1
|
Lučin P, Mahmutefendić Lučin H. The Cell Biologist Potential of Cytomegalovirus to Solve Biogenesis and Maintenance of the Membrane Recycling System. Biomedicines 2025; 13:326. [PMID: 40002739 PMCID: PMC11853475 DOI: 10.3390/biomedicines13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Cytomegalovirus (CMV) is an important pathogen that extensively remodels the nucleus and cytosol of an infected cell to establish a productive infection [...].
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, 42000 Varaždin, Croatia
| |
Collapse
|
2
|
Lenarcic EM, Moorman NJ. The Host DHX29 RNA Helicase Regulates HCMV Immediate Early Protein Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635168. [PMID: 39975304 PMCID: PMC11838274 DOI: 10.1101/2025.01.27.635168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The dead box helicase DHX29 plays a critical role in the translation of mRNAs containing complex RNA secondary structure in their 5' untranslated regions. The human cytomegalovirus (HCMV) genome has a high GC content, suggesting the 5'UTRs of viral mRNAs may contain significant secondary structure and require DHX29 for their efficient translation initiation. We found that depleting DHX29 from primary human fibroblasts prior to infection reduced viral mRNA and protein levels and decreased HCMV replication. The defect in HCMV replication correlated with decreased expression of the HCMV immediate early proteins IE1 and IE2, which are necessary for the establishment of lytic infection. Analysis of polysome associated mRNAs revealed that the defect in IE1 and IE2 expression is due to decreased mRNA translation efficiency. We found that DHX29 depletion led to reduced levels of the eIF4F translation initiation complex, resulting from decreased translation of the eIF4G mRNA. However, in line with our previous results showing a minimal role for the eIF4F complex in HCMV mRNA translation, we found that depleting eIF4G prior to infection did not impact IE1 and IE2 translation. Together our results define a new role for DHX29 in regulating eIF4F-dependent translation and identify a critical role for DHX29 in the translation of HCMV mRNAs. Significance Expression of the HCMV immediate early proteins IE1 and IE2 is critical for the establishment of lytic replication and the reactivation of latent HCMV infections. Defining the mechanisms controlling HCMV IE1 and IE2 protein expression has the potential to identify new strategies for therapeutic interventions that can limit HCMV disease in immune naïve and immune compromised individuals. Our finding that the cellular DHX29 helicase is necessary for the efficient translation of mRNAs encoding IE1 and IE2 suggests that therapies that inhibit DHX29 could potentially be useful in treating HCMV disease and adds to the growing body of literature suggesting DHX29 activity is a disease driver in multiple indications including viral disease, inflammation and cancer.
Collapse
|
3
|
Weinberger S, Stecher C, Kastner MT, Nekhai S, Steininger C. Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection. Viruses 2024; 16:1961. [PMID: 39772267 PMCID: PMC11728760 DOI: 10.3390/v16121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations. Using co-immunoprecipitation, mass spectrometry, and quantitative proteomics, we identified 159 high-confidence interacting proteins (HCIPs) in the PP1 interactome, consisting of 126 human and 33 viral proteins. We observed significant temporal changes in the PP1 interactome following HCMV infection, including the altered interactions of PP1 regulatory subunits. Further analysis highlighted the central roles of these PP1 interacting proteins in intracellular trafficking, with particular emphasis on the trafficking protein particle complex and Rab GTPases, which are crucial for the virus's manipulation of host cellular processes in virion assembly and egress. Additionally, our study on the noncatalytic PP1 inhibitor 1E7-03 revealed a decrease in PP1's interaction with key HCMV proteins, supporting its potential as an antiviral agent. Our findings suggest that PP1 docking motifs are critical in viral-host interactions and offer new insights for antiviral strategies.
Collapse
Affiliation(s)
- Stefan Weinberger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Carmen Stecher
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Marie-Theres Kastner
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
| | - Christoph Steininger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
- Karl-Landsteiner Institute of Microbiome Research, 3100 St. Pölten, Austria
| |
Collapse
|
4
|
Sayeed K, Parameswaran S, Beucler MJ, Edsall LE, VonHandorf A, Crowther A, Donmez O, Hass M, Richards S, Forney C, Wright J, Leong MML, Murray-Nerger LA, Gewurz BE, Kaufman KM, Harley JB, Zhao B, Miller WE, Kottyan LC, Weirauch MT. Human cytomegalovirus infection coopts chromatin organization to diminish TEAD1 transcription factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588762. [PMID: 38645179 PMCID: PMC11030363 DOI: 10.1101/2024.04.12.588762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.
