1
|
Gómez-López S, Alhendi ASN, Przybilla MJ, Bordeu I, Whiteman ZE, Butler T, Rouhani MJ, Kalinke L, Uddin I, Otter KEJ, Chandrasekharan DP, Lebrusant-Fernandez M, Shurr AYL, Durrenberger PF, Moore DA, Falzon M, Reading JL, Martincorena I, Simons BD, Campbell PJ, Janes SM. Aberrant basal cell clonal dynamics shape early lung carcinogenesis. Science 2025:eads9145. [PMID: 40310937 DOI: 10.1126/science.ads9145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Preinvasive squamous lung lesions are precursors of lung squamous cell carcinoma (LUSC). The cellular events underlying lesion formation are unknown. Using a carcinogen-induced model of LUSC with no added genetic hits or cell type bias, we find that carcinogen exposure leads to non-neutral competition among basal cells, aberrant clonal expansions, and basal cell mobilization along the airways. Ultimately, preinvasive lesions develop from a few highly mutated clones that dominate most of the bronchial tree. Multi-site sequencing in human patients confirms the presence of clonally related preinvasive lesions across distinct airway regions. Our work identifies a transition in basal cell clonal dynamics, and an associated shift in basal cell fate, as drivers of field cancerization in the lung.
Collapse
Affiliation(s)
- Sandra Gómez-López
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Ahmed S N Alhendi
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Moritz J Przybilla
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Ignacio Bordeu
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Zoe E Whiteman
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Timothy Butler
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Maral J Rouhani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Lukas Kalinke
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Imran Uddin
- Cancer Research UK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Kate E J Otter
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Marta Lebrusant-Fernandez
- Pre-Cancer Immunology Laboratory, UCL Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Abigail Y L Shurr
- Pre-Cancer Immunology Laboratory, UCL Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Pascal F Durrenberger
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals NHS Trust, London, UK
| | - Mary Falzon
- Department of Cellular Pathology, University College London Hospitals NHS Trust, London, UK
| | - James L Reading
- Pre-Cancer Immunology Laboratory, UCL Cancer Institute, University College London, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| |
Collapse
|
2
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch SM, Neely A, Marconett CN, Ryan AL. Culture conditions differentially regulate the inflammatory niche and cellular phenotype of tracheobronchial basal stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L538-L553. [PMID: 39982813 DOI: 10.1152/ajplung.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Bronchial epithelial cells derived from the tracheobronchial regions of human airways (HBECs) provide a valuable in vitro model for studying pathological mechanisms and evaluating therapeutics. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media: airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and PneumaCult Ex plus (PEx+). Analysis through RNA sequencing, immune assays, and impedance measurements revealed that PEx+ media significantly drove cell proliferation and a broad proinflammatory phenotype in BCs. In contrast, BCs expanded in AECGM and displayed increased expression of structural and extracellular matrix components at higher passage. AECGM increased expression of some cytokines at high passage, whereas DSI suppressed inflammation implicating the involvement TGF-β in BC inflammatory processes. Differentiation capacity of BCs declined with time in culture irrespective of expansion media. This was associated with an increase in PLUNC expressing secretory cells in AECGM and PEx+ media consistent with the known immune modulatory role of PLUNC in the airways. These findings highlight the profound impact of media conditions on inflammatory niche established by, and function of, in vitro expanded BCs. The broad proinflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic applications.NEW & NOTEWORTHY Airway basal cells, vital for airway regeneration and potential therapies, show significant changes based on culture conditions. Our study reveals that media composition and culture duration greatly affect basal cell properties with profound changes in the proinflammatory phenotype and extracellular matrix deposition driven by changes in growth conditions. These results underscore the critical impact of culture conditions on BC phenotype, influencing cell-based models for airway disease research and therapy.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Denise A Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Rosemary Sease
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| | - Ben A Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Shana M Busch
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Crystal N Marconett
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
3
|
Zhu W, Han L, He L, Peng W, Li Y, Tian W, Qi H, Wei S, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression. Respir Res 2025; 26:71. [PMID: 40022153 PMCID: PMC11871738 DOI: 10.1186/s12931-025-03126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition, with its severity inversely related to the levels of Club cell 10 kDa secretory protein (CC10). The gene Lsm2, involved in RNA metabolism and cell proliferation, has an unclear role in COPD development. METHODS An in vitro COPD model was developed by stimulating 16HBE cells with cigarette smoke extract (CSE). To establish an in vivo COPD model, mice with defective Lsm2 gene expression in lung or club cells were exposed to cigarette smoke for 3 months. Multiplexed immunohistochemistry (mIHC) was employed to identify the specific cells where Lsm2 gene expression is predominant. RNA sequencing and single-nucleus RNA sequencing were conducted to investigate the role of Lsm2 in the pathogenesis of COPD. RESULTS In this study, we found that cigarette smoke extract increases Lsm2 expression, and knocking down Lsm2 in 16HBE cells significantly reduces cell viability in vitro. mIHC showed that Lsm2 is primarily expressed in Club cells. Knockout of Lsm2, either in the lungs or specifically in Club cells, exacerbated lung injury and inflammation caused by cigarette smoke exposure in vivo. Single-nucleus RNA sequencing analysis revealed that Club cell-specific knockout of Lsm2 leads to a reduction in the Club cell population, particularly those expressing Chia1+/Crb1+. This decrease in Club cells subsequently reduces the number of ciliated epithelial cells. CONCLUSION Knocking out Lsm2 in Club cells results in a significant decrease in Club cell numbers, which subsequently leads to a reduction in ciliated epithelial cells. This increased lung vulnerability to cigarette smoke and accelerating the progression of COPD. Our findings highlight that Lsm2 is critical to club cell proliferation and its inhibition aggravates COPD progression.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Li
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Weibin Tian
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang, 050091, Hebei, China
| | - Shuoyan Wei
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critial Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Shanghai, 201104, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
4
|
Sanders EN, Sun HT, Tabatabaee S, Lang CF, van Dijk SG, Su YH, Labott A, Idris J, He L, Marchetti M, Xie S, O’Brien LE. Organ injury accelerates stem cell differentiation by modulating a fate-transducing lateral inhibition circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.29.630675. [PMID: 39803552 PMCID: PMC11722240 DOI: 10.1101/2024.12.29.630675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that expedite differentiation are unclear. Using the adult Drosophila intestine, we find that injury accelerates differentiation by modulating the lateral inhibition circuit that transduces a fate-determining Notch signal. During routine intestinal turnover, balanced terminal (Notch-active) and stem (Notch-inactive) fates arise through lateral inhibition in which Notch-Delta signaling between two stem cell daughters resolves over time to activate Notch and extinguish Delta in one cell. When we feed flies a gut-damaging toxin, injury-induced cytokines cause Notch-activated cells to escape normal Delta suppression by inactivating the Notch co-repressor Groucho. Mathematical modeling predicts that this augmented Delta prompts faster Notch signaling; indeed, in vivo live imaging reveals that injury-born cells undergo markedly faster Notch signal transduction. Thus, Notch-Delta lateral inhibition-a switch that regulates fates during steady-state turnover-also serves as a throttle that tunes differentiation speed according to tissue need.
