1
|
Lee YH, Lee J, Jeong J, Park K, Baik B, Kwon Y, Kim K, Khim KW, Ji H, Lee JY, Kim K, Kim JW, Dao T, Kim M, Lee TY, Yang YR, Yoon H, Ryu D, Hwang S, Lee H, Nam D, Kim WK, Park NH, Yun H, Choi JH. Hepatic miR-93 promotes the pathogenesis of metabolic dysfunction-associated steatotic liver disease by suppressing SIRT1. Metabolism 2025; 169:156266. [PMID: 40228656 DOI: 10.1016/j.metabol.2025.156266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND AND AIMS The molecular mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) remain largely unclear; however, emerging evidence suggests that microRNAs (miRNAs) play a critical role in modulating transcriptional regulation of target genes involved in MASLD. This study aims to elucidate the role of miR-93 in lipid metabolism and MASLD progression. METHODS We comprehensively analyzed miRNA expression profiles in liver tissues from patients with MASLD and diet-induced obese mice. miR-93 knockout (KO) mice were fed a high-fat-high-fructose (HFHFr) diet to assess the impact of miR-93 deficiency on MASLD. Transcriptome analysis was performed to elucidate the molecular mechanisms and role of miR-93 in MASLD. Additionally, we employed a high-throughput screening system to identify drugs capable of modulating miR-93 expression. RESULTS miR-93 was significantly upregulated in the livers of patients with MASLD and diet-induced obese mice. miR-93 KO mice exhibited reduced hepatic steatosis. Specifically, miR-93 deficiency upregulated genes involved in fatty acid oxidation and downregulated genes associated with cholesterol biosynthesis. Sirtuin 1 (SIRT1) was identified as a direct target of miR-93, and miR-93 KO enhanced SIRT1 expression and activated the LKB1-AMPK signaling pathway. Niacin treatment downregulated miR-93, ameliorating hepatic steatosis by enhancing SIRT1 activity. CONCLUSIONS These findings implicate miR-93 as a novel therapeutic target for MASLD. The study demonstrates the therapeutic potential of niacin in modulating the miR-93/SIRT1 axis, providing a new potential treatment for MASLD, a disease with limited current treatment options.
Collapse
Affiliation(s)
- Yo Han Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinyoung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Joonho Jeong
- Division of Hepatology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Kieun Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bukyung Baik
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuseong Kwon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Kimyeong Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haneul Ji
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangho Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Won Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tam Dao
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), Suwon 16419, Republic of Korea
| | - Misung Kim
- Department of Pathology, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Tae Young Lee
- Department of Radiology, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine (SKKU), Suwon 16419, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Dougu Nam
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Neung Hwa Park
- Division of Hepatology, Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital (UUH), Ulsan 44033, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Jang Hyun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Mahdei Nasir Mahalleh N, Hemmati M, Biyabani A, Pirouz F. The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. DNA Cell Biol 2025; 44:55-81. [PMID: 39653363 DOI: 10.1089/dna.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.
Collapse
Affiliation(s)
- Nima Mahdei Nasir Mahalleh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Pirouz
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Milan KL, Anuradha M, Ramkumar KM. Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes. J Reprod Immunol 2025; 167:104422. [PMID: 39755065 DOI: 10.1016/j.jri.2024.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation. These elevated triglycerides can also contribute to oxidative stress in GDM. SIRT7 plays an important role in regulating lipid metabolism and triglycerides levels. This study aimed to investigate the potential of miRNA to regulate the placental SIRT7 in GDM. PCR analysis reveals that SIRT7 expression along with oxidative stress markers elevated in GDM placenta. These elevated SIRT7 levels were positively correlated with BMI and triglycerides levels in GDM subjects. miR-125b-5p was identified to regulate SIRT7 mRNA using in-silico approaches. Expression levels of miR-125b-5p were found to be downregulated in GDM placenta and found to be negatively correlated with SIRT7 mRNA expression. To confirm the hypothesis BeWo cells were transfected with anti-miR-125b and miR-125b-mimic. Anti-miR overexpressed the SIRT7 expression where mimic dysregulated it. Additionally, overexpressing miR-125b-5p controlled the elevated SIRT7 caused by the exposure of high glucose in BeWo cells. Collectively this study indicated that miR-125b-5p may regulate lipid metabolism via SIRT7 contributing to GDM. These findings highlights the warrant of further research to develop the therapeutic approaches that target miR-125b-5p to reduce lipid accumulation and obesity in GDM.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - M Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
4
|
Yuan L, Yin L, Lin X, Li J, Liang P, Jiang B. Revealing the Complex Interaction of Noncoding RNAs, Sirtuin Family, and Mitochondrial Function. J Gene Med 2025; 27:e70007. [PMID: 39842441 DOI: 10.1002/jgm.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Mitochondria are key organelles that perform and coordinate various metabolic processes in the cell, and their homeostasis is essential for the maintenance of eukaryotic life. To maintain mitochondrial homeostasis and cellular health, close communication between noncoding RNAs (ncRNAs) and proteins is required. For example, there are numerous crosstalk between ncRNAs and the sirtuin (SIRT1-7) family, which is a group of nicotinamide adenine dinucleotides (NAD(+))-dependent Type III deacetylases. NcRNAs are involved in the regulation of gene expression of sirtuin family members, and deacetylation of sirtuin family members can also influence the generation of ncRNAs. This review focuses on the relationship between the two mentioned above and summarizes the impact of their interactions on mitochondrial metabolism, oxidative stress, mitochondrial apoptotic pathways, mitochondrial biogenesis, mitochondrial dynamics, and other mitochondria-related pathophysiological processes. Finally, the review also describes targeted and appropriate treatment strategies. In conclusion, we provide an overview of the ncRNA-sirtuins/mitochondria relationship that could provide a reference for related research in the mitochondrial field and help the future development of new biomedical applications in this area.
Collapse
Affiliation(s)
- Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
6
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Tang J, Zheng Q, Wang Q, Zhao Y, Ananthanarayanan P, Reina C, Šabanović B, Jiang K, Yang MH, Meny CC, Wang H, Agerbaek MØ, Clausen TM, Gustavsson T, Wen C, Borghi F, Mellano A, Fenocchio E, Gregorc V, Sapino A, Theander TG, Fu D, Aicher A, Salanti A, Shen B, Heeschen C. CTC-derived pancreatic cancer models serve as research tools and are suitable for precision medicine approaches. Cell Rep Med 2024; 5:101692. [PMID: 39163864 PMCID: PMC11524981 DOI: 10.1016/j.xcrm.2024.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant clinical challenges, often presenting as unresectable with limited biopsy options. Here, we show that circulating tumor cells (CTCs) offer a promising alternative, serving as a "liquid biopsy" that enables the generation of in vitro 3D models and highly aggressive in vivo models for functional and molecular studies in advanced PDAC. Within the retrieved CTC pool (median 65 CTCs/5 mL), we identify a subset (median content 8.9%) of CXCR4+ CTCs displaying heightened stemness and metabolic traits, reminiscent of circulating cancer stem cells. Through comprehensive analysis, we elucidate the importance of CTC-derived models for identifying potential targets and guiding treatment strategies. Screening of stemness-targeting compounds identified stearoyl-coenzyme A desaturase (SCD1) as a promising target for advanced PDAC. These results underscore the pivotal role of CTC-derived models in uncovering therapeutic avenues and ultimately advancing personalized care in PDAC.
