1
|
Dearman A, Bao Y, Schalkwyk L, Kumari M. Serum proteomic correlates of mental health symptoms in a representative UK population sample. Brain Behav Immun Health 2025; 44:100947. [PMID: 39911945 PMCID: PMC11795072 DOI: 10.1016/j.bbih.2025.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/24/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Poor mental health constitutes a public health crisis due to its high prevalence, unmet need and its mechanistic heterogeneity. A comprehensive understanding of the biological correlates of poor mental health in the population could enhance epidemiological research and eventually help guide treatment strategies. The human bloodstream contains many proteins, several of which have been linked to diagnosed mental health conditions but not to population mental health symptoms, however recent technological advances have made this possible. Here we perform exploratory factor analyses of 184 proteins from two panels (cardiometabolic and neurology-related) measured using proximity extension assays from Understanding Society (the UK Household Longitudinal Study; UKHLS). Data reduction results in 28 factors that explain 55-59% of the variance per panel. We perform multiple linear regressions in up to 5304 participants using two mental health symptom-based outcomes: psychological distress assessed with the general health questionnaire (GHQ-12) and mental health functioning assessed with the 12-Item Short Form Survey, Mental Component Summary (SF12-MCS) using the proteomic factors as explanatory variables and adjusting for demographic covariates. We use backward selection to discard non-significant proteomic factors from the models. Ten factors are independently associated with population mental health symptoms, three of which are immune-related (immunometabolism, immune cell-mediated processes, acute phase processes), three brain-related (neurodevelopment, synaptic processes, neuroprotective processes), two proteolysis-related (proteolysis & the kynurenine pathway, haemostasis & proteolysis), growth factors & muscle, and oxidative stress & the cytoskeleton. Associations partially overlap across the two outcomes, and a sensitivity analysis excluding people taking antidepressants or other central nervous system medications suggestively implicates some of the factors in treatment-resistant poor mental health. Our findings replicate those of case-control studies and expand these to underlie mental health symptomatology in the adult population. More work is needed to understand the direction of causality in these associations.
Collapse
Affiliation(s)
- Anna Dearman
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Yanchun Bao
- School of Mathematics, Statistics and Actuarial Science (SMSAS), University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
2
|
Maloney R, Quattrochi L, Yoon J, Souza R, Berson D. Efficacy and specificity of melanopsin reporters for retinal ganglion cells. J Comp Neurol 2024; 532:e25591. [PMID: 38375612 PMCID: PMC11000424 DOI: 10.1002/cne.25591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/03/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are specialized retinal output neurons that mediate behavioral, neuroendocrine, and developmental responses to environmental light. There are diverse molecular strategies for marking ipRGCs, especially in mice, making them among the best characterized retinal ganglion cells (RGCs). With the development of more sensitive reporters, new subtypes of ipRGCs have emerged. We therefore tested high-sensitivity reporter systems to see whether we could reveal yet more. Substantial confusion remains about which of the available methods, if any, label all and only ipRGCs. Here, we compared many different methods for labeling of ipRGCs, including anti-melanopsin immunofluorescence, Opn4-GFP BAC transgenic mice, and Opn4cre mice crossed with three different Cre-specific reporters (Z/EG, Ai9, and Ai14) or injected with Cre-dependent (DIO) AAV2. We show that Opn4cre mice, when crossed with sensitive Cre-reporter mice, label numerous ganglion cell types that lack intrinsic photosensitivity. Though other methods label ipRGCs specifically, they do not label the entire population of ipRGCs. We conclude that no existing method labels all and only ipRGCs. We assess the appropriateness of each reporter for particular applications and integrate findings across reporters to estimate that the overall abundance of ipRGCs among mouse RGCs may approach 11%.
Collapse
Affiliation(s)
- Ryan Maloney
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Lauren Quattrochi
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - James Yoon
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Rachel Souza
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Prieur DS, Francius C, Gaspar P, Mason CA, Rebsam A. Semaphorin-6D and Plexin-A1 Act in a Non-Cell-Autonomous Manner to Position and Target Retinal Ganglion Cell Axons. J Neurosci 2023; 43:5769-5778. [PMID: 37344233 PMCID: PMC10423046 DOI: 10.1523/jneurosci.0072-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 06/23/2023] Open
Abstract
Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. In Plexin-A1 or Sema6D mutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinal in utero electroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non-cell-autonomously, potentially through axon-axon interactions. These data provide novel evidence for a dose-dependent and non-cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENT Before innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non-cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Cédric Francius
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche-S 839, Paris, 75005, France
- Sorbonne Université, Paris, 75005, France
- Institut du Fer à Moulin, Paris, 75005, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, F-75012, France
| |
Collapse
|
5
|
El-Danaf RN, Rajesh R, Desplan C. Temporal regulation of neural diversity in Drosophila and vertebrates. Semin Cell Dev Biol 2023; 142:13-22. [PMID: 35623984 PMCID: PMC11585012 DOI: 10.1016/j.semcdb.2022.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The generation of neuronal diversity involves temporal patterning mechanisms by which a given progenitor sequentially produces multiple cell types. Several parallels are evident between the brain development programs of Drosophila and vertebrates, such as the successive emergence of specific cell types and the use of combinations of transcription factors to specify cell fates. Furthermore, cell-extrinsic cues such as hormones and signaling pathways have also been shown to be regulatory modules of temporal patterning. Recently, transcriptomic and epigenomic studies using large single-cell sequencing datasets have provided insights into the transcriptional dynamics of neurogenesis in the Drosophila and mammalian central nervous systems. We review these commonalities in the specification of neuronal identity and highlight the conserved or convergent strategies of brain development by discussing temporal patterning mechanisms found in flies and vertebrates.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Raghuvanshi Rajesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Claude Desplan
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
6
|
Varadarajan SG, Wang F, Dhande OS, Le P, Duan X, Huberman AD. Postsynaptic neuronal activity promotes regeneration of retinal axons. Cell Rep 2023; 42:112476. [PMID: 37141093 PMCID: PMC10247459 DOI: 10.1016/j.celrep.2023.112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/02/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The wiring of visual circuits requires that retinal neurons functionally connect to specific brain targets, a process that involves activity-dependent signaling between retinal axons and their postsynaptic targets. Vision loss in various ophthalmological and neurological diseases is caused by damage to the connections from the eye to the brain. How postsynaptic brain targets influence retinal ganglion cell (RGC) axon regeneration and functional reconnection with the brain targets remains poorly understood. Here, we established a paradigm in which the enhancement of neural activity in the distal optic pathway, where the postsynaptic visual target neurons reside, promotes RGC axon regeneration and target reinnervation and leads to the rescue of optomotor function. Furthermore, selective activation of retinorecipient neuron subsets is sufficient to promote RGC axon regeneration. Our findings reveal a key role for postsynaptic neuronal activity in the repair of neural circuits and highlight the potential to restore damaged sensory inputs via proper brain stimulation.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Phung Le
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA; BioX, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Tomar M, Beros J, Meloni B, Rodger J. Interactions between Guidance Cues and Neuronal Activity: Therapeutic Insights from Mouse Models. Int J Mol Sci 2023; 24:ijms24086966. [PMID: 37108129 PMCID: PMC10138948 DOI: 10.3390/ijms24086966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders. The aim of this review is to highlight the mechanisms involved in creating and refining such well-defined maps in the brain with a focus on the Eph and ephrin families of axon guidance cues. We first describe the transgenic models where ephrin-A expression has been manipulated to understand the role of these guidance cues in defining topography in various sensory systems. We further describe the behavioral consequences of lacking ephrin-A guidance cues in these animal models. These studies have given us unexpected insight into how neuronal activity is equally important in refining neural circuits in different brain regions. We conclude the review by discussing studies that have used treatments such as repetitive transcranial magnetic stimulation (rTMS) to manipulate activity in the brain to compensate for the lack of guidance cues in ephrin-knockout animal models. We describe how rTMS could have therapeutic relevance in neurodevelopmental disorders with disrupted brain organization.