Collapse
Affiliation(s)
- Erin N. Sanders
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hsuan-Te Sun
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles F. Lang
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian G. van Dijk
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Labott
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Javeria Idris
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Li He
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shicong Xie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lucy Erin O’Brien
- Department of Molecular and Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan-Zuckerberg Biohub—San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Foote AG, Sun X. A Single-Cell Atlas of the Upper Respiratory Epithelium Reveals Heterogeneity in Cell Types and Patterning Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633456. [PMID: 39896587 PMCID: PMC11785068 DOI: 10.1101/2025.01.16.633456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The upper respiratory tract, organized along the pharyngolaryngeal-to-tracheobronchial axis, is essential for homeostatic functions such as breathing and vocalization. The upper respiratory epithelium is frequently exposed to pollutants and pathogens, making this an area of first-line defense against respiratory injury and infection. The respiratory epithelium is composed of a rich array of specialized cell types, each with unique capabilities in immune defense and injury repair. However, the precise transcriptomic signature and spatial distribution of these cell populations, as well as potential cell subpopulations, have not been well defined. Here, using single cell RNAseq combined with spatial validation, we present a comprehensive atlas of the mouse upper respiratory epithelium. We systematically analyzed our rich RNAseq dataset of the upper respiratory epithelium to reveal 17 cell types, which we further organized into three spatially distinct compartments: the Tmprss11a + pharyngolaryngeal, the Nkx2-1 + tracheobronchial, and the Dmbt1 + submucosal gland epithelium. We profiled/analyzed the pharyngolaryngeal epithelium, composed of stratified squamous epithelium, and identified distinct regional signatures, including a Keratin gene expression code. In profiling the tracheobronchial epithelium, which is composed of a pseudostratified epithelium-with the exception of the hillock structure-we identified that regional luminal cells, such as club cells and basal cells, show varying gradients of marker expression along the proximal-distal and/or dorsal-ventral axis. Lastly, our analysis of the submucosal gland epithelium, composed of an array of cell types, such as the unique myoepithelial cells, revealed the colorful diversity of between and within cell populations. Our single-cell atlas with spatial validation highlights the distinct transcriptional programs of the upper respiratory epithelium and serves as a valuable resource for future investigations to address how cells behave in homeostasis and pathogenesis. Highlights - Defined three spatially distinct epithelial compartments, Tmprss11a + pharyngolaryngeal, Nkx2-1 + tracheobronchial, and Dmbt1 + submucosal gland, comprising 17 total cell types - Profiled Keratin gene expression code along proximal-distal and basal-luminal axes and highlighted "stress-induced" Keratins KRT6A and KRT17 at homeostasis - Demarcated expression gradients of Scgb1a1 + and Scgb3a2+ club cells along the proximal-distal axes - Specified submucosal gland cell heterogeneity including Nkx3-1+ mucin-producing cells, with ACTA2+ basal myoepithelial cells exhibiting gene profile for neuroimmune mediated signaling.
Collapse
|
7
|
Kuipers ME, Ninaber DK, van Doorn-Wink KCJ, Slats AM, Hiemstra PS. Radiation decreases bronchial epithelial progenitor function as assessed by organoid formation. Respir Res 2025; 26:20. [PMID: 39827355 PMCID: PMC11742509 DOI: 10.1186/s12931-025-03105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Radiation-induced lung injury (RILI) is a serious side-effect of radiotherapy for lung cancer, in which effects on the normal lung epithelium may play a key role. Since these effects are incompletely understood, the aim of the present study was to evaluate the effect of ionizing radiation (IR) on cultured well-differentiated primary bronchial epithelial cells (PBEC) with a focus on cytotoxicity, barrier formation, inflammation and epithelial progenitor function. MATERIALS AND METHODS PBEC were cultured at the Air-Liquid Interface (ALI-PBEC) to allow mucociliary differentiation. Effect of IR (1, 2, 4, 8 Gy [Gy]) on ALI-PBEC cultures was investigated by lactate dehydrogenase (LDH) release, Trans Epithelial Electrical Resistance (TEER; as a measure of barrier function), qPCR (P21/CDKNA1, MKI67, AEN, E2F1, ATF3) and immunofluorescence staining (γH2Ax-foci). The impact on epithelial progenitor function was assessed by studying organoid formation capacity of irradiated ALI-PBEC at 24 h and 7 days after IR. RESULTS AND DISCUSSION IR increased the number of γH2Ax-foci (marker of double stranded DNA breaks) in ALI-PBEC, but did not affect markers of toxicity (LDH-release or TEER). IR did also not affect mRNA markers for inflammation or epithelial-mesenchymal transition (EMT), but did increase mRNA levels of the cell cycle inhibitor P21/CDKN1A and resulted in downregulation of the proliferation markers MKI67 and E2F1. Finally, IR of ALI-PBEC had a marked effect on organoid formation capacity, which was markedly impaired following IR in a dose-dependent manner. CONCLUSION In conclusion, epithelial progenitor cell function as assessed by organoid formation capacity is strongly reduced by IR and persists for at least 7 days. Despite an effect on organoid formation capacity, DNA breaks, P21/CDKN1A expression and reduced expression of MKI67 and E2F1, this effect was not accompanied by IR-induced cytotoxicity, or an increase in markers of inflammation or EMT. This study indicates that studying the effects of IR on organoid formation is a valid and sensitive tool to study adverse effects of IR on normal lung epithelial cells and could be used as a tool to study RILI.
Collapse
Affiliation(s)
- Merian E Kuipers
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, C2-R-062, 2333 ZA, Leiden, The Netherlands.
| | - Dennis K Ninaber
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, C2-R-062, 2333 ZA, Leiden, The Netherlands
| | | | - Annelies M Slats
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, C2-R-062, 2333 ZA, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, C2-R-062, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
8
|
Bondeelle L, Clément S, Bergeron A, Tapparel C. Lung stem cells and respiratory epithelial chimerism in transplantation. Eur Respir Rev 2025; 34:240146. [PMID: 39971397 PMCID: PMC11836672 DOI: 10.1183/16000617.0146-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
- Co-last author
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Co-last author
| |
Collapse
|
9
|
Choi J, Chudziak J, Lee JH. Bi-directional regulation between inflammation and stem cells in the respiratory tract. J Cell Sci 2024; 137:jcs263413. [PMID: 39508347 PMCID: PMC11574357 DOI: 10.1242/jcs.263413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Inflammation plays a crucial role in tissue injury, repair and disease, orchestrating a complex interplay of immune responses and cellular processes. Recent studies have uncovered the intricate connection between inflammation and stem cell dynamics, shedding light on the central role of stem cells in tissue regeneration. This Review highlights the significance of inflammation in shaping epithelial stem cell dynamics and its implications for tissue repair, regeneration and aging. We explore the multifaceted interactions between inflammation and stem cells, focusing on how inflammatory signals affect stem cell behavior and fate as well as the remodeling of their niche in the respiratory tract. We also discuss the concept of 'inflammatory memory' in epithelial stem cells, where prior inflammatory stimuli endow these cells with enhanced regenerative potential and confer long-lasting protective mechanisms for maintaining tissue integrity and function. Furthermore, we review the impact of cell senescence induced by inflammation on tissue regeneration and aging, delving into the molecular mechanisms underlying the modulation of signaling pathways, epigenetic modifications and cellular crosstalk. Understanding these dynamic processes not only deepens our knowledge of tissue homeostasis and repair but also holds profound implications for regenerative medicine strategies aimed at preventing pulmonary diseases.
Collapse
Affiliation(s)
- Jinwook Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jakub Chudziak
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
| | - Joo-Hyeon Lee
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| |
Collapse
|
10
|
Alvarez-Arguedas S, Mazhar K, Wangzhou A, Sankaranarayanan I, Gaona G, Lafin JT, Mitchell RB, Price TJ, Shiloh MU. Single cell transcriptional analysis of human adenoids identifies molecular features of airway microfold cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619143. [PMID: 39484391 PMCID: PMC11526898 DOI: 10.1101/2024.10.19.619143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The nasal, oropharyngeal, and bronchial mucosa are primary contact points for airborne pathogens like Mycobacterium tuberculosis (Mtb), SARS-CoV-2, and influenza virus. While mucosal surfaces can function as both entry points and barriers to infection, mucosa-associated lymphoid tissues (MALT) facilitate early immune responses to mucosal antigens. MALT contains a variety of specialized epithelial cells, including a rare cell type called a microfold cell (M cell) that functions to transport apical antigens to basolateral antigen-presenting cells, a crucial step in the initiation of mucosal immunity. M cells have been extensively characterized in the gastrointestinal (GI) tract in murine and human models. However, the precise development and functions of human airway M cells is unknown. Here, using single-nucleus RNA sequencing (snRNA-seq), we generated an atlas of cells from the human adenoid and identified 16 unique cell types representing basal, club, hillock, and hematopoietic lineages, defined their developmental trajectories, and determined cell-cell relationships. Using trajectory analysis, we found that human airway M cells develop from progenitor club cells and express a gene signature distinct from intestinal M cells. Surprisingly, we also identified a heretofore unknown epithelial cell type demonstrating a robust interferon-stimulated gene signature. Our analysis of human adenoid cells enhances our understanding of mucosal immune responses and the role of M cells in airway immunity. This work also provides a resource for understanding early interactions of pathogens with airway mucosa and a platform for development of mucosal vaccines.