Collapse
Affiliation(s)
- Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Preeta Ananthanarayanan
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Clara Csilla Meny
- 2(nd) Institute for Pathology and Experimental Oncology Research, Semmelweis University, 1085 Budapest, Hungary
| | - Huimin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mette Ø Agerbaek
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark; VarCT Diagnostics, Ole Maaloes vej 3, 2200 Copenhagen, Denmark
| | - Thomas Mandel Clausen
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tobias Gustavsson
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark; VAR2Pharmaceuticals, Ole Maaloes vej 3, 2200 Copenhagen, Denmark
| | - Chenlei Wen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Felice Borghi
- Department of Surgical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Alfredo Mellano
- Department of Surgical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Elisabetta Fenocchio
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Vanesa Gregorc
- Department of Medical Oncology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Anna Sapino
- Department of Pathology, Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy
| | - Thor G Theander
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Da Fu
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan; Immunology Research and Development Center, China Medical University, Taichung 404328, Taiwan
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology (CMP) at Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Baiyong Shen
- Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Turin, Italy.
| |
Collapse
|
8
|
Lagunas-Rangel FA. Aging insights from heterochronic parabiosis models. NPJ AGING 2024; 10:38. [PMID: 39154047 PMCID: PMC11330497 DOI: 10.1038/s41514-024-00166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Heterochronic parabiosis consists of surgically connecting the circulatory systems of a young and an old animal. This technique serves as a model to study circulating factors that accelerate aging in young organisms exposed to old blood or induce rejuvenation in old organisms exposed to young blood. Despite the promising results, the exact cellular and molecular mechanisms remain unclear, so this study aims to explore and elucidate them in more detail.
Collapse
|
9
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
10
|
Burrows K, Figueroa-Hall LK, Stewart JL, Alarbi AM, Kuplicki R, Hannafon BN, Tan C, Risbrough VB, McKinney BA, Ramesh R, Victor TA, Aupperle R, Savitz J, Teague TK, Khalsa SS, Paulus MP. Exploring the role of neuronal-enriched extracellular vesicle miR-93 and interoception in major depressive disorder. Transl Psychiatry 2024; 14:199. [PMID: 38678012 PMCID: PMC11055873 DOI: 10.1038/s41398-024-02907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Major depressive disorder (MDD) is associated with interoceptive processing dysfunctions, but the molecular mechanisms underlying this dysfunction are poorly understood. This study combined brain neuronal-enriched extracellular vesicle (NEEV) technology and serum markers of inflammation and metabolism with Functional Magnetic Resonance Imaging (fMRI) to identify the contribution of gene regulatory pathways, in particular micro-RNA (miR) 93, to interoceptive dysfunction in MDD. Individuals with MDD (n = 41) and healthy comparisons (HC; n = 35) provided blood samples and completed an interoceptive attention task during fMRI. EVs were separated from plasma using a precipitation method. NEEVs were enriched by magnetic streptavidin bead immunocapture utilizing a neural adhesion marker (L1CAM/CD171) biotinylated antibody. The origin of NEEVs was validated with two other neuronal markers - neuronal cell adhesion molecule (NCAM) and ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3). NEEV specificities were confirmed by flow cytometry, western blot, particle size analyzer, and transmission electron microscopy. NEEV small RNAs were purified and sequenced. Results showed that: (1) MDD exhibited lower NEEV miR-93 expression than HC; (2) within MDD but not HC, those individuals with the lowest NEEV miR-93 expression had the highest serum concentrations of interleukin (IL)-1 receptor antagonist, IL-6, tumor necrosis factor, and leptin; and (3) within HC but not MDD, those participants with the highest miR-93 expression showed the strongest bilateral dorsal mid-insula activation during interoceptive versus exteroceptive attention. Since miR-93 is regulated by stress and affects epigenetic modulation by chromatin re-organization, these results suggest that healthy individuals but not MDD participants show an adaptive epigenetic regulation of insular function during interoceptive processing. Future investigations will need to delineate how specific internal and external environmental conditions contribute to miR-93 expression in MDD and what molecular mechanisms alter brain responsivity to body-relevant signals.
Collapse
Affiliation(s)
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| | - Ahlam M Alarbi
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
| | | | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chibing Tan
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Brett A McKinney
- Department of Mathematics and Computer Science, University of Tulsa, Tulsa, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Robin Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
11
|
Vogt S, Handke D, Behre HM, Greither T. Decreased Serum Levels of the Insulin Resistance-Related microRNA miR-320a in Patients with Polycystic Ovary Syndrome. Curr Issues Mol Biol 2024; 46:3379-3393. [PMID: 38666942 PMCID: PMC11049427 DOI: 10.3390/cimb46040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic abnormalities in the affected patients such as obesity or a dysregulated glucose metabolism/insulin resistance (IR). IR affects the serum levels of several circulating microRNAs; however, studies on the association between IR-related microRNAs and PCOS are scarce. Therefore, we quantified the serum levels of the IR-associated microRNAs miR-93, miR-148a, miR-216a, miR-224 and miR-320a via qPCR in a cohort of 358 infertility patients, of whom 136 were diagnosed with PCOS. In bivariate correlation analyses, the serum levels of miR-93 and miR-216a were inversely associated with dipeptidyl peptidase 4 serum concentrations, and the miR-320a serum levels were significantly downregulated in PCOS patients (p = 0.02, Mann-Whitney U test). Interestingly, in all patients who achieved pregnancy after Assisted Reproductive Technology (ART) cycles, the serum levels of the five IR-associated microRNAs were significantly elevated compared to those of non-pregnant patients. In cell culture experiments, we detected a significant upregulation of miR-320a expression following testosterone stimulation over 24 and 48 h in KGN and COV434 granulosa carcinoma cells. In conclusion, we demonstrated a significantly reduced serum level of the IR-associated miR-320a in our patient cohort. This result once again demonstrates the close relationship between metabolic disorders and the dysregulation of microRNA expression patterns in PCOS.
Collapse
Affiliation(s)
| | | | | | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|
12
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
13
|
Engin AB, Engin A. MicroRNAs as Epigenetic Regulators of Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:595-627. [PMID: 39287866 DOI: 10.1007/978-3-031-63657-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
14
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
15
|
Zheng Q, Tang J, Aicher A, Bou Kheir T, Sabanovic B, Ananthanarayanan P, Reina C, Chen M, Gu JM, He B, Alcala S, Behrens D, Lawlo RT, Scarpa A, Hidalgo M, Sainz B, Sancho P, Heeschen C. Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity. J Exp Clin Cancer Res 2023; 42:323. [PMID: 38012687 PMCID: PMC10683265 DOI: 10.1186/s13046-023-02883-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com ).