Collapse
Affiliation(s)
- Maitri Tomar
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Bruno Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
8
|
Slavi N, Balasubramanian R, Lee MA, Liapin M, Oaks-Leaf R, Peregrin J, Potenski A, Troy CM, Ross ME, Herrera E, Kosmidis S, John SWM, Mason CA. CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism. Neuron 2023; 111:49-64.e5. [PMID: 36351424 PMCID: PMC9822872 DOI: 10.1016/j.neuron.2022.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
In albinism, aberrations in the ipsi-/contralateral retinal ganglion cell (RGC) ratio compromise the functional integrity of the binocular circuit. Here, we focus on the mouse ciliary margin zone (CMZ), a neurogenic niche at the embryonic peripheral retina, to investigate developmental processes regulating RGC neurogenesis and identity acquisition. We found that the mouse ventral CMZ generates predominantly ipsilaterally projecting RGCs, but this output is altered in the albino visual system because of CyclinD2 downregulation and disturbed timing of the cell cycle. Consequently, albino as well as CyclinD2-deficient pigmented mice exhibit diminished ipsilateral retinogeniculate projection and poor depth perception. In albino mice, pharmacological stimulation of calcium channels, known to upregulate CyclinD2 in other cell types, augmented CyclinD2-dependent neurogenesis of ipsilateral RGCs and improved stereopsis. Together, these results implicate CMZ neurogenesis and its regulators as critical for the formation and function of the mammalian binocular circuit.
Collapse
Affiliation(s)
- Nefeli Slavi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Revathi Balasubramanian
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Melissa Ann Lee
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michael Liapin
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Rachel Oaks-Leaf
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - John Peregrin
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anna Potenski
- Department of Molecular Pharmacology and Therapeutics, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Carol Marie Troy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Eloisa Herrera
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Spain
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Simon William Maxwell John
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carol Ann Mason
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Tien NW, Vitale C, Badea TC, Kerschensteiner D. Layer-Specific Developmentally Precise Axon Targeting of Transient Suppressed-by-Contrast Retinal Ganglion Cells. J Neurosci 2022; 42:7213-7221. [PMID: 36002262 PMCID: PMC9512569 DOI: 10.1523/jneurosci.2332-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022] Open
Abstract
The mouse retina encodes diverse visual features in the spike trains of >40 retinal ganglion cell (RGC) types. Each RGC type innervates a specific subset of the >50 retinorecipient brain areas. Our catalog of RGC types and feature representations is nearing completion. Yet, we know little about where specific RGC types send their information. Furthermore, the developmental strategies by which RGC axons choose their targets and pattern their terminal arbors remain obscure. Here, we identify a genetic intersection (Cck-Cre and Brn3cCKOAP ) that selectively labels transient Suppressed-by-Contrast (tSbC) RGCs, a member of an evolutionarily conserved functionally mysterious RGC subclass. We find that tSbC RGCs selectively innervate the dorsolateral geniculate nucleus (dLGN) and ventrolateral geniculate nucleus (vLGN) of the thalamus, the superior colliculus (SC), and the nucleus of the optic tract (NOT) in mice of either sex. They binocularly innervate dLGN and vLGN but project only contralaterally to SC and NOT. In each target, tSbC RGC axons occupy a specific sublayer, suggesting that they restrict their input to specific circuits. The tSbC RGC axons span the length of the optic tract by birth and remain poised there until they simultaneously innervate their four targets around postnatal day 3. The tSbC RGC axons choose the right targets and establish mature stratification patterns from the outset. This precision is maintained in the absence of Brn3c. Our results provide the first map of SbC inputs to the brain, revealing a narrow target set, unexpected laminar organization, target-specific binocularity, and developmental precision.SIGNIFICANCE STATEMENT In recent years, we have learned a lot about the visual features encoded by RGCs, the output neurons of the eye. In contrast, we know little about where RGCs send their information and how RGC axons, which carry this information, target specific brain areas during development. Here, we develop an intersectional strategy to label a unique RGC type, the tSbC RGC, and map its projections. We find that tSbC RGC axons are highly selective. They innervate few retinal targets and restrict their arbors to specific sublayers within these targets. The selective tSbC RGC projection patterns develop synchronously and without trial and error, suggesting molecular determinism and coordination.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Carmela Vitale
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, Maryland 20892
- Research and Development Institute, Transilvania University of Braşov, Braşov 500484, Romania
- National Center for Brain Research, Research Institute for Artificial Intelligence, Romanian Academy, Bucharest 050711, Romania
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
- Departments of Neuroscience
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
10
|
Tsai NY, Wang F, Toma K, Yin C, Takatoh J, Pai EL, Wu K, Matcham AC, Yin L, Dang EJ, Marciano DK, Rubenstein JL, Wang F, Ullian EM, Duan X. Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin. Nat Neurosci 2022; 25:659-674. [PMID: 35524141 PMCID: PMC9172271 DOI: 10.1038/s41593-022-01068-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/30/2022] [Indexed: 12/21/2022]
Abstract
The mouse visual system serves as an accessible model to understand mammalian circuit wiring. Despite rich knowledge in retinal circuits, the long-range connectivity map from distinct retinal ganglion cell (RGC) types to diverse brain neuron types remains unknown. In this study, we developed an integrated approach, called Trans-Seq, to map RGCs to superior collicular (SC) circuits. Trans-Seq combines a fluorescent anterograde trans-synaptic tracer, consisting of codon-optimized wheat germ agglutinin fused to mCherry, with single-cell RNA sequencing. We used Trans-Seq to classify SC neuron types innervated by genetically defined RGC types and predicted a neuronal pair from αRGCs to Nephronectin-positive wide-field neurons (NPWFs). We validated this connection using genetic labeling, electrophysiology and retrograde tracing. We then used transcriptomic data from Trans-Seq to identify Nephronectin as a determinant for selective synaptic choice from αRGC to NPWFs via binding to Integrin α8β1. The Trans-Seq approach can be broadly applied for post-synaptic circuit discovery from genetically defined pre-synaptic neurons.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program and Biomedical Science Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Wang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Chen Yin
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Jun Takatoh
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Emily L Pai
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kongyan Wu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Angela C Matcham
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luping Yin
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Eric J Dang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John L Rubenstein
- Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Fan Wang
- McGovern Institute for Brain Research, MIT Brain and Cognitive Sciences, Cambridge, MA, USA
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Neural Dev 2022; 17:5. [PMID: 35422013 PMCID: PMC9011933 DOI: 10.1186/s13064-022-00161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Alexander Delfin Alvarez
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Gabriela Romero
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Brandon Zarate Vo
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| |
Collapse
|
12
|
Balraj A, Clarkson-Paredes C, Pajoohesh-Ganji A, Kay MW, Mendelowitz D, Miller RH. Refinement of axonal conduction and myelination in the mouse optic nerve indicate an extended period of postnatal developmental plasticity. Dev Neurobiol 2022; 82:308-325. [PMID: 35403346 PMCID: PMC9128412 DOI: 10.1002/dneu.22875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Retinal ganglion cells generate a pattern of action potentials to communicate visual information from the retina to cortical areas. Myelin, an insulating sheath, wraps axonal segments to facilitate signal propagation and when deficient, can impair visual function. Optic nerve development and initial myelination has largely been considered complete by the fifth postnatal week. However, the relationship between the extent of myelination and axonal signaling in the maturing optic nerve is not well characterized. Here, we examine the relationship between axon conduction and elements of myelination using extracellular nerve recordings, immunohistochemistry, western blot analysis, scanning electron microscopy, and simulations of nerve responses. Comparing compound action potentials from mice aged 4-12 weeks revealed five functional distinct axonal populations, an increase in the number of functional axons, and shifts toward fast-conducting axon populations at 5 and 8 weeks postnatal. At these ages, our analysis revealed increased myelin thickness, lower g-ratios and changes in the 14 kDa MBP isoform, while the density of axons and nodes of Ranvier remained constant. At 5 postnatal weeks, axon diameter increased, while at 8 weeks, increased expression of a mature sodium ion channel subtype, Nav 1.6, was observed at nodes of Ranvier. A simulation model of nerve conduction suggests that ion channel subtype, axon diameter, and myelin thickness are more likely to be key regulators of nerve function than g-ratio. Such refinement of axonal function and myelin rearrangement identified an extended period of maturation in the normal optic nerve that may facilitate the development of visual signaling patterns. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annika Balraj
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Cheryl Clarkson-Paredes
- Nanofabrication and Imaging Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Matthew W. Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Robert H. Miller
- Department of Anatomy, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
13
|
A cell-ECM mechanism for connecting the ipsilateral eye to the brain. Proc Natl Acad Sci U S A 2021; 118:2104343118. [PMID: 34654745 PMCID: PMC8545493 DOI: 10.1073/pnas.2104343118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Distinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell–extracellular matrix recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well. Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
Collapse
|
14
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
15
|
Trans-synaptic degeneration in the visual pathway: Neural connectivity, pathophysiology, and clinical implications in neurodegenerative disorders. Surv Ophthalmol 2021; 67:411-426. [PMID: 34146577 DOI: 10.1016/j.survophthal.2021.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
There is a strong interrelationship between eye and brain diseases. It has been shown that neurodegenerative changes can spread bidirectionally in the visual pathway along neuronal projections. For example, damage to retinal ganglion cells in the retina leads to degeneration of the visual cortex (anterograde degeneration) and vice versa (retrograde degeneration). The underlying mechanisms of this process, known as trans-synaptic degeneration (TSD), are unknown, but TSD contributes to the progression of numerous neurodegenerative disorders, leading to clinical and functional deterioration. The hierarchical structure of the visual system comprises of a strong topographic connectivity between the retina and the visual cortex and therefore serves as an ideal model to study the cellular effect, clinical manifestations, and deterioration extent of TSD. With this review we provide comprehensive information about the neural connectivity, synapse function, molecular changes, and pathophysiology of TSD in visual pathways. We then discuss its bidirectional nature and clinical implications in neurodegenerative diseases. A thorough understanding of TSD in the visual pathway can provide insights into progression of neurodegenerative disorders and its potential as a therapeutic target.
Collapse
|
16
|
Beros J, Rodger J, Harvey AR. Age Related Response of Neonatal Rat Retinal Ganglion Cells to Reduced TrkB Signaling in vitro and in vivo. Front Cell Dev Biol 2021; 9:671087. [PMID: 34150766 PMCID: PMC8213349 DOI: 10.3389/fcell.2021.671087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
During development of retinofugal pathways there is naturally occurring cell death of at least 50% of retinal ganglion cells (RGCs). In rats, RGC death occurs over a protracted pre- and early postnatal period, the timing linked to the onset of axonal ingrowth into central visual targets. Gene expression studies suggest that developing RGCs switch from local to target-derived neurotrophic support during this innervation phase. Here we investigated, in vitro and in vivo, how RGC birthdate affects the timing of the transition from intra-retinal to target-derived neurotrophin dependence. RGCs were pre-labeled with 5-Bromo-2'-Deoxyuridine (BrdU) at embryonic (E) day 15 or 18. For in vitro studies, RGCs were purified from postnatal day 1 (P1) rat pups and cultured with or without: (i) brain derived neurotrophic factor (BDNF), (ii) blocking antibodies to BDNF and neurotrophin 4/5 (NT-4/5), or (iii) a tropomyosin receptor kinase B fusion protein (TrkB-Fc). RGC viability was quantified 24 and 48 h after plating. By 48 h, the survival of purified βIII-tubulin immunopositive E15 but not E18 RGCs was dependent on addition of BDNF to the culture medium. For E18 RGCs, in the absence of exogenous BDNF, addition of blocking antibodies or TrkB-Fc reduced RGC viability at both 24 and 48 h by 25-40%. While this decrease was not significant due to high variance, importantly, each blocking method also consistently reduced complex process expression in surviving RGCs. In vivo, survival of BrdU and Brn3a co-labeled E15 or E18 RGCs was quantified in rats 24 h after P1 or P5 injection into the eye or contralateral superior colliculus (SC) of BDNF and NT-4/5 antibodies, or serum vehicle. The density of E15 RGCs 24 h after P1 or P5 injection of blocking antibodies was reduced after SC but not intraretinal injection. Antibody injections into either site had little obvious impact on viability of the substantially smaller population of E18 RGCs. In summary, most early postnatal RGC death in the rat involves the elimination of early-born RGCs with their survival primarily dependent upon the availability of target derived BDNF during this time. In contrast, late-born RGC survival may be influenced by additional factors, suggesting an association between RGC birthdate and developmental death mechanisms.