Collapse
|
11
|
Cai MY, Mao X, Zhang B, Yip CY, Pan KW, Niu Y, Kwok-Wing Tsui S, Si-Long Vong J, Choi-Wo Mak J, Luo W, Ko WH. Single-cell RNA sequencing reveals heterogeneity of ALI model and epithelial cell alterations after exposure to electronic cigarette aerosol. Heliyon 2024; 10:e38552. [PMID: 39397927 PMCID: PMC11470615 DOI: 10.1016/j.heliyon.2024.e38552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) have been advertised as a healthier alternative to traditional cigarettes; however, their exact effects on the bronchial epithelium are poorly understood. Air-liquid interface culture human bronchial epithelium (ALI-HBE) contains various cell types, including basal cell, ciliated cell and secretory cell, providing an in vitro model that simulates the biological characteristics of normal bronchial epithelium. Multiplex single-cell RNA sequencing of ALI-HBE was used to reveal previously unrecognized transcriptional heterogeneity within the human bronchial epithelium and cell type-specific responses to acute exposure to e-cigarette aerosol (e-aerosol) containing distinct components (nicotine and/or flavoring). The findings of our study show that nicotine-containing e-aerosol affected gene expression related to transformed basal cells into secretory cells after acute exposure; inhibition of secretory cell function by down-regulating genes related to epithelial cell differentiation, calcium ion binding, extracellular exosomes, and secreted proteins; and enhanced interaction between secretory cells and other cells. On the other hand, flavoring may alter the growth pattern of epithelial cells and make basal cells more susceptible to SARS-CoV infection. Besides, the data also indicate factors that may promote SARS-CoV-2 infection and suggest therapeutic targets for restoring normal bronchial epithelium function after e-cigarette use. In summary, the current study offered fresh perspectives on alterations in the cellular landscape and cell type-specific responses in human bronchial epithelium that are brought about by e-cigarette use.
Collapse
Affiliation(s)
- Meng-yun Cai
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Xiaofan Mao
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ke-wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Joaquim Si-Long Vong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Judith Choi-Wo Mak
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
12
|
Plasschaert LW, MacDonald KD, Moffit JS. Current landscape of cystic fibrosis gene therapy. Front Pharmacol 2024; 15:1476331. [PMID: 39439894 PMCID: PMC11493704 DOI: 10.3389/fphar.2024.1476331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis is a life-threatening disease that is caused by mutations in CFTR, a gene which encodes an ion channel that supports proper function of several epithelial tissues, most critically the lung. Without CFTR, airway barrier mechanisms are impaired, allowing for chronic, recurrent infections that result in airway remodeling and deterioration of lung structure and function. Small molecule modulators can rescue existing, defective CFTR protein; however, they still leave a subset of people with CF with no current disease modifying treatments, aside from lung transplantation. Gene therapy directed to the lung is a promising strategy to modify CF disease in the organ most associated with morbidity and mortality. It is accomplished through delivery of a CFTR transgene with an airway permissive vector. Despite more than three decades of research in this area, a lung directed gene therapy has yet to be realized. There is hope that with improved delivery vectors, sufficient transduction of airway cells can achieve therapeutic levels of functional CFTR. In order to do this, preclinical programs need to meet a certain level of CFTR protein expression in vitro and in vivo through improved transduction, particularly in relevant airway cell types. Furthermore, clinical programs must be designed with sensitive methods to detect CFTR expression and function as well as methods to measure meaningful endpoints for lung structure, function and disease. Here, we discuss the current understanding of how much and where CFTR needs to be expressed, the most advanced vectors for CFTR delivery and clinical considerations for detecting CFTR protein and function in different patient subsets.
Collapse
Affiliation(s)
| | - Kelvin D. MacDonald
- Carbon Biosciences, Waltham, MA, United States
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | | |
Collapse
|
13
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
14
|
Orr JC, Laali A, Durrenberger PF, Lazarus KA, El Mdawar MB, Janes SM, Hynds RE. A lentiviral toolkit to monitor airway epithelial cell differentiation using bioluminescence. Am J Physiol Lung Cell Mol Physiol 2024; 327:L587-L599. [PMID: 39137525 PMCID: PMC11482462 DOI: 10.1152/ajplung.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024] Open
Abstract
Basal cells are adult stem cells in the airway epithelium and regenerate differentiated cell populations, including the mucosecretory and ciliated cells that enact mucociliary clearance. Human basal cells can proliferate and produce differentiated epithelium in vitro. However, studies of airway epithelial differentiation mostly rely on immunohistochemical or immunofluorescence-based staining approaches, meaning that a dynamic approach is lacking, and quantitative data are limited. Here, we use a lentiviral reporter gene approach to transduce primary human basal cells with bioluminescence reporter constructs to monitor airway epithelial differentiation longitudinally. We generated three constructs driven by promoter sequences from the TP63, MUC5AC, and FOXJ1 genes to quantitatively assess basal cell, mucosecretory cell, and ciliated cell abundance, respectively. We validated these constructs by tracking differentiation of basal cells in air-liquid interface and organoid ("bronchosphere") cultures. Transduced cells also responded appropriately to stimulation with interleukin 13 (IL-13; to increase mucosecretory differentiation and mucus production) and IL-6 (to increase ciliated cell differentiation). These constructs represent a new tool for monitoring airway epithelial cell differentiation in primary epithelial and/or induced pluripotent stem cell (iPSC)-derived cell cultures.NEW & NOTEWORTHY Orr et al. generated and validated new lentiviral vectors to monitor the differentiation of airway basal cells, goblet cells, or multiciliated cells using bioluminescence.
Collapse
Affiliation(s)
- Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
| | - Asma Laali
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
| | - Pascal F Durrenberger
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Kyren A Lazarus
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Marie-Belle El Mdawar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
15
|
Ortega Granillo A, Zamora D, Schnittker RR, Scott AR, Spluga A, Russell J, Brewster CE, Ross EJ, Acheampong DA, Zhang N, Ferro K, Morrison JA, Rubinstein BY, Perera AG, Wang W, Sánchez Alvarado A. Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration. iScience 2024; 27:110737. [PMID: 39286507 PMCID: PMC11404194 DOI: 10.1016/j.isci.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.