Collapse
Affiliation(s)
- Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Immunology Research and Development Center, China Medical University, Taichung, Taiwan
| | - Tony Bou Kheir
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Berina Sabanovic
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Preeta Ananthanarayanan
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy
| | - Minchun Chen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Min Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Sonia Alcala
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Chronic Diseases and Cancer Area 3 Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Diana Behrens
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Rita T Lawlo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research On Cancer Centre, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research On Cancer Centre, University of Verona, Verona, Italy
| | - Manuel Hidalgo
- Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bruno Sainz
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Chronic Diseases and Cancer Area 3 Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red, Área Cáncer, CIBERONC, ISCIII, Madrid, Spain
| | - Patricia Sancho
- IIS Aragon, Hospital Universitario Miguel Servet, 50009, Saragossa, Spain.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pancreatic Cancer Heterogeneity Lab, Candiolo Cancer Institute - FPO - IRCCS, Candiolo, Turin, Italy.
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
16
|
Yan L, Guo L. Exercise-regulated white adipocyte differentitation: An insight into its role and mechanism. J Cell Physiol 2023; 238:1670-1692. [PMID: 37334782 DOI: 10.1002/jcp.31056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes play a key role in the regulation of fat mass amount and energy balance. An appropriate level of white adipocyte differentiation is important for maintaining metabolic homeostasis. Exercise, an important way to improve metabolic health, can regulate white adipocyte differentiation. In this review, the effect of exercise on the differentiation of white adipocytes is summarized. Exercise could regulate adipocyte differentiation in multiple ways, such as exerkines, metabolites, microRNAs, and so on. The potential mechanism underlying the role of exercise in adipocyte differentiation is also reviewed and discussed. In-depth investigation of the role and mechanism of exercise in white adipocyte differentiation would provide new insights into exercise-mediated improvement of metabolism and facilitate the application of exercise-based strategy against obesity.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
17
|
Burrows K, Figueroa-Hall L, Stewart J, Alarbi A, Kuplicki R, Hannafon B, Tan C, Risbrough V, McKinney B, Ramesh R, Victor T, Aupperle R, Savitz J, Teague K, Khalsa S, Paulus M. Exploring the role of neuronal-enriched extracellular vesicle miR-93 and interoception in major depressive disorder. RESEARCH SQUARE 2023:rs.3.rs-2813878. [PMID: 37398092 PMCID: PMC10312986 DOI: 10.21203/rs.3.rs-2813878/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Major depressive disorder (MDD) is associated with interoceptive processing dysfunctions, but the molecular mechanisms underlying this dysfunction are poorly understood. This study combined brain Neuronal-Enriched Extracellular Vesicle (NEEV) technology and serum markers of inflammation and metabolism with Functional Magnetic Resonance Imaging (fMRI) to identify the contribution of gene regulatory pathways, in particular micro-RNA (miR) 93, to interoceptive dysfunction in MDD. Individuals with MDD (n = 44) and healthy comparisons (HC; n = 35) provided blood samples and completed an interoceptive attention task during fMRI. EVs were separated from plasma using a precipitation method. NEEVs were enriched by magnetic streptavidin bead immunocapture utilizing a neural adhesion marker (CD171) biotinylated antibody. NEEV specificities were confirmed by ow cytometry, western blot, particle size analyzer, and transmission electron microscopy. NEEV small RNAs were purified and sequenced. Results showed that: (1) MDD exhibited lower NEEV miR-93 expression than HC; (2) within MDD but not HC, those individuals with the lowest NEEV miR-93 expression had the highest serum concentrations of interleukin (IL)-1 receptor antagonist, IL-6, tumor necrosis factor, and leptin; and (3) within HC but not MDD, those participants with the highest miR-93 expression showed the strongest bilateral dorsal mid-insula activation. Since miR-93 is regulated by stress and affects epigenetic modulation by chromatin reorganization, these results suggest that healthy individuals but not MDD participants show an adaptive epigenetic regulation of insular function during interoceptive processing. Future investigations will need to delineate how specific internal and external environmental conditions contribute to miR-93 expression in MDD and what molecular mechanisms alter brain responsivity to body-relevant signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kent Teague
- University of Oklahoma School of Community Medicine
| | | | | |
Collapse
|
18
|
Asano N, Imatani A, Takeuchi A, Saito M, Jin XY, Hatta W, Uno K, Koike T, Masamune A. Role of T-box transcription factor 3 in gastric cancers. World J Gastrointest Pathophysiol 2023; 14:12-20. [PMID: 37035275 PMCID: PMC10074946 DOI: 10.4291/wjgp.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/21/2023] Open
Abstract
The expression of T-box transcription factor 3 (TBX3) has been identified in various cancers, including gastric cancers. Its role in breast cancers and melanomas has been intensively studied, and its contribution to the progression of cancers through suppressing senescence and promoting epithelial-mesenchymal transition has been reported. Recent reports on the role of TBX3 in gastric cancers have implied its involvement in gastric carcinogenesis. Considering its pivotal role in the initiation and progression of cancers, TBX3 could be a promising therapeutic target for gastric cancers.
Collapse
Affiliation(s)
- Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akio Takeuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masashi Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Xiao-Yi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
19
|
Melzer MK, Schirge S, Gout J, Arnold F, Srinivasan D, Burtscher I, Allgöwer C, Mulaw M, Zengerling F, Günes C, Lickert H, Christoffels VM, Liebau S, Wagner M, Seufferlein T, Bolenz C, Moon AM, Perkhofer L, Kleger A. TBX3 is dynamically expressed in pancreatic organogenesis and fine-tunes regeneration. BMC Biol 2023; 21:55. [PMID: 36941669 PMCID: PMC10029195 DOI: 10.1186/s12915-023-01553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Clinic of Urology, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Silvia Schirge
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Johann Gout
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Frank Arnold
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Dharini Srinivasan
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Chantal Allgöwer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Medhanie Mulaw
- Unit for Single-cell Genomics, Ulm University, 89081, Ulm, Germany
| | | | - Cagatay Günes
- Clinic of Urology, Ulm University Hospital, Ulm, 89081, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Chair of b-Cell Biology, Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675, München, Germany
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Martin Wagner
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
| | - Thomas Seufferlein
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
| | | | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics (adjunct), University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
| | - Lukas Perkhofer
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany
| | - Alexander Kleger
- Clinic of Internal Medicine I, Ulm University Hospital, Ulm, 89081, Germany.
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, 89081, Germany.
- Core Facility Organoids, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
20
|
Huang CJ, Choo KB. Circular RNA- and microRNA-Mediated Post-Transcriptional Regulation of Preadipocyte Differentiation in Adipogenesis: From Expression Profiling to Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054549. [PMID: 36901978 PMCID: PMC10002489 DOI: 10.3390/ijms24054549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Adipogenesis is an indispensable cellular process that involves preadipocyte differentiation into mature adipocyte. Dysregulated adipogenesis contributes to obesity, diabetes, vascular conditions and cancer-associated cachexia. This review aims to elucidate the mechanistic details on how circular RNA (circRNA) and microRNA (miRNA) modulate post-transcriptional expression of targeted mRNA and the impacted downstream signaling and biochemical pathways in adipogenesis. Twelve adipocyte circRNA profiling and comparative datasets from seven species are analyzed using bioinformatics tools and interrogations of public circRNA databases. Twenty-three circRNAs are identified in the literature that are common to two or more of the adipose tissue datasets in different species; these are novel circRNAs that have not been reported in the literature in relation to adipogenesis. Four complete circRNA-miRNA-mediated modulatory pathways are constructed via integration of experimentally validated circRNA-miRNA-mRNA interactions and the downstream signaling and biochemical pathways involved in preadipocyte differentiation via the PPARγ/C/EBPα gateway. Despite the diverse mode of modulation, bioinformatics analysis shows that the circRNA-miRNA-mRNA interacting seed sequences are conserved across species, supporting mandatory regulatory functions in adipogenesis. Understanding the diverse modes of post-transcriptional regulation of adipogenesis may contribute to the development of novel diagnostic and therapeutic strategies for adipogenesis-associated diseases and in improving meat quality in the livestock industries.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 11114 Taipei, Taiwan
- Correspondence: (C.-J.H.); (K.B.C.)
