1
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang W, Fan X, Liu W, Huang Y, Zhao S, Yang Y, Tang Z. The Spatial-Temporal Alternative Splicing Profile Reveals the Functional Diversity of FXR1 Isoforms in Myogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405157. [PMID: 39499773 PMCID: PMC11653684 DOI: 10.1002/advs.202405157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/08/2024] [Indexed: 11/07/2024]
Abstract
Alternative splicing (AS) is a fundamental mechanism contributing to proteome diversity, yet its comprehensive landscape and regulatory dynamics during skeletal muscle development remain largely unexplored. Here, the temporal AS profiles are investigated during myogenesis in five vertebrates, conducting comprehensive profiling across 27 developmental stages in skeletal muscle and encompassing ten tissues in adult pigs. The analysis reveals a pervasive and evolutionarily conserved pattern of alternative exon usage throughout myogenic differentiation, with hundreds of skipped exons (SEs) showing developmental regulation, particularly within skeletal muscle. Notably, this study identifies a muscle-specific SE (exon 15) within the Fxr1 gene, whose AS generates two dynamically expressed isoforms with distinct functions: the isoform without exon 15 (Fxr1E15 -) regulates myoblasts proliferation, while the isoform incorporating exon 15 (Fxr1E15+) promotes myogenic differentiation and fusion. Transcriptome analysis suggests that specifically knocking-down Fxr1E15+ isoform in myoblasts modulates differentiation by influencing gene expression and splicing of specific targets. The increased inclusion of exon 15 during differentiation is mediated by the binding of Rbm24 to the intron. Furthermore, in vivo experiments indicate that the Fxr1E15+ isoform facilitates muscle regeneration. Collectively, these findings provide a comprehensive resource for AS studies in skeletal muscle development, underscoring the diverse functions and regulatory mechanisms governing distinct Fxr1 isoforms in myogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Weiwei Liu
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuxin Huang
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
- Guangxi Key Laboratory of Animal BreedingDisease Control and PreventionCollege of Animal Science & TechnologyGuangxi UniversityNanning530004China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of Education and Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhan430070China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at FoshanAgricultural Genomics InstituteChinese Academy of Agricultural SciencesFoshan528226China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory of Livestock and Poultry Multi‐Omics of MARAAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518124China
| |
Collapse
|
3
|
Kaminska D. The Role of RNA Splicing in Liver Function and Disease: A Focus on Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 15:1181. [PMID: 39336772 PMCID: PMC11431473 DOI: 10.3390/genes15091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
RNA splicing is an essential post-transcriptional mechanism that facilitates the excision of introns and the connection of exons to produce mature mRNA, which is essential for gene expression and proteomic diversity. In the liver, precise splicing regulation is critical for maintaining metabolic balance, detoxification, and protein synthesis. This review explores the mechanisms of RNA splicing and the role of splicing factors, particularly in the context of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). This review also highlights how RNA splicing dysregulation can lead to aberrant splicing and impact the progression of liver diseases such as MASLD, with a particular focus on Metabolic Dysfunction-Associated Steatohepatitis (MASH), which represents the advanced stage of MASLD. Recent advances in the clinical application of antisense oligonucleotides (ASOs) to correct splicing errors offer promising therapeutic strategies for restoring normal liver function. Additionally, the dysregulation of splicing observed in liver diseases may serve as a potential diagnostic marker, offering new opportunities for early identification of individuals more susceptible to disease progression. This review provides insights into the molecular mechanisms that govern splicing regulation in the liver, with a particular emphasis on MASLD, and discusses potential therapeutic approaches targeting RNA splicing to treat MASLD and related metabolic disorders.
Collapse
Affiliation(s)
- Dorota Kaminska
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Rbbani G, Murshed R, Siriyappagouder P, Sharko F, Nedoluzhko A, Joshi R, Galindo-Villegas J, Raeymaekers JAM, Fernandes JMO. Embryonic temperature has long-term effects on muscle circRNA expression and somatic growth in Nile tilapia. Front Cell Dev Biol 2024; 12:1369758. [PMID: 39149515 PMCID: PMC11324953 DOI: 10.3389/fcell.2024.1369758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Embryonic temperature has a lasting impact on muscle phenotype in vertebrates, involving complex molecular mechanisms that encompass both protein-coding and non-coding genes. Circular RNAs (circRNAs) are a class of regulatory RNAs that play important roles in various biological processes, but the effect of variable thermal conditions on the circRNA transcriptome and its long-term impact on muscle growth plasticity remains largely unexplored. To fill this knowledge gap, we performed a transcriptomic analysis of circRNAs in fast muscle of Nile tilapia (Oreochromis niloticus) subjected to different embryonic temperatures (24°C, 28°C and 32°C) and then reared at a common temperature (28°C) for 4 months. Nile tilapia embryos exhibited faster development and subsequently higher long-term growth at 32°C compared to those reared at 28°C and 24°C. Next-generation sequencing data revealed a total of 5,141 unique circRNAs across all temperature groups, of which 1,604, 1,531, and 1,169 circRNAs were exclusively found in the 24°C, 28°C and 32°C groups, respectively. Among them, circNexn exhibited a 1.7-fold (log2) upregulation in the 24°C group and a 1.3-fold (log2) upregulation in the 32°C group when compared to the 28°C group. Conversely, circTTN and circTTN_b were downregulated in the 24°C groups compared to their 28°C and 32°C counterparts. Furthermore, these differentially expressed circRNAs were found to have multiple interactions with myomiRs, highlighting their potential as promising candidates for further investigation in the context of muscle growth plasticity. Taken together, our findings provide new insights into the molecular mechanisms that may underlie muscle growth plasticity in response to thermal variation in fish, with important implications in the context of climate change, fisheries and aquaculture.