Collapse
Affiliation(s)
- Khund Sayeed
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J. Beucler
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Audrey Crowther
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Hass
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Scott Richards
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jay Wright
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura A. Murray-Nerger
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ben E. Gewurz
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth M. Kaufman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - John B. Harley
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Leah C. Kottyan
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
5
|
Burgess HM, Grande R, Riccio S, Dinesh I, Winkler GS, Depledge DP, Mohr I. CCR4-NOT differentially controls host versus virus poly(a)-tail length and regulates HCMV infection. EMBO Rep 2023; 24:e56327. [PMID: 37846490 PMCID: PMC10702830 DOI: 10.15252/embr.202256327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Rebecca Grande
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
| | - Sofia Riccio
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | - Ikshitaa Dinesh
- Department of Microbial SciencesUniversity of SurreyGuildfordUK
| | | | - Daniel P Depledge
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Institute of VirologyHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), partner site Hannover‐BraunschweigHannoverGermany
| | - Ian Mohr
- Department of Microbiology, School of MedicineNew York UniversityNew YorkNYUSA
- Laura and Isaac Perlmutter Cancer Institute, School of MedicineNew York UniversityNew YorkNYUSA
| |
Collapse
|
6
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
7
|
Domma AJ, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537203. [PMID: 37131605 PMCID: PMC10153195 DOI: 10.1101/2023.04.17.537203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et. al. mBio 2022), a process directly antagonized by AKT. Therefore, we sought to investigate how HCMV inactivates AKT to achieve this. Subcellular fractionation and live cell imaging studies indicated that AKT failed to recruit to membranes upon serum-stimulation of infected cells. However, UV-inactivated virions were unable to render AKT non-responsive to serum, indicating a requirement for de novo viral gene expression. Interestingly, we were able to identify that UL38 (pUL38), a viral activator of mTORC1, is required to diminish AKT responsiveness to serum. mTORC1 contributes to insulin resistance by causing proteasomal degradation of insulin receptor substrate (IRS) proteins, such as IRS1, which are necessary for the recruitment of PI3K to growth factor receptors. In cells infected with a recombinant HCMV disrupted for UL38 , AKT responsiveness to serum is retained and IRS1 is not degraded. Furthermore, ectopic expression of UL38 in uninfected cells induces IRS1 degradation, inactivating AKT. These effects of UL38 were reversed by the mTORC1 inhibitor, rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| |
Collapse
|
8
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
9
|
Haidar Ahmad S, Pasquereau S, El Baba R, Nehme Z, Lewandowski C, Herbein G. Distinct Oncogenic Transcriptomes in Human Mammary Epithelial Cells Infected With Cytomegalovirus. Front Immunol 2022; 12:772160. [PMID: 35003089 PMCID: PMC8727587 DOI: 10.3389/fimmu.2021.772160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus is being recognized as a potential oncovirus beside its oncomodulation role. We previously isolated two clinical isolates, HCMV-DB (KT959235) and HCMV-BL (MW980585), which in primary human mammary epithelial cells promoted oncogenic molecular pathways, established anchorage-independent growth in vitro, and produced tumorigenicity in mice models, therefore named high-risk oncogenic strains. In contrast, other clinical HCMV strains such as HCMV-FS, KM, and SC did not trigger such traits, therefore named low-risk oncogenic strains. In this study, we compared high-risk oncogenic HCMV-DB and BL strains (high-risk) with low-risk oncogenic strains HCMV-FS, KM, and SC (low-risk) additionally to the prototypic HCMV-TB40/E, knowing that all strains infect HMECs in vitro. Numerous pro-oncogenic features including enhanced expression of oncogenes, cell survival, proliferation, and epithelial-mesenchymal transition genes were observed with HCMV-BL. In vitro, mammosphere formation was observed only in high-risk strains. HCMV-TB40/E showed an intermediate transcriptome landscape with limited mammosphere formation. Since we observed that Ki67 gene expression allows us to discriminate between high and low-risk HCMV strains in vitro, we further tested its expression in vivo. Among HCMV-positive breast cancer biopsies, we only detected high expression of the Ki67 gene in basal tumors which may correspond to the presence of high-risk HCMV strains within tumors. Altogether, the transcriptome of HMECs infected with HCMV clinical isolates displays an “oncogenic gradient” where high-risk strains specifically induce a prooncogenic environment which might participate in breast cancer development.