| | - Kong Bung Choo
- Department of Preclinical Sciences, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Selangor, Malaysia
- Correspondence: (C.-J.H.); (K.B.C.)
| |
Collapse
|
21
|
Zhang H, Qiao L, Liu X, Han X, Kang J, Liu Y, Lin J, Yan X. Differential expression of Ago2-mediated microRNA signaling in adipose tissue is associated with food-induced obesity. FEBS Open Bio 2022; 12:1828-1838. [PMID: 36062491 PMCID: PMC9527595 DOI: 10.1002/2211-5463.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue is a major component for the regulation of energy homeostasis by storage and release of lipids. As a core element of RNA-induced silencing complex, argonaute2 (Ago2) plays critical role in maintenance of systemic metabolic demand. Here, we show that high-fat-diet-fed mice exhibit an increase in body mass alongside systematic insulin resistance and altered rate of energy expenditure. Interestingly, Ago2 expression is associated with obesity and an increased amount of adipose tissue. Moreover, increased levels of Ago2 inhibited the expression of AMPKα by promoting its targeting by miR-148a, the most abundant microRNA in adipose tissues. Those results suggested that Ago2-miR-148a-AMPKα signaling pathway play an important function in the developing obesity and adiposity, and will further provide basic research data for the potential clinical treatment of obesity.
Collapse
Affiliation(s)
- Hansi Zhang
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Liang Qiao
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Xiaoxuan Liu
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Xiaojing Han
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina
| | - Jing Kang
- School of Life Science and TechnologyXinxiang Medical UniversityChina
| | - Yanli Liu
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| | - Xin Yan
- School of Life Science and TechnologyXinxiang Medical UniversityChina,Stem Cell and Biotherapy Technology Research CenterXinxiang Medical UniversityChina,Henan Joint International Research Laboratory of Stem Cell MedicineXinxiang Medical UniversityChina
| |
Collapse
|
22
|
USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells. Breast Cancer Res Treat 2022; 196:31-44. [PMID: 36040642 DOI: 10.1007/s10549-022-06711-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein-protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling. METHODS USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student's t test (two-tailed unpaired) and χ2 test. RESULTS We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer. CONCLUSION Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.
Collapse
|
23
|
Han B, Wang Y, Zhao J, Lan Q, Zhang J, Meng X, Jin J, Bai M, Zhang Z. Association of T-box gene polymorphisms with the risk of Wolff-Parkinson-White syndrome in a Han Chinese population. Medicine (Baltimore) 2022; 101:e30046. [PMID: 35960099 PMCID: PMC9371508 DOI: 10.1097/md.0000000000030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abnormal development of the atrioventricular ring can lead to the formation of a bypass pathway and the occurrence of Wolff-Parkinson-White (WPW) syndrome. The genetic mechanism underlying the sporadic form of WPW syndrome remains unclear. Existing evidence suggests that both T-box transcription factor 3 (TBX3) and T-box transcription factor 2 (TBX2) genes participate in regulating annulus fibrosus formation and atrioventricular canal development. Thus, we aimed to examine whether single-nucleotide polymorphisms (SNPs) in the TBX3 and TBX2 genes confer susceptibility to WPW syndrome in a Han Chinese Population. We applied a SNaPshot SNP assay to analyze 5 selected tagSNPs of TBX3 and TBX2 in 230 patients with sporadic WPW syndrome and 231 sex- and age-matched controls. Haplotype analysis was performed using Haploview software. Allele C of TBX3 rs1061657 was associated with a higher risk of WPW syndrome (odds ratio [OR] = 1.41, 95% confidence interval [CI]: 1.08-1.83, P = .011) and left-sided accessory pathways (OR = 1.40, 95% CI: 1.07-1.84, P = .016). However, allele C of TBX3 rs8853 was likely to reduce these risks (OR = 0.71, 95% CI: 0.54-0.92, P = .011; OR = 0.70, 95% CI: 0.53-0.92, P = .011, respectively). The data revealed no association between TBX3 rs77412687, TBX3 rs2242442, or TBX2 rs75743672 and WPW syndrome. TBX3 rs1061657 and rs8853 are significantly associated with sporadic WPW syndrome among a Han Chinese population. To verify our results, larger sample sizes are required in future studies.
Collapse
Affiliation(s)
- Bing Han
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Yongxiang Wang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Jing Zhao
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Qingsu Lan
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Xiaoxue Meng
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Jianjian Jin
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ming Bai
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Zheng Zhang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The incidence of diabetes is increasing worldwide. Diabetes mellitus is characterized by hyperglycemia, which in the long-term damages the function of many organs including the eyes, the vasculature, the nervous system, and the kidneys, thereby imposing an important cause of morbidity for affected individuals. More recently, increased bone fragility was also noted in patients with diabetes. While patients with type 1 diabetes mellitus (T1DM) have low bone mass and a 6-fold risk for hip fractures, patients with type 2 diabetes mellitus (T2DM) have an increased bone mass, yet still display a 2-fold elevated risk for hip fractures. Although the underlying mechanisms are just beginning to be unraveled, it is clear that diagnostic tools are lacking to identify patients at risk for fracture, especially in the case of T2DM, in which classical tools to diagnose osteoporosis such as dual X-ray absorptiometry have limitations. Thus, new biomarkers are urgently needed to help identify patients with diabetes who are at risk to fracture. RECENT FINDINGS Previously, microRNAs have received great attention not only for being involved in the pathogenesis of various chronic diseases, including osteoporosis, but also for their value as biomarkers. Here, we summarize the current knowledge on microRNAs and their role in diabetic bone disease and highlight recent studies on miRNAs as biomarkers to predict bone fragility in T1DM and T2DM. Finally, we discuss future directions and challenges for their use as prognostic markers.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lejla Emini
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
25
|
Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci 2022; 79:297. [PMID: 35585284 PMCID: PMC9117384 DOI: 10.1007/s00018-022-04342-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.
