1
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Chaouki G, Parry L, Vituret C, Jousse C, Leremboure M, Bourgne C, Mosoni L, Delorme Y, Djelloul-Mazouz M, Hermet J, Averous J, Bruhat A, Combaret L, Taillandier D, Papet I, Bindels LB, Fafournoux P, Maurin AC. Pre-cachectic changes in amino acid homeostasis precede activation of eIF2α signaling in the liver at the onset of C26 cancer-induced cachexia. iScience 2025; 28:112030. [PMID: 40124481 PMCID: PMC11928868 DOI: 10.1016/j.isci.2025.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/28/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The sequence of events associated with cancer cachexia induction needs to be further characterized. Using the C26 mouse model, we found that prior to cachexia, cancer progression was associated with increased levels of IL-6 and growth differentiation factor 15 (GDF15), highly induced production of positive acute phase proteins (APPs) and reduced levels of most amino acids in the systemic circulation, while signal transducer and activator of transcription 3 (STAT3) signaling was induced (1) in the growing spleen, alongside activation of ribosomal protein S6 (rpS6) and alpha subunit of eukaryotic translation initiation factor-2 (eIF2α) signalings, and (2) in the liver, alongside increased positive-APP expression, decreased albumin expression, and upregulation of autophagy. At the onset of cachexia, rpS6 and eIF2α signalings were concomitantly activated in the liver, with increased expression of activating transcription factor 4 (ATF4) target genes involved in amino acid synthesis and transport, as well as autophagy. Data show that pre-cachectic (pre-Cx) alterations in protein/aa homeostasis are followed by activation of eIF2α signaling in the liver, an adaptive mechanism likely regulating protein/amino acid metabolism upon progression to cachexia.
Collapse
Affiliation(s)
- Ghita Chaouki
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Laurent Parry
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Cyrielle Vituret
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Céline Bourgne
- Digital PCR Platform Facility of the CHU of Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Laurent Mosoni
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Yoann Delorme
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Mehdi Djelloul-Mazouz
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Julien Hermet
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Julien Averous
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Alain Bruhat
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Lydie Combaret
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Daniel Taillandier
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Isabelle Papet
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Brussels, Belgium
- Welbio Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Fafournoux
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Falcón P, Brito Á, Escandón M, Roa JF, Martínez NW, Tapia-Godoy A, Farfán P, Matus S. GCN2-Mediated eIF2α Phosphorylation Is Required for Central Nervous System Remyelination. Int J Mol Sci 2025; 26:1626. [PMID: 40004088 PMCID: PMC11855834 DOI: 10.3390/ijms26041626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Under conditions of amino acid deficiency, mammalian cells activate a nutrient-sensing kinase known as general control nonderepressible 2 (GCN2). The activation of GCN2 results in the phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α), which can be phosphorylated by three other three integrated stress response (ISR) kinases, reducing overall protein synthesis. GCN2 activation also promotes the translation of specific mRNAs, some of which encode transcription factors that enhance the transcription of genes involved in the synthesis, transport, and metabolism of amino acids to restore cellular homeostasis. The phosphorylation of eIF2α has been shown to protect oligodendrocytes, the cells responsible for producing myelin in the central nervous system during remyelination. Here, we explore the potential role of the kinase GCN2 in the myelination process. We challenged mice deficient in the GCN2-encoding gene with a pharmacological demyelinating stimulus (cuprizone) and evaluated the recovery of myelin as well as ISR activation through the levels of eIF2α phosphorylation. Our findings indicate that GCN2 controls the establishment of myelin by fine-tuning its abundance and morphology in the central nervous system. We also found that GCN2 is essential for remyelination. Surprisingly, we discovered that GCN2 is necessary to maintain eIF2α levels during remyelination.
Collapse
Affiliation(s)
- Paulina Falcón
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
| | - Álvaro Brito
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
| | - Marcela Escandón
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Ph.D. “Program in Cell Biology and Biomedicine”, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Francisco Roa
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Ph.D. “Program in Cell Biology and Biomedicine”, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Nicolas W. Martínez
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Ariel Tapia-Godoy
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
| | - Pamela Farfán
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
| | - Soledad Matus
- Fundación Ciencia & Vida, Avenida del Valle 725, Huechuraba, Santiago 8580704, Chile; (P.F.); (Á.B.); (M.E.); (J.F.R.); (N.W.M.); (A.T.-G.); (P.F.)
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580704, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| |
Collapse
|
4
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Takaoka M, Tadross JA, Al-Hadithi ABAK, Zhao X, Villena-Gutiérrez R, Tromp J, Absar S, Au M, Harrison J, Coll AP, Marciniak SJ, Rimmington D, Oliver E, Ibáñez B, Voors AA, O’Rahilly S, Mallat Z, Goodall JC. GDF15 antagonism limits severe heart failure and prevents cardiac cachexia. Cardiovasc Res 2024; 120:2249-2260. [PMID: 39312445 PMCID: PMC11687397 DOI: 10.1093/cvr/cvae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/25/2024] Open
Abstract
AIMS Heart failure and associated cachexia is an unresolved and important problem. This study aimed to determine the factors that contribute to cardiac cachexia in a new model of heart failure in mice that lack the integrated stress response (ISR) induced eIF2α phosphatase, PPP1R15A. METHODS AND RESULTS Mice were irradiated and reconstituted with bone marrow cells. Mice lacking functional PPP1R15A, exhibited dilated cardiomyopathy and severe weight loss following irradiation, whilst wild-type mice were unaffected. This was associated with increased expression of Gdf15 in the heart and increased levels of GDF15 in circulation. We provide evidence that the blockade of GDF15 activity prevents cachexia and slows the progression of heart failure. We also show the relevance of GDF15 to lean mass and protein intake in patients with heart failure. CONCLUSION Our data suggest that cardiac stress mediates a GDF15-dependent pathway that drives weight loss and worsens cardiac function. Blockade of GDF15 could constitute a novel therapeutic option to limit cardiac cachexia and improve clinical outcomes in patients with severe systolic heart failure.