Collapse
Affiliation(s)
| | - Daniel Zamora
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert R Schnittker
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alessia Spluga
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Carolyn E Brewster
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Daniel A Acheampong
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Anoja G Perera
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wei Wang
- National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | | |
Collapse
|
16
|
Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta 2024; 563:119889. [PMID: 39117034 DOI: 10.1016/j.cca.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Mucus and its movements are essential to epithelial tissue immune defenses against pathogens, including fungal pathogens, which can infect respiratory, gastrointestinal or the genito-urinary tracts. Several epithelial cell types contribute to their immune defense. This review focuses on the respiratory tract because of its paramount importance, but the observations will apply to epithelial cell defenses of other mucosal tissue, including the gastrointestinal and genito-urinary tracts. Mucus and its movements can enhance or degrade the immune defenses of the respiratory tract, particularly the lungs. The enhancements include inhaled pathogen entrapments, including fungal pathogens, pollutants and particulates, for their removal. The detriments include smaller lung airway obstructions by mucus, impairing the physical removal of pathogens and impairing vital transfers of oxygen and carbon dioxide between the alveolar circulatory system and the pulmonary air. Inflammation, edema and/or alveolar cellular damage can also reduce vital transfers of oxygen and carbon dioxide between the lung alveolar circulatory system and the pulmonary air. Furthermore, respiratory tract defenses are affected by several fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, dendritic cells, various innate lymphoid cells including the natural killer cells, T cells, γδ T cells, mucosal-associated invariant T cells, NKT cells and mast cells. These mediators include the inflammatory and frequently immunosuppressive prostaglandins and leukotrienes, and the special pro-resolving mediators, which normally resolve inflammation and immunosuppression. The total effects on the various epithelial cell and immune cell types, after exposures to pathogens, pollutants or particulates, will determine respiratory tract health or disease.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, United States.
| |
Collapse
|
17
|
Cheng C, Katoch P, Zhong YP, Higgins CT, Moredock M, Chang MEK, Flory MR, Randell SH, Streeter PR. Identification of a Novel Subset of Human Airway Epithelial Basal Stem Cells. Int J Mol Sci 2024; 25:9863. [PMID: 39337350 PMCID: PMC11432080 DOI: 10.3390/ijms25189863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The basal cell maintains the airway's respiratory epithelium as the putative resident stem cell. Basal cells are known to self-renew and differentiate into airway ciliated and secretory cells. However, it is not clear if every basal cell functions as a stem cell. To address functional heterogeneity amongst the basal cell population, we developed a novel monoclonal antibody, HLO1-6H5, that identifies a subset of KRT5+ (cytokeratin 5) basal cells. We used HLO1-6H5 and other known basal cell-reactive reagents to isolate viable airway subsets from primary human airway epithelium by Fluorescence Activated Cell Sorting. Isolated primary cell subsets were assessed for the stem cell capabilities of self-renewal and differentiation in the bronchosphere assay, which revealed that bipotent stem cells were, at minimum 3-fold enriched in the HLO1-6H5+ cell subset. Crosslinking-mass spectrometry identified the HLO1-6H5 target as a glycosylated TFRC/CD71 (transferrin receptor) proteoform. The HLO1-6H5 antibody provides a valuable new tool for identifying and isolating a subset of primary human airway basal cells that are substantially enriched for bipotent stem/progenitor cells and reveals TFRC as a defining surface marker for this novel cell subset.
Collapse
Affiliation(s)
- Christopher Cheng
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Parul Katoch
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Yong-Ping Zhong
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Claire T. Higgins
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Maria Moredock
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Matthew E. K. Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Mark R. Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Scott H. Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Philip R. Streeter
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
18
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch S, Neely A, Marconett CN, Ryan AL. Culture Conditions Differentially Regulate the Inflammatory Niche and Cellular Phenotype of Tracheo-Bronchial Basal Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611264. [PMID: 39282256 PMCID: PMC11398510 DOI: 10.1101/2024.09.04.611264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Human bronchial epithelial cells (HBECs) derived from the tracheo-bronchial regions of human airways provide an excellent in vitro model for studying pathological mechanisms and evaluating therapeutics in human airway cells. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media, airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and Pneumacult Ex plus (PEx+). Extensive RNA sequencing, immune assays and electrical measurements revealed that PEx+ media significantly drove cell proliferation and a broad pro-inflammatory phenotype in BCs. In contrast, BCs expanded in AECGM, displayed increased expression of structural and extracellular matrix components at high passage. Whereas culture in AECGM increased expression of some cytokines at high passage, DSI suppressed inflammation altogether thus implicating TGF-β in BC inflammatory processes. Differentiation capacity declined with time in culture irrespective of expansion media except for PLUNC expressing secretory cells that were elevated at high passage in AECGM and PEx+ suggestive of an immune modulatory role of PLUNC in BCs. These findings underscore the profound impact of media conditions on inflammatory niche and function of in vitro expanded BCs. The broad pro-inflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic application.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Denise A. Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Adrian M. Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Rosemary Sease
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Ben A. Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Shana Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Crystal N. Marconett
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
19
|
Ruysseveldt E, Steelant B, Wils T, Cremer J, Bullens DMA, Hellings PW, Martens K. The nasal basal cell population shifts toward a diseased phenotype with impaired barrier formation capacity in allergic rhinitis. J Allergy Clin Immunol 2024; 154:631-643. [PMID: 38705259 DOI: 10.1016/j.jaci.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The integrity of the airway epithelium is guarded by the airway basal cells that serve as progenitor cells and restore wounds in case of injury. Basal cells are a heterogenous population, and specific changes in their behavior are associated with chronic barrier disruption-mechanisms that have not been studied in detail in allergic rhinitis (AR). OBJECTIVE We aimed to study basal cell subtypes in AR and healthy controls. METHODS Single-cell RNA sequencing (scRNA-Seq) of the nasal epithelium was performed on nonallergic and house dust mite-allergic AR patients to reveal basal cell diversity and to identify allergy-related alterations. Flow cytometry, immunofluorescence staining, and in vitro experiments using primary basal cells were performed to confirm phenotypic findings at the protein level and functionally. RESULTS The scRNA-Seq, flow cytometry, and immunofluorescence staining revealed that basal cells are abundantly and heterogeneously present in the nasal epithelium, suggesting specialized subtypes. The total basal cell fraction within the epithelium in AR is increased compared to controls. scRNA-Seq demonstrated that potentially beneficial basal cells are missing in AR epithelium, while an activated population of allergy-associated basal cells is more dominantly present. Furthermore, our in vitro proliferation, wound healing assay and air-liquid interface cultures show that AR-associated basal cells have altered progenitor capacity compared to nonallergic basal cells. CONCLUSIONS The nasal basal cell population is abundant and diverse, and it shifts toward a diseased state in AR. The absence of potentially protective subtypes and the rise of a proinflammatory population suggest that basal cells are important players in maintaining epithelial barrier defects in AR.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.
| | - Brecht Steelant
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Tine Wils
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Clinical Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Peter W Hellings
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Upper Airways Research Laboratory, University of Ghent, Ghent, Belgium
| | - Katleen Martens
- Department of Microbiology, Immunology, and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
20
|
Howes A, Rogerson C, Belyaev N, Karagyozova T, Rapiteanu R, Fradique R, Pellicciotta N, Mayhew D, Hurd C, Crotta S, Singh T, Dingwell K, Myatt A, Arad N, Hasan H, Bijlsma H, Panjwani A, Vijayan V, Young G, Bridges A, Petit-Frere S, Betts J, Larminie C, Smith JC, Hessel EM, Michalovich D, Walport L, Cicuta P, Powell AJ, Beinke S, Wack A. The FAM13A Long Isoform Regulates Cilia Movement and Coordination in Airway Mucociliary Transport. Am J Respir Cell Mol Biol 2024; 71:282-293. [PMID: 38691660 PMCID: PMC11376246 DOI: 10.1165/rcmb.2024-0063oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024] Open
Abstract
Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.