Collapse
Affiliation(s)
- Sandy Haidar Ahmad
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Sébastien Pasquereau
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Ranim El Baba
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Clara Lewandowski
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA4266, Université de Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, Centre Hospitalier Universitaire (CHU) Besançon, Besançon, France
| |
Collapse
|
10
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
11
|
Stecher C, Marinkov S, Mayr-Harting L, Katic A, Kastner MT, Rieder-Rommer FJJ, Lin X, Nekhai S, Steininger C. Protein Phosphatase 1 Regulates Human Cytomegalovirus Protein Translation by Restraining AMPK Signaling. Front Microbiol 2021; 12:698603. [PMID: 34335531 PMCID: PMC8320725 DOI: 10.3389/fmicb.2021.698603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) carries the human protein phosphatase 1 (PP1) and other human proteins important for protein translation in its tegument layer for a rapid supply upon infection. However, the biological relevance behind PP1 incorporation and its role during infection is unclear. Additionally, PP1 is a difficult molecular target due to its promiscuity and similarities between the catalytic domain of multiple phosphatases. In this study, we circumvented these shortcomings by using 1E7-03, a small molecule protein–protein interaction inhibitor, as a molecular tool of noncatalytic PP1 inhibition. 1E7-03 treatment of human fibroblasts severely impaired HCMV replication and viral protein translation. More specifically, PP1 inhibition led to the deregulation of metabolic signaling pathways starting at very early time points post-infection. This effect was at least partly mediated by the prevention of AMP-activated protein kinase dephosphorylation, leading to elongation factor 2 hyperphosphorylation and reduced translation rates. These findings reveal an important mechanism of PP1 for lytic HCMV infection.
Collapse
Affiliation(s)
- Carmen Stecher
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sanja Marinkov
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Lucia Mayr-Harting
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ana Katic
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marie-Theres Kastner
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franz J J Rieder-Rommer
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, Washington, DC, United States
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, United States
| | - Christoph Steininger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Lučin P, Jug Vučko N, Karleuša L, Mahmutefendić Lučin H, Blagojević Zagorac G, Lisnić B, Pavišić V, Marcelić M, Grabušić K, Brizić I, Lukanović Jurić S. Cytomegalovirus Generates Assembly Compartment in the Early Phase of Infection by Perturbation of Host-Cell Factors Recruitment at the Early Endosome/Endosomal Recycling Compartment/Trans-Golgi Interface. Front Cell Dev Biol 2020; 8:563607. [PMID: 33042998 PMCID: PMC7516400 DOI: 10.3389/fcell.2020.563607] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
13
|
The Artemisinin-Derived Autofluorescent Compound BG95 Exerts Strong Anticytomegaloviral Activity Based on a Mitochondrial Targeting Mechanism. Int J Mol Sci 2020; 21:ijms21155578. [PMID: 32759737 PMCID: PMC7432203 DOI: 10.3390/ijms21155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen associated with severe pathology. Current options of antiviral therapy only partly satisfy the needs of a well-tolerated long-term treatment/prophylaxis free from drug-induced viral resistance. Recently, we reported the strong antiviral properties in vitro and in vivo of the broad-spectrum anti-infective drug artesunate and its optimized derivatives. NF-κB signaling was described as a targeting mechanism and additional target proteins have recently been identified. Here, we analyzed the autofluorescent hybrid compound BG95, which could be utilized for intracellular visualization by confocal imaging and a tracking analysis in virus-infected primary human fibroblasts. As an important finding, BG95 accumulated in mitochondria visualized by anti-prohibitin and MitoTracker staining, and induced statistically significant changes of mitochondrial morphology, distinct from those induced by HCMV infection. Notably, mitochondrial membrane potential was found substantially reduced by BG95, an effect apparently counteracting efficient HCMV replication, which requires active mitochondria and upregulated energy levels. This finding was consistent with binding properties of artesunate-like compounds to mitochondrial proteins and thereby suggested a new mechanistic aspect. Combined, the present study underlines an important role of mitochondria in the multifaceted, host-directed antiviral mechanism of this drug class, postulating a new mitochondria-specific mode of protein targeting.