Collapse
Affiliation(s)
- Minoru Takaoka
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John A Tadross
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
- Department of Histopathology, East Midlands & East of England Genomic Laboratory, Cambridge, UK
| | - Ali B A K Al-Hadithi
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Xiaohui Zhao
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Jasper Tromp
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Saw Swee Hock School of Public Health, National University of Singapore & the National University Health System, Singapore
| | - Shazia Absar
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus Au
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - James Harrison
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anthony P Coll
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Debra Rimmington
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Adriaan A Voors
- University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Stephen O’Rahilly
- Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science and Medical Research Council, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
- Paris Cardiovascular Research Center, Université Paris Cité, INSERM UMRS 970, Paris, France
| | - Jane C Goodall
- Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
6
|
Zhang Y, Hu J, Lu P, Yang R, Liang XF, Liu L. Addition of α-ketoglutaric acid (AKG) reduces deamination in Chinese perch (Siniperca chuatsi) fed with fermented soybean meal as a substitute for fishmeal. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:989-1002. [PMID: 38321345 DOI: 10.1007/s10695-024-01312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
To alleviate amino acid imbalances in fermented soybean meal as a replacement for fishmeal feeds, this study evaluated the effects of adding lysine (Lys), methionine (Met), and α-ketoglutaric acid (AKG) to fermented soybean meals for Chinese perch. Chinese perch (34 ± 3 g) were fed five diets for 66 days (fishmeal as the protein source of the basal diet [FM]; fermented soybean meal as a substitute for 30% fishmeal in the soybean meal diet [FSM]; addition of crystalline Lys and Met [AA]; addition of α-ketoglutaric acid [AKG]; and simultaneous addition of crystalline Lys, Met, and AKG [BA] to the soybean meal diet). At the end of the feeding trial, the FSM group had the highest feeding rate and the lowest weight gain rate among all the groups. The FM group had the highest protein retention and the lowest feed efficiency among the groups. The mRNA transcription level of genes related to the AMP-activating protein (AMPK) signaling pathway and amino acid response (AAR) signaling pathway (lkb1, atf4, and gcn2) were highest in the AA group (P < 0.05) but lower in the AKG and BA groups. In the AKG group, the mRNA transcription level of the gluconeogenesis pathway-related gene (pepck and g6pase) was significantly higher than that in the other four groups, but the mRNA transcription level of genes related to amino acid catabolism (gdh and ampd) was lower. Among all the groups, the FSM group had the lowest mRNA transcription level of genes associated with the mammalian target of rapamycin (mTOR) signaling pathway (mtor and s6k). These findings imply that the feeding rate of Chinese perch in the fermented soybean meal group was the highest, but the protein retention was the lowest, while the addition of Lys, Met, and AKG improved protein retention. In conclusion, the addition of AKG to fermented soybean meal as a fishmeal substitute reduced amino acid deamination, enhanced gluconeogenesis, and increased protein deposition, which contributed to the growth of Chinese perch, alleviated amino acid imbalances, and improved the feed utilization of Chinese perch.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiacheng Hu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Peisong Lu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ru Yang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Liwei Liu
- College of Fisheries, Chinese Perch Research Center, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Wang X, Peng F, Yuan S, Huang Z, Tang L, Chen S, Liu J, Fu W, Peng L, Liu W, Xiao Y. GCN2-eIF2α signaling pathway negatively regulates the growth of triploid crucian carp. Genomics 2024; 116:110832. [PMID: 38518898 DOI: 10.1016/j.ygeno.2024.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fangyuan Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shuli Yuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhen Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Lingwei Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Song Chen
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China; College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
8
|
Ssu72 phosphatase is essential for thermogenic adaptation by regulating cytosolic translation. Nat Commun 2023; 14:1097. [PMID: 36841836 PMCID: PMC9968297 DOI: 10.1038/s41467-023-36836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Brown adipose tissue (BAT) plays a pivotal role in maintaining body temperature and energy homeostasis. BAT dysfunction is associated with impaired metabolic health. Here, we show that Ssu72 phosphatase is essential for mRNA translation of genes required for thermogenesis in BAT. Ssu72 is found to be highly expressed in BAT among adipose tissue depots, and the expression level of Ssu72 is increased upon acute cold exposure. Mice lacking adipocyte Ssu72 exhibit cold intolerance during acute cold exposure. Mechanistically, Ssu72 deficiency alters cytosolic mRNA translation program through hyperphosphorylation of eIF2α and reduces translation of mitochondrial oxidative phosphorylation (OXPHOS) subunits, resulting in mitochondrial dysfunction and defective thermogenesis in BAT. In addition, metabolic dysfunction in Ssu72-deficient BAT returns to almost normal after restoring Ssu72 expression. In summary, our findings demonstrate that cold-responsive Ssu72 phosphatase is involved in cytosolic translation of key thermogenic effectors via dephosphorylation of eIF2α in brown adipocytes, providing insights into metabolic benefits of Ssu72.
Collapse
|
9
|
Yuan F, Wu S, Zhou Z, Jiao F, Yin H, Niu Y, Jiang H, Chen S, Guo F. Leucine deprivation results in antidepressant effects via GCN2 in AgRP neurons. LIFE METABOLISM 2023; 2:load004. [PMID: 39872511 PMCID: PMC11748975 DOI: 10.1093/lifemeta/load004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 01/30/2025]
Abstract
Essential amino acids (EAAs) are crucial nutrients, whose levels change in rodents and patients with depression. However, how the levels of a single EAA affects depressive behaviors remains elusive. Here, we demonstrate that although deprivation of the EAA leucine has no effect in unstressed mice, it remarkably reverses the depression-like behaviors induced by chronic restraint stress (CRS). This beneficial effect is independent of feeding and is applicable to the dietary deficiency of other EAAs. Furthermore, the effect of leucine deprivation is suppressed by central injection of leucine or mimicked by central injection of leucinol. Moreover, hypothalamic agouti-related peptide (AgRP) neural activity changes during CRS and leucine deprivation, and chemogenetically inhibiting AgRP neurons eliminates the antidepressant effects of leucine deprivation. Finally, the leucine deprivation-regulated behavioral effects are mediated by amino acid sensor general control non-derepressible 2 (GCN2) in AgRP neurons. Taken together, our results suggest a new drug target and/or dietary intervention for the reduction of depressive symptoms.
Collapse
Affiliation(s)
- Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shangming Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ziheng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuxin Jiao
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanrui Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuguo Niu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Haizhou Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Carraro V, Combaret L, Coudy-Gandilhon C, Parry L, Averous J, Maurin AC, Jousse C, Voyard G, Fafournoux P, Papet I, Bruhat A. Activation of the eIF2α-ATF4 Pathway by Chronic Paracetamol Treatment Is Prevented by Dietary Supplementation with Cysteine. Int J Mol Sci 2022; 23:ijms23137196. [PMID: 35806203 PMCID: PMC9266523 DOI: 10.3390/ijms23137196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic treatment with acetaminophen (APAP) induces cysteine (Cys) and glutathione (GSH) deficiency which leads to adverse metabolic effects including muscle atrophy. Mammalian cells respond to essential amino acid deprivation through the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Phosphorylated eIF2α leads to the recruitment of activating transcription factor 4 (ATF4) to specific CCAAT/enhancer-binding protein-ATF response element (CARE) located in the promoters of target genes. Our purpose was to study the activation of the eIF2α-ATF4 pathway in response to APAP-induced Cys deficiency, as well as the potential contribution of the eIF2α kinase GCN2 and the effect of dietary supplementation with Cys. Our results showed that chronic treatment with APAP activated both GCN2 and PERK eIF2α kinases and downstream target genes in the liver. Activation of the eIF2α-ATF4 pathway in skeletal muscle was accompanied by muscle atrophy even in the absence of GCN2. The dietary supplementation with cysteine reversed APAP-induced decreases in plasma-free Cys, liver GSH, muscle mass, and muscle GSH. Our new findings demonstrate that dietary Cys supplementation also reversed the APAP-induced activation of GCN2 and PERK and downstream ATF4-target genes in the liver.
Collapse
Affiliation(s)
- Valérie Carraro
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Laurent Parry
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Julien Averous
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Anne-Catherine Maurin
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Céline Jousse
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Guillaume Voyard
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
| | - Pierre Fafournoux
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
| | - Isabelle Papet
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
- Correspondence: (I.P.); (A.B.)
| | - Alain Bruhat
- Université Clermont Auvergne, INRAE, UNH Unité de Nutrition Humaine, UMR1019, F-63000 Clermont-Ferrand, France; (V.C.); (L.C.); (C.C.-G.); (L.P.); (J.A.); (A.-C.M.); (C.J.); (P.F.)