Collapse
Affiliation(s)
- Golam Rbbani
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Riaz Murshed
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Fedor Sharko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Paleogenomics Laboratory, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| |
Collapse
|
5
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Bei M, Xu J. SR proteins in cancer: function, regulation, and small inhibitor. Cell Mol Biol Lett 2024; 29:78. [PMID: 38778254 PMCID: PMC11110342 DOI: 10.1186/s11658-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Alternative splicing of pre-mRNAs is a fundamental step in RNA processing required for gene expression in most metazoans. Serine and arginine-rich proteins (SR proteins) comprise a family of multifunctional proteins that contain an RNA recognition motif (RRM) and the ultra-conserved arginine/serine-rich (RS) domain, and play an important role in precise alternative splicing. Increasing research supports SR proteins as also functioning in other RNA-processing-related mechanisms, such as polyadenylation, degradation, and translation. In addition, SR proteins interact with N6-methyladenosine (m6A) regulators to modulate the methylation of ncRNA and mRNA. Dysregulation of SR proteins causes the disruption of cell differentiation and contributes to cancer progression. Here, we review the distinct biological characteristics of SR proteins and their known functional mechanisms during carcinogenesis. We also summarize the current inhibitors that directly target SR proteins and could ultimately turn SR proteins into actionable therapeutic targets in cancer therapy.
Collapse
Affiliation(s)
- Mingrong Bei
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Systems Biology Laboratory, Shantou University Medical College (SUMC), 22 Xinling Road, Shantou, 515041, China.
| |
Collapse
|
7
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
8
|
Fan D, Zhang Y, Lu L, Yin F, Liu B. Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique. BMC Genomics 2024; 25:159. [PMID: 38331723 PMCID: PMC10851481 DOI: 10.1186/s12864-024-10076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. METHODS MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. RESULTS The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. CONCLUSION Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Yunjie Zhang
- Department of Nursing, The First Hospital of QinHuangdao, Qinhuangdao City, 066000, Hebei Province, China
| | - Lanyu Lu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China.
| |
Collapse
|
9
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Jobbins AM, Yu S, Paterson HAB, Maude H, Kefala-Stavridi A, Speck C, Cebola I, Vernia S. Pre-RNA splicing in metabolic homeostasis and liver disease. Trends Endocrinol Metab 2023; 34:823-837. [PMID: 37673766 DOI: 10.1016/j.tem.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in sensing nutritional and hormonal inputs to maintain metabolic homeostasis. Recent studies into pre-mRNA splicing and alternative splicing (AS) and their effects on gene expression have revealed considerable transcriptional complexity in the liver, both in health and disease. While the contribution of these mechanisms to cell and tissue identity is widely accepted, their role in physiological and pathological contexts within tissues is just beginning to be appreciated. In this review, we showcase recent studies on the splicing and AS of key genes in metabolic pathways in the liver, the effect of metabolic signals on the spliceosome, and therapeutic intervention points based on RNA splicing.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sijia Yu
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Helen A B Paterson
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonia Kefala-Stavridi
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Speck
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Santiago Vernia
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
11
|
Li G, Chen H, Shen F, Smithson SB, Shealy GL, Ping Q, Liang Z, Han J, Adams AC, Li Y, Feng D, Gao B, Morita M, Han X, Huang TH, Musi N, Zang M. Targeting hepatic serine-arginine protein kinase 2 ameliorates alcohol-associated liver disease by alternative splicing control of lipogenesis. Hepatology 2023; 78:1506-1524. [PMID: 37129868 PMCID: PMC10592686 DOI: 10.1097/hep.0000000000000433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1β and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.
Collapse
Affiliation(s)
- Guannan Li
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Hanqing Chen
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Feng Shen
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Steven Blake Smithson
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Gavyn Lee Shealy
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Qinggong Ping
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Zerong Liang
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Jingyan Han
- Boston University School of Medicine, Boston, MA
02118
| | - Andrew C. Adams
- Eli Lilly and Company, Lilly Corporate Center,
Indianapolis, IN, 46285
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food
Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of
Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol
Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
| | - Tim H Huang
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Geriatric Research, Education and Clinical Center, South
Texas Veterans Health Care System, San Antonio, TX 78229
| | - Mengwei Zang
- Barshop Institute for Longevity and Aging Studies, Center
for Healthy Aging, University of Texas Health San Antonio, TX78229
- Department of Molecular Medicine, University of Texas
Health San Antonio, TX78229
- Geriatric Research, Education and Clinical Center, South
Texas Veterans Health Care System, San Antonio, TX 78229
| |
Collapse
|
12
|
Li J, Jiang H, Mu Y, Wei Z, Ma A, Sun M, Zhao J, Zhu C, Chen X. SRSF10 regulates proliferation of neural progenitor cells and affects neurogenesis in developing mouse neocortex. iScience 2023; 26:107042. [PMID: 37360696 PMCID: PMC10285642 DOI: 10.1016/j.isci.2023.107042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Alternative pre-mRNA splicing plays critical roles in brain development. SRSF10 is a splicing factor highly expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in neural development is unclear. In this study, by conditional depleting SRSF10 in neural progenitor cells (NPCs) in vivo and in vitro, we found that dysfunction of SRSF10 leads to developmental defects of the brain, which manifest as abnormal ventricle enlargement and cortical thinning anatomically, as well as decreased NPCs proliferation and weakened cortical neurogenesis histologically. Furthermore, we proved that the function of SRSF10 on NPCs proliferation involved the regulation of PI3K-AKT-mTOR-CCND2 pathway and the alternative splicing of Nasp, a gene encoding isoforms of cell cycle regulators. These findings highlight the necessity of SRSF10 in the formation of a structurally and functionally normal brain.