Collapse
|
14
|
Rollins MG, Jha S, Bartom ET, Walsh D. RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity within a loop domain. J Cell Sci 2019; 132:jcs.228908. [PMID: 31118235 DOI: 10.1242/jcs.228908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Receptor of activated protein C kinase 1 (RACK1) is a highly conserved eukaryotic protein that regulates several aspects of mRNA translation; yet, how it does so, remains poorly understood. Here we show that, although RACK1 consists largely of conserved β-propeller domains that mediate binding to several other proteins, a short interconnecting loop between two of these blades varies across species to control distinct RACK1 functions during translation. Mutants and chimeras revealed that the amino acid composition of the loop is optimized to regulate interactions with eIF6, a eukaryotic initiation factor that controls 60S biogenesis and 80S ribosome assembly. Separately, phylogenetics revealed that, despite broad sequence divergence of the loop, there is striking conservation of negatively charged residues amongst protists and dicot plants, which is reintroduced to mammalian RACK1 by poxviruses through phosphorylation. Although both charged and uncharged loop mutants affect eIF6 interactions, only a negatively charged plant - but not uncharged yeast or human loop - enhances translation of mRNAs with adenosine-rich 5' untranslated regions (UTRs). Our findings reveal how sequence plasticity within the RACK1 loop confers multifunctionality in translational control across species.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sujata Jha
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Root A. Do cells use passwords in cell-state transitions? Is cell signaling sometimes encrypted? Theory Biosci 2019; 139:87-93. [PMID: 31175621 DOI: 10.1007/s12064-019-00295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 06/03/2019] [Indexed: 11/28/2022]
Abstract
Organisms must maintain proper regulation including defense and healing. Life-threatening problems may be caused by pathogens or by a multicellular organism's own cells through cancer or autoimmune disorders. Life evolved solutions to these problems that can be conceptualized through the lens of information security, which is a well-developed field in computer science. Here I argue that taking an information security view of cells is not merely semantics, but useful to explain features of signaling, regulation, and defense. An information security perspective also offers a conduit for cross-fertilization of advanced ideas from computer science and the potential for biology to inform computer science. First, I consider whether cells use passwords, i.e., initiation sequences that are required for subsequent signals to have effects, by analyzing the concept of pioneer transcription factors in chromatin regulation and cellular reprogramming. Second, I consider whether cells may encrypt signal transduction cascades. Encryption could benefit cells by making it more difficult for pathogens or oncogenes to hijack cell networks. By using numerous molecules, cells may gain a security advantage in particular against viruses, whose genome sizes are typically under selection pressure. I provide a simple conceptual argument for how cells may perform encryption through posttranslational modifications, complex formation, and chromatin accessibility. I invoke information theory to provide a criterion of an entropy spike to assess whether a signaling cascade has encryption-like features. I discuss how the frequently invoked concept of context dependency may oversimplify more advanced features of cell signaling networks, such as encryption. Therefore, by considering that biochemical networks may be even more complex than commonly realized we may be better able to understand defenses against pathogens and pathologies.
Collapse
Affiliation(s)
- Alex Root
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
17
|
The Human Cytomegalovirus UL38 protein drives mTOR-independent metabolic flux reprogramming by inhibiting TSC2. PLoS Pathog 2019; 15:e1007569. [PMID: 30677091 PMCID: PMC6363234 DOI: 10.1371/journal.ppat.1007569] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/05/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Human Cytomegalovirus (HCMV) infection induces several metabolic activities that are essential for viral replication. Despite the important role that this metabolic modulation plays during infection, the viral mechanisms involved are largely unclear. We find that the HCMV UL38 protein is responsible for many aspects of HCMV-mediated metabolic activation, with UL38 being necessary and sufficient to drive glycolytic activation and induce the catabolism of specific amino acids. UL38's metabolic reprogramming role is dependent on its interaction with TSC2, a tumor suppressor that inhibits mTOR signaling. Further, shRNA-mediated knockdown of TSC2 recapitulates the metabolic phenotypes associated with UL38 expression. Notably, we find that in many cases the metabolic flux activation associated with UL38 expression is largely independent of mTOR activity, as broad spectrum mTOR inhibition does not impact UL38-mediated induction of glycolysis, glutamine consumption, or the secretion of proline or alanine. In contrast, the induction of metabolite concentrations observed with UL38 expression are largely dependent on active mTOR. Collectively, our results indicate that the HCMV UL38 protein induces a pro-viral metabolic environment via inhibition of TSC2.