Collapse
|
26
|
Li Y, Li J, Yu H, Liu Y, Song H, Tian X, Liu D, Yan C, Han Y. HOXA5-miR-574-5p axis promotes adipogenesis and alleviates insulin resistance. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:200-210. [PMID: 34976438 PMCID: PMC8693313 DOI: 10.1016/j.omtn.2021.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022]
Abstract
Differentiation of preadipocytes into functional adipocytes could be a major target for repressing obesity-induced insulin resistance (IR). However, the molecular mechanisms involved in adipogenesis and the development of IR are unclear. We report, for the first time, that miR-574-5p, a novel miRNA, promotes adipogenesis to suppress IR. An increase in the level of miR-574-5p significantly induced the differentiation of preadipocytes into mature adipocytes. Conversely, reduction of miR-574-5p levels blocked the differentiation of preadipocytes in vitro. In a dual-luciferase reporter assay, it was shown that homeobox A5 (HOXA5) promoted the transcription of miR-574-5p to induce the differentiation of preadipocytes. Hdac9, a direct downstream target of miR-574-5p, was involved in the regulation of adipocyte differentiation. The overexpression of miR-574-5p also promoted adipogenesis in subcutaneous fat to alleviate IR in high-fat-diet-fed mice. Additionally, miR-574-5p expression was significantly higher in the subcutaneous adipose tissue of obese patients without type 2 diabetes than in those with type 2 diabetes. There was an increase in HOXA5 expression and a decrease in histone deacetylase 9 (HDAC9) expression in the subcutaneous fat of obese patients without type 2 diabetes. These results suggest that miR-574-5p may be a potential therapeutic target for combating obesity-related IR.
Collapse
Affiliation(s)
- Yuying Li
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiayin Li
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, China
| | - Haibo Yu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haixu Song
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
27
|
Zhang W, Wang L, Raza SHA, Wang X, Wang G, Liang C, Cheng G, Li B, Zan L. MiR-33a plays an crucial role in the proliferation of bovine preadipocytes. Adipocyte 2021; 10:189-200. [PMID: 33840361 PMCID: PMC8043176 DOI: 10.1080/21623945.2021.1908655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Preadipocyte proliferation is a critical and precisely orchestrated procedure in adipogenesis, which is highly regulated by microRNAs (miRNAs). A previous study identified that the expression of miR-33a is different in intramuscular fat (IMF) tissues from steers and bulls. In the present study, miR-33a was overexpressed in bovine preadipocytes, and a total of 781 differentialy expressed genes were found, including 348 upregulated and 433 downregulated genes. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses of the differentially expressed genes enriched cell division and cell cycle respectively. MiR-33a overexpression decreased the rate of preadipocyte proliferation. Synchronously, the mRNA and protein expression levels of proliferation-related marker genes, including cyclin B1 (CCNB1) and proliferating cell nuclear antigen (PCNA), were decreased. In contrast, inhibiting miR-33a increased the rate of preadipocyte proliferation, and expression levels of CCNB1 and PCNA. Furthermore, based on luciferase reporter assays, miR-33a targeted directly cyclin-dependent kinase 6 (CDK6)-3'UTR and inhibited CDK6 protein expression. Interestingly, the silencing of CDK6 inhibited bovine preadipocyte proliferation and proliferation-related genes. Therefore, miR-33a inhibits the proliferation of bovine preadipocytes. CDK6 is the target gene of miR-33a and may be involved in the effects of miR-33a on bovine preadipocyte proliferation.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Guohu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
28
|
Gao W, Liu JL, Lu X, Yang Q. Epigenetic regulation of energy metabolism in obesity. J Mol Cell Biol 2021; 13:480-499. [PMID: 34289049 PMCID: PMC8530523 DOI: 10.1093/jmcb/mjab043] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Although modern adoption of a sedentary lifestyle coupled with energy-dense nutrition is considered to be the main cause of obesity epidemic, genetic preposition contributes significantly to the imbalanced energy metabolism in obesity. However, the variants of genetic loci identified from large-scale genetic studies do not appear to fully explain the rapid increase in obesity epidemic in the last four to five decades. Recent advancements of next-generation sequencing technologies and studies of tissue-specific effects of epigenetic factors in metabolic organs have significantly advanced our understanding of epigenetic regulation of energy metabolism in obesity. The epigenome, including DNA methylation, histone modifications, and RNA-mediated processes, is characterized as mitotically or meiotically heritable changes in gene function without alteration of DNA sequence. Importantly, epigenetic modifications are reversible. Therefore, comprehensively understanding the landscape of epigenetic regulation of energy metabolism could unravel novel molecular targets for obesity treatment. In this review, we summarize the current knowledge on the roles of DNA methylation, histone modifications such as methylation and acetylation, and RNA-mediated processes in regulating energy metabolism. We also discuss the effects of lifestyle modifications and therapeutic agents on epigenetic regulation of energy metabolism in obesity.
Collapse
Affiliation(s)
- Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Akter F, Tsuyama T, Yoshizawa T, Sobuz SU, Yamagata K. SIRT7 regulates lipogenesis in adipocytes through deacetylation of PPARγ2. J Diabetes Investig 2021; 12:1765-1774. [PMID: 33955199 PMCID: PMC8504911 DOI: 10.1111/jdi.13567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Peroxisome proliferator-activated receptor (PPAR)-γ2 is a transcription factor crucial for regulating adipogenesis and glucose/lipid metabolism, and synthetic PPARγ ligands, such as thiazolidinediones, are effective oral medication for type 2 diabetes. Sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide-dependent deacetylase, also controls metabolism. However, it is not known whether SIRT7 regulates the function of PPARγ2 by its deacetylation. MATERIALS AND METHODS Physical interaction between SIRT7 and PPARγ2, the effect of SIRT7 on PPARγ2 acetylation, and the deacetylation residue targeted by SIRT7 were investigated. The effects of PPARγ2 K382 acetylation on lipid accumulation, gene expression in C3H10T1/2 cell-derived adipocytes, and ligand-dependent transactivation activity were also evaluated. RESULTS We demonstrated that SIRT7 binds to PPARγ2 and deacetylates PPARγ2 at K382. C3H10T1/2-derived adipocytes expressing PPARγ2K382Q (a mimic of acetylated K) accumulated much less fat than adipocytes expressing wild-type PPARγ2 or PPARγ2K382R (a mimic of nonacetylated K). Global gene expression analysis of adipocytes expressing PPARγ2K382Q revealed that K382Q caused the dysregulation of a set of genes involved in lipogenesis, including Srebp1c, Acaca, Fasn, and Scd1. The rosiglitazone-dependent transcriptional activity of PPARγ2K382Q was reduced compared with that of PPARγ2K382R . CONCLUSION Our findings indicate that SIRT7-dependent PPARγ2 deacetylation at K382 controls lipogenesis in adipocytes.