Collapse
Affiliation(s)
- Junjie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hanyang Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yawei Mu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ankangzhi Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Menghan Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, PR China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xianhua Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
14
|
Kumar K, Sinha SK, Maity U, Kirti PB, Kumar KRR. Insights into established and emerging roles of SR protein family in plants and animals. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1763. [PMID: 36131558 DOI: 10.1002/wrna.1763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Splicing of pre-mRNA is an essential part of eukaryotic gene expression. Serine-/arginine-rich (SR) proteins are highly conserved RNA-binding proteins present in all metazoans and plants. SR proteins are involved in constitutive and alternative splicing, thereby regulating the transcriptome and proteome diversity in the organism. In addition to their role in splicing, SR proteins are also involved in mRNA export, nonsense-mediated mRNA decay, mRNA stability, and translation. Due to their pivotal roles in mRNA metabolism, SR proteins play essential roles in normal growth and development. Hence, any misregulation of this set of proteins causes developmental defects in both plants and animals. SR proteins from the animal kingdom are extensively studied for their canonical and noncanonical functions. Compared with the animal kingdom, plant genomes harbor more SR protein-encoding genes and greater diversity of SR proteins, which are probably evolved for plant-specific functions. Evidence from both plants and animals confirms the essential role of SR proteins as regulators of gene expression influencing cellular processes, developmental stages, and disease conditions. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Shubham Kumar Sinha
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Upasana Maity
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | | | | |
Collapse
|
15
|
Poyatos-García J, Blázquez-Bernal Á, Selva-Giménez M, Bargiela A, Espinosa-Espinosa J, Vázquez-Manrique RP, Bigot A, Artero R, Vilchez JJ. CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:324-338. [PMID: 36789274 PMCID: PMC9898580 DOI: 10.1016/j.omtn.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
A single-nucleotide deletion in the stop codon of the nuclear import receptor transportin-3 (TNPO3), also involved in human immunodeficiency virus type 1 (HIV-1) infection, causes the ultrarare autosomal dominant disease limb-girdle muscular dystrophy D2 (LGMDD2) by extending the wild-type protein. Here, we generated a patient-derived in vitro model of LGMDD2 as an immortalized myoblast cell line carrying the TNP O 3 mutation. The cell model reproduced critical molecular alterations seen in patients, such as TNP O 3 overexpression, defects in terminal muscle markers, and autophagy overactivation. Correction of the TNP O 3 mutation via CRISPR-Cas9 editing caused a significant reversion of the pathological phenotypes in edited cells, including a complete absence of the mutant TNPO3 protein, as detected with a polyclonal antibody specific against the abnormal 15-aa peptide. Transcriptomic analyses found that 15% of the transcriptome was differentially expressed in model myotubes. CRISPR-Cas9-corrected cells showed that 44% of the alterations were rescued toward normal levels. MicroRNAs (miRNAs) analyses showed that around 50% of miRNAs with impaired expression because of the disease were recovered on the mutation edition. In summary, this work provides proof of concept of the potential of CRISPR-Cas9-mediated gene editing of TNP O 3 as a therapeutic approach and describes critical reagents in LGMDD2 research.
Collapse
Affiliation(s)
- Javier Poyatos-García
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Águeda Blázquez-Bernal
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Marta Selva-Giménez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Rafael P. Vázquez-Manrique
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
- Joint Unit for Rare Diseases IIS La Fe-CIPF, 46012 Valencia, Spain
| | - Anne Bigot
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Ruben Artero
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjasot, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Juan Jesús Vilchez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain
| |
Collapse
|
16
|
Paterson HAB, Yu S, Artigas N, Prado MA, Haberman N, Wang YF, Jobbins AM, Pahita E, Mokochinski J, Hall Z, Guerin M, Paulo JA, Ng SS, Villarroya F, Rashid ST, Le Goff W, Lenhard B, Cebola I, Finley D, Gygi SP, Sibley CR, Vernia S. Liver RBFOX2 regulates cholesterol homeostasis via Scarb1 alternative splicing in mice. Nat Metab 2022; 4:1812-1829. [PMID: 36536133 PMCID: PMC9771820 DOI: 10.1038/s42255-022-00681-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.