Collapse
|
18
|
Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I. RNA m 6 A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 2018; 32:1472-1484. [PMID: 30463905 PMCID: PMC6295168 DOI: 10.1101/gad.319475.118] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
In this study, Rubio et al. researched how the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses. They show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase, and their results demonstrate that responses to nonmicrobial dsDNA in uninfected cells are regulated by enzymes controlling m6A epitranscriptomic changes. Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3′ untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNβ production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.
Collapse
Affiliation(s)
- Rosa M Rubio
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Christopher Bianco
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Letitia Thompson
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.,Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
19
|
HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection? Viruses 2018; 10:v10100533. [PMID: 30274264 PMCID: PMC6213175 DOI: 10.3390/v10100533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of peripheral blood monocytes plays a key role in the hematogenous dissemination of the virus to multiple organ systems following primary infection or reactivation of latent virus in the bone marrow. Monocytes have a short life span of 1⁻3 days in circulation; thus, HCMV must alter their survival and differentiation to utilize these cells and their differentiated counterparts-macrophages-for dissemination and long term viral persistence. Because monocytes are not initially permissive for viral gene expression and replication, HCMV must control host-derived factors early during infection to prevent apoptosis or programmed cell death prior to viral induced differentiation into naturally long-lived macrophages. This review provides a short overview of HCMV infection of monocytes and describes how HCMV has evolved to utilize host cell anti-apoptotic pathways to allow infected monocytes to bridge the 48⁻72 h viability gate so that differentiation into a long term stable mature cell can occur. Because viral gene expression is delayed in monocytes following initial infection and only occurs (begins around two to three weeks post infection in our model) following what appears to be complete differentiation into mature macrophages or dendritic cells, or both; virally-encoded anti-apoptotic gene products cannot initially control long term infected cell survival. Anti-apoptotic viral genes are discussed in the second section of this review and we argue they would play an important role in long term macrophage or dendritic cell survival following infection-induced differentiation.
Collapse
|
20
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
21
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
22
|
Restriction of Human Cytomegalovirus Replication by ISG15, a Host Effector Regulated by cGAS-STING Double-Stranded-DNA Sensing. J Virol 2017; 91:JVI.02483-16. [PMID: 28202760 DOI: 10.1128/jvi.02483-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Accumulation of the interferon-stimulated gene 15 (ISG15) protein product, which is reversibly conjugated to numerous polypeptide targets, impacts the proteome and physiology of uninfected and infected cells. While many viruses, including human cytomegalovirus (HCMV), blunt host antiviral defenses by limiting ISG expression, the overall abundance of ISG15 monomer and protein conjugates rises in HCMV-infected cells. However, the molecular signals underlying ISG15 accumulation and whether the ISG15 polypeptide itself influences HCMV infection biology remain unknown. Here, we establish that the ISG15 gene product itself directly regulates HCMV replication and that its accumulation restricts productive virus growth. Although ISG15 monomer and protein conjugate accumulation was induced in cells infected with UV-inactivated HCMV, it was subsequently reduced, but not eliminated, by an immediate-early (IE) or early (E) virus-encoded function(s). Instead, HCMV-induced ISG15 monomer and protein conjugate accumulation was dependent upon the double-stranded DNA (dsDNA) sensor cyclic GMP-AMP synthase (cGAS), the innate immune adaptor STING, and interferon signaling. Significantly, dsDNA itself was sufficient to induce cGAS-, STING-, and interferon signaling-dependent ISG15 monomer and conjugate protein accumulation in uninfected cells. Accumulation of ISGylated proteins in uninfected cells treated with dsDNA was prevented by expressing the HCMV multifunctional IE1 transactivator. This demonstrates that expression of a single host interferon-stimulated gene, ISG15, restricts HCMV replication, and that IE1 is sufficient to blunt ISGylation