Collapse
Affiliation(s)
- Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
17
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Sitko AA, Goodrich LV. Making sense of neural development by comparing wiring strategies for seeing and hearing. Science 2021; 371:eaaz6317. [PMID: 33414193 PMCID: PMC8034811 DOI: 10.1126/science.aaz6317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to perceive and interact with the world depends on a diverse array of neural circuits specialized for carrying out specific computations. Each circuit is assembled using a relatively limited number of molecules and common developmental steps, from cell fate specification to activity-dependent synaptic refinement. Given this shared toolkit, how do individual circuits acquire their characteristic properties? We explore this question by comparing development of the circuitry for seeing and hearing, highlighting a few examples where differences in each system's sensory demands necessitate different developmental strategies.
Collapse
Affiliation(s)
- A A Sitko
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - L V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Timely Inhibitory Circuit Formation Controlled by Abl1 Regulates Innate Olfactory Behaviors in Mouse. Cell Rep 2021; 30:187-201.e4. [PMID: 31914386 DOI: 10.1016/j.celrep.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
More than one-half of the interneurons in a mouse olfactory bulb (OB) develop during the first week after birth and predominantly connect to excitatory tufted cells near the superficial granule cell layer (sGCL), unlike late-born interneurons. However, the molecular mechanisms underlying the temporal specification are yet to be identified. In this study, we determined the role of Abelson tyrosine-protein kinase 1 (Abl1) in the temporal development of early-born OB interneurons. Lentiviral knockdown of Abl1 disrupts the sGCL circuit of early-born interneurons through defects in function and circuit integration, resulting in olfactory hyper-sensitivity. We show that doublecortin (Dcx) is phosphorylated by Abl1, which contributes to the stabilization of Dcx, thereby regulating microtubule dynamics. Finally, Dcx overexpression rescues Abl1 knockdown-induced anatomic or functional defects. In summary, specific signaling by Abl1-Dcx in early-born interneurons facilitates the temporal development of the sGCL circuit to regulate innate olfactory functions, such as detection and sensitivity.
Collapse
|
20
|
Scheffel JL, Mohammed SS, Borcean CK, Parng AJ, Yoon HJ, Gutierrez DA, Yu WM. Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea. Neuroscience 2020; 446:43-58. [PMID: 32866604 DOI: 10.1016/j.neuroscience.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.
Collapse
Affiliation(s)
- Jennifer L Scheffel
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Samiha S Mohammed
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Chloe K Borcean
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Annie J Parng
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Hyun Ju Yoon
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Darwin A Gutierrez
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States.
| |
Collapse
|
21
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
22
|
Abstract
Binocular vision depends on retinal ganglion cell (RGC) axon projection either to the same side or to the opposite side of the brain. In this article, we review the molecular mechanisms for decussation of RGC axons, with a focus on axon guidance signaling at the optic chiasm and ipsi- and contralateral axon organization in the optic tract prior to and during targeting. The spatial and temporal features of RGC neurogenesis that give rise to ipsilateral and contralateral identity are described. The albino visual system is highlighted as an apt comparative model for understanding RGC decussation, as albinos have a reduced ipsilateral projection and altered RGC neurogenesis associated with perturbed melanogenesis in the retinal pigment epithelium. Understanding the steps for RGC specification into ipsi- and contralateral subtypes will facilitate differentiation of stem cells into RGCs with proper navigational abilities for effective axon regeneration and correct targeting of higher-order visual centers.
Collapse
Affiliation(s)
- Carol Mason
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027, USA; .,Department of Neuroscience, Columbia University, New York, NY 10027, USA.,Department of Ophthalmology, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| | - Nefeli Slavi
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
23
|
Kim JY, Choe J, Moon C. Distinct Developmental Features of Olfactory Bulb Interneurons. Mol Cells 2020; 43:215-221. [PMID: 32208366 PMCID: PMC7103883 DOI: 10.14348/molcells.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/20/2023] Open
Abstract
The olfactory bulb (OB) has an extremely higher proportionof interneurons innervating excitatory neurons than otherbrain regions, which is evolutionally conserved across species.Despite the abundance of OB interneurons, little is knownabout the diversification and physiological functions ofOB interneurons compared to cortical interneurons. In thisreview, an overview of the general developmental processof interneurons from the angles of the spatial and temporalspecifications was presented. Then, the distinct featuresshown exclusively in OB interneurons development andmolecular machinery recently identified were discussed.Finally, we proposed an evolutionary meaning for thediversity of OB interneurons.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology, Daegu 4988, Korea
- Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
24
|
Agi E, Kulkarni A, Hiesinger PR. Neuronal strategies for meeting the right partner during brain wiring. Curr Opin Neurobiol 2020; 63:1-8. [PMID: 32036252 DOI: 10.1016/j.conb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Two neurons can only form a synapse if their axonal and dendritic projections meet at the same time and place. While spatiotemporal proximity is necessary for synapse formation, it remains unclear to what extent the underlying positional strategies are sufficient to ensure synapse formation between the right partners. Many neurons readily form synapses with wrong partners if they find themselves at the wrong place or time. Minimally, restricting spatiotemporal proximity can prevent incorrect synapses. Maximally, restricting encounters in time and space could be sufficient to ensure correct partnerships between neurons that can form synapses promiscuously. In this review we explore recent findings on positional strategies during developmental growth that contribute to precise outcomes in brain wiring.
Collapse
|
25
|
Nguyen-Ba-Charvet KT, Rebsam A. Neurogenesis and Specification of Retinal Ganglion Cells. Int J Mol Sci 2020; 21:ijms21020451. [PMID: 31936811 PMCID: PMC7014133 DOI: 10.3390/ijms21020451] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
Across all species, retinal ganglion cells (RGCs) are the first retinal neurons generated during development, followed by the other retinal cell types. How are retinal progenitor cells (RPCs) able to produce these cell types in a specific and timely order? Here, we will review the different models of retinal neurogenesis proposed over the last decades as well as the extrinsic and intrinsic factors controlling it. We will then focus on the molecular mechanisms, especially the cascade of transcription factors that regulate, more specifically, RGC fate. We will also comment on the recent discovery that the ciliary marginal zone is a new stem cell niche in mice contributing to retinal neurogenesis, especially to the generation of ipsilateral RGCs. Furthermore, RGCs are composed of many different subtypes that are anatomically, physiologically, functionally, and molecularly defined. We will summarize the different classifications of RGC subtypes and will recapitulate the specification of some of them and describe how a genetic disease such as albinism affects neurogenesis, resulting in profound visual deficits.