Collapse
Affiliation(s)
- Helen A B Paterson
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Hospital Universitario, Oviedo, Spain
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Andrew M Jobbins
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elena Pahita
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Maryse Guerin
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Soon Seng Ng
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Sheikh Tamir Rashid
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology. School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
17
|
Liu W, Lu X, Zhao ZH, SU R, Li QNL, Xue Y, Gao Z, Sun SMS, Lei WL, Li L, An G, Liu H, Han Z, Ouyang YC, Hou Y, Wang ZB, Sun QY, Liu J. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing. eLife 2022; 11:e78211. [PMID: 36355419 PMCID: PMC9648972 DOI: 10.7554/elife.78211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruibao SU
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qian-Nan Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Si-Min Sun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
18
|
Zhao Y, Riching AS, Knight WE, Chi C, Broadwell LJ, Du Y, Abdel-Hafiz M, Ambardekar AV, Irwin DC, Proenza C, Xu H, Leinwand LA, Walker LA, Woulfe KC, Bristow MR, Buttrick PM, Song K. Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart. Circulation 2022; 146:699-714. [PMID: 35862102 PMCID: PMC9427731 DOI: 10.1161/circulationaha.121.058017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/07/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew S. Riching
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Walter E. Knight
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lindsey J. Broadwell
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mostafa Abdel-Hafiz
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amrut V. Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Leslie A. Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lori A. Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Peter M. Buttrick
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Wang R, Kumar B, Doud EH, Mosley AL, Alexander MS, Kunkel LM, Nakshatri H. Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:231-248. [PMID: 35402076 PMCID: PMC8971682 DOI: 10.1016/j.omtn.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
miR-486 is a myogenic microRNA, and its reduced skeletal muscle expression is observed in muscular dystrophy. Transgenic overexpression of miR-486 using muscle creatine kinase promoter (MCK-miR-486) partially rescues muscular dystrophy phenotype. We had previously demonstrated reduced circulating and skeletal muscle miR-486 levels with accompanying skeletal muscle defects in mammary tumor models. To determine whether skeletal muscle miR-486 is functionally similar in dystrophies and cancer, we performed functional limitations and biochemical studies of skeletal muscles of MMTV-Neu mice that mimic HER2+ breast cancer and MMTV-PyMT mice that mimic luminal subtype B breast cancer and these mice crossed to MCK-miR-486 mice. miR-486 significantly prevented tumor-induced reduction in muscle contraction force, grip strength, and rotarod performance in MMTV-Neu mice. In this model, miR-486 reversed cancer-induced skeletal muscle changes, including loss of p53, phospho-AKT, and phospho-laminin alpha 2 (LAMA2) and gain of hnRNPA0 and SRSF10 phosphorylation. LAMA2 is a part of the dystrophin-associated glycoprotein complex, and its loss of function causes congenital muscular dystrophy. Complementing these beneficial effects on muscle, miR-486 indirectly reduced tumor growth and improved survival, which is likely due to systemic effects of miR-486 on production of pro-inflammatory cytokines such as IL-6. Thus, similar to dystrophy, miR-486 has the potential to reverse skeletal muscle defects and cancer burden.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology, University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
| | - Louis M. Kunkel
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
The aberrant upregulation of exon 10-inclusive SREK1 through SRSF10 acts as an oncogenic driver in human hepatocellular carcinoma. Nat Commun 2022; 13:1363. [PMID: 35296659 PMCID: PMC8927159 DOI: 10.1038/s41467-022-29016-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Deregulation of alternative splicing is implicated as a relevant source of molecular heterogeneity in cancer. However, the targets and intrinsic mechanisms of splicing in hepatocarcinogenesis are largely unknown. Here, we report a functional impact of a Splicing Regulatory Glutamine/Lysine-Rich Protein 1 (SREK1) variant and its regulator, Serine/arginine-rich splicing factor 10 (SRSF10). HCC patients with poor prognosis express higher levels of exon 10-inclusive SREK1 (SREK1L). SREK1L can sustain BLOC1S5-TXNDC5 (B-T) expression, a targeted gene of nonsense-mediated mRNA decay through inhibiting exon-exon junction complex binding with B-T to exert its oncogenic role. B-T plays its competing endogenous RNA role by inhibiting miR-30c-5p and miR-30e-5p, and further promoting the expression of downstream oncogenic targets SRSF10 and TXNDC5. Interestingly, SRSF10 can act as a splicing regulator for SREK1L to promote hepatocarcinogenesis via the formation of a SRSF10-associated complex. In summary, we demonstrate a SRSF10/SREK1L/B-T signalling loop to accelerate the hepatocarcinogenesis. Alternative splicing is dysregulated in hepatocellular carcinoma. Here, the authors investigate the role of the splice variant of Splicing Regulatory Glutamic Acid and Lysine Rich Protein 1 (SREK1) and its upstream regulator, Serine/arginine-rich splicing factor 10 (SRSF10) in sustaining the oncogenic signal.
Collapse
|
21
|
Shkreta L, Delannoy A, Salvetti A, Chabot B. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. RNA (NEW YORK, N.Y.) 2021; 27:1302-1317. [PMID: 34315816 PMCID: PMC8522700 DOI: 10.1261/rna.078879.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Anna Salvetti
- INSERM, U1111, Centre International de Recherche en Infectiologie de Lyon (CIRI), CNRS UMR 5308, Lyon, France
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
22
|
Yadav S, Pant D, Samaiya A, Kalra N, Gupta S, Shukla S. ERK1/2-EGR1-SRSF10 Axis Mediated Alternative Splicing Plays a Critical Role in Head and Neck Cancer. Front Cell Dev Biol 2021; 9:713661. [PMID: 34616729 PMCID: PMC8489685 DOI: 10.3389/fcell.2021.713661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant alternative splicing is recognized to promote cancer pathogenesis, but the underlying mechanism is yet to be clear. Here, in this study, we report the frequent upregulation of SRSF10 (serine and arginine-rich splicing factor 10), a member of an expanded family of SR splicing factors, in the head and neck cancer (HNC) patients sample in comparison to paired normal tissues. We observed that SRSF10 plays a crucial role in HNC tumorigenesis by affecting the pro-death, pro-survical splice variants of BCL2L1 (BCL2 Like 1: BCLx: Apoptosis Regulator) and the two splice variants of PKM (Pyruvate kinase M), PKM1 normal isoform to PKM2 cancer-specific isoform. SRSF10 is a unique splicing factor with a similar domain organization to that of SR proteins but functions differently as it acts as a sequence-specific splicing activator in its phosphorylated form. Although a body of research studied the role of SRSF10 in the splicing process, the regulatory mechanisms underlying SRSF10 upregulation in the tumor are not very clear. In this study, we aim to dissect the pathway that regulates the SRSF10 upregulation in HNC. Our results uncover the role of transcription factor EGR1 (Early Growth Response1) in elevating the SRSF10 expression; EGR1 binds to the promoter of SRSF10 and promotes TET1 binding leading to the CpG demethylation (hydroxymethylation) in the adjacent position of the EGR1 binding motif, which thereby instigate SRSF10 expression in HNC. Interestingly we also observed that the EGR1 level is in the sink with the ERK1/2 pathway, and therefore, inhibition of the ERK1/2 pathway leads to the decreased EGR1 and SRSF10 expression level. Together, this is the first report to the best of our knowledge where we characterize the ERK 1/2-EGR1-SRSF10 axis regulating the cancer-specific splicing, which plays a critical role in HNC and could be a therapeutic target for better management of HNC patients.