in response to dsDNA sensing in uninfected cells. Moreover, it establishes that ISGylation modifies the proteomes of virus-infected and uninfected normal cells in response to cell-intrinsic dsDNA sensing dependent upon cGAS-STING.IMPORTANCE By antagonizing type I interferon production and action, many viruses, including human cytomegalovirus (HCMV), evade host defenses. However, levels of the interferon-induced ISG15 protein, which is covalently conjugated to host and viral proteins, increase in HCMV-infected cells. How ISG15 accumulation is regulated and whether the ISG15 polypeptide influences HCMV replication remain unknown. This study establishes that ISG15 itself restricts HCMV replication and that HCMV-induced ISG15 accumulation is triggered by host defenses that detect cytoplasmic double-stranded DNA (dsDNA). Remarkably, dsDNA triggered ISG15 accumulation even in uninfected cells, and this was reduced by HCMV IE1 expression. This shows that ISG15 itself controls the replication of HCMV, which causes life-threatening disease among the immunocompromised and is a significant source of congenital morbidity and mortality among newborns. Moreover, it demonstrates that ISG15 modifies the uninfected cell proteome in response to dsDNA, potentially impacting responses to DNA vaccines, gene therapy, and autoimmune disease pathogenesis.
Collapse
|
23
|
Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. J Virol 2016; 90:10715-10727. [PMID: 27654292 DOI: 10.1128/jvi.01050-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous human pathogen that increases the morbidity and mortality of immunocompromised individuals. The current FDA-approved treatments for CMV infection are intended to be virus specific, yet they have significant adverse side effects, including nephrotoxicity and hematological toxicity. Thus, there is a medical need for safer and more effective CMV therapeutics. Using a high-content screen, we identified the cardiac glycoside convallatoxin as an effective compound that inhibits CMV infection. Using a panel of cardiac glycoside variants, we assessed the structural elements critical for anti-CMV activity by both experimental and in silico methods. Analysis of the antiviral effects, toxicities, and pharmacodynamics of different variants of cardiac glycosides identified the mechanism of inhibition as reduction of methionine import, leading to decreased immediate-early gene translation without significant toxicity. Also, convallatoxin was found to dramatically reduce the proliferation of clinical CMV strains, implying that its mechanism of action is an effective strategy to block CMV dissemination. Our study has uncovered the mechanism and structural elements of convallatoxin, which are important for effectively inhibiting CMV infection by targeting the expression of immediate-early genes. IMPORTANCE Cytomegalovirus is a highly prevalent virus capable of causing severe disease in certain populations. The current FDA-approved therapeutics all target the same stage of the viral life cycle and induce toxicity and viral resistance. We identified convallatoxin, a novel cell-targeting antiviral that inhibits CMV infection by decreasing the synthesis of viral proteins. At doses low enough for cells to tolerate, convallatoxin was able to inhibit primary isolates of CMV, including those resistant to the anti-CMV drug ganciclovir. In addition to identifying convallatoxin as a novel antiviral, limiting mRNA translation has a dramatic impact on CMV infection and proliferation.
Collapse
|
24
|
Jan E, Mohr I, Walsh D. A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annu Rev Virol 2016; 3:283-307. [PMID: 27501262 DOI: 10.1146/annurev-virology-100114-055014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although viruses require cellular functions to replicate, their absolute dependence upon the host translation machinery to produce polypeptides indispensable for their reproduction is most conspicuous. Despite their incredible diversity, the mRNAs produced by all viruses must engage cellular ribosomes. This has proven to be anything but a passive process and has revealed a remarkable array of tactics for rapidly subverting control over and dominating cellular regulatory pathways that influence translation initiation, elongation, and termination. Besides enforcing viral mRNA translation, these processes profoundly impact host cell-intrinsic immune defenses at the ready to deny foreign mRNA access to ribosomes and block protein synthesis. Finally, genome size constraints have driven the evolution of resourceful strategies for maximizing viral coding capacity. Here, we review the amazing strategies that work to regulate translation in virus-infected cells, highlighting both virus-specific tactics and the tremendous insight they provide into fundamental translational control mechanisms in health and disease.