Collapse
Affiliation(s)
| | - Clare Rogerson
- Immunoregulation Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Ricardo Fradique
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Catherine Hurd
- Protein-Protein Interaction Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Anniek Myatt
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Navot Arad
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hikmatyar Hasan
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hielke Bijlsma
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | | | - Vinaya Vijayan
- Development Digital and Tech, GSK, Collegeville, Pennsylvania
| | - George Young
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Edith M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GSK R&D, Stevenage, United Kingdom
| | | | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
21
|
Wang Y, Le Y, Harris KL, Chen Y, Li X, Faske J, Wynne RA, Mittelstaedt RA, Cao X, Miranda-Colon J, Elkins L, Muskhelishvili L, Davis K, Mei N, Sun W, Robison TW, Heflich RH, Parsons BL. Repeat treatment of organotypic airway cultures with ethyl methanesulfonate causes accumulation of somatic cell mutations without expansion of bronchial-carcinoma-specific cancer driver mutations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503786. [PMID: 39054009 DOI: 10.1016/j.mrgentox.2024.503786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kelly L Harris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jennifer Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Rebecca A Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wei Sun
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Timothy W Robison
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
22
|
Reddien PW. The purpose and ubiquity of turnover. Cell 2024; 187:2657-2681. [PMID: 38788689 DOI: 10.1016/j.cell.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Turnover-constant component production and destruction-is ubiquitous in biology. Turnover occurs across organisms and scales, including for RNAs, proteins, membranes, macromolecular structures, organelles, cells, hair, feathers, nails, antlers, and teeth. For many systems, turnover might seem wasteful when degraded components are often fully functional. Some components turn over with shockingly high rates and others do not turn over at all, further making this process enigmatic. However, turnover can address fundamental problems by yielding powerful properties, including regeneration, rapid repair onset, clearance of unpredictable damage and errors, maintenance of low constitutive levels of disrepair, prevention of stable hazards, and transitions. I argue that trade-offs between turnover benefits and metabolic costs, combined with constraints on turnover, determine its presence and rates across distinct contexts. I suggest that the limits of turnover help explain aging and that turnover properties and the basis for its levels underlie this fundamental component of life.
Collapse
Affiliation(s)
- Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 2024; 629:869-877. [PMID: 38693267 PMCID: PMC11890216 DOI: 10.1038/s41586-024-07377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA.
| | - Viral S Shah
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chaim Chernoff
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA
| | - Jiawei Sun
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Gergana G Shipkovenska
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Andrew D Leduc
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Constantin A Hintschich
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA
- Department of Otorhinolaryngology, Regensburg University Hospital, Regensburg, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Manalee Vishnu Surve
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Diane E Capen
- Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Lida P Hariri
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Rouhani MJ, Janes SM, Kim CF. Epithelial stem and progenitor cells of the upper airway. Cells Dev 2024; 177:203905. [PMID: 38355015 DOI: 10.1016/j.cdev.2024.203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The upper airway acts as a conduit for the passage of air to the respiratory system and is implicated in several chronic diseases. Whilst the cell biology of the distal respiratory system has been described in great detail, less is known about the proximal upper airway. In this review, we describe the relevant anatomy of the upper airway and discuss the literature detailing the identification and roles of the progenitor cells of these regions.
Collapse
Affiliation(s)
- Maral J Rouhani
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Shiratsuchi G, Konishi S, Yano T, Yanagihashi Y, Nakayama S, Katsuno T, Kashihara H, Tanaka H, Tsukita K, Suzuki K, Herawati E, Watanabe H, Hirai T, Yagi T, Kondoh G, Gotoh S, Tamura A, Tsukita S. Dual-color live imaging unveils stepwise organization of multiple basal body arrays by cytoskeletons. EMBO Rep 2024; 25:1176-1207. [PMID: 38316902 PMCID: PMC10933483 DOI: 10.1038/s44319-024-00066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.
Collapse
Affiliation(s)
- Gen Shiratsuchi
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Satoshi Konishi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Tomoki Yano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | | | - Shogo Nakayama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tatsuya Katsuno
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroka Kashihara
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroo Tanaka
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- School of Medicine, Teikyo University, Tokyo, Japan
| | - Kazuto Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koya Suzuki
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Elisa Herawati
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Hitomi Watanabe
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Gen Kondoh
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Atsushi Tamura
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- School of Medicine, Teikyo University, Tokyo, Japan.
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
26
|
Wu M, Zhang X, Tu Y, Cheng W, Zeng Y. Culture and expansion of murine proximal airway basal stem cells. Stem Cell Res Ther 2024; 15:26. [PMID: 38287366 PMCID: PMC10826159 DOI: 10.1186/s13287-024-03642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The stem cell characteristic makes basal cells desirable for ex vivo modeling of airway diseases. However, to date, approaches allowing them extensively in vitro serial expansion and maintaining bona fide stem cell property are still awaiting to be established. This study aims to develop a feeder-free culture system of mouse airway basal stem cells (ABSCs) that sustain their stem cell potential in vitro, providing an experimental basis for further in-depth research and mechanism exploration. METHODS We used ROCK inhibitor Y-27632-containing 3T3-CM, MEF-CM, and RbEF-CM to determine the proper feeder-free culture system that could maintain in vitro stem cell morphology of mouse ABSCs. Immunocytofluorescence was used to identify the basal cell markers of obtained cells. Serial propagation was carried out to observe whether the stem cell morphology and basal cell markers could be preserved in this cultivation system. Next, we examined the in vitro expansion and self-renewal ability by evaluating population doubling time and colony-forming efficiency. Moreover, the differentiation potential was detected by an in vitro differentiation culture and a 3D tracheosphere assay. RESULTS When the mouse ABSCs were cultured using 3T3-CM containing ROCK inhibitor Y-27632 in combination with Matrigel-coated culture dishes, they could stably expand and maintain stem cell-like clones. We confirmed that the obtained clones comprised p63/Krt5 double-positive ABSCs. In continuous passage and maintenance culture, we found that it could be subculture to at least 15 passages in vitro, stably maintaining its stem cell morphology, basal cell markers, and in vitro expansion and self-renewal capabilities. Meanwhile, through in vitro differentiation culture and 3D tracheosphere culture, we found that in addition to maintaining self-renewal, mouse ABSCs could differentiate into other airway epithelial cells such as acetylated tubulin (Act-Tub) + ciliated and MUC5AC + mucus-secreting cells. However, they failed to differentiate into alveoli epithelial cells, including alveolar type I and alveolar type II. CONCLUSION We established an in vitro feeder-free culture system that allows mouse ABSCs to maintain their stem cell characteristics, including self-renewal and airway epithelium differentiation potential, while keeping up in vitro expansion stability.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yanjuan Tu
- Department of Pathology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Wenzhao Cheng
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Lung Stem Cells, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
27
|
Evans K, Dabrowska C, Ng ME, Brainson CF, Lee JH. Isolation, Culture, and Phenotypic Analysis of Murine Lung Organoids. Methods Mol Biol 2024; 2805:3-18. [PMID: 39008171 DOI: 10.1007/978-1-0716-3854-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Three-dimensional (3D) organoid cultures retain self-renewing stem cells that differentiate into multiple cell types that display spatial organization and functional key features, providing a highly physiological relevant system. Here we describe a strategy for the generation of 3D murine lung organoids derived from freshly isolated primary tracheal and distal lung epithelial stem cells. Isolated tracheas are subjected to enzymatic digestion to release the epithelial layer that is then dissociated into a single cell suspension for organoid culture. Lung epithelial cells are obtained from dissected lobes, which are applied to mechanical and enzymatic dissociation. After flow sorting, organoids are established from tracheal basal, secretory club, and alveolar type 2 cells in the defined conditioned medium that is required to sustain organoid growth and generate the differentiated cells. Multi-cell-type organoid co-culture replicates niches for distal epithelial stem cells to differentiate into bronchiolar and alveolar cell types. Established organoids can be fixed for wholemount staining and paraffin embedding, or passaged for further culture. Taken together, this protocol provides an efficient and validated approach to generate murine lung organoids, as well as a platform for further analysis.
Collapse
Affiliation(s)
- Kelly Evans
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Catherine Dabrowska
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Minn E Ng
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Joo-Hyeon Lee
- Wellcome - MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
29
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
30
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Berical A, Beermann ML, Wang F, Bawa PS, Kohn A, Ysasi AB, Kiyokawa H, Matte TM, Randell SH, Varelas X, Hawkins FJ, Kotton DN. Airway stem cell reconstitution by the transplantation of primary or pluripotent stem cell-derived basal cells. Cell Stem Cell 2023; 30:1199-1216.e7. [PMID: 37625411 PMCID: PMC10528754 DOI: 10.1016/j.stem.2023.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Life-long reconstitution of a tissue's resident stem cell compartment with engrafted cells has the potential to durably replenish organ function. Here, we demonstrate the engraftment of the airway epithelial stem cell compartment via intra-airway transplantation of mouse or human primary and pluripotent stem cell (PSC)-derived airway basal cells (BCs). Murine primary or PSC-derived BCs transplanted into polidocanol-injured syngeneic recipients give rise for at least two years to progeny that stably display the morphologic, molecular, and functional phenotypes of airway epithelia. The engrafted basal-like cells retain extensive self-renewal potential, evident by the capacity to reconstitute the tracheal epithelium through seven generations of secondary transplantation. Using the same approach, human primary or PSC-derived BCs transplanted into NOD scid gamma (NSG) recipient mice similarly display multilineage airway epithelial differentiation in vivo. Our results may provide a step toward potential future syngeneic cell-based therapy for patients with diseases resulting from airway epithelial cell damage or dysfunction.