Collapse
Affiliation(s)
- Sandhya Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | - Sanjay Gupta
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
23
|
He R, Wu S, Gao R, Chen J, Peng Q, Hu H, Zhu L, Du Y, Sun W, Ma X, Zhang H, Cui Z, Wang H, Martin BN, Wang Y, Zhang CJ, Wang C. Identification of a Long Noncoding RNA TRAF3IP2-AS1 as Key Regulator of IL-17 Signaling through the SRSF10-IRF1-Act1 Axis in Autoimmune Diseases. THE JOURNAL OF IMMUNOLOGY 2021; 206:2353-2365. [PMID: 33941656 DOI: 10.4049/jimmunol.2001223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
IL-17A plays an essential role in the pathogenesis of many autoimmune diseases, including psoriasis and multiple sclerosis. Act1 is a critical adaptor in the IL-17A signaling pathway. In this study, we report that an anti-sense long noncoding RNA, TRAF3IP2-AS1, regulates Act1 expression and IL-17A signaling by recruiting SRSF10, which downregulates the expression of IRF1, a transcriptional factor of Act1. Interestingly, we found that a psoriasis-susceptible variant of TRAF3IP2-AS1 A4165G (rs13210247) is a gain-of-function mutant. Furthermore, we identified a mouse gene E130307A14-Rik that is homologous to TRAF3IP2-AS1 and has a similar ability to regulate Act1 expression and IL-17A signaling. Importantly, treatment with lentiviruses expressing E130307A14-Rik or SRSF10 yielded therapeutic effects in mouse models of psoriasis and experimental autoimmune encephalomyelitis. These findings suggest that TRAF3IP2-AS1 and/or SRSF10 may represent attractive therapeutic targets in the treatment of IL-17-related autoimmune diseases, such as psoriasis and multiple sclerosis.
Collapse
Affiliation(s)
- Ruirui He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Songfang Wu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwen Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huijun Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liwen Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanyun Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wanwei Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bradley N Martin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Cun-Jin Zhang
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China .,Wuhan Institute of Biotechnology, Wuhan, China
| |
Collapse
|
24
|
Chao Y, Jiang Y, Zhong M, Wei K, Hu C, Qin Y, Zuo Y, Yang L, Shen Z, Zou C. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 2021; 11:66. [PMID: 33795017 PMCID: PMC8017860 DOI: 10.1186/s13578-021-00581-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) regulates gene expression patterns at the post-transcriptional level and generates a striking expansion of coding capacities of genomes and cellular protein diversity. RNA splicing could undergo modulation and close interaction with genetic and epigenetic machinery. Notably, during the adipogenesis processes of white, brown and beige adipocytes, AS tightly interplays with the differentiation gene program networks. Here, we integrate the available findings on specific splicing events and distinct functions of different splicing regulators as examples to highlight the directive biological contribution of AS mechanism in adipogenesis and adipocyte biology. Furthermore, accumulating evidence has suggested that mutations and/or altered expression in splicing regulators and aberrant splicing alterations in the obesity-associated genes are often linked to humans’ diet-induced obesity and metabolic dysregulation phenotypes. Therefore, significant attempts have been finally made to overview novel detailed discussion on the prospects of splicing machinery with obesity and metabolic disorders to supply featured potential management mechanisms in clinical applicability for obesity treatment strategies.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yonghui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mianling Zhong
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Kaiyan Wei
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yiming Zuo
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Lili Yang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Zheng Shen
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
25
|
Tijsen AJ, Cócera Ortega L, Reckman YJ, Zhang X, van der Made I, Aufiero S, Li J, Kamps SC, van den Bout A, Devalla HD, van Spaendonck-Zwarts KY, Engelhardt S, Gepstein L, Ware JS, Pinto YM. Titin Circular RNAs Create a Back-Splice Motif Essential for SRSF10 Splicing. Circulation 2021; 143:1502-1512. [PMID: 33583186 PMCID: PMC8032209 DOI: 10.1161/circulationaha.120.050455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supplemental Digital Content is available in the text. Background: TTN (Titin), the largest protein in humans, forms the molecular spring that spans half of the sarcomere to provide passive elasticity to the cardiomyocyte. Mutations that disrupt the TTN transcript are the most frequent cause of hereditary heart failure. We showed before that TTN produces a class of circular RNAs (circRNAs) that depend on RBM20 to be formed. In this study, we show that the back-splice junction formed by this class of circRNAs creates a unique motif that binds SRSF10 to enable it to regulate splicing. Furthermore, we show that one of these circRNAs (cTTN1) distorts both localization of and splicing by RBM20. Methods: We calculated genetic constraint of the identified motif in 125 748 exomes collected from the gnomAD database. Furthermore, we focused on the highest expressed RBM20-dependent circRNA in the human heart, which we named cTTN1. We used shRNAs directed to the back-splice junction to induce selective loss of cTTN1 in human induced pluripotent stem cell–derived cardiomyocytes. Results: Human genetics suggests reduced genetic tolerance of the generated motif, indicating that mutations in this motif might lead to disease. RNA immunoprecipitation confirmed binding of circRNAs with this motif to SRSF10. Selective loss of cTTN1 in human induced pluripotent stem cell–derived cardiomyocytes induced structural abnormalities, apoptosis, and reduced contractile force in engineered heart tissue. In line with its SRSF10 binding, loss of cTTN1 caused abnormal splicing of important cardiomyocyte SRSF10 targets such as MEF2A and CASQ2. Strikingly, loss of cTTN1 also caused abnormal splicing of TTN itself. Mechanistically, we show that loss of cTTN1 distorts both localization of and splicing by RBM20. Conclusions: We demonstrate that circRNAs formed from the TTN transcript are essential for normal splicing of key muscle genes by enabling splice regulators RBM20 and SRSF10. This shows that the TTN transcript also has regulatory roles, besides its well-known signaling and structural function. In addition, we demonstrate that the specific sequence created by the back-splice junction of these circRNAs has important functions. This highlights the existence of functionally important sequences that cannot be recognized as such in the human genome but provides an as-yet unrecognized source for functional sequence variation.