- Correspondence: (I.P.); (A.B.)
| |
Collapse
|
11
|
Zou JM, Zhu QS, Liang H, Lu HL, Liang XF, He S. Lysine Deprivation Regulates Npy Expression via GCN2 Signaling Pathway in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2022; 23:ijms23126727. [PMID: 35743178 PMCID: PMC9223478 DOI: 10.3390/ijms23126727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.
Collapse
Affiliation(s)
- Jia-Ming Zou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang-Sheng Zhu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Lin Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| |
Collapse
|
12
|
eIF2α Phosphorylation in Response to Nutritional Deficiency and Stressors in the Aquaculture Fish, Rachycentron canadum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates the response of the marine fish cobia, Rachycentron canadum, to stressors as measured by phosphorylation of the α-subunit of the translational initiation factor, eIF2. eIF2α is the target of phosphorylation by a family of kinases that respond to a range of physiological stressors. Phosphorylation of eIF2α inhibits overall protein synthesis, but also facilitates the reprogramming of gene expression to adapt to, and recover from, stress. The deduced coding sequence of cobia eIF2α has 94% identity to both zebrafish (Danio rerio) and human eIF2α sequences with identical phosphorylation and kinase docking sites. Here we use cobia larvae and a cobia cell line derived from muscle (Cm cells) to investigate the response of cobia eIF2α to various stressors. In Cm cells, phosphorylation of eIF2α is increased by nutrient deficiency and endoplasmic reticulum stress (ER stress), consistent with the activation of the eIF2 kinases, GCN2, and PERK. In cobia juveniles, diet and water temperature affect the phosphorylation state of eIF2α. We conclude that evaluation of eIF2α phosphorylation could function as an early marker to evaluate diet, environmental stressors, and disease in cobia and may be of particular use in optimizing conditions for rearing cobia larvae and juveniles.
Collapse
|
13
|
Abstract
BACKGROUND Obesity develops due to an imbalance in energy homeostasis, wherein energy intake exceeds energy expenditure. Accumulating evidence shows that manipulations of dietary protein and their component amino acids affect the energy balance, resulting in changes in fat mass and body weight. Amino acids are not only the building blocks of proteins but also serve as signals regulating multiple biological pathways. SCOPE OF REVIEW We present the currently available evidence regarding the effects of dietary alterations of a single essential amino acid (EAA) on energy balance and relevant signaling mechanisms at both central and peripheral levels. We summarize the association between EAAs and obesity in humans and the clinical use of modifying the dietary EAA composition for therapeutic intervention in obesity. Finally, similar mechanisms underlying diets varying in protein levels and diets altered of a single EAA are described. The current review would expand our understanding of the contribution of protein and amino acids to energy balance control, thus helping discover novel therapeutic approaches for obesity and related diseases. MAJOR CONCLUSIONS Changes in circulating EAA levels, particularly increased branched-chain amino acids (BCAAs), have been reported in obese human and animal models. Alterations in dietary EAA intake result in improvements in fat and weight loss in rodents, and each has its distinct mechanism. For example, leucine deprivation increases energy expenditure, reduces food intake and fat mass, primarily through regulation of the general control nonderepressible 2 (GCN2) and mammalian target of rapamycin (mTOR) signaling. Methionine restriction by 80% decreases fat mass and body weight while developing hyperphagia, primarily through fibroblast growth factor 21 (FGF-21) signaling. Some effects of diets with different protein levels on energy homeostasis are mediated by similar mechanisms. However, reports on the effects and underlying mechanisms of dietary EAA imbalances on human body weight are few, and more investigations are needed in future.
Collapse
Affiliation(s)
- Fei Xiao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China; Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China.
| |
Collapse
|
14
|
Yin H, Yuan F, Jiao F, Niu Y, Jiang X, Deng J, Guo Y, Chen S, Zhai Q, Hu C, Li Y, Guo F. Intermittent Leucine Deprivation Produces Long-lasting Improvement in Insulin Sensitivity by Increasing Hepatic Gcn2 Expression. Diabetes 2022; 71:206-218. [PMID: 34740902 DOI: 10.2337/db21-0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022]
Abstract
Leucine deprivation improves insulin sensitivity; however, whether and how this effect can be extended are unknown. We hypothesized that intermittent leucine deprivation (ILD) might produce a long-term effect on improved insulin sensitivity via the formation of metabolic memory. Consistently, seven ILD cycles of treatment (1-day leucine-deficient diet, 3-day control diet) in mice produced a long-lasting (after a control diet was resumed for 49 days) effect on improved whole-body and hepatic insulin sensitivity in mice, indicating the potential formation of metabolic memory. Furthermore, the effects of ILD depended on hepatic general control nondepressible 2 (GCN2) expression, as verified by gain- and loss-of-function experiments. Moreover, ILD increased Gcn2 expression by reducing its DNA methylation at two CpG promoter sites controlled by demethylase growth arrest and DNA damage inducible b. Finally, ILD also improved insulin sensitivity in insulin-resistant mice. Thus, ILD induces long-lasting improvements in insulin sensitivity by increasing hepatic Gcn2 expression via a reduction in its DNA methylation. These results provide novel insights into understanding of the link between leucine deprivation and insulin sensitivity, as well as potential nutritional intervention strategies for treating insulin resistance and related diseases. We also provide evidence for liver-specific metabolic memory after ILD and novel epigenetic mechanisms for Gcn2 regulation.
Collapse
Affiliation(s)
- Hanrui Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Feixiang Yuan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Jiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yuguo Niu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Jiang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiali Deng
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yajie Guo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shanghai Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiwei Zhai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feifan Guo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Wu CT, Chaffin AT, Ryan KK. Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior. J Clin Med 2022; 11:580. [PMID: 35160033 PMCID: PMC8836936 DOI: 10.3390/jcm11030580] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion. Initial reports describing FGF21 as a 'starvation hormone' have now been further refined. FGF21 is now better understood as an endocrine mediator of the intracellular stress response to various nutritional manipulations, including excess sugars and alcohol, caloric deficits, a ketogenic diet, and amino acid restriction. We discuss FGF21's effects on energy intake and macronutrient choice, together with our current understanding of the underlying neural mechanisms. We argue that the behavioral effects of FGF21 function primarily to maintain systemic macronutrient homeostasis, and in particular to maintain an adequate supply of protein and amino acids for use by the cells.
Collapse
Affiliation(s)
| | | | - Karen K. Ryan
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA 95616, USA; (C.-T.W.); (A.T.C.)
| |
Collapse
|
16
|
Wu Y, Li B, Li L, Mitchell SE, Green CL, D'Agostino G, Wang G, Wang L, Li M, Li J, Niu C, Jin Z, Wang A, Zheng Y, Douglas A, Speakman JR. Very-low-protein diets lead to reduced food intake and weight loss, linked to inhibition of hypothalamic mTOR signaling, in mice. Cell Metab 2021; 33:888-904.e6. [PMID: 33667386 DOI: 10.1016/j.cmet.2021.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/05/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat. Contrasting the expectation, very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.