Collapse
Affiliation(s)
- Fatema Akter
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA)Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Yoshizawa
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Shihab U. Sobuz
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kazuya Yamagata
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
30
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
31
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
32
|
Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F. MicroRNA-489-3p promotes adipogenesis by targeting the Postn gene in 3T3-L1 preadipocytes. Life Sci 2021; 278:119620. [PMID: 34004251 DOI: 10.1016/j.lfs.2021.119620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Accumulating evidence indicates that a number of microRNAs (miRNAs) serve as essential regulators during adipogenesis and adipolysis in humans and animals and play critical roles in the development of fat tissue. In this study, we aimed to determine the functional role and underlying regulatory mechanism of microRNA-489-3p (miR-489) in adipocytes. MATERIALS AND METHODS The expression patterns of miR-489 in mice were measured by qRT-PCR. Overexpression and knockdown of miR-489 by mimic and inhibitor transfections in 3T3-L1 preadipocytes revealed the regulatory effect of miR-489 on cellular proliferation and differentiation and energy turnover. Furthermore, RNA-seq, bioinformatics prediction, and dual luciferase reporter assays were used to identify the direct target of miR-489. KEY FINDINGS The results showed that miR-489 was highly expressed in the visceral fat tissue of adult mice, and obese mice exhibited higher levels of miR-489 than normal mice. Overexpression of miR-489 suppressed proliferation but promoted adipogenic differentiation and lipid accumulation in the cells. Mitochondrial oxidation also fluctuated in the cells due to the high expression of miR-489. Notably, knockdown of miR-489 did not have a strong opposing effect on the cells. Periostin (Postn) was identified as a direct target gene for miR-489, and silencing the Postn gene similarly stimulated adipogenesis and differentiation of adipocytes. SIGNIFICANCE miR-489 provides a strong driving force for adipogenesis metabolism and adipocyte differentiation by targeting the Postn gene. This result may contribute to the treatment of obesity.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China
| | - Xu Han
- ChaoYang Teachers College, Liaoning 122000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China.
| |
Collapse
|
33
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
34
|
Noriega LG, Melo Z, Rajaram RD, Mercado A, Tovar AR, Velazquez‐Villegas LA, Castañeda‐Bueno M, Reyes‐López Y, Ryu D, Rojas‐Vega L, Magaña‐Avila G, López‐Barradas AM, Sánchez‐Hernández M, Debonneville A, Doucet A, Cheval L, Torres N, Auwerx J, Staub O, Gamba G. SIRT7 modulates the stability and activity of the renal K-Cl cotransporter KCC4 through deacetylation. EMBO Rep 2021; 22:e50766. [PMID: 33749979 PMCID: PMC8097349 DOI: 10.15252/embr.202050766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/09/2022] Open
Abstract
SIRT7 is a NAD+ -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD+ -dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.
Collapse
Affiliation(s)
- Lilia G Noriega
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Zesergio Melo
- Department of Nephrology and Mineral MetabolismInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
- CONACYT‐Centro de Investigación Biomédica de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraJaliscoMexico
| | - Renuga D Rajaram
- Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research, “Kidney.ch”ZurichSwitzerland
| | - Adriana Mercado
- Department of NephrologyInstituto Nacional de Cardiología Ignacio ChávezMexico CityMexico
| | - Armando R Tovar
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Laura A Velazquez‐Villegas
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - María Castañeda‐Bueno
- Department of Nephrology and Mineral MetabolismInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Yazmín Reyes‐López
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology (LISP)École Polytechnique Fédérale de LausanneLausanneSwitzerland
- Present address:
Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonKorea
| | - Lorena Rojas‐Vega
- Department of Nephrology and Mineral MetabolismInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - German Magaña‐Avila
- Department of Nephrology and Mineral MetabolismInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Adriana M López‐Barradas
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | | | - Anne Debonneville
- Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research, “Kidney.ch”ZurichSwitzerland
| | - Alain Doucet
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesCNRS ERL 8228ParisFrance
| | - Lydie Cheval
- Centre de Recherche des CordeliersINSERM, Sorbonne Universités, USPC, Université Paris Descartes, Université Paris Diderot, Physiologie Rénale et TubulopathiesCNRS ERL 8228ParisFrance
| | - Nimbe Torres
- Department of Nutrition PhysiologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology (LISP)École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Olivier Staub
- Department of Pharmacology and ToxicologyUniversity of LausanneLausanneSwitzerland
- National Centre of Competence in Research, “Kidney.ch”ZurichSwitzerland
| | - Gerardo Gamba
- Department of Nephrology and Mineral MetabolismInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
35
|
RNA-Seq Reveals Function of Bta-miR-149-5p in the Regulation of Bovine Adipocyte Differentiation. Animals (Basel) 2021; 11:ani11051207. [PMID: 33922274 PMCID: PMC8145242 DOI: 10.3390/ani11051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intramuscular fat is a real challenge for the experts of animal science to improve meat quality traits. Research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality traits. This study investigated the effect of bta-miR-149-5p and its underlying mechanism on lipid metabolism in bovine adipocytes. Bovine adipocytes were differentiated and transfected with bta-miR-149-5p mimics or its negative control (NC). A total of 115 DEGs including 72 upregulated and 43 downregulated genes were identified in bovine adipocytes. The unigenes and GO term biological processes were the most annotated unigene contributor parts at 80.08%, followed by cellular component at 13.4% and molecular function at 6.7%. The KEGG pathways regulated by the DEGs were PI3K-Akt signaling pathway, calcium signaling pathway, pathways in cancer, MAPK signaling pathway, lipid metabolism/metabolic pathway, PPAR signaling pathway, AMPK signaling pathway, TGF-beta signaling pathway, cAMP signaling pathway, cholesterol metabolism, Wnt signaling pathway, and FoxO signaling pathway. In addition to this, the most important reactome enrichment pathways were R-BTA-373813 receptor CXCR2 binding ligands CXCL1 to 7, R-BTA-373791 receptor CXCR1 binding CXCL6 and CXCL8 ligands, R-BTA-210991 basigin interactions, R-BTA-380108 chemokine receptors binding chemokines, R-BTA-445704 calcium binding caldesmon, and R-BTA-5669034 TNFs binding their physiological receptors. Furthermore, the expression trend of the DEGs in these pathways were also exploited. Moreover, the bta-miR-149-5p significantly (p < 0.01) downregulated the mRNA levels of adipogenic marker genes such as CCND2, KLF6, ACSL1, Cdk2, SCD, SIK2, and ZEB1 in bovine adipocytes. In conclusion, our results suggest that bta-miR-149-5p regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the bta-miR-149-5p in regulating bovine adipogenesis.
Collapse
|
36
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
37
|
Pant R, Firmal P, Shah VK, Alam A, Chattopadhyay S. Epigenetic Regulation of Adipogenesis in Development of Metabolic Syndrome. Front Cell Dev Biol 2021; 8:619888. [PMID: 33511131 PMCID: PMC7835429 DOI: 10.3389/fcell.2020.619888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the biggest public health concerns identified by an increase in adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining to the importance of adipose tissue in various biological processes, any alteration in its function results in impaired metabolic health. In this review, we discuss how adipose tissue maintains the metabolic health through secretion of various adipokines and inflammatory mediators and how its dysfunction leads to the development of severe metabolic disorders and influences cancer progression. Impairment in the adipocyte function occurs due to individuals' genetics and/or environmental factor(s) that largely affect the epigenetic profile leading to altered gene expression and onset of obesity in adults. Moreover, several crucial aspects of adipose biology, including the regulation of different transcription factors, are controlled by epigenetic events. Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its relevance in underlying disease conditions and identifying the therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Richa Pant
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Priyanka Firmal
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Vibhuti Kumar Shah
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Aftab Alam
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Samit Chattopadhyay
- National Centre for Cell Science, SP Pune University Campus, Pune, India.,Department of Biological Sciences, BITS Pilani, Goa, India
| |
Collapse
|
38
|
Jia B, Zhang S, Wu S, Zhu Q, Li W. MiR-770 promotes oral squamous cell carcinoma migration and invasion by regulating the Sirt7/Smad4 pathway. IUBMB Life 2020; 73:264-272. [PMID: 33326690 DOI: 10.1002/iub.2426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant cancer with unfavorable prognosis, and the epithelial-to-mesenchymal transition (EMT) is a critical contributor to OSCC metastasis. Recently, we have shown that sirtuin 7 (Sirt7) is associated with EMT and OSCC metastasis by acetylating small mother against decapentaplegic 4 (Smad4). Nonetheless, the mechanism of Sirt7 downregulation in OSCC cells remains unknown. This study analyzed the potential microRNAs that were predicted to regulate Sirt7 expression by online databases. We identified miR-770 as an upstream regulator of Sirt7 that targets its 3'-untranslated region. The expression of miR-770 was observed to be negatively correlated with the mRNA expression of Sirt7 in metastatic OSCC tumors, and higher miR-770 expression was correlated with poorer OSCC patient survival. Our in vitro data indicated that miR-770 promoted OSCC cell migration and invasion, and this process was dependent on Sirt7/Smad4 signaling. Furthermore, in vivo metastasis experiments indicated that miR-770 overexpression led to more prominent OSCC metastasis and downregulated Sirt7 expression. Collectively, our results revealed a new role of Sirt7 downregulation in metastatic OSCC and suggested that miR-770 is a potential target in counteracting OSCC metastasis.