Collapse
Affiliation(s)
- Anke J Tijsen
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Lucía Cócera Ortega
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Yolan J Reckman
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Xiaolei Zhang
- Imperial College London, South Kensington Campus, London, UK (X.Z., J.S.W.)
| | - Ingeborg van der Made
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Simona Aufiero
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Jiuru Li
- Medical Biology, Amsterdam Cardiovascular Sciences (J.L., H.D.D.), Amsterdam, The Netherlands
| | - Selina C Kamps
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Anouk van den Bout
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| | - Harsha D Devalla
- Medical Biology, Amsterdam Cardiovascular Sciences (J.L., H.D.D.), Amsterdam, The Netherlands
| | | | - Stefan Engelhardt
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (S.E.).,Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany (S.E.)
| | - Lior Gepstein
- The Sohnis Family Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Institute of Technology, Haifa, Israel (L.G.)
| | - James S Ware
- Imperial College London, South Kensington Campus, London, UK (X.Z., J.S.W.)
| | - Yigal M Pinto
- Amsterdam UMC, University of Amsterdam, Departments of Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.J.T., L.C.O., Y.J.R., I.v.d.M., S.A., S.C.K., A.v.d.B., Y.M.P.), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Frederiksen SB, Holm LL, Larsen MR, Doktor TK, Andersen HS, Hastings ML, Hua Y, Krainer AR, Andresen BS. Identification of SRSF10 as a regulator of SMN2 ISS-N1. Hum Mutat 2020; 42:246-260. [PMID: 33300159 DOI: 10.1002/humu.24149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/22/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
Understanding the splicing code can be challenging as several splicing factors bind to many splicing-regulatory elements. The SMN1 and SMN2 silencer element ISS-N1 is the target of the antisense oligonucleotide drug, Spinraza, which is the treatment against spinal muscular atrophy. However, limited knowledge about the nature of the splicing factors that bind to ISS-N1 and inhibit splicing exists. It is likely that the effect of Spinraza comes from blocking binding of these factors, but so far, an unbiased characterization has not been performed and only members of the hnRNP A1/A2 family have been identified by Western blot analysis and nuclear magnetic resonance to bind to this silencer. Employing an MS/MS-based approach and surface plasmon resonance imaging, we show for the first time that splicing factor SRSF10 binds to ISS-N1. Furthermore, using splice-switching oligonucleotides we modulated the splicing of the SRSF10 isoforms generating either the long or the short protein isoform of SRSF10 to regulate endogenous SMN2 exon 7 inclusion. We demonstrate that the isoforms of SRSF10 regulate SMN1 and SMN2 splicing with different strength correlating with the length of their RS domain. Our results suggest that the ratio between the SRSF10 isoforms is important for splicing regulation.
Collapse
Affiliation(s)
- Sabrina B Frederiksen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Lise L Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Henriette S Andersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Center for Genetic Diseases, Chicago Medical School and School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
27
|
Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Am J Cancer Res 2020; 10:11159-11177. [PMID: 33042276 PMCID: PMC7532667 DOI: 10.7150/thno.44389] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: The adult skeletal muscle can self-repair efficiently following mechanical or pathological damage due to its remarkable regenerative capacity. However, regulatory mechanisms underlying muscle regeneration are complicated and have not been fully elucidated. Alternative splicing (AS) is a major mechanism responsible for post-transcriptional regulation. Many aberrant AS events have been identified in patients with muscular dystrophy which is accompanied by abnormal muscle regeneration. However, little is known about the correlation between AS and muscle regeneration. It has been reported that RNA binding motif protein 24 (Rbm24), a tissue-specific splicing factor, is involved in embryo myogenesis while the role of Rbm24 in adult myogenesis (also called muscle regeneration) is poorly understood. Methods: To investigate the role of Rbm24 in adult skeletal muscle, we generated Rbm24 conditional knockout mice and satellite cell-specific knockout mice. Furthermore, a cardiotoxin (CTX)-induced injury model was utilized to assess the effects of Rbm24 on skeletal muscle regeneration. Genome-wide RNA-Seq was performed to identify the changes in AS following loss of Rbm24. Results: Rbm24 knockout mice displayed abnormal regeneration 4 months after tamoxifen treatment. Using RNA-Seq, we found that Rbm24 regulated a complex network of AS events involved in multiple biological processes, including myogenesis, muscle regeneration and muscle hypertrophy. Moreover, using a CTX-induced injury model, we showed that loss of Rbm24 in skeletal muscle resulted in myogenic fusion and differentiation defects and significantly delayed muscle regeneration. Furthermore, satellite cell-specific Rbm24 knockout mice recapitulated the defects in regeneration seen in the global Rbm24 knockout mice. Importantly, we demonstrated that Rbm24 regulated AS of Mef2d, Naca, Rock2 and Lrrfip1 which are essential for myogenic differentiation and muscle regeneration. Conclusions: The present study demonstrated that Rbm24 regulates dynamic changes in AS and is essential for adult skeletal muscle regeneration.