Collapse
Affiliation(s)
- Yingga Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Giuseppe D'Agostino
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Jianbo Li
- University of Dali, Dali, Yunnan 671000, PRC
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC
| | | | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, PRC
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PRC; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PRC; CAS Center of Excellence in Animal Evolution and Genetics, Kunming, PRC.
| |
Collapse
|
17
|
Bruhat A, Papet I, Fafournoux P. Complex Mechanisms Link Dietary Sulfur Amino Acid Restriction to Health Improvement. J Nutr 2021; 151:749-750. [PMID: 33693727 DOI: 10.1093/jn/nxaa457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alain Bruhat
- PROTEOSTASIS Team, Unit of Human Nutrition, Clermont Auvergne University, National Institute of Agronomic Research (INRAe), Clermont-Ferrand, France
| | - Isabelle Papet
- PROTEOSTASIS Team, Unit of Human Nutrition, Clermont Auvergne University, National Institute of Agronomic Research (INRAe), Clermont-Ferrand, France
| | - Pierre Fafournoux
- PROTEOSTASIS Team, Unit of Human Nutrition, Clermont Auvergne University, National Institute of Agronomic Research (INRAe), Clermont-Ferrand, France
| |
Collapse
|
18
|
Abstract
Sensing and responding to changes in nutrient levels, including those of glucose, lipids, and amino acids, by the body is necessary for survival. Accordingly, perturbations in nutrient sensing are tightly linked with human pathologies, particularly metabolic diseases such as obesity, type 2 diabetes mellitus, and other complications of metabolic syndromes. The conventional view is that amino acids are fundamental elements for protein and peptide synthesis, while recent studies have revealed that amino acids are also important bioactive molecules that play key roles in signaling pathways and metabolic regulation. Different pathways that sense intracellular and extracellular levels of amino acids are integrated and coordinated at the organismal level, and, together, these pathways maintain whole metabolic homeostasis. In this review, we discuss the studies describing how important sensing signals respond to amino acid availability and how these sensing mechanisms modulate metabolic processes, including energy, glucose, and lipid metabolism. We further discuss whether dysregulation of amino acid sensing signals can be targeted to promote metabolic disorders, and discuss how to translate these mechanisms to treat human diseases. This review will help to enhance our overall understanding of the correlation between amino acid sensing and metabolic homeostasis, which have important implications for human health.
Collapse
Affiliation(s)
- Xiaoming Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:315-325. [PMID: 34225937 DOI: 10.1016/b978-0-12-820107-7.00019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysfunctional regulation of energy homeostasis results in increased bodyweight and obesity, eventually leading to type 2 diabetes mellitus. The infundibular nucleus (IFN) of the hypothalamus is the main regulator of energy homeostasis. The peptidergic neurons and glia cells of the IFN receive metabolic cues concerning energy state of the body from the circulation. The IFN can monitor hormones like insulin and leptin and nutrients like glucose and fatty acids. All these metabolic cues are integrated into an output signal regulating energy homeostasis through the release of neuropeptides. These neuropeptides are released in several inter- and extrahypothalamic brain regions involved in regulation of energy homeostasis. This review will give an overview of the peripheral signals involved in the regulation of energy homeostasis, the peptidergic neurons and glial cells of the IFN, and will highlight the main intra-hypothalamic projection sites of the IFN.
Collapse
Affiliation(s)
- Martin J T Kalsbeek
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology Metabolism, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Liu S, Cui S, Zhang X, Wang Y, Mi G, Gao Q. Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. FRONTIERS IN PLANT SCIENCE 2020; 11:576718. [PMID: 33343592 PMCID: PMC7746645 DOI: 10.3389/fpls.2020.576718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
As a primary food crop, maize is widely grown around the world. However, the deficiency of essential amino acids, such as lysine, tryptophan, and methionine, results in poor nutritional quality of maize. In addition, the protein concentration of maize declines with the increase in yield, which further reduces the nutritional quality. Here, the photosynthesis of leaves, grain amino acid composition, and stoichiometry of N and S are explored. The results show that N and S maintained the redox balance by increasing the content of glutathione in maize leaves, thereby enhancing the photosynthetic rate and maize yield. Simultaneously, the synergy of N and S increased the grain protein concentration and promoted amino acid balance by increasing the cysteine concentration in maize grains. The maize yield, grain protein concentration, and concentration of essential amino acids, such as lysine, tryptophan, and methionine, could be simultaneously increased in the N:S ratio range of 11.0 to 12.0. Overall, the synergy of N and S simultaneously improved the maize yield and nutritional quality by regulating the redox balance of maize leaves and the amino acids balance of grains, which provides a new theoretical basis and practical method for sustainable production of maize.
Collapse
Affiliation(s)
- Shuoran Liu
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Shuai Cui
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Xue Zhang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Yin Wang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Qiang Gao
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| |
Collapse
|
21
|
Sans MD, Crozier SJ, Vogel NL, D'Alecy LG, Williams JA. Dietary Protein and Amino Acid Deficiency Inhibit Pancreatic Digestive Enzyme mRNA Translation by Multiple Mechanisms. Cell Mol Gastroenterol Hepatol 2020; 11:99-115. [PMID: 32735995 PMCID: PMC7596297 DOI: 10.1016/j.jcmgh.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Chronic amino acid (AA) deficiency, as in kwashiorkor, reduces the size of the pancreas through an effect on mammalian target of rapamycin complex 1 (mTORC1). Because of the physiological importance of AAs and their role as a substrate, a stimulant of mTORC1, and protein synthesis, we studied the effect of acute protein and AA deficiency on the response to feeding. METHODS ICR/CD-1 mice were fasted overnight and refed for 2 hours with 4 different isocaloric diets: control (20% Prot); Protein-free (0% Prot); control (AA-based diet), and a leucine-free (No Leu). Protein synthesis, polysomal profiling, and the activation of several protein translation factors were analyzed in pancreas samples. RESULTS All diets stimulated the Protein Kinase-B (Akt)/mTORC1 pathway, increasing the phosphorylation of the kinase Akt, the ribosomal protein S6 (S6) and the formation of the eukaryotic initiation factor 4F (eIF4F) complex. Total protein synthesis and polysome formation were inhibited in the 0% Prot and No Leu groups to a similar extent, compared with the 20% Prot group. The 0% Prot diet partially reduced the Akt/mTORC1 pathway and the activity of the guanine nucleotide exchange factor eIF2B, without affecting eIF2α phosphorylation. The No Leu diet increased the phosphorylation of eIF2α and general control nonderepressible 2, and also inhibited eIF2B activity, without affecting mTORC1. Essential and nonessential AA levels in plasma and pancreas indicated a complex regulation of their cellular transport mechanisms and their specific effect on the synthesis of digestive enzymes. CONCLUSIONS These studies show that dietary AAs are important regulators of postprandial digestive enzyme synthesis, and their deficiency could induce pancreatic insufficiency and malnutrition.
Collapse
Affiliation(s)
- Maria Dolors Sans
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Stephen J Crozier
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nancy L Vogel
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Louis G D'Alecy
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - John A Williams
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
22
|
Activation of GCN2/ATF4 signals in amygdalar PKC-δ neurons promotes WAT browning under leucine deprivation. Nat Commun 2020; 11:2847. [PMID: 32504036 PMCID: PMC7275074 DOI: 10.1038/s41467-020-16662-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The browning of white adipose tissue (WAT) has got much attention for its potential beneficial effects on metabolic disorders, however, the nutritional factors and neuronal signals involved remain largely unknown. We sought to investigate whether WAT browning is stimulated by leucine deprivation, and whether the amino acid sensor, general control non-derepressible 2 (GCN2), in amygdalar protein kinase C-δ (PKC-δ) neurons contributes to this regulation. Our results show that leucine deficiency can induce WAT browning, which is unlikely to be caused by food intake, but is largely blocked by PKC-δ neuronal inhibition and amygdalar GCN2 deletion. Furthermore, GCN2 knockdown in amygdalar PKC-δ neurons blocks WAT browning, which is reversed by over-expression of amino acid responsive gene activating transcription factor 4 (ATF4), and is mediated by the activities of amygdalar PKC-δ neurons and the sympathetic nervous system. Our data demonstrate that GCN2/ATF4 can regulate WAT browning in amygdalar PKC-δ neurons under leucine deprivation. The browning of white adipose tissue has potential benefits on metabolic disorders, but the nutritional factors and neuronal signals that mediate browning remain incompletely understood. Here, the authors show that leucine deprivation can induce WAT browning via GCN2/ATF4 signaling in amygdalar PKC-δ neurons.