Collapse
|
26
|
Meng JL, Wang Y, Carrillo RA, Heckscher ES. Temporal transcription factors determine circuit membership by permanently altering motor neuron-to-muscle synaptic partnerships. eLife 2020; 9:56898. [PMID: 32391795 PMCID: PMC7242025 DOI: 10.7554/elife.56898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/09/2020] [Indexed: 01/01/2023] Open
Abstract
How circuit wiring is specified is a key question in developmental neurobiology. Previously, using the Drosophila motor system as a model, we found the classic temporal transcription factor Hunchback acts in NB7-1 neuronal stem cells to control the number of NB7-1 neuronal progeny form functional synapses on dorsal muscles (Meng et al., 2019). However, it is unknown to what extent control of motor neuron-to-muscle synaptic partnerships is a general feature of temporal transcription factors. Here, we perform additional temporal transcription factor manipulations-prolonging expression of Hunchback in NB3-1, as well as precociously expressing Pdm and Castor in NB7-1. We use confocal microscopy, calcium imaging, and electrophysiology to show that in every manipulation there are permanent alterations in neuromuscular synaptic partnerships. Our data show temporal transcription factors, as a group of molecules, are potent determinants of synaptic partner choice and therefore ultimately control circuit membership.
Collapse
Affiliation(s)
- Julia L Meng
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States
| | - Yupu Wang
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States
| | - Robert A Carrillo
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States,Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States,Grossman Institute for Neuroscience, University of ChicagoChicagoUnited States
| | - Ellie S Heckscher
- Department of Molecular Genetics and Cell Biology, University of ChicagoChicagoUnited States,Program in Cell and Molecular Biology, University of ChicagoChicagoUnited States,Committee on Development, Regeneration, and Stem Cell Biology, University of ChicagoChicagoUnited States,Grossman Institute for Neuroscience, University of ChicagoChicagoUnited States
| |
Collapse
|
27
|
Meng JL, Marshall ZD, Lobb-Rabe M, Heckscher ES. How prolonged expression of Hunchback, a temporal transcription factor, re-wires locomotor circuits. eLife 2019; 8:46089. [PMID: 31502540 PMCID: PMC6754208 DOI: 10.7554/elife.46089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
How circuits assemble starting from stem cells is a fundamental question in developmental neurobiology. We test the hypothesis that, in neuronal stem cells, temporal transcription factors predictably control neuronal terminal features and circuit assembly. Using the Drosophila motor system, we manipulate expression of the classic temporal transcription factor Hunchback (Hb) specifically in the NB7-1 stem cell, which produces U motor neurons (MNs), and then we monitor dendrite morphology and neuromuscular synaptic partnerships. We find that prolonged expression of Hb leads to transient specification of U MN identity, and that embryonic molecular markers do not accurately predict U MN terminal features. Nonetheless, our data show Hb acts as a potent regulator of neuromuscular wiring decisions. These data introduce important refinements to current models, show that molecular information acts early in neurogenesis as a switch to control motor circuit wiring, and provide novel insight into the relationship between stem cell and circuit.
Collapse
Affiliation(s)
- Julia L Meng
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States.,Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Zarion D Marshall
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Meike Lobb-Rabe
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States.,Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| | - Ellie S Heckscher
- Department of Molecular Genetics and Cell Biology, Grossman Institute for Neuroscience, Program in Cell and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
28
|
Lucas JA, Schmidt TM. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Dev 2019; 14:8. [PMID: 31470901 PMCID: PMC6716945 DOI: 10.1186/s13064-019-0132-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light and have been shown to mediate a broad variety of visual behaviors in adult animals. ipRGCs are also the first light sensitive cells in the developing retina, and have been implicated in a number of retinal developmental processes such as pruning of retinal vasculature and refinement of retinofugal projections. However, little is currently known about the properties of the six ipRGC subtypes during development, and how these cells act to influence retinal development. We therefore sought to characterize the structure, physiology, and birthdate of the most abundant ipRGC subtypes, M1, M2, and M4, at discrete postnatal developmental timepoints. METHODS We utilized whole cell patch clamp to measure the electrophysiological and morphological properties of ipRGC subtypes through postnatal development. We also used EdU labeling to determine the embryonic timepoints at which ipRGC subtypes terminally differentiate. RESULTS Our data show that ipRGC subtypes are distinguishable from each other early in postnatal development. Additionally, we find that while ipRGC subtypes terminally differentiate at similar embryonic stages, the subtypes reach adult-like morphology and physiology at different developmental timepoints. CONCLUSIONS This work provides a broad assessment of ipRGC morphological and physiological properties during the postnatal stages at which they are most influential in modulating retinal development, and lays the groundwork for further understanding of the specific role of each ipRGC subtype in influencing retinal and visual system development.
Collapse
Affiliation(s)
- Jasmine A. Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL USA
| | | |
Collapse
|
29
|
Murcia-Belmonte V, Erskine L. Wiring the Binocular Visual Pathways. Int J Mol Sci 2019; 20:ijms20133282. [PMID: 31277365 PMCID: PMC6651880 DOI: 10.3390/ijms20133282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) extend axons out of the retina to transmit visual information to the brain. These connections are established during development through the navigation of RGC axons along a relatively long, stereotypical pathway. RGC axons exit the eye at the optic disc and extend along the optic nerves to the ventral midline of the brain, where the two nerves meet to form the optic chiasm. In animals with binocular vision, the axons face a choice at the optic chiasm—to cross the midline and project to targets on the contralateral side of the brain, or avoid crossing the midline and project to ipsilateral brain targets. Ipsilaterally and contralaterally projecting RGCs originate in disparate regions of the retina that relate to the extent of binocular overlap in the visual field. In humans virtually all RGC axons originating in temporal retina project ipsilaterally, whereas in mice, ipsilaterally projecting RGCs are confined to the peripheral ventrotemporal retina. This review will discuss recent advances in our understanding of the mechanisms regulating specification of ipsilateral versus contralateral RGCs, and the differential guidance of their axons at the optic chiasm. Recent insights into the establishment of congruent topographic maps in both brain hemispheres also will be discussed.
Collapse
Affiliation(s)
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
30
|
Mason C, Guillery R. Conversations with Ray Guillery on albinism: linking Siamese cat visual pathway connectivity to mouse retinal development. Eur J Neurosci 2019; 49:913-927. [PMID: 30801828 DOI: 10.1111/ejn.14396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/23/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
In albinism of all species, perturbed melanin biosynthesis in the eye leads to foveal hypoplasia, retinal ganglion cell misrouting, and, consequently, altered binocular vision. Here, written before he died, Ray Guillery chronicles his discovery of the aberrant circuitry from eye to brain in the Siamese cat. Ray's characterization of visual pathway anomalies in this temperature sensitive mutation of tyrosinase and thus melanin synthesis in domestic cats opened the exploration of albinism and simultaneously, a genetic approach to the organization of neural circuitry. I follow this account with a remembrance of Ray's influence on my work. Beginning with my postdoc research with Ray on the cat visual pathway, through my own work on the mechanisms of retinal axon guidance in the developing mouse, Ray and I had a continuous and rich dialogue about the albino visual pathway. I will present the questions Ray posed and clues we have to date on the still-elusive link between eye pigment and the proper balance of ipsilateral and contralateral retinal ganglion cell projections to the brain.
