Unit Cantoblanco, Fundación Parque Científico de Madrid, C/ Faraday 7, 28049 Madrid, Spain
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| |
Collapse
|
20
|
YAP-dependent Wnt5a induction in hypertrophic adipocytes restrains adiposity. Cell Death Dis 2022; 13:407. [PMID: 35478181 PMCID: PMC9046197 DOI: 10.1038/s41419-022-04847-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/02/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
Abstract
Wnt5a, a prototypic non-canonical Wnt, is an inflammatory factor elevated in the sera of obese humans and mice. In the present study, fat-specific knockout of Wnt5a (Wnt5a-FKO) prevented HFD-induced increases in serum Wnt5a levels in male C57BL/6 J mice, which suggested adipocytes are primarily responsible for obesity-induced increases in Wnt5a levels. Mouse subcutaneous white adipose tissues (WATs) more sensitively responded to HFD, in terms of cell size increases and Wnt5a levels than epididymal WATs. Furthermore, adipocyte sizes were positively correlated with Wnt5a levels in vitro and in vivo. In hypertrophic adipocytes, enlarged lipid droplets increased cell stiffness and rearranged the f-actin stress fibers from the cytoplasm to the cortical region. The activities of YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) increased in response to these mechanical changes in hypertrophic adipocytes, and inhibition or knock-down of YAP and TAZ reduced Wnt5a expression. ChIP (chromatin immunoprecipitation) analyses revealed that YAP was recruited by Wnt5a-1 gene promoter and increased Wnt5a expression. These results suggested that YAP responds to mechanical stress in hypertrophic adipocytes to induce the expression Wnt5a. When 8-week-old Wnt5a-FKO mice were fed an HFD for 20 weeks, the fat mass increased, especially in subcutaneous WATs, as compared with that observed in floxed mice, without significant changes in food intake or activity. Furthermore, Wnt5a-FKO mice showed impaired glucose tolerance regardless of diet type. Our findings show that hypertrophy/YAP/Wnt5a signaling constitutes a negative-feedback loop that retrains adipose tissue hypertrophy.
Collapse
|
21
|
Yavuz A, Ugur K, Karaca Karagoz Z, Ayan D, Aydin S. Blood, saliva and urine maresin-1 and malondialdehyde may be useful biomarker in patients with polycystic ovary syndrome: a prospective study. CLIN EXP OBSTET GYN 2022; 49. [DOI: 10.31083/j.ceog4904087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Background: Maresin-1 (MaR1) plays a major role in many inflammatory disorders. Polycystic ovary syndrome (PCOS) aside from a hormonal disorder, an inflammation might also contribute to PCOS and its metabolic associations. Therefore, the purpose of this prospective study first time was to find out the blood, saliva and urine levels of MaR1 in PCOS patients and evaluate the correlations with other metabolic and hormonal parameters. Methods: Thirty PCOS patients and 30 matched healthy controls were enrolled to prospective case control study. Blood, urine and saliva samples were simultaneously collected from participants after overnight fasting. MaR1 levels in blood, urine and saliva samples were determined by enzyme-linked immunosorbent assay. Ferriman-Gallwey score, anthropometric, hormonal and some other metabolic parameters were also recorded. Regression analysis was preformed to find out the relationship between MaR1, C-reactive protein (CRP) and malondialdehyde (MDA), and hormonal and metabolic parameters. Results: Patients with PCOS compared with control women had higher MDA and CRP and decreased MaR1 levels. Blood, urine and saliva MDA and MaR1 levels were similar and indicated parallel decrease or increase in the PCOS and control groups. Furthermore, regression analysis indicated that blood CRP and MDA was positively associated with luteinizing hormone (LH) and fasting insulin (FI) in PCOS group (p < 0.05) while blood, urine and saliva MaR1 was negatively associated with CRP and MDA. Conclusions: Present results (MaR1, CRP and MDA together) in case of PCOS suggests that decreased MaR1 and elevated MDA and CRP levels in patients with PCOS and may be considered as a useful early biomarker (especially MaR1) in diagnosis of PCOS disease that has not been previously reported and regular monitoring of their levels could be helpful in clinical decisions.
Collapse
Affiliation(s)
- Adem Yavuz
- Department of Obstetrics and Gynecology, Nigde Omer Halis Demir Research and Education Hospital, 51000 Nigde, Turkey
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Zuhal Karaca Karagoz
- Department of Endocrinology and Metabolic Diseases, Fethi Sekin Research and Education Hospital, 23119 Elazig, Turkey
| | - Durmus Ayan
- Department of Medical Biochemistry, Nigde Omer Halis Demir Research and Education Hospital, 51000 Nigde, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), School of Medicine, Firat University, 23119 Elazig, Turkey
| |
Collapse
|
22
|
Dimou A, Tsimihodimos V, Bairaktari E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int J Mol Sci 2022; 23:ijms23074022. [PMID: 35409380 PMCID: PMC8999875 DOI: 10.3390/ijms23074022] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/26/2022] Open
Abstract
Branched chain amino acids (BCAAs), leucine, isoleucine and valine, are essential amino acids widely studied for their crucial role in the regulation of protein synthesis mainly through the activation of the mTOR signaling pathway and their emerging recognition as players in the regulation of various physiological and metabolic processes, such as glucose homeostasis. BCAA supplementation is primarily used as a beneficial nutritional intervention in chronic liver and kidney disease as well as in muscle wasting disorders. However, downregulated/upregulated plasma BCAAs and their defective catabolism in various tissues, mainly due to altered enzymatic activity of the first two enzymes in their catabolic pathway, BCAA aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), have been investigated in many nutritional and disease states. The current review focused on the underlying mechanisms of altered BCAA catabolism and its contribution to the pathogenesis of a numerous pathological conditions such as diabetes, heart failure and cancer. In addition, we summarize findings that indicate that the recovery of the dysregulated BCAA catabolism may be associated with an improved outcome and the prevention of serious disease complications.
Collapse
Affiliation(s)
- Aikaterini Dimou
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07620
| |
Collapse
|
23
|
Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. Int J Obes (Lond) 2022; 46:535-543. [PMID: 34799672 DOI: 10.1038/s41366-021-01021-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized. METHODS We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity. In human adipocytes in vitro, we investigated the direct contribution of IR in altering metabolic gene programming and glucose utilization using 13C-isotopic glucose tracing. RESULTS We found that gene expression associated with impaired glucose and lipid metabolism and inflammation represented the strongest association with systemic insulin resistance, independently of BMI. In addition, we showed that inducing IR in mature human white adipocytes was sufficient to reprogram the transcriptional profile of genes involved in important metabolic functions such as glycolysis, the pentose phosphate pathway and de novo lipogenesis. Finally, we found that IR induced a rewiring of glucose metabolism, with higher incorporation of glucose into citrate, but not into downstream metabolites within the TCA cycle. CONCLUSIONS Collectively, our data highlight the importance of obesity-derived insulin resistance in impacting the expression of key metabolic genes and impairing the metabolic processes of glucose utilization, and reveal a role for metabolic adaptation in adipose dysfunction in humans.