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Tilston-Lünel
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mary Lou Beermann
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Anat Kohn
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexandra B Ysasi
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hirofumi Kiyokawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Taylor M Matte
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Center, Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
31
|
Nawroth JC, Roth D, van Schadewijk A, Ravi A, Maulana TI, Senger CN, van Riet S, Ninaber DK, de Waal AM, Kraft D, Hiemstra PS, Ryan AL, van der Does AM. Breathing on chip: Dynamic flow and stretch accelerate mucociliary maturation of airway epithelium in vitro. Mater Today Bio 2023; 21:100713. [PMID: 37455819 PMCID: PMC10339259 DOI: 10.1016/j.mtbio.2023.100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Human lung function is intricately linked to blood flow and breathing cycles, but it remains unknown how these dynamic cues shape human airway epithelial biology. Here we report a state-of-the-art protocol for studying the effects of dynamic medium and airflow as well as stretch on human primary airway epithelial cell differentiation and maturation, including mucociliary clearance, using an organ-on-chip device. Perfused epithelial cell cultures displayed accelerated maturation and polarization of mucociliary clearance, and changes in specific cell-types when compared to traditional (static) culture methods. Additional application of airflow and stretch to the airway chip resulted in an increase in polarization of mucociliary clearance towards the applied flow, reduced baseline secretion of interleukin-8 and other inflammatory proteins, and reduced gene expression of matrix metalloproteinase (MMP) 9, fibronectin, and other extracellular matrix factors. These results indicate that breathing-like mechanical stimuli are important modulators of airway epithelial cell differentiation and maturation and that their fine-tuned application could generate models of specific epithelial pathologies, including mucociliary (dys)function.
Collapse
Affiliation(s)
- Janna C. Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Emulate Inc., Boston, MA, USA
- Helmholtz Pioneer Campus and Institute for Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Annemarie van Schadewijk
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Abilash Ravi
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Christiana N. Senger
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sander van Riet
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis K. Ninaber
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Amy M. de Waal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorothea Kraft
- Helmholtz Pioneer Campus and Institute for Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cells and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
32
|
Raach B, Bundgaard N, Haase MJ, Starruß J, Sotillo R, Stanifer ML, Graw F. Influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics within human airway epithelium. PLoS Comput Biol 2023; 19:e1011356. [PMID: 37566610 PMCID: PMC10446191 DOI: 10.1371/journal.pcbi.1011356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Human airway epithelium (HAE) represents the primary site of viral infection for SARS-CoV-2. Comprising different cell populations, a lot of research has been aimed at deciphering the major cell types and infection dynamics that determine disease progression and severity. However, the cell type-specific replication kinetics, as well as the contribution of cellular composition of the respiratory epithelium to infection and pathology are still not fully understood. Although experimental advances, including Air-liquid interface (ALI) cultures of reconstituted pseudostratified HAE, as well as lung organoid systems, allow the observation of infection dynamics under physiological conditions in unprecedented level of detail, disentangling and quantifying the contribution of individual processes and cells to these dynamics remains challenging. Here, we present how a combination of experimental data and mathematical modelling can be used to infer and address the influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics. Using a stepwise approach that integrates various experimental data on HAE culture systems with regard to tissue differentiation and infection dynamics, we develop an individual cell-based model that enables investigation of infection and regeneration dynamics within pseudostratified HAE. In addition, we present a novel method to quantify tissue integrity based on image data related to the standard measures of transepithelial electrical resistance measurements. Our analysis provides a first aim of quantitatively assessing cell type specific infection kinetics and shows how tissue composition and changes in regeneration capacity, as e.g. in smokers, can influence disease progression and pathology. Furthermore, we identified key measurements that still need to be assessed in order to improve inference of cell type specific infection kinetics and disease progression. Our approach provides a method that, in combination with additional experimental data, can be used to disentangle the complex dynamics of viral infection and immunity within human airway epithelial culture systems.
Collapse
Affiliation(s)
- Benjamin Raach
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Nils Bundgaard
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Marika J. Haase
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Jörn Starruß
- Center for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- University of Florida, College of Medicine, Dept. of Molecular Genetics and Microbiology, Gainesville, Florida, United States of America
| | - Frederik Graw
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Medicine 5, Erlangen, Germany
| |
Collapse
|
33
|
Tan ZH, Dharmadhikari S, Liu L, Yu J, Shontz KM, Stack JT, Breuer CK, Reynolds SD, Chiang T. Regeneration of tracheal neotissue in partially decellularized scaffolds. NPJ Regen Med 2023; 8:35. [PMID: 37438368 PMCID: PMC10338482 DOI: 10.1038/s41536-023-00312-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Extensive tracheal injury or disease can be life-threatening but there is currently no standard of care. Regenerative medicine offers a potential solution to long-segment tracheal defects through the creation of scaffolds that support the generation of healthy neotissue. We developed decellularized tracheal grafts (PDTG) by removing the cells of the epithelium and lamina propria while preserving donor cartilage. We previously demonstrated that PDTG support regeneration of host-derived neotissue. Here, we use a combination of microsurgical, immunofluorescent, and transcriptomic approaches to compare PDTG neotissue with the native airway and surgical controls. We report that PDTG neotissue is composed of native tracheal cell types and that the neoepithelium and microvasculature persisted for at least 6 months. Vascular perfusion of PDTG was established within 2 weeks and the graft recruited multipotential airway stem cells that exhibit normal proliferation and differentiation. Hence, PDTG neotissue recapitulates the structure and function of the host trachea and has the potential to regenerate.
Collapse
Affiliation(s)
- Zheng Hong Tan
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lumei Liu
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jane Yu
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kimberly M Shontz
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jacob T Stack
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
34
|
Marega M, El-Merhie N, Gökyildirim MY, Orth V, Bellusci S, Chao CM. Stem/Progenitor Cells and Related Therapy in Bronchopulmonary Dysplasia. Int J Mol Sci 2023; 24:11229. [PMID: 37446407 DOI: 10.3390/ijms241311229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly seen in preterm infants, and is triggered by infection, mechanical ventilation, and oxygen toxicity. Among other problems, lifelong limitations in lung function and impaired psychomotor development may result. Despite major advances in understanding the disease pathologies, successful interventions are still limited to only a few drug therapies with a restricted therapeutic benefit, and which sometimes have significant side effects. As a more promising therapeutic option, mesenchymal stem cells (MSCs) have been in focus for several years due to their anti-inflammatory effects and their secretion of growth and development promoting factors. Preclinical studies provide evidence in that MSCs have the potential to contribute to the repair of lung injuries. This review provides an overview of MSCs, and other stem/progenitor cells present in the lung, their identifying characteristics, and their differentiation potential, including cytokine/growth factor involvement. Furthermore, animal studies and clinical trials using stem cells or their secretome are reviewed. To bring MSC-based therapeutic options further to clinical use, standardized protocols are needed, and upcoming side effects must be critically evaluated. To fill these gaps of knowledge, the MSCs' behavior and the effects of their secretome have to be examined in more (pre-) clinical studies, from which only few have been designed to date.