Collapse
Affiliation(s)
- Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| | - Ray Guillery
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, Room L3-043, Quad 3C, New York, NY, 10027, USA
| |
Collapse
|
31
|
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 2019; 8:F1000 Faculty Rev-345. [PMID: 30984379 PMCID: PMC6439788 DOI: 10.12688/f1000research.17717.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, USA
| | | | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
32
|
He J, Xu X, Monavarfeshani A, Banerjee S, Fox MA, Xie H. Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleus. Epigenetics Chromatin 2019; 12:13. [PMID: 30764861 PMCID: PMC6374911 DOI: 10.1186/s13072-019-0257-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 12/28/2022] Open
Abstract
DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
Collapse
Affiliation(s)
- Jianlin He
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xiguang Xu
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Aboozar Monavarfeshani
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Sharmi Banerjee
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA.,Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael A Fox
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Developmental and Translational Neurobiology Center, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA. .,Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.
| | - Hehuang Xie
- Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA. .,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA.
| |
Collapse
|
33
|
Marcucci F, Soares CA, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol 2019; 527:212-224. [PMID: 29761490 PMCID: PMC6237670 DOI: 10.1002/cne.24467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Célia A. Soares
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Carol Mason
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
34
|
Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Michelle Fogerson P, Leyrer ML, Berson DM. The M6 cell: A small-field bistratified photosensitive retinal ganglion cell. J Comp Neurol 2019; 527:297-311. [PMID: 30311650 PMCID: PMC6594700 DOI: 10.1002/cne.24556] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 01/26/2023]
Abstract
We have identified a novel, sixth type of intrinsically photosensitive retinal ganglion cell (ipRGC) in the mouse-the M6 cell. Its spiny, highly branched dendritic arbor is bistratified, with dendrites restricted to the inner and outer margins of the inner plexiform layer, co-stratifying with the processes of other ipRGC types. We show that M6 cells are by far the most abundant ganglion cell type labeled in adult pigmented Cdh3-GFP BAC transgenic mice. A few M5 ipRGCs are also labeled, but no other RGC types were encountered. Several distinct subnuclei in the geniculate complex and the pretectum contain labeled retinofugal axons in the Cdh3-GFP mouse. These are presumably the principle central targets of M6 cells (as well as M5 cells). Projections from M6 cells to the dorsal lateral geniculate nucleus were confirmed by retrograde tracing, suggesting they contribute to pattern vision. M6 cells have low levels of melanopsin expression and relatively weak melanopsin-dependent light responses. They also exhibit strong synaptically driven light responses. Their dendritic fields are the smallest and most abundantly branched of all ipRGCs. They have small receptive fields and strong antagonistic surrounds. Despite deploying dendrites partly in the OFF sublamina, M6 cells appear to be driven exclusively by the ON pathway, suggesting that their OFF arbor, like those of certain other ipRGCs, may receive ectopic input from passing ON bipolar cells axons in the OFF sublayer.
Collapse
Affiliation(s)
- Lauren E Quattrochi
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Maureen E Stabio
- Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Inkyu Kim
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Marissa C Ilardi
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - P Michelle Fogerson
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - Megan L Leyrer
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| | - David M Berson
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
El-Danaf RN, Huberman AD. Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. J Comp Neurol 2018; 527:259-269. [PMID: 29675855 DOI: 10.1002/cne.24457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/28/2023]
Abstract
In many species, neurons are unevenly distributed across the retina, leading to nonuniform analysis of specific visual features at certain locations in visual space. In recent years, the mouse has emerged as a premiere model for probing visual system function, development, and disease. Thus, achieving a detailed understanding of mouse visual circuit architecture is of paramount importance. The general belief is that mice possess a relatively even topographic distribution of retinal ganglion cells (RGCs)-the output neurons of the eye. However, mouse RGCs include ∼30 subtypes; each responds best to a specific feature in the visual scene and conveys that information to central targets. Given the crucial role of RGCs and the prominence of the mouse as a model, we asked how different RGC subtypes are distributed across the retina. We targeted and filled individual fluorescently tagged RGC subtypes from across the retinal surface and evaluated the dendritic arbor extent and soma size of each cell according to its specific retinotopic position. Three prominent RGC subtypes: On-Off direction selective RGCs, object-motion-sensitive RGCs, and a specialized subclass of nonimage-forming RGCs each had marked topographic variations in their dendritic arbor sizes. Moreover, the pattern of variation was distinct for each RGC subtype. Thus, there is increasing evidence that the mouse retina encodes visual space in a region-specific manner. As a consequence, some visual features are sampled far more densely at certain retinal locations than others. These findings have implications for central visual processing, perception, and behavior in this prominent model species.
Collapse
Affiliation(s)
- Rana N El-Danaf
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, California.,Stanford Neurosciences Institute, Stanford, California.,BioX, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
36
|
Varadarajan SG, Huberman AD. Assembly and repair of eye-to-brain connections. Curr Opin Neurobiol 2018; 53:198-209. [PMID: 30339988 DOI: 10.1016/j.conb.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Vision is the sense humans rely on most to navigate the world and survive. A tremendous amount of research has focused on understanding the neural circuits for vision and the developmental mechanisms that establish them. The eye-to-brain, or 'retinofugal' pathway remains a particularly important model in these contexts because it is essential for sight, its overt anatomical features relate to distinct functional attributes and those features develop in a tractable sequence. Much progress has been made in understanding the growth of retinal axons out of the eye, their selection of targets in the brain, the development of laminar and cell type-specific connectivity within those targets, and also dendritic connectivity within the retina itself. Moreover, because the retinofugal pathway is prone to degeneration in many common blinding diseases, understanding the cellular and molecular mechanisms that establish connectivity early in life stands to provide valuable insights into approaches that re-wire this pathway after damage or loss. Here we review recent progress in understanding the development of retinofugal pathways and how this information is important for improving visual circuit regeneration.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States; Department of Ophthalmology, Stanford University School of Medicine, Stanford, United States; BioX, Stanford University School of Medicine, Stanford, United States; Neurosciences Institute, Stanford University School of Medicine, Stanford, United States.
| |
Collapse
|
37
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
38
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
39
|
Barsh GR, Isabella AJ, Moens CB. Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation. Curr Biol 2017; 27:3812-3825.e3. [PMID: 29225029 PMCID: PMC5755714 DOI: 10.1016/j.cub.2017.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Many networks throughout the nervous system are organized into topographic maps, where the positions of neuron cell bodies in the projecting field correspond with the positions of their axons in the target field. Previous studies of topographic map development show evidence for spatial patterning mechanisms, in which molecular determinants expressed across the projecting and target fields are matched directly in a point-to-point mapping process. Here, we describe a novel temporal mechanism of topographic map formation that depends on spatially regulated differences in the timing of axon outgrowth and functions in parallel with spatial point-to-point mapping mechanisms. We focus on the vagus motor neurons, which are topographically arranged in both mammals and fish. We show that cell position along the anterior-posterior axis of hindbrain rhombomere 8 determines expression of hox5 genes, which are expressed in posterior, but not anterior, vagus motor neurons. Using live imaging and transplantation in zebrafish embryos, we additionally reveal that axon initiation is delayed in posterior vagus motor neurons independent of neuron birth time. We show that hox5 expression directs topographic mapping without affecting time of axon outgrowth and that time of axon outgrowth directs topographic mapping without affecting hox5 expression. The vagus motor neuron topographic map is therefore determined by two mechanisms that act in parallel: a hox5-dependent spatial mechanism akin to classic mechanisms of topographic map formation and a novel axon outgrowth-dependent temporal mechanism in which time of axon formation is spatially regulated to direct axon targeting.