Collapse
|
24
|
Kang MJ, Moon JW, Lee JO, Kim JH, Jung EJ, Kim SJ, Oh JY, Wu SW, Lee PR, Park SH, Kim HS. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a. J Cachexia Sarcopenia Muscle 2022; 13:605-620. [PMID: 34725961 PMCID: PMC8818615 DOI: 10.1002/jcsm.12833] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy is a severe condition that involves loss of muscle mass and quality. Drug intake can also cause muscle atrophy. Biguanide metformin is the first-line and most widely prescribed anti-diabetic drug for patients with type 2 diabetes. The molecular mechanism of metformin in muscle is unclear. METHODS Myostatin expression was investigated at the protein and transcript levels after metformin administration. To investigate the pathways associated with myostatin signalling, we used real-time polymerase chain reaction, immunoblotting, luciferase assay, chromatin immunoprecipitation assay, co-immunoprecipitation, immunofluorescence, primary culture, and confocal microscopy. Serum analysis, physical performance, and immunohistochemistry were performed using our in vivo model. RESULTS Metformin induced the expression of myostatin, a key molecule that regulates muscle volume and triggers the phosphorylation of AMPK. AMPK alpha2 knockdown in the background of metformin treatment reduced the myostatin expression of C2C12 myotubes (-49.86 ± 12.03%, P < 0.01) and resulted in increased myotube diameter compared with metformin (+46.62 ± 0.88%, P < 0.001). Metformin induced the interaction between AMPK and FoxO3a, a key transcription factor of myostatin. Metformin also altered the histone deacetylase activity in muscle cells (>3.12-fold ± 0.13, P < 0.001). The interaction between HDAC6 and FoxO3a induced after metformin treatment. Confocal microscopy revealed that metformin increased the nuclear localization of FoxO3a (>3.3-fold, P < 0.001). Chromatin immunoprecipitation revealed that metformin induced the binding of FoxO3a to the myostatin promoter. The transcript-level expression of myostatin was higher in the gastrocnemius (GC) muscles of metformin-treated wild-type (WT) (+68.9 ± 10.01%, P < 0.001) and db/db mice (+55.84 ± 6.62%, P < 0.001) than that in the GC of controls (n = 4 per group). Average fibre cross-sectional area data also showed that the metformin-treated C57BL/6J (WT) (-31.74 ± 0.75%, P < 0.001) and C57BLKS/J-db/db (-18.11 ± 0.94%, P < 0.001) mice had decreased fibre size of GC compared to the controls. The serum myoglobin level was significantly decreased in metformin-treated WT mice (-66.6 ± 9.03%, P < 0.01). CONCLUSIONS Our results demonstrate that metformin treatment impairs muscle function through the regulation of myostatin in skeletal muscle cells via AMPK-FoxO3a-HDAC6 axis. The muscle-wasting effect of metformin is more evident in WT than in db/db mice, indicating that more complicated mechanisms may be involved in metformin-mediated muscular dysfunction.
Collapse
Affiliation(s)
- Min Ju Kang
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Wook Moon
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Hae Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Jeong Jung
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Joo Yeon Oh
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Woo Wu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Pu Reum Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Hwa Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Low glucose metabolizing capacity and not insulin resistance is primary etiology of Type 2 Diabetes Mellitus: A hypothesis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Hierarchical regulation of autophagy during adipocyte differentiation. PLoS One 2022; 17:e0250865. [PMID: 35081114 PMCID: PMC8791469 DOI: 10.1371/journal.pone.0250865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/05/2021] [Indexed: 11/19/2022] Open
Abstract
We previously showed that some adipogenic transcription factors such as CEBPB and PPARG directly and indirectly regulate autophagy gene expression in adipogenesis. The order and effect of these events are undetermined. In this study, we modeled the gene expression, DNA-binding of transcriptional regulators, and histone modifications during adipocyte differentiation and evaluated the effect of the regulators on gene expression in terms of direction and magnitude. Then, we identified the overlap of the transcription factors and co-factors binding sites and targets. Finally, we built a chromatin state model based on the histone marks and studied their relation to the factors’ binding. Adipogenic factors differentially regulated autophagy genes as part of the differentiation program. Co-regulators associated with specific transcription factors and preceded them to the regulatory regions. Transcription factors differed in the binding time and location, and their effect on expression was either localized or long-lasting. Adipogenic factors disproportionately targeted genes coding for autophagy-specific transcription factors. In sum, a hierarchical arrangement between adipogenic transcription factors and co-factors drives the regulation of autophagy during adipocyte differentiation.
Collapse
|
27
|
Abstract
The accumulation of an excessive amount of body fat can cause type 2 diabetes, and the risk of type 2 diabetes increases linearly with an increase in body mass index. Accordingly, the worldwide increase in the prevalence of obesity has led to a concomitant increase in the prevalence of type 2 diabetes. The cellular and physiological mechanisms responsible for the link between obesity and type 2 diabetes are complex and involve adiposity-induced alterations in β cell function, adipose tissue biology, and multi-organ insulin resistance, which are often ameliorated and can even be normalized with adequate weight loss.
Collapse
Affiliation(s)
- Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA; Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA.
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council-CNR, Pisa 56100, Italy
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Qi L, Zushin PJ, Chang CF, Lee YT, Alba DL, Koliwad S, Stahl A. Probing Insulin Sensitivity with Metabolically Competent Human Stem Cell-Derived White Adipose Tissue Microphysiological Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103157. [PMID: 34761526 PMCID: PMC8776615 DOI: 10.1002/smll.202103157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Indexed: 05/13/2023]
Abstract
Impaired white adipose tissue (WAT) function has been recognized as a critical early event in obesity-driven disorders, but high buoyancy, fragility, and heterogeneity of primary adipocytes have largely prevented their use in drug discovery efforts highlighting the need for human stem cell-based approaches. Here, human stem cells are utilized to derive metabolically functional 3D adipose tissue (iADIPO) in a microphysiological system (MPS). Surprisingly, previously reported WAT differentiation approaches create insulin resistant WAT ill-suited for type-2 diabetes mellitus drug discovery. Using three independent insulin sensitivity assays, i.e., glucose and fatty acid uptake and suppression of lipolysis, as the functional readouts new differentiation conditions yielding hormonally responsive iADIPO are derived. Through concomitant optimization of an iADIPO-MPS, it is abled to obtain WAT with more unilocular and significantly larger (≈40%) lipid droplets compared to iADIPO in 2D culture, increased insulin responsiveness of glucose uptake (≈2-3 fold), fatty acid uptake (≈3-6 fold), and ≈40% suppressing of stimulated lipolysis giving a dynamic range that is competent to current in vivo and ex vivo models, allowing to identify both insulin sensitizers and desensitizers.