Collapse
Affiliation(s)
- Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada;
| | - Ian Mohr
- Department of Microbiology and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016;
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611;
| |
Collapse
|
25
|
Schupp AK, Trilling M, Rattay S, Le-Trilling VTK, Haselow K, Stindt J, Zimmermann A, Häussinger D, Hengel H, Graf D. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes. J Virol 2016; 90:6686-6698. [PMID: 27170759 PMCID: PMC4944301 DOI: 10.1128/jvi.00299-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds.
Collapse
Affiliation(s)
- Anna-Kathrin Schupp
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Rattay
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le-Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katrin Haselow
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jan Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Albert Zimmermann
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- Department for Medical Microbiology and Hygiene, Institute of Virology, Albert-Ludwigs-University, Freiburg, Germany
| | - Dirk Graf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
26
|
Vincent HA, Ziehr B, Moorman NJ. Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation. Viruses 2016; 8:97. [PMID: 27089357 PMCID: PMC4848592 DOI: 10.3390/v8040097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells.
Collapse
Affiliation(s)
- Heather A Vincent
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Benjamin Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
28
|
Ho JJD, Wang M, Audas TE, Kwon D, Carlsson SK, Timpano S, Evagelou SL, Brothers S, Gonzalgo ML, Krieger JR, Chen S, Uniacke J, Lee S. Systemic Reprogramming of Translation Efficiencies on Oxygen Stimulus. Cell Rep 2016; 14:1293-1300. [PMID: 26854219 DOI: 10.1016/j.celrep.2016.01.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/29/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022] Open
Abstract
Protein concentrations evolve under greater evolutionary constraint than mRNA levels. Translation efficiency of mRNA represents the chief determinant of basal protein concentrations. This raises a fundamental question of how mRNA and protein levels are coordinated in dynamic systems responding to physiological stimuli. This report examines the contributions of mRNA abundance and translation efficiency to protein output in cells responding to oxygen stimulus. We show that changes in translation efficiencies, and not mRNA levels, represent the major mechanism governing cellular responses to [O2] perturbations. Two distinct cap-dependent protein synthesis machineries select mRNAs for translation: the normoxic eIF4F and the hypoxic eIF4F(H). O2-dependent remodeling of translation efficiencies enables cells to produce adaptive translatomes from preexisting mRNA pools. Differences in mRNA expression observed under different [O2] are likely neutral, given that they occur during evolution. We propose that mRNAs contain translation efficiency determinants for their triage by the translation apparatus on [O2] stimulus.
Collapse
Affiliation(s)
- J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Timothy E Audas
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Deukwoo Kwon
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Biostatistics and Bioinformatics Core, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Steven K Carlsson
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Sara Timpano
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sonia L Evagelou
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shaun Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Department of Psychiatry, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Mark L Gonzalgo
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Steven Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Biostatistics and Bioinformatics Core, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 31336, USA
| | - James Uniacke
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 31336, USA; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
29
|
The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions. PLoS Pathog 2015; 11:e1005288. [PMID: 26599541 PMCID: PMC4658056 DOI: 10.1371/journal.ppat.1005288] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. Viruses are fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt it for their own benefit. However, fundamental questions such as: what is the effect that infection has on the spectrum of host mRNAs that are being translated, and whether, and to what extent, a virus possesses mechanisms to commandeer the translation machinery are still hard to address. Here we show that by simultaneously examining the changes in transcription and translation along Human cytomegalovirus (HCMV) infection, we can uncover extensive transcriptional regulation, but also diverse and dynamic translational control. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, we take advantage of our measurements of translation (protein synthesis rate) and integrate these with mass spectrometry measurements (protein abundance). This integration allowed us to unbiasedly reveal dozens of cellular proteins that are being degraded during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.