Collapse
|
28
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
29
|
Liu X, Shen S, Zhu L, Su R, Zheng J, Ruan X, Shao L, Wang D, Yang C, Liu Y. SRSF10 inhibits biogenesis of circ-ATXN1 to regulate glioma angiogenesis via miR-526b-3p/MMP2 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:121. [PMID: 32600379 PMCID: PMC7325155 DOI: 10.1186/s13046-020-01625-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Background Angiogenesis plays an important role in the progress of glioma. RNA-binding proteins (RBPs) and circular RNAs (circRNAs), dysregulated in various tumors, have been verified to mediate diverse biological behaviors including angiogenesis. Methods Quantitative real-time PCR (qRT-PCR) and western blot were performed to detect the expression of SRSF10, circ-ATXN1, miR-526b-3p, and MMP2/VEGFA. The potential function of SRSF10/circ-ATXN1/miR-526b-3p axis in glioma-associated endothelial cells (GECs) angiogenesis was further studied. Results SRSF10 and circ-ATXN1 were significantly upregulated in GECs compared with astrocyte-associated endothelial cells (AECs). Knockdown of SRSF10 or circ-ATXN1 significantly inhibited cell viability, migration and tube formation of GECs where knockdown of SRSF10 exerted its function by inhibiting the formation of circ-ATXN1. Moreover, the combined knockdown of SRSF10 and circ-ATXN1 significantly enhanced the inhibitory effects on cell viability, migration and tube formation of GECs, compared with knockdown of SRSF10 and circ-ATXN1, respectively. MiR-526b-3p was downregulated in GECs. Circ-ATXN1 functionally targeted miR-526b-3p in an RNA-induced silencing complex. Up-regulation of miR-526b-3p inhibited cell viability, migration and tube formation of GECs. Furthermore, miR-526b-3p affected the angiogenesis of GECs via negatively regulating the expression of MMP2/VEGFA. Conclusion SRSF10/circ-ATXN1/miR-526b-3p axis played a crucial role in regulating the angiogenesis of GECs. The above findings provided new targets for anti-angiogenic therapy in glioma.
Collapse
Affiliation(s)
- Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Shuyuan Shen
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Lu Zhu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Rui Su
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Lianqi Shao
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China. .,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
30
|
Meinke S, Goldammer G, Weber AI, Tarabykin V, Neumann A, Preussner M, Heyd F. Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression. eLife 2020; 9:56075. [PMID: 32338600 PMCID: PMC7244321 DOI: 10.7554/elife.56075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing.
Collapse
Affiliation(s)
- Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Gesine Goldammer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preussner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
31
|
Bjorkman KK, Buvoli M, Pugach EK, Polmear MM, Leinwand LA. miR-1/206 downregulates splicing factor Srsf9 to promote C2C12 differentiation. Skelet Muscle 2019; 9:31. [PMID: 31791406 PMCID: PMC6888935 DOI: 10.1186/s13395-019-0211-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
Background Myogenesis is driven by specific changes in the transcriptome that occur during the different stages of muscle differentiation. In addition to controlled transcriptional transitions, several other post-transcriptional mechanisms direct muscle differentiation. Both alternative splicing and miRNA activity regulate gene expression and production of specialized protein isoforms. Importantly, disruption of either process often results in severe phenotypes as reported for several muscle diseases. Thus, broadening our understanding of the post-transcriptional pathways that operate in muscles will lay the foundation for future therapeutic interventions. Methods We employed bioinformatics analysis in concert with the well-established C2C12 cell system for predicting and validating novel miR-1 and miR-206 targets engaged in muscle differentiation. We used reporter gene assays to test direct miRNA targeting and studied C2C12 cells stably expressing one of the cDNA candidates fused to a heterologous, miRNA-resistant 3′ UTR. We monitored effects on differentiation by measuring fusion index, myotube area, and myogenic gene expression during time course differentiation experiments. Results Gene ontology analysis revealed a strongly enriched set of putative miR-1 and miR-206 targets associated with RNA metabolism. Notably, the expression levels of several candidates decreased during C2C12 differentiation. We discovered that the splicing factor Srsf9 is a direct target of both miRNAs during myogenesis. Persistent Srsf9 expression during differentiation impaired myotube formation and blunted induction of the early pro-differentiation factor myogenin as well as the late differentiation marker sarcomeric myosin, Myh8. Conclusions Our data uncover novel miR-1 and miR-206 cellular targets and establish a functional link between the splicing factor Srsf9 and myoblast differentiation. The finding that miRNA-mediated clearance of Srsf9 is a key myogenic event illustrates the coordinated and sophisticated interplay between the diverse components of the gene regulatory network.