Collapse
Affiliation(s)
- Manuela Marega
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Natalia El-Merhie
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Valerie Orth
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Saverio Bellusci
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Pediatrics, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
35
|
Martins LR, Glimm H, Scholl C. Single-cell RNA sequencing of mouse lower respiratory tract epithelial cells: A meta-analysis. Cells Dev 2023; 174:203847. [PMID: 37146757 DOI: 10.1016/j.cdev.2023.203847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
The respiratory system is a vital component of our body, essential for both oxygen uptake and immune defense. Knowledge of cellular composition and function in different parts of the respiratory tract provides the basis for a better understanding of the pathological processes involved in various diseases such as chronic respiratory diseases and cancer. Single-cell RNA sequencing (scRNA-seq) is a proficient approach for the identification and transcriptional characterization of cellular phenotypes. Although the mouse is an essential tool for the study of lung development, regeneration, and disease, a scRNA-seq mouse atlas of the lung in which all epithelial cell types are included and annotated systematically is lacking. Here, we established a single-cell transcriptome landscape of the mouse lower respiratory tract by performing a meta-analysis of seven different studies in which mouse lungs and trachea were analyzed by droplet and/or plate-based scRNA-seq technologies. We provide information on the best markers for each epithelial cell type, propose surface markers for the isolation of viable cells, harmonized the annotation of cell types, and compare the mouse single-cell transcriptomes with human scRNA-seq data of the lung.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| |
Collapse
|
36
|
Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM, Maxfield AZ, Roditi RE, Bergmark RW, Bhattacharyya N, Ryan T, Gakpo D, Raychaudhuri S, Dwyer D, Laidlaw TM, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 2023; 151:1536-1549. [PMID: 36804595 PMCID: PMC10784786 DOI: 10.1016/j.jaci.2023.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) inflammatory disease associated with an increased number of airway basal cells (BCs). Recent studies have identified transcriptionally distinct BCs, but the molecular pathways that support or inhibit human BC proliferation and differentiation are largely unknown. OBJECTIVE We sought to determine the role of T2 cytokines in regulating airway BCs. METHODS Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate labeling was performed in a murine model of tracheal injury and regeneration. RESULTS Two subsets of BCs were found in human and murine respiratory mucosa distinguished by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an insulin receptor substrate-dependent signaling pathway that is increased in CRSwNP. CONCLUSIONS These findings establish BCAM as a marker of airway stem cells among the BC pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet cell metaplasia to the support of a BC stem state poised to perpetuate inflammation.
Collapse
Affiliation(s)
- Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Nils R Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Sachin Samuchiwal
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Qihua Ye
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Alice Z Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Rachel E Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Regan W Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Mass
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Deb Gakpo
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, Mass; Divisions of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Versus Arthritis Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dan Dwyer
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Tanya M Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
37
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
38
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
39
|
Yu F, Liu F, Liang X, Duan L, Li Q, Pan G, Ma C, Liu M, Li M, Wang P, Zhao X. iPSC-Derived Airway Epithelial Cells: Progress, Promise, and Challenges. Stem Cells 2023; 41:1-10. [PMID: 36190736 DOI: 10.1093/stmcls/sxac074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/14/2022] [Indexed: 02/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) generated from somatic cell sources are pluripotent and capable of indefinite expansion in vitro. They provide an unlimited source of cells that can be differentiated into lung progenitor cells for potential clinical use in pulmonary regenerative medicine. This review gives a comprehensive overview of recent progress toward the use of iPSCs to generate proximal and distal airway epithelial cells and mix lung organoids. Furthermore, their potential applications and future challenges for the field are discussed, with a focus on the technological hurdles that must be cleared before stem cell therapeutics can be used for clinical treatment.
Collapse
Affiliation(s)
- Fenggang Yu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Fei Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Xiaohua Liang
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Linwei Duan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Qiongqiong Li
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Ge Pan
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Chengyao Ma
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Minmin Liu
- Life Sciences Institute, Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Mingyue Li
- Yinfeng Biological Group, Ltd., Jinan, Shandong Province, People's Republic of China
| | - Peng Wang
- Guangxi Yinfeng Stem Cell Engineering Technology Co., Ltd., Yufeng, Liuzhou, Guangxi Province, People's Republic of China
| | - Xuening Zhao
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
40
|
Xu H, Pan G, Wang J. Repairing Mechanisms for Distal Airway Injuries and Related Targeted Therapeutics for Chronic Lung Diseases. Cell Transplant 2023; 32:9636897231196489. [PMID: 37698245 PMCID: PMC10498699 DOI: 10.1177/09636897231196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), involve progressive and irreversible destruction and pathogenic remodeling of airways and have become the leading health care burden worldwide. Pulmonary tissue has extensive capacities to launch injury-responsive repairing programs (IRRPs) to replace the damaged or dead cells upon acute lung injuries. However, the IRRPs are frequently compromised in chronic lung diseases. In this review, we aim to provide an overview of somatic stem cell subpopulations within distal airway epithelium and the underlying mechanisms mediating their self-renewal and trans-differentiation under both physiological and pathological circumstances. We also compared the differences between humans and mice on distal airway structure and stem cell composition. At last, we reviewed the current status and future directions for the development of targeted therapeutics on defective distal airway regeneration and repairment in chronic lung diseases.
Collapse
Affiliation(s)
- Huahua Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Guihong Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Wang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
42
|
An anti-influenza combined therapy assessed by single cell RNA-sequencing. Commun Biol 2022; 5:1075. [PMID: 36216966 PMCID: PMC9549038 DOI: 10.1038/s42003-022-04013-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza makes millions of people ill every year, placing a large burden on the healthcare system and the economy. To develop a treatment against influenza, we combined virucidal sialylated cyclodextrins with interferon lambda and demonstrated, in human airway epithelia, that the two compounds inhibit the replication of a clinical H1N1 strain more efficiently when administered together rather than alone. We investigated the mechanism of action of the combined treatment by single cell RNA-sequencing analysis and found that both the single and combined treatments impair viral replication to different extents across distinct epithelial cell types. We showed that each cell type comprises multiple sub-types, whose proportions are altered by H1N1 infection, and assessed the ability of the treatments to restore them. To the best of our knowledge this is the first study investigating the effectiveness of an antiviral therapy against influenza virus by single cell transcriptomic studies. When combined with interferon lambda, virucidal sialylated cyclodextrins inhibit the replication of a clinical H1N1 influenza strain in ex vivo human airway epithelia more efficiently than when delivered alone.
Collapse
|
43
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
44
|
Zhou Y, Yang Y, Guo L, Qian J, Ge J, Sinner D, Ding H, Califano A, Cardoso WV. Airway basal cells show regionally distinct potential to undergo metaplastic differentiation. eLife 2022; 11:e80083. [PMID: 36178196 PMCID: PMC9578702 DOI: 10.7554/elife.80083] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/29/2022] [Indexed: 02/07/2023] Open
Abstract
Basal cells are multipotent stem cells of a variety of organs, including the respiratory tract, where they are major components of the airway epithelium. However, it remains unclear how diverse basal cells are and how distinct subpopulations respond to airway challenges. Using single cell RNA-sequencing and functional approaches, we report a significant and previously underappreciated degree of heterogeneity in the basal cell pool, leading to identification of six subpopulations in the adult murine trachea. Among these, we found two major subpopulations, collectively comprising the most uncommitted of all the pools, but with distinct gene expression signatures. Notably, these occupy distinct ventral and dorsal tracheal niches and differ in their ability to self-renew and initiate a program of differentiation in response to environmental perturbations in primary cultures and in mouse injury models in vivo. We found that such heterogeneity is acquired prenatally, when the basal cell pool and local niches are still being established, and depends on the integrity of these niches, as supported by the altered basal cell phenotype of tracheal cartilage-deficient mouse mutants. Finally, we show that features that distinguish these progenitor subpopulations in murine airways are conserved in humans. Together, the data provide novel insights into the origin and impact of basal cell heterogeneity on the establishment of regionally distinct responses of the airway epithelium during injury-repair and in disease conditions.