Collapse
Affiliation(s)
- Lin Qi
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Peter James Zushin
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Ching-Fang Chang
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Yue Tung Lee
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Diana L. Alba
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco; Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | - Suneil Koliwad
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of California, San Francisco; Diabetes Center, University of California, San Francisco, San Francisco, California 94143, USA
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, College of Natural Resources, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
29
|
Bonnet L, Alexandersson I, Baboota RK, Kroon T, Oscarsson J, Smith U, Boucher J. Cellular senescence in hepatocytes contributes to metabolic disturbances in NASH. Front Endocrinol (Lausanne) 2022; 13:957616. [PMID: 36072934 PMCID: PMC9441597 DOI: 10.3389/fendo.2022.957616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest and has been shown to play a key role in many diseases, including metabolic diseases. To investigate the potential contribution of hepatocyte cellular senescence to the metabolic derangements associated with non-alcoholic steatohepatitis (NASH), we treated human hepatocyte cell lines HepG2 and IHH with the senescence-inducing drugs nutlin-3a, doxorubicin and etoposide. The senescence-associated markers p16, p21, p53 and beta galactosidase were induced upon drug treatment, and this was associated with increased lipid storage, increased expression of lipid transporters and the development of hepatic steatosis. Drug-induced senescence also led to increased glycogen content, and increased VLDL secretion from hepatocytes. Senescence was also associated with an increase in glucose and fatty acid oxidation capacity, while de novo lipogenesis was decreased. Surprisingly, cellular senescence caused an overall increase in insulin signaling in hepatocytes, with increased insulin-stimulated phosphorylation of IR, Akt, and MAPK. Together, these data indicate that hepatic senescence plays a causal role in the development of NASH pathogenesis, by modulating glucose and lipid metabolism, favoring steatosis. Our findings contribute to a better understanding of the mechanisms linking cellular senescence and fatty liver disease and support the development of new therapies targeting senescent cells for the treatment of NASH.
Collapse
Affiliation(s)
- Laurianne Bonnet
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ida Alexandersson
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ritesh K. Baboota
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Kroon
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jan Oscarsson
- Late Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremie Boucher
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Jeremie Boucher,
| |
Collapse
|
30
|
Zhang Y, He L, Chen X, Shentu P, Xu Y, Jiao J. Omega-3 polyunsaturated fatty acids promote SNAREs mediated GLUT4 vesicle docking and fusion. J Nutr Biochem 2021; 101:108912. [PMID: 34801692 DOI: 10.1016/j.jnutbio.2021.108912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Glucose homeostasis imbalance and insulin resistance (IR) are major contributors to the incidence of type 2 diabetes. Omega-3 polyunsaturated fatty acids (PUFAs) are key ingredients for maintaining cellular functions and improving insulin sensitivity. However, how omega-3 PUFAs modulate the dynamic process of glucose transport at the cellular level remains unclear. Here we unraveled eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may regulate the glucose transporter 4 (GLUT4) vesicle trafficking in both normal and IR adipocytes. Both omega-3 PUFAs significantly increase glucose consumption within a range of 10-32% in the basal state. Furthermore, both EPA (200 μM) and DHA (100 μM) may significantly promote the serine/threonine protein kinase (Akt) phosphorylation by 70% and 40% in the physiological state of adipocytes, respectively. Both omega-3 PUFAs significantly advanced the Akt phosphorylation in a dose-dependent way and showed a ∼2-fold increase at the dose of 200 μM in the IR pathological state. However, they could not up-regulate the expression of GLUT4 and insulin-regulated aminopeptidase protein. We further revealed that both omega-3 PUFAs dynamically promote insulin-stimulated GLUT4 vesicle translocation and soluble N-ethylmaleimide-sensitive factor attachment protein receptor mediated vesicle docking and fusion to the plasma membrane via specifically modulating the expression of vesicle-associated membrane protein 2. Understanding the mechanisms by which omega-3 PUFAs modulate cellular metabolism and IR in peripheral tissues may provide novel insights into the potential impact of omega-3 PUFAs on the metabolic function and the management of IR.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Shentu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Schaffert A, Krieg L, Weiner J, Schlichting R, Ueberham E, Karkossa I, Bauer M, Landgraf K, Junge KM, Wabitsch M, Lehmann J, Escher BI, Zenclussen AC, Körner A, Blüher M, Heiker JT, von Bergen M, Schubert K. Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. ENVIRONMENT INTERNATIONAL 2021; 156:106730. [PMID: 34186270 DOI: 10.1016/j.envint.2021.106730] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), which is used in a variety of consumer-related plastic products, was reported to cause adverse effects, including disruption of adipocyte differentiation, interference with obesity mechanisms, and impairment of insulin- and glucose homeostasis. Substitute compounds are increasingly emerging but are not sufficiently investigated.We aimed to investigate the mode of action of BPA and four of its substitutes during the differentiation of human preadipocytes to adipocytes and their molecular interaction with peroxisome proliferator-activated receptor γ (PPARγ), a pivotal regulator of adipogenesis.Binding and effective biological activation of PPARγ were investigated by surface plasmon resonance and reporter gene assay, respectively. Human preadipocytes were continuously exposed to BPA, BPS, BPB, BPF, BPAF, and the PPARγ-antagonist GW9662. After 12 days of differentiation, lipid production was quantified via Oil Red O staining, and global protein profiles were assessed using LC-MS/MS-based proteomics. All tested bisphenols bound to human PPARγ with similar efficacy as the natural ligand 15d-PGJ2in vitroand provoked an antagonistic effect on PPARγ in the reporter gene assay at non-cytotoxic concentrations. During the differentiation of human preadipocytes, all bisphenols decreased lipid production. Global proteomics displayed a down-regulation of adipogenesis and metabolic pathways, similar to GW9662. Interestingly, pro-inflammatory pathways were up-regulated, MCP1 release was increased, and adiponectin decreased. pAKT/AKT ratios revealed significantly reduced insulin sensitivity by BPA, BPB, and BPS upon insulin stimulation.Thus, our results show that not only BPA but also its substitutes disrupt crucial metabolic functions and insulin signaling in adipocytes under low, environmentally relevant concentrations. This effect, mediated through inhibition of PPARγ, may promote hypertrophy of adipose tissue and increase the risk of developing metabolic syndrome, including insulin resistance.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Juliane Weiner
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Kristin M Junge
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| |
Collapse
|
32
|
Ahmed M, Lai TH, Kim DR. A Small Fraction of Progenitors Differentiate Into Mature Adipocytes by Escaping the Constraints on the Cell Structure. Front Cell Dev Biol 2021; 9:753042. [PMID: 34708046 PMCID: PMC8542793 DOI: 10.3389/fcell.2021.753042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Differentiating 3T3-L1 pre-adipocytes are a mixture of non-identical culture cells. It is vital to identify the cell types that respond to the induction stimulus to understand the pre-adipocyte potential and the mature adipocyte behavior. To test this hypothesis, we deconvoluted the gene expression profiles of the cell culture of MDI-induced 3T3-L1 cells. Then we estimated the fractions of the sub-populations and their changes in time. We characterized the sub-populations based on their specific expression profiles. Initial cell cultures comprised three distinct phenotypes. A small fraction of the starting cells responded to the induction and developed into mature adipocytes. Unresponsive cells were probably under structural constraints or were committed to differentiating into alternative phenotypes. Using the same population gene markers, similar proportions were found in induced human primary adipocyte cell cultures. The three sub-populations had diverse responses to treatment with various drugs and compounds. Only the response of the maturating sub-population resembled that estimated from the profiles of the mixture. We then showed that even at a low division rate, a small fraction of cells could increase its share in a dynamic two-populations model. Finally, we used a cell cycle expression index to validate that model. To sum, pre-adipocytes are a mixture of different cells of which a limited fraction become mature adipocytes.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| |
Collapse
|
33
|
Sustained Activation of TNFα-Induced DNA Damage Response in Newly Differentiated Adipocytes. Int J Mol Sci 2021; 22:ijms221910548. [PMID: 34638889 PMCID: PMC8508732 DOI: 10.3390/ijms221910548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obesity, among many others. Previously, our group demonstrated that adipogenesis per se, from mesenchymal/stromal stem cells derived from human adipose tissue (hASCs), involves an accumulation of DNA damage and a gradual loss of the repair capacity of oxidative DNA damage. Therefore, our objective was to identify whether healthy adipocytes differentiated for the first time from hASCs, when receiving inflammatory signals induced with TNFα, were able to persistently activate the DNA Damage Response and thus trigger adipocyte dysfunction. We found that TNFα at similar levels circulating in obese humans induce a sustained response to DNA damage response as part of the Senescence-Associated Secretory Phenotype. This mechanism shows the impact of inflammatory environment early affect adipocyte function, independently of aging.