Collapse
|
23
|
Tian M, Heng J, Song H, Shi K, Lin X, Chen F, Guan W, Zhang S. Dietary Branched-Chain Amino Acids Regulate Food Intake Partly through Intestinal and Hypothalamic Amino Acid Receptors in Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6809-6818. [PMID: 31134808 DOI: 10.1021/acs.jafc.9b02381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Strategies to increase feed intake are of great importance for producing more meat in swine production. Intestinal and hypothalamic amino acid receptors are found to largely participate in feed intake regulation. The purpose of the current research is to study the function of branched-chain amino acid (BCAA) supplementation in the regulation of feed intake through sensors that can detect amino acids in piglets. Twenty-four piglets were assigned one of four treatments and fed one of the experimental diets for either a short period (Expt. 1) or a long period (Expt. 2): a normal protein diet (NP, 20.04% CP), a reduced-protein diet (RP, 17.05% CP), or a reduced-protein test diet supplemented with one of two doses of BCAAs (BCAA1, supplemented with 0.13% l-isoleucine, 0.09% l-leucine, and 0.23% l-valine; BCAA2, supplemented with the 150% standardized ileal digestibility BCAA requirement, as recommended by the National Research Council (2012)). In Expt. 1, no differences were observed in the feed intake among piglets fed different diets ( P > 0.05). In Expt. 2, compared with the RP group, the feed intake of piglets was significantly increased after sufficient BCAAs were supplemented in the BCAA1 group, which was associated with decreased cholecystokinin secretion ( P < 0.05), down-regulated expression of type-1 taste receptors 1/3 (T1R1/T1R3) in the intestine, as well as increased expression of pro-opiomelanocortin, activated general control nonderepressible 2 (GCN2), and eukaryotic initiation factor 2α (eIF2α) in the hypothalamus ( P < 0.05). However, the feed intake was decreased for unknown reasons when the piglets were fed a BCAA over-supplemented diet. Our study confirmed that a BCAA-deficient diet inhibited feed intake through two potential ways: regulating the amino acid T1R1/T1R3 receptor in the intestine or activating GCN2/eIF2α pathways in the hypothalamus.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Hanqing Song
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Kui Shi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Xiaofeng Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry , South China Agricultural University , Guangzhou 510642 , China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science , South China Agricultural University , Guangzhou , 510642 , China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
24
|
Pereira CM, Filev R, Dubiela FP, Brandão BB, Queiroz CM, Ludwig RG, Hipolide D, Longo BM, Mello LE, Mori MA, Castilho BA. The GCN2 inhibitor IMPACT contributes to diet-induced obesity and body temperature control. PLoS One 2019; 14:e0217287. [PMID: 31166980 PMCID: PMC6550387 DOI: 10.1371/journal.pone.0217287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
IMPACT, a highly conserved protein, is an inhibitor of the eIF2α kinase GCN2. In mammals, it is preferentially expressed in neurons. Knock-down of IMPACT expression in neuronal cells increases basal GCN2 activation and eIF2α phosphorylation and decreases translation initiation. In the mouse brain, IMPACT is particularly abundant in the hypothalamus. Here we describe that the lack of IMPACT in mice affects hypothalamic functions. Impact-/- mice (Imp-KO) are viable and have no apparent major phenotypic defect. The hypothalamus in these animals shows increased levels of eIF2α phosphorylation, as expected from the described role of IMPACT in inhibiting GCN2 and from its abundance in this brain region. When fed a normal chow, animals lacking IMPACT weight slightly less than wild-type mice. When fed a high-fat diet, Imp-KO animals gain substantially less weight due to lower food intake when compared to wild-type mice. STAT3 signaling was depressed in Imp-KO animals even though leptin levels were identical to the wild-type mice. This finding supports the observation that Imp-KO mice have defective thermoregulation upon fasting. This phenotype was partially dependent on GCN2, whereas the lean phenotype was independent of GCN2. Taken together, our results indicate that IMPACT contributes to GCN2-dependent and -independent mechanisms involved in the regulation of autonomic functions in response to energy availability.
Collapse
Affiliation(s)
- Catia M. Pereira
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Filev
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Francisco P. Dubiela
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna B. Brandão
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio M. Queiroz
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Raissa G. Ludwig
- Department of Biochemistry and Tissue Biology, UNICAMP, Campinas, Brazil
| | - Debora Hipolide
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz M. Longo
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz E. Mello
- Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A. Mori
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
25
|
He M, Huang XF, Gao G, Zhou T, Li W, Hu J, Chen J, Li J, Sun T. Olanzapine-induced endoplasmic reticulum stress and inflammation in the hypothalamus were inhibited by an ER stress inhibitor 4-phenylbutyrate. Psychoneuroendocrinology 2019; 104:286-299. [PMID: 30927713 DOI: 10.1016/j.psyneuen.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
Abstract
Antipsychotics are the most important treatment for schizophrenia. However, antipsychotics, particularly olanzapine and clozapine, are associated with severe weight gain/obesity side-effects. Although numerous studies have been carried out to identify the exact mechanisms of antipsychotic-induced weight gain, it is still important to consider other pathways. Endoplasmic reticulum (ER) stress signaling and its associated inflammation pathway is one of the most important pathways involved in regulation of energy balance. In the present study, we examined the role of hypothalamic protein kinase R like endoplasmic reticulum kinase- eukaryotic initiation factor 2α (PERK-eIF2α) signaling and the inflammatory IkappaB kinase β- nuclear factor kappa B (IKKβ-NFκB) signaling pathway in olanzapine-induced weight gain in female rats. In this study, we found that olanzapine significantly activated PERK-eIF2α and IKKβ-NFκB signaling in SH-SY5Y cells in a dose-dependent manner. Olanzapine treatment for 8 days in rats was associated with activated PERK-eIF2α signaling and IKKβ-NFκB signaling in the hypothalamus, accompanied by increased food intake and weight gain. Co-treatment with an ER stress inhibitor, 4-phenylbutyrate (4-PBA), decreased olanzapine-induced food intake and weight gain in a dose- and time-dependent manner. Moreover, 4-PBA dose-dependently inhibited olanzapine-induced activated PERK-eIF2α and IKKβ-NFκB signaling in the hypothalamus. These results suggested that hypothalamic ER stress may play an important role in antipsychotic-induced weight gain.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Ting Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jinqi Hu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jia Chen