Collapse
Affiliation(s)
- Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sanke Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Wu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenlu Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci Rep 2020; 10:21969. [PMID: 33319811 PMCID: PMC7738482 DOI: 10.1038/s41598-020-77714-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.
Collapse
|
40
|
Mohammadalipour A, Dumbali SP, Wenzel PL. Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Front Cell Dev Biol 2020; 8:603292. [PMID: 33365311 PMCID: PMC7750467 DOI: 10.3389/fcell.2020.603292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Immunology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
41
|
Du Y, Kong C. STAT3 regulates miR93-mediated apoptosis through inhibiting DAPK1 in renal cell carcinoma. Cancer Gene Ther 2020; 28:502-513. [PMID: 33230258 DOI: 10.1038/s41417-020-00235-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an essential member of the STAT family. STAT3 regulates diverse genes that mediate inflammatory reactions, cell survival, proliferation, and angiogenesis, and it is aberrantly upregulated and activated in various types of malignancies. Furthermore, STAT3 signalling is involved in multiple feedback loops and pathways. In this study, we demonstrate that miR-93-3p plays an oncogenic role in renal cell carcinoma (RCC) by enhancing RCC cell proliferation and suppressing apoptosis. In addition, STAT3 can regulate the transcription of miR-93 by directly binding its promoter region. miR-93 can inhibit death-associated protein kinase 1 (DAPK1) at the protein level. Moreover, STAT3 can block DAPK1 expression at the RNA level. Importantly, we verified that DAPK1 overexpression in turn suppresses the entry of activated STAT3 into the cell nucleus. Thus, this study reveals a potential continuously activated signalling transduction pathway, STAT3-miR93-DAPK1, and may provide a novel clinical therapeutic approach for RCC.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, First Hospital of China Medical University, 110001, Shenyang, China
| | - Chuize Kong
- Department of Urology, First Hospital of China Medical University, 110001, Shenyang, China.
| |
Collapse
|
42
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
43
|
Kang Z, Zhang S, Jiang E, Wang X, Wang Z, Chen H, Lan X. circFLT1 and lncCCPG1 Sponges miR-93 to Regulate the Proliferation and Differentiation of Adipocytes by Promoting lncSLC30A9 Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:484-499. [PMID: 33230451 PMCID: PMC7554329 DOI: 10.1016/j.omtn.2020.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Although many circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) have been discovered in adipocytes, their precise functions and molecular mechanisms remain poorly understood. Based on existing circRNA and lncRNA sequencing data of bovine adipocytes, we screened for the differential expression of circFLT1 and lncCCPG1 in preadipocytes and adipocytes and further analyzed their function and regulation during adipogenesis. The overexpression of circFLT1 and lncCCPG1 together facilitated adipocyte differentiation and suppressed proliferation. Computationally, the RNA hybrid showed that circFLT1 and lncCCPG1 had multiple potential binding sites with miR-93. Additionally, luciferase reporting experiments verified that circFLT1 and lncCCPG1 may interact with miR-93. We also demonstrated that overexpressed miR-93 effectively suppresses the expression of lncSLC30A9. Signaling pathway enrichment analysis, luciferase activity assay, and expression analysis revealed that lncSLC30A9 inhibits proliferation by inhibiting the expression of AKT protein and promotes differentiation by recruiting the FOS protein to the promoter of peroxisome proliferator-activated receptor gamma (PPARG). In sum, our results elucidate the regulatory mechanisms of circFLT1 and lncCCPG1 as miR-93 sponges in bovine adipocytes.
Collapse
Affiliation(s)
- Zihong Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Sihuang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xinyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Zhen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| |
Collapse
|
44
|
Ait-Aissa K, Nguyen QM, Gabani M, Kassan A, Kumar S, Choi SK, Gonzalez AA, Khataei T, Sahyoun AM, Chen C, Kassan M. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc Diabetol 2020; 19:136. [PMID: 32907629 PMCID: PMC7488343 DOI: 10.1186/s12933-020-01107-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
The endothelium plays a pivotal role in maintaining vascular health. Obesity is a global epidemic that has seen dramatic increases in both adult and pediatric populations. Obesity perturbs the integrity of normal endothelium, leading to endothelial dysfunction which predisposes the patient to cardiovascular diseases. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that play important roles in a variety of cellular processes such as differentiation, proliferation, apoptosis, and stress response; their alteration contributes to the development of many pathologies including obesity. Mediators of obesity-induced endothelial dysfunction include altered endothelial nitric oxide synthase (eNOS), Sirtuin 1 (SIRT1), oxidative stress, autophagy machinery and endoplasmic reticulum (ER) stress. All of these factors have been shown to be either directly or indirectly caused by gene regulatory mechanisms of miRNAs. In this review, we aim to provide a comprehensive description of the therapeutic potential of miRNAs to treat obesity-induced endothelial dysfunction. This may lead to the identification of new targets for interventions that may prevent or delay the development of obesity-related cardiovascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Adam Kassan
- Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, Los Angeles, USA
| | - Santosh Kumar
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia, Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tahsin Khataei
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Amal M Sahyoun
- Department of Food Science and Agriculture Chemistry, McGill University, Montreal, QC, Canada
| | - Cheng Chen
- Department of emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
45
|
Mohammadzadeh M, Hashemi M, Azadeh M, Ghaedi K. Co-expression of HOTAIR long noncoding RNA and Tbx3 transcription factor in breast cancer tissues. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Müller S, Wallner S, Schmitz G, Loew T, Stempfl T, Möhle C, Strack C, Sag S, Baessler A, Fischer M. SNP dependent modulation of circulating miRNAs from the miR25/93/106 cluster in patients undergoing weight loss. Gene 2020; 753:144787. [PMID: 32439373 DOI: 10.1016/j.gene.2020.144787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diet induced weight loss represents an intervention for obesity to prevent associated diseases. However there is considerable inter-individual variation. Single nucleotide polymorphisms (SNPs) and plasma miRNA might be contributing factors. We therefore hypothesized that changes in the miRNA pattern during weight loss depend on the SNP genotype. METHODS Plasma miRNA profiles from 12 patients were determined before and after a three month weight loss intervention by Illumina sequencing. 46 further patients were analyzed by qPCR. SNP genotypes were determined on the Sequenom iPLEX platform. RESULTS Samples before and after weight loss were analyzed by miRNA-seq and delta miRNA levels ranked according to p-value. Levels of miRNAs 25, 93 and 106 that are expressed from a common genomic cluster were reduced after weight loss. Those results were substantiated in a qPCR analysis of 46 additional patients. This is in accordance with mouse data showing a functional involvement of this cluster in obesity. Correlation of the changes in miRNA abundance with SNP genotypes revealed a statistical association of all three miRNAs with known obesity susceptibility SNPs. CONCLUSION Diet induced weight loss leads to SNP dependent modulation of miRNAs from the miR 25/93/106 gene cluster in humans.