Collapse
Affiliation(s)
- Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Seabrook TA, Dhande OS, Ishiko N, Wooley VP, Nguyen PL, Huberman AD. Strict Independence of Parallel and Poly-synaptic Axon-Target Matching during Visual Reflex Circuit Assembly. Cell Rep 2017; 21:3049-3064. [PMID: 29241535 PMCID: PMC6333306 DOI: 10.1016/j.celrep.2017.11.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
The use of sensory information to drive specific behaviors relies on circuits spanning long distances that wire up through a range of axon-target recognition events. Mechanisms assembling poly-synaptic circuits and the extent to which parallel pathways can "cross-wire" to compensate for loss of one another remain unclear and are crucial to our understanding of brain development and models of regeneration. In the visual system, specific retinal ganglion cells (RGCs) project to designated midbrain targets connected to downstream circuits driving visuomotor reflexes. Here, we deleted RGCs connecting to pupillary light reflex (PLR) midbrain targets and discovered that axon-target matching is tightly regulated. RGC axons of the eye-reflex pathway avoided vacated PLR targets. Moreover, downstream PLR circuitry is maintained; hindbrain and peripheral components retained their proper connectivity and function. These findings point to a model in which poly-synaptic circuit development reflects independent, highly stringent wiring of each parallel pathway and downstream station.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Onkar S Dhande
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nao Ishiko
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victoria P Wooley
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Phong L Nguyen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94303, USA; Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
42
|
Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, Kuwajima T, Khalid S, Ross ME, Mason C, Herrera E. The Ciliary Margin Zone of the Mammalian Retina Generates Retinal Ganglion Cells. Cell Rep 2017; 17:3153-3164. [PMID: 28009286 DOI: 10.1016/j.celrep.2016.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022] Open
Abstract
The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. Because Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2-/- mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Veronica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Qing Wang
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yaiza Coca
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Susana Ferreiro-Galve
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain
| | - Takaaki Kuwajima
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sania Khalid
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Carol Mason
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández), 03550 Sant Joan d'Alacant, Spain.
| |
Collapse
|
43
|
Beros J, Rodger J, Harvey AR. Developmental retinal ganglion cell death and retinotopicity of the murine retinocollicular projection. Dev Neurobiol 2017; 78:51-60. [PMID: 29134765 DOI: 10.1002/dneu.22559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
During mammalian visual system development, retinal ganglion cells (RGCs) undergo extensive apoptotic death. In mouse retina, approximately 50% of RGCs present at birth (postnatal day 0; P0) die by P5, at a time when axons innervate central targets such as the superior colliculus (SC). We examined whether RGCs that make short-range axonal targeting errors within the contralateral SC are more likely to be eliminated during the peak period of RGC death (P1-P5), compared with RGCs initially making more accurate retinotopic connections. A small volume (2.3 nL) of the retrograde nucleophilic dye Hoechst 33342 was injected into the superficial left SC of anesthetized neonatal C57Bl/6J mice at P1 (n = 5) or P4 (n = 8), and the contralateral retina wholemounted 12 hr later. Retrogradely labelled healthy and dying (pyknotic) RGCs were identified by morphological criteria and counted. The percentage of pyknotic RGCs was analyzed in relation to distance from the area of highest density RGC labelling, presumed to represent the most topographically accurate population. As expected, pyknotic RGC density at P1 was significantly greater than P4 (p < 0.05). At P4, the density of healthy RGCs 500-750 µm away from the central region was significantly less, although this was not reflected in altered pyknotic rates. However, at P1 there was a trend (p = 0.08) for an increased proportion of pyknotic RGCs, specifically in temporal parts of the retina outside the densely labelled center. Overall, the lack of consistent association between short-range targeting errors and cell death suggests that most postnatal RGC loss is not directly related to topographic accuracy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 51-60, 2018.
Collapse
Affiliation(s)
- Jamie Beros
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Perron Institute for Neurological and Translational Science, RR Block, QE II Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,Perron Institute for Neurological and Translational Science, RR Block, QE II Medical Centre, Nedlands, Western Australia, 6009, Australia
| |
Collapse
|
44
|
Wang R, Chen Z, Wu J, Xia F, Sun Q, Sun A, Liu L. Preconditioning with carbon monoxide inhalation promotes retinal ganglion cell survival against optic nerve crush via inhibition of the apoptotic pathway. Mol Med Rep 2017; 17:1297-1304. [PMID: 29115631 DOI: 10.3892/mmr.2017.7990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/27/2017] [Indexed: 11/05/2022] Open
Abstract
Optic neurodegeneration, in addition to central nervous trauma, initiates impairments to neurons resulting in retinal ganglion cell (RGC) damage. Carbon monoxide (CO) has been observed to elicit neuroprotection in various experimental models. The present study investigated the potential retinal neuroprotection of preconditioning with CO inhalation in a rat model of optic nerve crush (ONC). Adult male Sprague‑Dawley rats were preconditioned with inhaled CO (250 ppm) or air for 1 h prior to ONC. Animals were euthanized at 1 or 2 weeks following surgery. RGC densities were quantified by hematoxylin and eosin (H&E) staining and FluoroGold labeling. Visual function was measured via flash visual evoked potentials (FVEP). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and caspase‑9 and caspase‑3 activity in the retinas, were assessed at 2 weeks post‑ONC. The RGC density of CO + crush rats was significantly increased compared with that of the corresponding crush‑only rats at 2 weeks (survival rate, 66.2 vs. 48.2% as demonstrated by H&E staining, P<0.01; and 67.6 vs. 37.6% as demonstrated by FluoroGold labeling, P<0.05). FVEP measures indicated a significantly better‑preserved latency and amplitude of the P1 wave in the CO + crush rats compared with the crush‑only rats. The TUNEL assays demonstrated fewer apoptotic cells in the CO + crush group compared with the crush‑only group, accompanied by the suppression of caspase‑9 and caspase‑3 activity. The results of the present study suggested that inhaled CO preconditioning may be neuroprotective against ONC insult via inhibition of neuronal apoptosis.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Zeli Chen
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jiangchun Wu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fangzhou Xia
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qinglei Sun
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Aijun Sun
- Department of Anatomy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Lin Liu
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
45
|
Abstract
Although much is known about the regenerative capacity of retinal ganglion cells, very significant barriers remain in our ability to restore visual function following traumatic injury or disease-induced degeneration. Here we summarize our current understanding of the factors regulating axon guidance and target engagement in regenerating axons, and review the state of the field of neural regeneration, focusing on the visual system and highlighting studies using other model systems that can inform analysis of visual system regeneration. This overview is motivated by a Society for Neuroscience Satellite meeting, "Reconnecting Neurons in the Visual System," held in October 2015 sponsored by the National Eye Institute as part of their "Audacious Goals Initiative" and co-organized by Carol Mason (Columbia University) and Michael Crair (Yale University). The collective wisdom of the conference participants pointed to important gaps in our knowledge and barriers to progress in promoting the restoration of visual system function. This article is thus a summary of our existing understanding of visual system regeneration and provides a blueprint for future progress in the field.