- Wuhan Seventh Hospital, Wuhan, Hubei, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Zeitz JO, Käding SC, Niewalda IR, Machander V, de Paula Dorigam JC, Eder K. Effects of leucine supplementation on muscle protein synthesis and degradation pathways in broilers at constant dietary concentrations of isoleucine and valine. Arch Anim Nutr 2019; 73:75-87. [PMID: 30821190 DOI: 10.1080/1745039x.2019.1583519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study investigated the hypothesis that dietary concentrations of leucine (Leu) in excess of the breeder´s recommendations activates protein synthesis and decreases protein degradation in muscle of broilers. Day-old male Ross 308 broilers (n = 450) were phase-fed corn-soybean meal-based diets during starter (d 1-10), grower (d 11-22), and finisher (d 23-34) period. The basal diets fed to the control group (L0) met the broilers' requirements for nutrients and amino acids, and contained Leu, Leu:isoleucine (Ile) and Leu:valine (Val) ratios, close to those recommended by the breeder (Leu:Ile: 100:54, 100:52, 100:51; Leu:Val 100:64, 100:61, 100:58; in starter, grower and finisher diet, resp.). Basal diets were supplemented with Leu to exceed the breeder's recommendations by 35% (group L35) and 60% (group L60). Growth performance during 34 d, and carcass weights, and breast and thigh muscle weights on d 34 were similar among groups. Hepatic and muscle mRNA levels of genes involved in the somatotropic axis [growth hormone receptor, insulin-like growth factor (IGF)-1, IGF binding protein 2, IGF receptor] on d 34 were not influenced by Leu. In the breast muscle, relative mRNA abundances of genes involved in the mammalian target of rapamycin (mTOR) pathway of protein synthesis (mTOR, ribosomal p70 S6 kinase) and the ubiquitin-proteasome pathway of protein degradation (F-box only protein 32, Forkhead box protein O1, Muscle RING-finger protein-1) on d 34 were largely similar among groups. Likewise, relative phosphorylation and thus activation of mTOR and ribosomal protein S6 involved in the mTOR pathway, and of eukaryotic translation initiation factor 2A (eIF2a) involved in the general control nonderepressible 2 (GCN2)/eIF2a pathway of protein synthesis inhibition, were not influenced. These data indicate that dietary Leu concentrations exceeding the broiler´s requirements up to 60% neither influence protein synthesis nor degradation pathways nor muscle growth in growing broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Stella-Christin Käding
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | - Ines R Niewalda
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| | | | | | - Klaus Eder
- a Institute of Animal Nutrition and Nutritional Physiology , University of Giessen , Giessen , Germany
| |
Collapse
|
27
|
Methionine Restriction Partly Recapitulates the Sympathetically Mediated Enhanced Energy Expenditure Induced by Total Amino Acid Restriction in Rats. Nutrients 2019; 11:nu11030707. [PMID: 30917593 PMCID: PMC6470753 DOI: 10.3390/nu11030707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Total amino acid (AA) restriction promotes hyperphagia and energy expenditure. We determined whether (i) methionine restriction mimics the effects of total AA restriction, (ii) methionine supplementation attenuates these responses, and iii) sympathetic signaling mediates such effects. Rats were injected with either vehicle (V) or 6-hydroxydopamine (S) to induce chemical sympathectomy, and then randomized to four diets: 16% AA (16AA), 5% AA (5AA), 16% AA-methionine (16AA-Met), and 5% AA+methionine (5AA+Met). Propranolol or ondansetron were injected to examine the role of sympathetic and serotonergic signaling, respectively. 5AA, 5AA+Met, and 16AA-Met increased the food conversion rate for 1–3 weeks in the V and S groups, and increased mean energy expenditure in V group,; the magnitude of these changes was attenuated in the S group. Propranolol decreased the energy expenditure of V16AA, V5AA, and V5AA+Met and of S5AA, S5AA+Met, and S16AA-Met, whereas ondansetron decreased the energy expenditure in only the S groups. Compared to 16AA, the other V groups had reduced body weights from days 7–11 onwards and decreased lean masses throughout the study and the other S groups had decreased body weights and lean masses from day 14 onwards. Total AA restriction enhanced the energy expenditure and reduced the weight and lean mass; these effects were partly recapitulated by methionine restriction and were sympathetically mediated.
Collapse
|
28
|
Patel V, Bidault G, Chambers JE, Carobbio S, Everden AJT, Garcés C, Dalton LE, Gribble FM, Vidal-Puig A, Marciniak SJ. Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice. Sci Rep 2019; 9:2903. [PMID: 30814564 PMCID: PMC6393541 DOI: 10.1038/s41598-019-39562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a possible modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that female mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.
Collapse
Affiliation(s)
- Vruti Patel
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK ,0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0SP UK
| | - Guillaume Bidault
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Joseph E. Chambers
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Stefania Carobbio
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Angharad J. T. Everden
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Concepción Garcés
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Lucy E. Dalton
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK
| | - Fiona M. Gribble
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK
| | - Antonio Vidal-Puig
- 0000 0004 0622 5016grid.120073.7Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, CB2 0QQ UK ,0000 0004 0427 7672grid.52788.30Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Stefan J. Marciniak
- 0000000121885934grid.5335.0Cambridge Institute for Medical Research (CIMR), University of Cambridge Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY UK ,0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Rd, Cambridge, CB2 0SP UK
| |
Collapse
|
29
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Measuring the Ability of Mice to Sense Dietary Essential Amino Acid Deficiency: The Importance of Amino Acid Status and Timing. Cell Rep 2018; 16:2049-2050. [PMID: 27558824 DOI: 10.1016/j.celrep.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Comesaña S, Velasco C, Ceinos RM, López-Patiño MA, Míguez JM, Morais S, Soengas JL. Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake. Am J Physiol Regul Integr Comp Physiol 2018; 314:R201-R215. [DOI: 10.1152/ajpregu.00283.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To assess the hypothesis of central amino acid-sensing systems involved in the control of food intake in fish, we carried out two experiments in rainbow trout. In the first one, we injected intracerebroventricularly two different branched-chain amino acids (BCAAs), leucine and valine, and assessed food intake up to 48 h later. Leucine decreased and valine increased food intake. In a second experiment, 6 h after similar intracerebroventricular treatment we determined changes in parameters related to putative amino acid-sensing systems. Different areas of rainbow trout brain present amino acid-sensing systems responding to leucine (hypothalamus and telencephalon) and valine (telencephalon), while other areas (midbrain and hindbrain) do not respond to these treatments. The decreased food intake observed in fish treated intracerebroventricularly with leucine could relate to changes in mRNA abundance of hypothalamic neuropeptides [proopiomelanocortin (POMC), cocaine- and amphetamine-related transcript (CART), neuropeptide Y (NPY), and agouti-related peptide (AgRP)]. These in turn could relate to amino acid-sensing systems present in the same area, related to BCAA and glutamine metabolism, as well as mechanistic target of rapamycin (mTOR), taste receptors, and general control nonderepressible 2 (GCN2) kinase signaling. The treatment with valine did not affect amino acid-sensing parameters in the hypothalamus. These responses are comparable to those characterized in mammals. However, clear differences arise when comparing rainbow trout and mammals, in particular with respect to the clear orexigenic effect of valine, which could relate to the finding that valine partially stimulated two amino acid-sensing systems in the telencephalon. Another novel result is the clear effect of leucine on telencephalon, in which amino acid-sensing systems, but not neuropeptides, were activated as in the hypothalamus.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sofia Morais
- Lucta, Innovation Division, Autonomous University of Barcelona Research Park, Bellaterra, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
32
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
33
|
Deng J, Yuan F, Guo Y, Xiao Y, Niu Y, Deng Y, Han X, Guan Y, Chen S, Guo F. Deletion of ATF4 in AgRP Neurons Promotes Fat Loss Mainly via Increasing Energy Expenditure. Diabetes 2017; 66:640-650. [PMID: 27993927 DOI: 10.2337/db16-0954] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022]
Abstract