Collapse
Affiliation(s)
- Stephanie Müller
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany; Clinic for Internal Medicine 2, Regensburg University Hospital, Regensburg, Germany
| | - Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Thomas Loew
- Department of Psychosomatics, Regensburg University Hospital, Regensburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Christina Strack
- Clinic for Internal Medicine 2, Regensburg University Hospital, Regensburg, Germany
| | - Sabine Sag
- Clinic for Internal Medicine 2, Regensburg University Hospital, Regensburg, Germany
| | - Andrea Baessler
- Clinic for Internal Medicine 2, Regensburg University Hospital, Regensburg, Germany
| | - Marcus Fischer
- Clinic for Internal Medicine 2, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
47
|
Mir-193b Regulates the Differentiation, Proliferation, and Apoptosis of Bovine Adipose Cells by Targeting the ACSS2/AKT Axis. Animals (Basel) 2020; 10:ani10081265. [PMID: 32722316 PMCID: PMC7459776 DOI: 10.3390/ani10081265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The precise functions and molecular mechanisms of microRNAs (miRNAs) in adipocytes are primarily unknown. Studies have demonstrated that miR-193b plays a pivotal role in the differentiation of preadipocytes. Herein, we evaluated the effects of bta-miR-193b on the growth and development of adipocytes, using the EdU cell proliferation method, flow cytometry analysis, CCK-8 assay, RT-qPCR, Western blotting, and oil red O staining. We observed that the overexpression of bta-miR-193b significantly affected the differentiation, proliferation, and apoptosis of adipocytes. The results of the dual-fluorescent reporter vector experiments demonstrated that bta-miR-193b directly targeted Acyl-CoA synthetase short-chain family member 2 (ACSS2). Additionally, the effects of ACSS2 overexpression on the proliferation and apoptosis in adipose cells were the opposite of those induced by bta-miR-193b. We also demonstrated that ACSS2 can significantly promote the expression of AKT and pAKT proteins. Therefore, this study presents a novel mechanism by which bta-miR-193b regulates adipocyte development by targeting ACSS2.
Collapse
|
48
|
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M, Liu GH, Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 2020; 11:483-504. [PMID: 32504224 PMCID: PMC7305295 DOI: 10.1007/s13238-020-00728-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
49
|
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: A Complex Interplay of Multiple Molecular Determinants and Pathways. Int J Mol Sci 2020; 21:E4283. [PMID: 32560163 PMCID: PMC7349855 DOI: 10.3390/ijms21124283] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs have been described to be involved in the differentiation of preadipocytes to adipocytes; however, only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed understanding of how the molecular players underpinning adipogenesis relate to adipose tissue function could provide new therapeutic approaches for addressing obesity without compromising adipose tissue function.
Collapse
Affiliation(s)
- Melvin A. Ambele
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Priyanka Dhanraj
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Rachel Giles
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| | - Michael S. Pepper
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.A.); (P.D.); (R.G.)
| |
Collapse
|
50
|
Zhao J, Florentin J, Tai YY, Torrino S, Ohayon L, Brzoska T, Tang Y, Yang J, Negi V, Woodcock CSC, Risbano MG, Nouraie SM, Sundd P, Bertero T, Dutta P, Chan SY. Long Range Endocrine Delivery of Circulating miR-210 to Endothelium Promotes Pulmonary Hypertension. Circ Res 2020; 127:677-692. [PMID: 32493166 DOI: 10.1161/circresaha.119.316398] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Unproven theories abound regarding the long-range uptake and endocrine activity of extracellular blood-borne microRNAs into tissue. In pulmonary hypertension (PH), microRNA-210 (miR-210) in pulmonary endothelial cells promotes disease, but its activity as an extracellular molecule is incompletely defined. OBJECTIVE We investigated whether chronic and endogenous endocrine delivery of extracellular miR-210 to pulmonary vascular endothelial cells promotes PH. METHODS AND RESULTS Using miR-210 replete (wild-type [WT]) and knockout mice, we tracked blood-borne miR-210 using bone marrow transplantation and parabiosis (conjoining of circulatory systems). With bone marrow transplantation, circulating miR-210 was derived predominantly from bone marrow. Via parabiosis during chronic hypoxia to induce miR-210 production and PH, miR-210 was undetectable in knockout-knockout mice pairs. However, in plasma and lung endothelium, but not smooth muscle or adventitia, miR-210 was observed in knockout mice of WT-knockout pairs. This was accompanied by downregulation of miR-210 targets ISCU (iron-sulfur assembly proteins)1/2 and COX10 (cytochrome c oxidase assembly protein-10), indicating endothelial import of functional miR-210. Via hemodynamic and histological indices, knockout-knockout pairs were protected from PH, whereas knockout mice in WT-knockout pairs developed PH. In particular, pulmonary vascular engraftment of miR-210-positive interstitial lung macrophages was observed in knockout mice of WT-knockout pairs. To address whether engrafted miR-210-positive myeloid or lymphoid cells contribute to paracrine miR-210 delivery, we studied miR-210 knockout mice parabiosed with miR-210 WT; Cx3cr1 knockout mice (deficient in myeloid recruitment) or miR-210 WT; Rag1 knockout mice (deficient in lymphocytes). In both pairs, miR-210 knockout mice still displayed miR-210 delivery and PH, thus demonstrating a pathogenic endocrine delivery of extracellular miR-210. CONCLUSIONS Endogenous blood-borne transport of miR-210 into pulmonary vascular endothelial cells promotes PH, offering fundamental insight into the systemic physiology of microRNA activity. These results also describe a platform for RNA-mediated crosstalk in PH, providing an impetus for developing blood-based miR-210 technologies for diagnosis and therapy in this disease.
Collapse
Affiliation(s)
- Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Lee Ohayon
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Tomasz Brzoska
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Jimin Yang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Chen-Shan Chen Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Seyed Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Prithu Sundd
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (M.G.R., S.M.N., P.S.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France (S.T., T. Bertero)
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute (J.Z., J.F., Y.-Y.T., L.O., T. Brzoska, Y.T., J.Y., V.N., C.-S.C.W., M.G.R., S.M.N., P.S., P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA.,Division of Cardiology, Department of Medicine (P.D., S.Y.C.), University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA
| |
Collapse
|