Collapse
|
46
|
Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, Tufford A, Weng S, Gray PA, Cayouette M, Herzog ED, Zhao H, Berson DM, Hattar S. A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. eLife 2017; 6:e22861. [PMID: 28617242 PMCID: PMC5513697 DOI: 10.7554/elife.22861] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
The visual system consists of two major subsystems, image-forming circuits that drive conscious vision and non-image-forming circuits for behaviors such as circadian photoentrainment. While historically considered non-overlapping, recent evidence has uncovered crosstalk between these subsystems. Here, we investigated shared developmental mechanisms. We revealed an unprecedented role for light in the maturation of the circadian clock and discovered that intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for this refinement process. In addition, ipRGCs regulate retinal waves independent of light, and developmental ablation of a subset of ipRGCs disrupts eye-specific segregation of retinogeniculate projections. Specifically, a subset of ipRGCs, comprising ~200 cells and which project intraretinally and to circadian centers in the brain, are sufficient to mediate both of these developmental processes. Thus, this subset of ipRGCs constitute a shared node in the neural networks that mediate light-dependent maturation of the circadian clock and light-independent refinement of retinogeniculate projections.
Collapse
Affiliation(s)
- Kylie S Chew
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Jordan M Renna
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - David S McNeill
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Diego C Fernandez
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer L Ecker
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Cassandra VanDunk
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Daniel C Vicarel
- Department of Biology, Program in Integrated Bioscience, The University of Akron, Akron, United States
| | - Adele Tufford
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
| | - Shijun Weng
- Department of Neuroscience, Brown University, Providence, United States
| | - Paul A Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, United States
- Indigo Agriculture, Charlestown, United States
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut De Recherches Cliniques De Montréal, Montreal, Canada
- Faculty of Medicine, Université De Montréal, Montreal, Canada
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
47
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
48
|
Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. Expression of transcription factors divides retinal ganglion cells into distinct classes. J Comp Neurol 2017; 527:225-235. [PMID: 28078709 DOI: 10.1002/cne.24172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) are tasked with transmitting all light information from the eye to the retinal recipient areas of the brain. RGCs can be classified into many different types by morphology, gene expression, axonal projections, and functional responses to different light stimuli. Ultimately, these classification systems should be unified into an all-encompassing taxonomy. Toward that end, we show here that nearly all RGCs express either Islet-2 (Isl2), Tbr2, or a combination of Satb1 and Satb2. We present gene expression data supporting the hypothesis that Satb1 and Satb2 are expressed in ON-OFF direction-selective (DS) RGCs, complementing our previous work demonstrating that RGCs that express Isl2 and Tbr2 are non-DS and non-image-forming, respectively. Expression of these transcription factors emerges at distinct embryonic ages and only in postmitotic cells. Finally, we demonstrate that these transcription factor-defined RGC classes are born throughout RGC genesis.
Collapse
Affiliation(s)
- Neal T Sweeney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Kiely N James
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Andreea Nistorica
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Ryan M Lorig-Roach
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - David A Feldheim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
49
|
Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017; 77:844-860. [PMID: 27907266 DOI: 10.1002/dneu.22473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The visual representation of the outside world relies on the appropriate connectivity between the eyes and the brain. Retinal ganglion cells are the sole neurons that send an axon from the retina to the brain, and thus the guidance decisions of retinal axons en route to their targets in the brain shape the neural circuitry that forms the basis of vision. Here, we focus on the choice made by retinal axons to cross or avoid the midline at the optic chiasm. This decision allows each brain hemisphere to receive inputs from both eyes corresponding to the same visual hemifield, and is thus crucial for binocular vision. In achiasmatic conditions, all retinal axons from one eye project to the ipsilateral brain hemisphere. In albinism, abnormal guidance of retinal axons at the optic chiasm leads to a change in the ratio of contralateral and ipsilateral projections with the consequence that each brain hemisphere receives inputs primarily from the contralateral eye instead of an almost equal distribution from both eyes in humans. In both cases, this misrouting of retinal axons leads to reduced visual acuity and poor depth perception. While this defect has been known for decades, mouse genetics have led to a better understanding of the molecular mechanisms at play in retinal axon guidance and at the origin of the guidance defect in albinism. In addition, fMRI studies on humans have now confirmed the anatomical and functional consequences of axonal misrouting at the chiasm that were previously only assumed from animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 844-860, 2017.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|
50
|
DSCAM promotes axon fasciculation and growth in the developing optic pathway. Proc Natl Acad Sci U S A 2017; 114:1702-1707. [PMID: 28137836 DOI: 10.1073/pnas.1618606114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many aspects of optic pathway development are beginning to be understood, the mechanisms promoting the growth of retinal ganglion cell (RGC) axons toward visual targets remain largely unknown. Down syndrome cell adhesion molecule (Dscam) is expressed by mouse RGCs shortly after they differentiate at embryonic day 12 and is essential for multiple aspects of postnatal visual system development. Here we show that Dscam is also required during embryonic development for the fasciculation and growth of RGC axons. Dscam is expressed along the developing optic pathway in a pattern consistent with a role in regulating RGC axon outgrowth. In mice carrying spontaneous mutations in Dscam (Dscamdel17 ; Dscam2J), RGC axons pathfind normally, but growth from the chiasm toward their targets is impaired, resulting in a delay in RGC axons reaching the dorsal thalamus compared with that seen in wild-type littermates. Conversely, Dscam gain of function results in exuberant growth into the dorsal thalamus. The growth of ipsilaterally projecting axons is particularly affected. Axon organization in the optic chiasm and tract and RGC growth cone morphologies are also altered in Dscam mutants. In vitro DSCAM promotes RGC axon growth and fasciculation, and can act independently of cell contact. In vitro and in situ DSCAM is required both in the RGC axons and in their environment for the promotion of axon outgrowth, consistent with a homotypic mode of action. These findings identify DSCAM as a permissive signal that promotes the growth and fasciculation of RGC axons, controlling the timing of when RGC axons reach their targets.
Collapse
|