Collapse
|
30
|
Abstract
Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
31
|
Brina D, Miluzio A, Ricciardi S, Biffo S. eIF6 anti-association activity is required for ribosome biogenesis, translational control and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:830-5. [PMID: 25252159 DOI: 10.1016/j.bbagrm.2014.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
Here we discuss the function of eukaryotic initiation factor 6 (eIF6; Tif6 in yeast). eIF6 binds 60S ribosomal subunits and blocks their joining to 40S. In this context, we propose that eIF6 impedes unproductive 80S formation, namely, the formation of 80S subunits without mRNA. Genetic evidence shows that eIF6 has a dual function: in yeast and mammals, nucleolar eIF6 is necessary for the biogenesis of 60S subunits. In mammals, cytoplasmic eIF6 is required for insulin and growth factor-stimulated translation. In contrast to other translation factors, eIF6 activity is not under mTOR control. The physiological significance of eIF6 impacts on cancer and on inherited Shwachman-Bodian-Diamond syndrome. eIF6 is overexpressed in specific human tumors. In a murine model of lymphomagenesis, eIF6 depletion leads to a striking increase of survival, without adverse effects. Shwachman-Bodian-Diamond syndrome is caused by loss of function of SBDS protein. In yeast, point mutations of Tif6, the yeast homolog of eIF6, rescue the quasi-lethal effect due to the loss of the SBDS homolog, Sdo1. We propose that eIF6 is a node regulator of ribosomal function and predict that prioritizing its pharmacological targeting will be of benefit in cancer and Shwachman-Bodian-Diamond syndrome. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Daniela Brina
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy
| | | | - Sara Ricciardi
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy
| | - Stefano Biffo
- INGM, "Romeo ed Enrica Invernizzi," Milano 20122, Italy; DISIT, Alessandria 15100, Italy.
| |
Collapse
|
32
|
Estrogen-related receptor α is required for efficient human cytomegalovirus replication. Proc Natl Acad Sci U S A 2014; 111:E5706-15. [PMID: 25512541 DOI: 10.1073/pnas.1422361112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An shRNA-mediated screen of the 48 human nuclear receptor genes identified multiple candidates likely to influence the production of human cytomegalovirus in cultured human fibroblasts, including the estrogen-related receptor α (ERRα), an orphan nuclear receptor. The 50-kDa receptor and a 76-kDa variant were induced posttranscriptionally following infection. Genetic and pharmacological suppression of the receptor reduced viral RNA, protein, and DNA accumulation, as well as the yield of infectious progeny. In addition, RNAs encoding multiple metabolic enzymes, including enzymes sponsoring glycolysis (enolase 1, triosephosphate isomerase 1, and hexokinase 2), were reduced when the function of ERRα was inhibited in infected cells. Consistent with the effect on RNAs, a substantial number of metabolites, which are normally induced by infection, were either not increased or were increased to a reduced extent in the absence of normal ERRα activity. We conclude that ERRα is needed for the efficient production of cytomegalovirus progeny, and we propose that the nuclear receptor contributes importantly to the induction of a metabolic environment that supports optimal cytomegalovirus replication.
Collapse
|
33
|
Faye MD, Graber TE, Holcik M. Assessment of selective mRNA translation in mammalian cells by polysome profiling. J Vis Exp 2014:e52295. [PMID: 25407425 PMCID: PMC4353390 DOI: 10.3791/52295] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulation of protein synthesis represents a key control point in cellular response to stress. In particular, discreet RNA regulatory elements were shown to allow to selective translation of specific mRNAs, which typically encode for proteins required for a particular stress response. Identification of these mRNAs, as well as the characterization of regulatory mechanisms responsible for selective translation has been at the forefront of molecular biology for some time. Polysome profiling is a cornerstone method in these studies. The goal of polysome profiling is to capture mRNA translation by immobilizing actively translating ribosomes on different transcripts and separate the resulting polyribosomes by ultracentrifugation on a sucrose gradient, thus allowing for a distinction between highly translated transcripts and poorly translated ones. These can then be further characterized by traditional biochemical and molecular biology methods. Importantly, combining polysome profiling with high throughput genomic approaches allows for a large scale analysis of translational regulation.
Collapse
Affiliation(s)
- Mame Daro Faye
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute and Department of Biochemistry, Microbiology and Immunology, University of Ottawa
| | | | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, University of Ottawa;
| |
Collapse
|
34
|
Manipulation of host pathways by human cytomegalovirus: insights from genome-wide studies. Semin Immunopathol 2014; 36:651-8. [PMID: 25260940 DOI: 10.1007/s00281-014-0443-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic targets and to reveal novel principles in cell biology. Over the past years, high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. In this review, we will discuss these new findings and how they impact our understanding of the biology of HCMV.
Collapse
|