Collapse
Affiliation(s)
- Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Lihao Guo
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| | - Jian Ge
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of MedicineCincinnatiUnited States
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Andrea Califano
- Departments of Systems Biology, Biochemistry & Molecular Biophysics, Biomedical Informatics, Medicine; JP Sulzberger Columbia Genome Center; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Medicine, Pulmonary Allergy Critical Care, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
45
|
Wu M, Zhang X, Lin Y, Zeng Y. Roles of airway basal stem cells in lung homeostasis and regenerative medicine. Respir Res 2022; 23:122. [PMID: 35562719 PMCID: PMC9102684 DOI: 10.1186/s12931-022-02042-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/01/2022] [Indexed: 11/10/2022] Open
Abstract
Airway basal stem cells (BSCs) in the proximal airways are recognized as resident stem cells capable of self-renewing and differentiating to virtually every pseudostratified epithelium cell type under steady-state and after acute injury. In homeostasis, BSCs typically maintain a quiescent state. However, when exposed to acute injuries by either physical insults, chemical damage, or pathogen infection, the remaining BSCs increase their proliferation rate apace within the first 24 h and differentiate to restore lung homeostasis. Given the progenitor property of airway BSCs, it is attractive to research their biological characteristics and how they maintain homeostatic airway structure and respond to injury. In this review, we focus on the roles of BSCs in lung homeostasis and regeneration, detail the research progress in the characteristics of airway BSCs, the cellular and molecular signaling communications involved in BSCs-related airway repair and regeneration, and further discuss the in vitro models for airway BSC propagation and their applications in lung regenerative medicine therapy.
Collapse
Affiliation(s)
- Meirong Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Xiaojing Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yijian Lin
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China
| | - Yiming Zeng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
46
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
47
|
Yanda MK, Tomar V, Cebotaru CV, Guggino WB, Cebotaru L. Short-Term Steroid Treatment of Rhesus Macaque Increases Transduction. Hum Gene Ther 2022; 33:131-147. [PMID: 34806411 PMCID: PMC8885436 DOI: 10.1089/hum.2021.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repeat dosing poses a major hurdle for the development of an adeno-associated virus (AAV)-based gene therapy for cystic fibrosis, in part because of the potential for development of an immune reaction to the AAV1 capsid proteins. Here, to dampen the immune response to AAV1, we treated Rhesus monkeys with methylprednisolone before and after the instillation of two doses of AAV1Δ27-264-CFTR into their airways at 0 and 30 days, followed by a single dose of AAV1-GFP on day 60. Animals were euthanized on day 90, except for one monkey that was sacrificed at 1 year. No adverse events occurred, indicating that the two AAV1 vectors are safe. rAAV1-CFTR and AAV1-GFP vector genomes and mRNA transcripts were detectable in all lung sections and in the liver and pancreas at day 90 and after 1 year at levels comparable with animals necropsied at 90 days. The numbers of vector genomes for cystic fibrosis transmembrane regulator (CFTR) and green fluorescent protein (GFP) detected here were higher than those found in the monkeys infected without methylprednisolone treatment that we tested previously.1 Also, lung surface and keratin 5-positive basal cells showed higher CFTR and GFP staining than did the cells from the uninfected monkey control. Positive immunostaining, also detected in the liver and pancreas, remained stable for at least a year. All animals seroconverted for anticapsid antibodies by 90 days post-treatment. The neutralizing antibody titer declined in the animal necropsied at 1 year. Conclusion: AAV1 safely and effectively transduces monkey airway and basal cells. Both the presence of vector genomes and transduction from AAV1-CFTR and AAV1-GFP virus seen in the monkeys 4 months to 1 year after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable, particularly after methylprednisolone treatment.
Collapse
Affiliation(s)
- Murali K. Yanda
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vartika Tomar
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina Valeria Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William B. Guggino
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Correspondence: Dr. Liudmila Cebotaru, Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Hunterian 415, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
49
|
Tadokoro T, Tanaka K, Osakabe S, Kato M, Kobayashi H, Hogan BLM, Taniguchi H. Dorso-ventral heterogeneity in tracheal basal stem cells. Biol Open 2021; 10:271837. [PMID: 34396394 PMCID: PMC8467549 DOI: 10.1242/bio.058676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
The tracheal basal cells (BCs) function as stem cells to maintain the epithelium in steady state and repair it after injury. The airway is surrounded by cartilage ventrolaterally and smooth muscle dorsally. Lineage tracing using Krt5-CreER shows dorsal BCs produce more, larger, clones than ventral BCs. Large clones were found between cartilage and smooth muscle where subpopulation of dorsal BCs exists. Three-dimensional organoid culture of BCs demonstrated that dorsal BCs show higher colony forming efficacy to ventral BCs. Gene ontology analysis revealed that genes expressed in dorsal BCs are enriched in wound healing while ventral BCs are enriched in response to external stimulus and immune response. Significantly, ventral BCs express Myostatin, which inhibits the growth of smooth muscle cells, and HGF, which facilitates cartilage repair. The results support the hypothesis that BCs from the dorso-ventral airways have intrinsic molecular and behavioural differences relevant to their in vivo function. Summary: Spatial difference of tracheal epithelium, especially focused on the heterogeneity of basal stem cells, is elucidated by lineage tracing in vivo, histological analysis, tracheosphere culture, and gene ontology analysis.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27707, USA.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Shun Osakabe
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Mimoko Kato
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan.,Department of Embryology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Brigid L M Hogan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27707, USA
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato, Tokyo 108-8639, Japan
| |
Collapse
|
50
|
Succony L, Gómez-López S, Pennycuick A, Alhendi ASN, Davies D, Clarke SE, Gowers KHC, Wright NA, Jensen KB, Janes SM. Lrig1 expression identifies airway basal cells with high proliferative capacity and restricts lung squamous cell carcinoma growth. Eur Respir J 2021; 59:13993003.00816-2020. [PMID: 34385275 PMCID: PMC8968013 DOI: 10.1183/13993003.00816-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for a significant proportion of cancer deaths worldwide, and is preceded by the appearance of progressively disorganised pre-invasive lesions in the airway epithelium. Yet the biological mechanisms underlying progression of pre-invasive lesions into invasive LUSC are not fully understood. LRIG1 (leucine-rich repeats and immunoglobulin-like domains 1) is downregulated in pre-invasive airway lesions and invasive LUSC tumours and this correlates with decreased lung cancer patient survival. Methods and results Using an Lrig1 knock-in reporter mouse and human airway epithelial cells collected at bronchoscopy, we show that during homeostasis LRIG1 is heterogeneously expressed in the airway epithelium. In basal airway epithelial cells, the suspected cell of origin of LUSC, LRIG1 identifies a subpopulation of progenitor cells with higher in vitro proliferative and self-renewal potential in both the mouse and human. Using the N-nitroso-tris-chloroethylurea (NTCU)-induced murine model of LUSC, we find that Lrig1 loss-of-function leads to abnormally high cell proliferation during the earliest stages of pre-invasive disease and to the formation of significantly larger invasive tumours, suggesting accelerated disease progression. Conclusion Together, our findings identify LRIG1 as a marker of basal airway progenitor cells with high proliferative potential and as a regulator of pre-invasive lung cancer progression. This work highlights the clinical relevance of LRIG1 and the potential of the NTCU-induced LUSC model for functional assessment of candidate tumour suppressors and oncogenes. LRIG1 is lost in development of squamous cell lung cancers. This study shows that LRIG1 marks basal airway progenitor cells with high proliferative potential and regulates progression of pre-invasive squamous cell lung cancer.https://bit.ly/3AbPtY3
Collapse
Affiliation(s)
- Laura Succony
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.,These authors contributed equally to this work
| | - Sandra Gómez-López
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.,These authors contributed equally to this work
| | - Adam Pennycuick
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Ahmed S N Alhendi
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Derek Davies
- Flow Cytometry Facility, Francis Crick Institute, London, UK
| | - Sarah E Clarke
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen; Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|