Although many functions of activating transcription factor 4 (ATF4) are identified, a role of ATF4 in the hypothalamus in regulating energy homeostasis is unknown. Here, we generated adult-onset agouti-related peptide neuron-specific ATF4 knockout (AgRP-ATF4 KO) mice and found that these mice were lean, with improved insulin and leptin sensitivity and decreased hepatic lipid accumulation. Furthermore, AgRP-ATF4 KO mice showed reduced food intake and increased energy expenditure, mainly because of enhanced thermogenesis in brown adipose tissue. Moreover, AgRP-ATF4 KO mice were resistant to high-fat diet-induced obesity, insulin resistance, and liver steatosis and maintained at a higher body temperature under cold stress. Interestingly, the expression of FOXO1 was directly regulated by ATF4 via binding to the cAMP-responsive element site on its promoter in hypothalamic GT1-7 cells. Finally, Foxo1 expression was reduced in the arcuate nucleus (ARC) of the hypothalamus of AgRP-ATF4 KO mice, and adenovirus-mediated overexpression of FOXO1 in ARC increased the fat mass in AgRP-ATF4 KO mice. Collectively, our data demonstrate a novel function of ATF4 in AgRP neurons of the hypothalamus in energy balance and lipid metabolism and suggest hypothalamic ATF4 as a potential drug target for treating obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Jiali Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feixiang Yuan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yajie Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yuzhong Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yuguo Niu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yalan Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, People's Republic of China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Shanghai Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Bruhat A, Chaveroux C, Carraro V, Jousse C, Averous J, Maurin AC, Parry L, Mesclon F, Muranishi Y, Baril P, Do Thi A, Ravassard P, Mallet J, Fafournoux P. [Tuning transgene expression with an artificial diet: a compelling resource in gene therapy]. Med Sci (Paris) 2017; 33:136-139. [PMID: 28240203 DOI: 10.1051/medsci/20173302007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alain Bruhat
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Cédric Chaveroux
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Valérie Carraro
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Céline Jousse
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Julien Averous
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Anne-Catherine Maurin
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Laurent Parry
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Florent Mesclon
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Yuki Muranishi
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| | - Patrick Baril
- Centre de biophysique moléculaire, CNRS UPR4301, Université d'Orléans, Inserm, Orléans, France
| | - Anh Do Thi
- CNRS UMR7225, Inserm U1127, Université Pierre et Marie Curie, Institut du Cerveau et de la Moelle (ICM), Biotechnology and Biotherapy Team, Paris, France
| | - Philippe Ravassard
- CNRS UMR7225, Inserm U1127, Université Pierre et Marie Curie, Institut du Cerveau et de la Moelle (ICM), Biotechnology and Biotherapy Team, Paris, France
| | - Jacques Mallet
- CNRS UMR7225, Inserm U1127, Université Pierre et Marie Curie, Institut du Cerveau et de la Moelle (ICM), Biotechnology and Biotherapy Team, Paris, France - Department of neurological surgery, University of California San Francisco (UCSF), San Francisco, CA, États-Unis
| | - Pierre Fafournoux
- Unité de nutrition humaine, UMR 1019, INRA de Clermont-Theix, Université Clermont-Ferrand 1, 63122 Saint Genès Champanelle, France
| |
Collapse
|
35
|
Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Front Neurosci 2017; 10:603. [PMID: 28111540 PMCID: PMC5216673 DOI: 10.3389/fnins.2016.00603] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Evidence obtained in recent years in a few species, especially rainbow trout, supports the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB, main accumulation of pancreatic endocrine cells in several fish species), and intestine] locations whereas fatty acid sensors seem to be present in hypothalamus, liver and BB. Glucose and fatty acid sensing capacities relate to food intake regulation and metabolism in fish. Hypothalamus is as a signaling integratory center in a way that detection of increased levels of nutrients result in food intake inhibition through changes in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central nutrient sensing modulates functions in the periphery since they elicit changes in hepatic metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient sensing is probably involved in regulation of hormone secretion from endocrine cells.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
36
|
Ferraz RC, Camara H, De-Souza EA, Pinto S, Pinca APF, Silva RC, Sato VN, Castilho BA, Mori MA. IMPACT is a GCN2 inhibitor that limits lifespan in Caenorhabditis elegans. BMC Biol 2016; 14:87. [PMID: 27717342 PMCID: PMC5054600 DOI: 10.1186/s12915-016-0301-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The General Control Nonderepressible 2 (GCN2) kinase is a conserved member of the integrated stress response (ISR) pathway that represses protein translation and helps cells to adapt to conditions of nutrient shortage. As such, GCN2 is required for longevity and stress resistance induced by dietary restriction (DR). IMPACT is an ancient protein that inhibits GCN2. RESULTS Here, we tested whether IMPACT down-regulation mimics the effects of DR in C. elegans. Knockdown of the C. elegans IMPACT homolog impt-1 activated the ISR pathway and increased lifespan and stress resistance of worms in a gcn-2-dependent manner. Impt-1 knockdown exacerbated DR-induced longevity and required several DR-activated transcription factors to extend lifespan, among them SKN-1 and DAF-16, which were induced during larval development and adulthood, respectively, in response to impt-1 RNAi. CONCLUSIONS IMPACT inhibits the ISR pathway, thus limiting the activation of stress response factors that are beneficial during aging and required under DR.
Collapse
Affiliation(s)
- Rafael C Ferraz
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henrique Camara
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Evandro A De-Souza
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Silas Pinto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ana Paula F Pinca
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Richard C Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitor N Sato
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
37
|
Chaveroux C, Bruhat A, Carraro V, Jousse C, Averous J, Maurin AC, Parry L, Mesclon F, Muranishi Y, Cordelier P, Meulle A, Baril P, Do Thi A, Ravassard P, Mallet J, Fafournoux P. Regulating the expression of therapeutic transgenes by controlled intake of dietary essential amino acids. Nat Biotechnol 2016; 34:746-51. [DOI: 10.1038/nbt.3582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
38
|
Bellato HM, Hajj GNM. Translational control by eIF2α in neurons: Beyond the stress response. Cytoskeleton (Hoboken) 2016; 73:551-565. [PMID: 26994324 DOI: 10.1002/cm.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The translation of mRNAs is a tightly controlled process that responds to multiple signaling pathways. In neurons, this control is also exerted locally due to the differential necessity of proteins in axons and dendrites. The phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) is one of the mechanisms of translational control. The phosphorylation of eIF2α has classically been viewed as a stress response, halting translation initiation. However, in the nervous system this type of regulation has been related to other mechanisms besides stress response, such as behavior, memory consolidation and nervous system development. Additionally, neurodegenerative diseases have a major stress component, thus eIF2α phosphorylation plays a preeminent role and its modulation is currently viewed as a new opportunity for therapeutic interventions. This review consolidates current information regarding eIF2α phosphorylation in neurons and its impact in neurodegenerative diseases. © 2016 Wiley Periodicals, Inc.
Collapse
|
39
|
Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets: involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr 2016; 115:2236-45. [DOI: 10.1017/s0007114516000842] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThe aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth performance in piglets.