Collapse
|
34
|
White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab 2021; 52:101304. [PMID: 34274528 PMCID: PMC8551477 DOI: 10.1016/j.molmet.2021.101304] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of insulin 100 years ago and its application to the treatment of human disease in the years since have marked a major turning point in the history of medicine. The availability of purified insulin allowed for the establishment of its physiological role in the regulation of blood glucose and ketones, the determination of its amino acid sequence, and the solving of its structure. Over the last 50 years, the function of insulin has been applied into the discovery of the insulin receptor and its signaling cascade to reveal the role of impaired insulin signaling-or resistance-in the progression of type 2 diabetes. It has also become clear that insulin signaling can impact not only classical insulin-sensitive tissues, but all tissues of the body, and that in many of these tissues the insulin signaling cascade regulates unexpected physiological functions. Despite these remarkable advances, much remains to be learned about both insulin signaling and how to use this molecular knowledge to advance the treatment of type 2 diabetes and other insulin-resistant states.
Collapse
Affiliation(s)
- Morris F White
- Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA.
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, Kayser BD, Watrous JD, Jain M, Patterson BW, Klein S. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Invest 2021; 130:6688-6699. [PMID: 33164985 DOI: 10.1172/jci141828] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDData from studies conducted in rodent models have shown that decreased adipose tissue (AT) oxygenation is involved in the pathogenesis of obesity-induced insulin resistance. Here, we evaluated the potential influence of AT oxygenation on AT biology and insulin sensitivity in people.METHODSWe evaluated subcutaneous AT oxygen partial pressure (pO2); liver and whole-body insulin sensitivity; AT expression of genes and pathways involved in inflammation, fibrosis, and branched-chain amino acid (BCAA) catabolism; systemic markers of inflammation; and plasma BCAA concentrations, in 3 groups of participants that were rigorously stratified by adiposity and insulin sensitivity: metabolically healthy lean (MHL; n = 11), metabolically healthy obese (MHO; n = 15), and metabolically unhealthy obese (MUO; n = 20).RESULTSAT pO2 progressively declined from the MHL to the MHO to the MUO group, and was positively associated with hepatic and whole-body insulin sensitivity. AT pO2 was positively associated with the expression of genes involved in BCAA catabolism, in conjunction with an inverse relationship between AT pO2 and plasma BCAA concentrations. AT pO2 was negatively associated with AT gene expression of markers of inflammation and fibrosis. Plasma PAI-1 increased from the MHL to the MHO to the MUO group and was negatively correlated with AT pO2, whereas the plasma concentrations of other cytokines and chemokines were not different among the MHL and MUO groups.CONCLUSIONThese results support the notion that reduced AT oxygenation in individuals with obesity contributes to insulin resistance by increasing plasma PAI-1 concentrations and decreasing AT BCAA catabolism and thereby increasing plasma BCAA concentrations.TRIAL REGISTRATIONClinicalTrials.gov NCT02706262.FUNDINGThis study was supported by NIH grants K01DK109119, T32HL130357, K01DK116917, R01ES027595, P42ES010337, DK56341 (Nutrition Obesity Research Center), DK20579 (Diabetes Research Center), DK052574 (Digestive Disease Research Center), and UL1TR002345 (Clinical and Translational Science Award); NIH Shared Instrumentation Grants S10RR0227552, S10OD020025, and S10OD026929; and the Foundation for Barnes-Jewish Hospital.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Scott C Beeman
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gordon I Smith
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Jun Yoshino
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph W Beals
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Brandon D Kayser
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Jeramie D Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Bruce W Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, and
| |
Collapse
|
36
|
Chen MT, Zhao YT, Zhou LY, Li M, Zhang Q, Han Q, Xiao XH. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Insulin Sensitivity in Insulin Resistant Human Adipocytes. Curr Med Sci 2021; 41:87-93. [PMID: 33582911 DOI: 10.1007/s11596-021-2323-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Insulin resistance is an essential characteristic of type 2 diabetes mellitus (T2DM), which can be induced by glucotoxicity and adipose chronic inflammation. Mesenchymal stem cells (MSCs) and their exosomes were reported to ameliorate T2DM and its complications by their immunoregulatory and healing abilities. Exosomes derived from MSCs contain abundant molecules to mediate crosstalk between cells and mimic biological function of MSCs. But the role of exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) in insulin resistance of human adipocytes is unclear. In this study, exosomes were harvested from the conditioned medium of hUC-MSCs and added to insulin-resistant adipocytes. Insulin-stimulated glucose uptake was measured by glucose oxidase/peroxidase assay. The signal pathway involved in exosome-treated adipocytes was detected by RT-PCR and Western blotting. The biological characteristics and function were compared between hUC-MSCs and human adipose-derived mesenchymal stem cells (hAMSCs). The results showed that hAMSCs had better adipogenic ability than hUC-MSCs. After induction of mature adipocytes by adipogenesis of hAMSC, the model of insulin-resistant adipocytes was successfully established by TNF-α and high glucose intervention. After exosome treatment, the insulin-stimulated glucose uptake was significantly increased. In addition, the effect of exosomes could be stabilized for at least 48 h. Furthermore, the level of leptin was significantly decreased, and the mRNA expression of sirtuin-1 and insulin receptor substrate-1 was significantly upregulated after exosome treatment. In conclusion, exosomes significantly improve insulin sensitivity in insulin-resistant human adipocytes, and the mechanism involves the regulation of adipokines.
Collapse
Affiliation(s)
- Mei-Ting Chen
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yi-Ting Zhao
- Department of PET-CT Center, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Li-Yuan Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qin Han
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin-Hua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
37
|
Chen Y, Lin D, Shi C, Guo L, Liu L, Chen L, Li T, Liu Y, Zheng C, Chi X, Meng C, Xue Y. MiR-3138 deteriorates the insulin resistance of HUVECs via KSR2/AMPK/GLUT4 signaling pathway. Cell Cycle 2021; 20:353-368. [PMID: 33509040 DOI: 10.1080/15384101.2020.1870335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Insulin resistance (IR) is a complex pathological condition resulting from the dysregulation of cellular response to insulin hormone in insulin-dependent cells and is recognized as a pathogenic hallmark and strong risk factor for metabolic syndrome. The present study aims to elucidate the molecular mechanism of the pathogenesis of IR. Here, we used human umbilical vein endothelial cells (HUVECs) to establish the IR cell model induced by 1 × 10-6 mmol/L insulin. After 48 h, reactive oxygen species (ROS) and glucose consumption were measured by DCFH-DA and GOD-POD methods, respectively. The results of Microarray analysis demonstrated that there were 10 differentially expressed miRNAs (DEMs) selected based on Fold change (FC) and P value in the IR cell model compared with HUVECs. The enriched gene ontology (GO) terms analysis showed that the target genes of these 10 DEMs were significantly enriched in biological process, cellular component and molecular function, and the significantly enriched Kyoto Encyclopedia of Genes or Genomes (KEGG) pathways mainly include AMPK signaling pathway and PI3K signaling pathway. Amongst all, the expression level of miR-3138 was highest in the IR cell model evaluated by qRT-PCR. Through Targetscan, KSR2 mRNA was predicted as a target of miR-3138. And mRNA and protein expression levels of miR-3138, KSR2, GLUT4, AMPK, PI3K, Akt were examined using qRT-PCR and Western blotting, respectively. The interaction between miR-3138 and KSR2 was evaluated by dual-luciferase reporter assay. Our results showed that miR-3138 significantly deteriorated the IR of HUVECs via KSR2/AMPK/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China.,Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China.,Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Da Lin
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Changxuan Shi
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Liang Guo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Linhua Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Lin Chen
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ting Li
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Ying Liu
- Department of Internal Medicine, South Branch of Fujian Provincial Hospital , Fuzhou, Fujian Province, China
| | - Chengchao Zheng
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Xintong Chi
- Provincial Clinic Medical College, Fujian Medical University , Fuzhou, Fujian Province, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University , Fuzhou, Fujian Province, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University , Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Fai So DH, Yan Chan JC, Tsui MG, Wai Tsang PS, Yao KM. Secreted PDZD2 exerts an insulinotropic effect on INS-1E cells by a PKA-dependent mechanism. Mol Cell Endocrinol 2020; 518:111026. [PMID: 32919022 DOI: 10.1016/j.mce.2020.111026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
Abstract
Secreted PDZD2 (sPDZD2) is a signaling molecule generated upon proteolytic processing of the multi-PDZ-containing protein PDZD2. Previous analysis of gene-trap mice deficient in the synthesis of full-length PDZD2, but not the secreted form, revealed a role of PDZD2 in the regulation of glucose-stimulated insulin secretion. Here, using the pancreatic INS-1E β cells as in vitro model, we showed that depletion of PDZD2/sPDZD2 by RNA interference suppressed the expression of β-cell genes Ins1, Glut2 and MafA whereas treatment with recombinant sPDZD2 rescued the suppressive effect. Similar to GLP-1, sPDZD2 stimulated intracellular cAMP levels, activated β-cell gene expression in a PKA-dependent manner and induced the phosphorylation and nuclear localization of PDX1. Depletion of PDX1 inhibited the sPDZD2 insulinotropic effect, which could also be demonstrated in mouse islets. In summary, our findings are consistent with sPDZD2 serving a signaling function in regulating β-cell gene expression.
Collapse
Affiliation(s)
- Danny Hon Fai So
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Joe Cho Yan Chan
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michelle Grace Tsui
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Phyllis Siu Wai Tsang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kwok-Ming Yao
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
39
|
Rossi A, Eid M, Dodgson J, Davies G, Musial B, Wabitsch M, Church C, Hornigold D. In vitro characterization of the effects of chronic insulin stimulation in mouse 3T3-L1 and human SGBS adipocytes. Adipocyte 2020; 9:415-426. [PMID: 32718202 PMCID: PMC7469436 DOI: 10.1080/21623945.2020.1798613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperinsulinemia is the hallmark of the development of insulin resistance and precedes the diagnosis of type 2 diabetes. Here we evaluated the effects of prolonged exposure (≥4 days) to high insulin doses (150 nM) in vitro in two adipose cell types, mouse 3T3-L1 and human SGBS. Chronic insulin treatment significantly decreased lipid droplet size, insulin signalling and insulin-stimulated glucose uptake. 3T3-L1 displayed an increased basal glucose internalization following chronic insulin treatment, which was associated with increased GLUT1 expression. In addition, both cells showed increased basal lipolysis. In conclusion, we report the effects of prolonged hyperinsulinemia in 3T3-L1 and SGBS, highlighting similarities and discrepancies between the cell types, to be considered when using these cells to model insulin-induced insulin resistance.
Collapse
Affiliation(s)
- A. Rossi
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Eid
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - J. Dodgson
- Biologics Therapeutics, Antibody and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - G. Davies
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - B. Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - C. Church
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - D.C. Hornigold
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
40
|
Sanap A, Bhonde R, Joshi K. Mesenchymal stem cell conditioned medium ameliorates diabetic serum-induced insulin resistance in 3T3-L1 cells. Chronic Dis Transl Med 2020; 7:47-56. [PMID: 34013180 PMCID: PMC8110877 DOI: 10.1016/j.cdtm.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 11/14/2022] Open
Abstract
Background Pharmacological factors used to induce insulin resistance (IR) in in vitro models may not mimic the full in vivo features of type 2 diabetes mellitus (T2DM). This study aimed to examine the ability of diabetic serum (DS) to induce IR and investigate whether adipose-derived mesenchymal stem cell conditioned medium (ADMSC-CM) reverses DS-induced IR. Methods DS was obtained from newly diagnosed T2DM patients. IR was induced in differentiated 3T3-L1 cells by employing dexamethasone, tumor necrosis factor alpha (TNF-α), palmitate and DS. Glucose uptake (2-[N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl] amino]-2-deoxyglucose(2-NBDG) uptake assay), intracellular levels of reactive oxygen species (ROS), and superoxide radicals (O2−) (fluorescence microscopy and fluorometry) were analyzed in control and experimental samples. mRNA expression of key genes involved in glucose transport and inflammation were analyzed by using reverse transcription polymerase chain reaction (RT-PCR). Pro-inflammatory cytokines and phospho-insulin receptor substrate (IRS) (Ser-307) protein expression were analyzed by fluorescence activated cell sorter analysis. Statistical significance was determined by using one-way ANOVA followed by Tukey's multiple comparison tests. Results ADMSC-CM significantly increased the DS-mediated decrease in 2-NBDG uptake (11.01 ± 0.50 vs. 7.20 ± 0.30, P < 0.01) and reduced DS-driven ROS (fluorescence count, 6.35 ± 0.46 vs. 9.80 ± 0.10, P < 0.01) and O2− (fluorescence count, 3.00 ± 0.10 vs. 4.60 ± 0.09, P < 0.01) production. Further, the ADMSC-CM restored DS-induced down regulation GLUT4 (1.52-fold, P < 0.05) as well as the up-regulation of PPARγ (0.35-fold, P < 0.01), and IKKβ (0.37-fold, P < 0.01) mRNA, and phospho-IRS (Ser-307) protein expression compared to the baseline (median fluorescence intensity, 88,192 ± 2720 vs. 65,450 ± 3111, P < 0.01). DS induced IR, similar to the traditionally used pharmacological factors, namely dexamethasone, TNF-α, and palmitate, which can be attributed to the significantly higher pro-inflammatory cytokines levels (TNF-α (2.28 ± 0.03 pg/mL vs. 2.38 ± 0.03 pg/mL, P < 0.01), interleukin 6 (IL)-6 (1.94 ± 0.02 pg/mL vs. 2.17 ± 0.04 pg/mL, P < 0.01), IL-17 (2.16 ± 0.02 pg/mL vs. 2.22 ± 0.002 pg/mL, P < 0.05), and interferon gamma (IFN-γ) (2.07 ± 0.02 pg/mL vs. 2.15 ± 0.04 pg/mL, P < 0.05)) in DS. Conclusions DS can be explored as a novel inducer of IR in in vitro studies with further standardization, substituting the conventionally used pharmacological factors. Our findings also affirm the validity of ADMSC-CM as a prospective insulin sensitizer for T2DM therapy.