Collapse
|
40
|
Heeley N, Blouet C. Central Amino Acid Sensing in the Control of Feeding Behavior. Front Endocrinol (Lausanne) 2016; 7:148. [PMID: 27933033 PMCID: PMC5120084 DOI: 10.3389/fendo.2016.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 11/13/2022] Open
Abstract
Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence supports the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioral and neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral factors are able to signal amino acid deficiency and abundance to the brain, the brain itself is exposed to and can detect changes in amino acid concentrations, and subsequently engages acute and chronic responses modulating feeding behavior and food preferences. In this review, we will examine the literature describing the mechanisms by which the brain senses changes in amino acids concentrations, and how these changes modulate feeding behavior.
Collapse
Affiliation(s)
- Nicholas Heeley
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Clemence Blouet
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- *Correspondence: Clemence Blouet,
| |
Collapse
|
41
|
Leib DE, Knight ZA. Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism. Cell Rep 2015; 13:1081-1089. [PMID: 26526991 PMCID: PMC4836942 DOI: 10.1016/j.celrep.2015.09.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/16/2015] [Accepted: 09/18/2015] [Indexed: 12/02/2022] Open
Abstract
Animals cannot synthesize nine essential amino acids (EAAs) and must therefore obtain them from food. Mice reportedly reject food lacking a single EAA within the first hour of feeding. This remarkable phenomenon is proposed to involve post-ingestive sensing of amino acid imbalance by the protein kinase GCN2 in the brain. Here, we systematically re-examine dietary amino acid sensing in mice. In contrast to previous results, we find that mice cannot rapidly identify threonine- or leucine-deficient food in common feeding paradigms. However, mice attain the ability to identify EAA-deficient food following 2 days of EAA deprivation, suggesting a requirement for physiologic need. In addition, we report that mice can rapidly identify lysine-deficient food without prior EAA deficit, revealing a distinct sensing mechanism for this amino acid. These behaviors are independent of the proposed amino acid sensor GCN2, pointing to the existence of an undescribed mechanism for rapid sensing of dietary EAAs.
Collapse
Affiliation(s)
- David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Robertson LT, Treviño-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, Hine C, Vargas D, Zheng H, Ozaki CK, Kristal BS, Simpson SJ, Mitchell JR. Protein and Calorie Restriction Contribute Additively to Protection from Renal Ischemia Reperfusion Injury Partly via Leptin Reduction in Male Mice. J Nutr 2015; 145:1717-27. [PMID: 26041674 PMCID: PMC4516761 DOI: 10.3945/jn.114.199380] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 05/15/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Short-term dietary restriction (DR) without malnutrition preconditions against surgical stress in rodents; however, the nutritional basis and underlying nutrient/energy-sensing pathways remain poorly understood. OBJECTIVES We investigated the relative contribution of protein restriction (PR) vs. calorie restriction (CR) to protection from renal ischemia reperfusion injury (IRI) and changes in organ-autonomous nutrient/energy-sensing pathways and hormones underlying beneficial effects. METHODS Mice were preconditioned on experimental diets lacking total calories (0-50% CR) or protein/essential amino acids (EAAs) vs. complete diets consumed ad libitum (AL) for 1 wk before IRI. Renal outcome was assessed by serum markers and histology and integrated over a 2-dimensional protein/energy landscape by geometric framework analysis. Changes in renal nutrient/energy-sensing signal transduction and systemic hormones leptin and adiponectin were also measured. The genetic requirement for amino acid sensing via general control non-derepressible 2 (GCN2) was tested with knockout vs. control mice. The involvement of the hormone leptin was tested by injection of recombinant protein vs. vehicle during the preconditioning period. RESULTS CR-mediated protection was dose dependent up to 50% with maximal 2-fold effect sizes. PR benefits were abrogated by EAA re-addition and additive with CR, with maximal benefits at any given amount of CR occurring with a protein-free diet. GCN2 was not required for functional benefits of PR. Activation and repression of nutrient/energy-sensing kinases, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1), respectively, on PR reflected a state of negative energy balance, paralleled by 13% weight loss and an 87% decrease in leptin, independent of calorie intake. Recombinant leptin administration partially abrogated benefits of dietary preconditioning against renal IRI. CONCLUSIONS In male mice, PR and CR both contributed to the benefits of short-term DR against renal IRI independent of GCN2 but partially dependent on reduced circulating leptin and coincident with AMPK activation and mTORC1 repression.
Collapse
Affiliation(s)
| | | | - Pedro Mejia
- Departments of Genetics and Complex Diseases and
| | - Yohann Grondin
- Environmental Health, Harvard School of Public Health, Boston, MA
| | | | | | | | | | | | - Bruce S Kristal
- Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| | | | | |
Collapse
|
43
|
Reviewing the Effects of L-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients 2015; 7:3914-37. [PMID: 26007339 PMCID: PMC4446786 DOI: 10.3390/nu7053914] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.
Collapse
|
44
|
Chaveroux C, Carraro V, Canaple L, Averous J, Maurin AC, Jousse C, Muranishi Y, Parry L, Mesclon F, Gatti E, Mallet J, Ravassard P, Pierre P, Fafournoux P, Bruhat A. In vivo imaging of the spatiotemporal activity of the eIF2 -ATF4 signaling pathway: Insights into stress and related disorders. Sci Signal 2015; 8:rs5. [DOI: 10.1126/scisignal.aaa0549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Lourenco MV, Ferreira ST, De Felice FG. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes. Prog Neurobiol 2015; 129:37-57. [PMID: 25857551 DOI: 10.1016/j.pneurobio.2015.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/29/2015] [Indexed: 12/22/2022]
Abstract
Mounting evidence from clinical, epidemiological, neuropathology and preclinical studies indicates that mechanisms similar to those leading to peripheral metabolic deregulation in metabolic disorders, such as diabetes and obesity, take place in the brains of Alzheimer's disease (AD) patients. These include pro-inflammatory mechanisms, brain metabolic stress and neuronal insulin resistance. From a molecular and cellular perspective, recent progress has been made in unveiling novel pathways that act in an orchestrated way to cause neuronal damage and cognitive decline in AD. These pathways converge to the activation of neuronal stress-related protein kinases and excessive phosphorylation of eukaryotic translation initiation factor 2α (eIF2α-P), which plays a key role in control of protein translation, culminating in synapse dysfunction and memory loss. eIF2α-P signaling thus links multiple neuronal stress pathways to impaired neuronal function and neurodegeneration. Here, we present a critical analysis of recently discovered molecular mechanisms underlying impaired brain insulin signaling and metabolic stress, with emphasis on the role of stress kinase/eIF2α-P signaling as a hub that promotes brain and behavioral impairments in AD. Because very similar mechanisms appear to operate in peripheral metabolic deregulation in T2D and in brain defects in AD, we discuss the concept that targeting defective brain insulin signaling and neuronal stress mechanisms with anti-diabetes agents may be an attractive approach to fight memory decline in AD. We conclude by raising core questions that remain to be addressed toward the development of much needed therapeutic approaches for AD.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
46
|
Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells. Amino Acids 2014; 47:2165-75. [PMID: 24973972 DOI: 10.1007/s00726-014-1787-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.
Collapse
|
47
|
Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet 2014; 5:158. [PMID: 24917879 PMCID: PMC4042891 DOI: 10.3389/fgene.2014.00158] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are “hotspots” for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| | | | - Susan M Robey-Bond
- Department of Biochemistry, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|
48
|
Abstract
Animals need to ingest a full set of essential amino acids through their diet. A new study in Drosophila larvae describes how activation of the kinase GCN2 in three dopaminergic neurons mediates the rejection of amino-acid-imbalanced food.
Collapse
Affiliation(s)
- Samantha L Herbert
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|