Collapse
Affiliation(s)
- Avinash Sanap
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411007, India.,Regenerative Medicine Laboratory, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering affiliated to Savitribai Phule Pune University, Pune 411041, India
| |
Collapse
|
41
|
Lugol Increases Lipolysis through Upregulation of PPAR-Gamma and Downregulation of C/EBP-Alpha in Mature 3T3-L1 Adipocytes. J Nutr Metab 2020; 2020:2302795. [PMID: 33014457 PMCID: PMC7519197 DOI: 10.1155/2020/2302795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022] Open
Abstract
Overweight and obesity are defined as excessive and abnormal fat accumulation that is harmful to health. This study analyzes the effect of different concentrations of the lugol solution (molecular iodine dissolved in potassium iodide) on lipolysis in cultured 3T3-L1-differentiated adipocytes. The mature adipocytes were treated with doses from 1 to 100 µm of lugol for 0.5, 6, and 24 h. The results showed that mature adipocytes exposed to lugol decrease their viability and increase caspase-3 activity with a lethal dose (LD50) of 473 µm. In mature adipocytes, lugol decreased the total intracellular lipid content, being significant at doses of 10 and 100 µm after 6 and 24 h of treatment (P < 0.01), and the accumulation of intracellular triglycerides decreased after 24 h of exposure to lugol (P < 0.05). Lugol treatment significantly increases the release of glycerol to the culture medium (P < 0.05). The levels of adipocyte-specific transcription factors C/EBP-α were downregulated and PPAR-γ upregulated after 30 min with lugol. These results indicate a lipolytic effect of lugol dependent on PPAR-γ and C/EBP-α expression in mature 3T3-L1 adipocytes.
Collapse
|
42
|
Arcidiacono B, Chiefari E, Foryst-Ludwig A, Currò G, Navarra G, Brunetti FS, Mirabelli M, Corigliano DM, Kintscher U, Britti D, Mollace V, Foti DP, Goldfine ID, Brunetti A. Obesity-related hypoxia via miR-128 decreases insulin-receptor expression in human and mouse adipose tissue promoting systemic insulin resistance. EBioMedicine 2020; 59:102912. [PMID: 32739259 PMCID: PMC7502675 DOI: 10.1016/j.ebiom.2020.102912] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Insulin resistance in visceral adipose tissue (VAT), skeletal muscle and liver is a prominent feature of most patients with obesity. How this association arises remains poorly understood. The objective of this study was to demonstrate that the decrease in insulin receptor (INSR) expression and insulin signaling in VAT from obese individuals is an early molecular manifestation that might play a crucial role in the cascade of events leading to systemic insulin resistance. Methods To clarify the role of INSR and insulin signaling in adipose tissue dysfunction in obesity, we first measured INSR expression in VAT samples from normal-weight subjects and patients with different degrees of obesity. We complemented these studies with experiments on high-fat diet (HFD)-induced obese mice, and in human and murine adipocyte cultures, in both normoxic and hypoxic conditions. Findings An inverse correlation was observed between increasing body mass index and decreasing INSR expression in VAT of obese humans. Our results indicate that VAT-specific downregulation of INSR is an early event in obesity-related adipose cell dysfunction, which increases systemic insulin resistance in both obese humans and mice. We also provide evidence that obesity-related hypoxia in VAT plays a determinant role in this scenario by decreasing INSR mRNA stability. This decreased stability is through the activation of a miRNA (miR-128) that downregulates INSR expression in adipocytes. Interpretation We present a novel pathogenic mechanism of reduced INSR expression and insulin signaling in adipocytes. Our data provide a new explanation linking obesity with systemic insulin resistance. Funding This work was partly supported by a grant from Nutramed (PON 03PE000_78_1) and by the European Commission (FESR FSE 2014-2020 and Regione Calabria).
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Giuseppe Currò
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Navarra
- Department of Human Pathology of Adult and Evolutive Age, University Hospital of Messina, 98122 Messina, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Domenica M Corigliano
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Daniela P Foti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy
| | - Ira D Goldfine
- Department of Medicine, University of California San Francisco, 94143 San Francisco, USA
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro "Magna Græcia", Viale Europa, 88100 Catanzaro, Italy.
| |
Collapse
|
43
|
Tan HY, Tan SL, Teo SH, Roebuck MM, Frostick SP, Kamarul T. Development of a novel in vitro insulin resistance model in primary human tenocytes for diabetic tendinopathy research. PeerJ 2020; 8:e8740. [PMID: 32587790 PMCID: PMC7304430 DOI: 10.7717/peerj.8740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) had been reported to be associated with tendinopathy. However, the underlying mechanisms of diabetic tendinopathy still remain largely to be discovered. The purpose of this study was to develop insulin resistance (IR) model on primary human tenocytes (hTeno) culture with tumour necrosis factor-alpha (TNF-α) treatment to study tenocytes homeostasis as an implication for diabetic tendinopathy. Methods hTenowere isolated from human hamstring tendon. Presence of insulin receptor beta (INSR-β) on normal tendon tissues and the hTeno monolayer culture were analyzed by immunofluorescence staining. The presence of Glucose Transporter Type 1 (GLUT1) and Glucose Transporter Type 4 (GLUT4) on the hTeno monolayer culture were also analyzed by immunofluorescence staining. Primary hTeno were treated with 0.008, 0.08, 0.8 and 8.0 µM of TNF-α, with and without insulin supplement. Outcome measures include 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) assay to determine the glucose uptake activity; colourimetric total collagen assay to quantify the total collagen expression levels; COL-I ELISA assay to measure the COL-I expression levels and real-time qPCR to analyze the mRNA gene expressions levels of Scleraxis (SCX), Mohawk (MKX), type I collagen (COL1A1), type III collagen (COL3A1), matrix metalloproteinases (MMP)-9 and MMP-13 in hTeno when treated with TNF-α. Apoptosis assay for hTeno induced with TNF-α was conducted using Annexin-V FITC flow cytometry analysis. Results Immunofluorescence imaging showed the presence of INSR-β on the hTeno in the human Achilles tendon tissues and in the hTeno in monolayer culture. GLUT1 and GLUT4 were both positively expressed in the hTeno. TNF-α significantly reduced the insulin-mediated 2-NBDG uptake in all the tested concentrations, especially at 0.008 µM. Total collagen expression levels and COL-I expression levels in hTeno were also significantly reduced in hTeno treated with 0.008 µM of TNF-α. The SCX, MKX and COL1A1 mRNA expression levels were significantly downregulated in all TNF-α treated hTeno, whereas the COL3A1, MMP-9 and MMP-13 were significantly upregulated in the TNF–α treated cells. TNF-α progressively increased the apoptotic cells at 48 and 72 h. Conclusion At 0.008 µM of TNF-α, an IR condition was induced in hTeno, supported with the significant reduction in glucose uptake, as well as significantly reduced total collagen, specifically COL-I expression levels, downregulation of candidate tenogenic markers genes (SCX and MKX), and upregulation of ECM catabolic genes (MMP-9 and MMP-13). Development of novel IR model in hTeno provides an insight on how tendon homeostasis could be affected and can be used as a tool for further discovering the effects on downstream molecular pathways, as the implication for diabetic tendinopathy.
Collapse
Affiliation(s)
- Hui Yee Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Sik Loo Tan
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Seow Hui Teo
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Margaret M Roebuck
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Simon P Frostick
- Musculoskeletal Science Research Group, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, Other, United Kingdom
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedics Centre of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| |
Collapse
|
44
|
Legler J, Zalko D, Jourdan F, Jacobs M, Fromenty B, Balaguer P, Bourguet W, Munic Kos V, Nadal A, Beausoleil C, Cristobal S, Remy S, Ermler S, Margiotta-Casaluci L, Griffin JL, Blumberg B, Chesné C, Hoffmann S, Andersson PL, Kamstra JH. The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. Int J Mol Sci 2020; 21:E3480. [PMID: 32423144 PMCID: PMC7279023 DOI: 10.3390/ijms21103480] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.
Collapse
Affiliation(s)
- Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| | - Daniel Zalko
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Fabien Jourdan
- INRAE Toxalim (Research Centre in Food Toxicology), Metabolism and Xenobiotics (MeX) Team, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (D.Z.); (F.J.)
| | - Miriam Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OXON. OX11 0RQ, UK;
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) INSERM UMR_A 1341, UMR_S 1241, Université de Rennes, F-35000 Rennes, France;
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Université de Montpellier, 34298 Montpellier, France;
| | - William Bourguet
- Center for Structural Biochemistry (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France;
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, 03202 Elche (Alicante), Spain;
| | - Claire Beausoleil
- ANSES, Direction de l’Evaluation des Risques, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort CEDEX, France;
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences (BKV), Cell Biology, Medical Faculty, Linköping University, SE-581 85 Linköping, Sweden;
| | - Sylvie Remy
- Sustainable Health, Flemish Institute for Technological Research, VITO, 2400 Mol, Belgium;
| | - Sibylle Ermler
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.E.); (L.M.-C.)
| | - Julian L. Griffin
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK;
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, 2011 BioSci 3, University of California, Irvine, CA 92697-2300, USA;
| | - Christophe Chesné
- Biopredic International, Parc d’Activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France;
| | | | | | - Jorke H. Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands;
| |
Collapse
|
45
|
Tamara C, Nerea LB, Belén BS, Aurelio S, Iván C, Fernando S, Javier B, Felipe CF, María P. Vesicles Shed by Pathological Murine Adipocytes Spread Pathology: Characterization and Functional Role of Insulin Resistant/Hypertrophied Adiposomes. Int J Mol Sci 2020; 21:E2252. [PMID: 32214011 PMCID: PMC7139903 DOI: 10.3390/ijms21062252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as a relevant way of cell to cell communication, and its analysis has become an indirect approach to assess the cell/tissue of origin status. However, the knowledge about their nature and role on metabolic diseases is still very scarce. We have established an insulin resistant (IR) and two lipid (palmitic/oleic) hypertrophied adipocyte cell models to isolate EVs to perform a protein cargo qualitative and quantitative Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH) analysis by mass spectrometry. Our results show a high proportion of obesity and IR-related proteins in pathological EVs; thus, we propose a panel of potential obese adipose tissue EV-biomarkers. Among those, lipid hypertrophied vesicles are characterized by ceruloplasmin, mimecan, and perilipin 1 adipokines, and those from the IR by the striking presence of the adiposity and IR related transforming growth factor-beta-induced protein ig-h3 (TFGBI). Interestingly, functional assays show that IR and hypertrophied adipocytes induce differentiation/hypertrophy and IR in healthy adipocytes through secreted EVs. Finally, we demonstrate that lipid atrophied adipocytes shed EVs promote macrophage inflammation by stimulating IL-6 and TNFα expression. Thus, we conclude that pathological adipocytes release vesicles containing representative protein cargo of the cell of origin that are able to induce metabolic alterations on healthy cells probably exacerbating the disease once established.
Collapse
Affiliation(s)
- Camino Tamara
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Lago-Baameiro Nerea
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
| | - Bravo Susana Belén
- Unidad de Proteómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain;
| | - Sueiro Aurelio
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Couto Iván
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía Plástica y Reparadora, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Santos Fernando
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Baltar Javier
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- Servicio de Cirugía General, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Casanueva F. Felipe
- Grupo Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (S.A.); (C.F.F.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| | - Pardo María
- Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), 15706 Santiago de Compostela, Spain; (C.T.); (L.-B.N.); (C.I.); (S.F.); (B.J.)
- CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 15706 Santiago de Compostela, Spain
| |
Collapse
|
46
|
Insulin Resistance Promotes Parkinson's Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells 2020; 9:cells9030740. [PMID: 32192190 PMCID: PMC7140619 DOI: 10.3390/cells9030740] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Insulin resistance (IR), considered a hallmark of diabetes at the cellular level, is implicated in pre-diabetes, results in type 2 diabetes, and negatively affects mitochondrial function. Diabetes is increasingly associated with enhanced risk of developing Parkinson's disease (PD); however, the underlying mechanism remains unclear. This study investigated the probable culpability of IR in the pathogenesis of PD. Methods: Using MitoPark mice in vivo models, diabetes was induced by a high-fat diet in the in vivo models, and IR was induced by protracted pulse-stimulation with 100 nM insulin treatment of neuronal cells, in vitro to determine the molecular mechanism(s) underlying altered cellular functions in PD, including mitochondrial dysfunction and α-synuclein (SNCA) aberrant expression. Findings: We observed increased SNCA expression in the dopaminergic (DA) neurons of both the wild-type and diabetic MitoPark mice, coupled with enhanced degeneration of DA neurons in the diabetic MitoPark mice. Ex vivo, in differentiated human DA neurons, IR was associated with increased SNCA and reactive oxygen species (ROS) levels, as well as mitochondrial depolarization. Moreover, we demonstrated concomitant hyperactivation of polo-like kinase-2 (PLK2), and upregulated p-SNCA (Ser129) and proteinase K-resistant SNCA proteins level in IR SH-SY5Y cells, however the inhibition of PLK2 reversed IR-related increases in phosphorylated and total SNCA. Similarly, the overexpression of peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC)-1α suppressed ROS production, repressed PLK2 hyperactivity, and resulted in downregulation of total and Ser129-phosphorylated SNCA in the IR SH-SY5Y cells. Conclusions: These findings demonstrate that IR-associated diabetes promotes the development and progression of PD through PLK2-mediated mitochondrial dysfunction, upregulated ROS production, and enhanced SNCA signaling, suggesting the therapeutic targetability of PLK2 and/or SNCA as potential novel disease-modifying strategies in patients with PD.
Collapse
|
47
|
Khim KW, Choi SS, Jang HJ, Lee YH, Lee E, Hyun JM, Eom HJ, Yoon S, Choi JW, Park TE, Nam D, Choi JH. PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPARγ at Ser273. Cells 2020; 9:cells9020343. [PMID: 32024237 PMCID: PMC7072254 DOI: 10.3390/cells9020343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPARγ at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPARγ at Ser273, the molecular mechanism of PPARγ dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPARγ phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPARγ at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders.
Collapse
|
48
|
Yao S, Zhang J, Zhan Y, Shi Y, Yu Y, Zheng L, Xu N, Luo G. Insulin Resistance in Apolipoprotein M Knockout Mice is Mediated by the Protein Kinase Akt Signaling Pathway. Endocr Metab Immune Disord Drug Targets 2020; 20:771-780. [PMID: 31702495 PMCID: PMC7360917 DOI: 10.2174/1871530319666191023125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous clinical studies have suggested that apolipoprotein M (apoM) is involved in glucose metabolism and plays a causative role in insulin sensitivity. OBJECTIVE The potential mechanism of apoM on modulating glucose homeostasis is explored and differentially expressed genes are analyzed by employing ApoM deficient (ApoM-/- ) and wild type (WT) mice. METHODS The metabolism of glucose in the hepatic tissues of high-fat diet ApoM-/- and WT mice was measured by a glycomics approach. Bioinformatic analysis was applied for analyzing the levels of differentially expressed mRNAs in the liver tissues of these mice. The insulin sensitivity of ApoM-/- and WT mice was compared using the insulin tolerance test and the phosphorylation levels of protein kinase Akt (AKT) and insulin stimulation in different tissues were examined by Western blot. RESULTS The majority of the hepatic glucose metabolites exhibited lower concentration levels in the ApoM-/- mice compared with those of the WT mice. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that ApoM deficiency affected the genes associated with the metabolism of glucose. The insulin tolerance test suggested that insulin sensitivity was impaired in ApoM-/- mice. The phosphorylation levels of AKT in muscle and adipose tissues of ApoM-/- mice were significantly diminished in response to insulin stimulation compared with those noted in WT mice. CONCLUSION ApoM deficiency led to the disorders of glucose metabolism and altered genes related to glucose metabolism in mice liver. In vivo data indicated that apoM might augment insulin sensitivity by AKT-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Xu
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| | - Guanghua Luo
- Address correspondence to these two authors at the Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, 213003, Changzhou, China; Tel: +86-0519-68870619; E-mail: , and the Section of Clinical Chemistry & Pharmacology, Institute of Laboratory Medicine, Lunds University, S-22185 Lund, Sweden; E-mail:
| |
Collapse
|
49
|
Abstract
The 3T3-L1 pre-adipocyte cell line is widely used to study the fat cell differentiation in vitro. Researchers also use this cell model to study obesity and insulin resistance. We surveyed the literature, the gene expression omnibus and the sequence read archive for RNA-Seq and ChIP-Seq datasets of MDI-induced 3T3-L1 differentiating cells sampled at one or more time points. The metadata of the relevant datasets were manually curated using unified language across the original studies. The raw reads were collected and pre-processed using a reproducible state-of-the-art pipeline. The final datasets are presented as reads count in genes for the RNA-Seq and reads count in peaks for the ChIP-Seq dataset. The curated datasets are available as two Bioconductor experimental data packages curatedAdipoRNA and curatedAdipoChIP. In addition, the packages document the source code of the data collection and the pre-processing pipelines. Here, we provide a descriptive analysis of the datasets with context and technical validation.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
50
|
Perugini J, Di Mercurio E, Tossetta G, Severi I, Monaco F, Reguzzoni M, Tomasetti M, Dani C, Cinti S, Giordano A. Biological Effects of Ciliary Neurotrophic Factor on hMADS Adipocytes. Front Endocrinol (Lausanne) 2019; 10:768. [PMID: 31781039 PMCID: PMC6861295 DOI: 10.3389/fendo.2019.00768] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Administration of ciliary neurotrophic factor (CNTF) to experimental animals exerts anti-obesity effects by acting on multiple targets. In white adipose tissue CNTF reduces lipid content, promotes fatty acid (FA) oxidation and improves insulin sensitivity. This study was performed to establish whether CNTF exerts similar effects on human white adipocytes. To this end, adipose differentiation was induced in vitro in human multipotent adipose-derived stem (hMADS) cells. CNTF receptor α (CNTFRα) expression was assessed in hMADS cells and adipocytes by qRT-PCR, Western blotting, and immunocytochemistry. After administration of human recombinant CNTF, signaling pathways and gene expression were evaluated by Western blotting and qRT-PCR. Glucose uptake was assessed by measuring 2-nitrobenzodeoxyglucose uptake with a fluorescence plate reader. Lastly, CNTF-induced anti-inflammatory responses were evaluated in hMADS adipocytes stressed with tumor necrosis factor α (TNFα) for 24 h. Results showed that CNTFRα protein expression was higher in undifferentiated hMADS cells than in hMADS adipocytes, where it was however clearly detectable. In hMADS adipocytes, 1 nM CNTF strongly activated the JAK-STAT3 (Janus kinase-signaling transducer and activator of transcription 3) pathway and acutely and transiently activated the AMPK (AMP-activated protein kinase) and AKT (protein kinase B) pathways. Acute CNTF treatment for 20 min significantly increased basal glucose uptake and was associated with increased AKT phosphorylation. Longer-term (24 and 48 h) treatment reduced the expression of lipogenic markers (FA synthase and sterol regulatory element-binding protein-1) and increased the expression of lipolytic [hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL)] and mitochondrial (peroxisome proliferator-activated receptor γ coactivator-1α and carnitine palmitoyltransferase 1) markers. In TNFα-treated hMADS adipocytes, CNTF significantly reduced the expression of monocyte chemoattractant protein 1 and TNFα-induced AKT inhibition. Collectively, these findings demonstrate for the first time that CNTF plays a role also in human adipocytes, driving their metabolism toward a less lipid-storing and more energy-consuming phenotype.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, Nice, France
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
- Center of Obesity, United Hospitals, Marche Polytechnic University, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|