Collapse
Affiliation(s)
- Kristen K Bjorkman
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Massimo Buvoli
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Emily K Pugach
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Michael M Polmear
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., UCB596, Boulder, CO, 80303, USA.
| |
Collapse
|
32
|
Zhao H, He L, Yin D, Song B. Identification of β-catenin target genes in colorectal cancer by interrogating gene fitness screening data. Oncol Lett 2019; 18:3769-3777. [PMID: 31516589 PMCID: PMC6733007 DOI: 10.3892/ol.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
β-catenin regulates its target genes which are associated with proliferation, differentiation, migration and angiogenesis, and the dysregulation of Wnt/β-catenin signaling facilitates hallmarks of colorectal cancer (CRC). Identification of β-catenin targets and their potential roles in tumorigenesis has gained increased interest. However, the number of identified targets remains limited. The present study implemented a novel strategy, interrogating gene fitness profiles derived from large-scale RNA interference and CRISPR-CRISPR associated protein 9 screening data to identify β-catenin target genes in CRC cell lines. Using these data sets, pair wise gene fitness similarities were determined which highlighted a total of 13 genes whose functions were highly correlated with β-catenin. It was further demonstrated that the expression of these genes were altered in CRC, illustrating their potential roles in the progression of CRC. The present study further demonstrated that these targets could be used to predict disease-free survival in CRC. In conclusion, the findings provided novel approaches for the identification of β-catenin targets, which may become prognostic biomarkers or drug targets for the management of CRC.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
33
|
Aprile M, Cataldi S, Ambrosio MR, D’Esposito V, Lim K, Dietrich A, Blüher M, Savage DB, Formisano P, Ciccodicola A, Costa V. PPARγΔ5, a Naturally Occurring Dominant-Negative Splice Isoform, Impairs PPARγ Function and Adipocyte Differentiation. Cell Rep 2018; 25:1577-1592.e6. [DOI: 10.1016/j.celrep.2018.10.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/21/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
|
34
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
35
|
Liu TY, Chen YC, Jong YJ, Tsai HJ, Lee CC, Chang YS, Chang JG, Chang YF. Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biol 2017; 7:rsob.160303. [PMID: 28077597 PMCID: PMC5303281 DOI: 10.1098/rsob.160303] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/05/2016] [Indexed: 01/18/2023] Open
Abstract
Heterogeneous ribonucleoprotein A1 (hnRNP A1) is crucial for regulating alternative splicing. Its integrated function within an organism has not, however, been identified. We generated hnRNP A1 knockout mice to study the role of hnRNP A1 in vivo. The knockout mice, hnRNP A1−/−, showed embryonic lethality because of muscle developmental defects. The blood pressure and heart rate of the heterozygous mice were higher than those of the wild-type mice, indicating heart function defects. We performed mouse exon arrays to study the muscle development mechanism. The processes regulated by hnRNP A1 included cell adhesion and muscle contraction. The expression levels of muscle development-related genes in hnRNP A1+/− mice were significantly different from those in wild-type mice, as detected using qRT-PCR. We further confirmed the alternative splicing patterns of muscle development-related genes including mef2c, lrrfip1, usp28 and abcc9. Alternative mRNA isoforms of these genes were increased in hnRNP A1+/− mice compared with wild-type mice. Furthermore, we revealed that the functionally similar hnRNP A2/B1 did not compensate for the expression of hnRNP A1 in organisms. In summary, our study demonstrated that hnRNP A1 plays a critical and irreplaceable role in embryonic muscle development by regulating the expression and alternative splicing of muscle-related genes.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yu-Chia Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Yuh-Jyh Jong
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,Departments of Pediatrics and Clinical Laboratory, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China.,Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Chien-Chin Lee
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China.,Department of Laboratory Medicine, China Medical University, Taichung, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University, Taichung, Taiwan, Republic of China .,Department of Laboratory Medicine, China Medical University, Taichung, Taiwan, Republic of China.,School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
36
|
Shkreta L, Toutant J, Durand M, Manley JL, Chabot B. SRSF10 Connects DNA Damage to the Alternative Splicing of Transcripts Encoding Apoptosis, Cell-Cycle Control, and DNA Repair Factors. Cell Rep 2017; 17:1990-2003. [PMID: 27851963 PMCID: PMC5483951 DOI: 10.1016/j.celrep.2016.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/19/2016] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
RNA binding proteins and signaling components control the production of pro-death and pro-survival splice variants of Bcl-x. DNA damage promoted by oxaliplatin increases the level of pro-apoptotic Bcl-xS in an ATM/CHK2-dependent manner, but how this shift is enforced is not known. Here, we show that in normally growing cells, when the 5′ splice site of Bcl-xS is largely repressed, SRSF10 partially relieves repression and interacts with repressor hnRNP K and stimulatory hnRNP F/H proteins. Oxaliplatin abrogates the interaction of SRSF10 with hnRNP F/H and decreases the association of SRSF10 and hnRNP K with the Bcl-x pre-mRNA. Dephosphorylation of SRSF10 is linked with these changes. A broader analysis reveals that DNA damage co-opts SRSF10 to control splicing decisions in transcripts encoding components involved in DNA repair, cell-cycle control, and apoptosis. DNA damage therefore alters the interactions between splicing regulators to elicit a splicing response that determines cell fate.
Collapse
Affiliation(s)
- Lulzim Shkreta
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Johanne Toutant
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Benoit Chabot
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
37
|
MRPL33 and its splicing regulator hnRNPK are required for mitochondria function and implicated in tumor progression. Oncogene 2017; 37:86-94. [DOI: 10.1038/onc.2017.314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
38
|
Long-term di (2-ethylhexyl)-phthalate exposure promotes proliferation and survival of HepG2 cells via activation of NFκB. Toxicol In Vitro 2017; 42:86-92. [DOI: 10.1016/j.tiv.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/18/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
|
39
|
Labbé P, Faure E, Lecointe S, Le Scouarnec S, Kyndt F, Marrec M, Le Tourneau T, Offmann B, Duplaà C, Zaffran S, Schott JJ, Merot J. The alternatively spliced LRRFIP1 Isoform-1 is a key regulator of the Wnt/β-catenin transcription pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1142-1152. [PMID: 28322931 DOI: 10.1016/j.bbamcr.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/22/2023]
Abstract
The GC-rich Binding Factor 2/Leucine Rich Repeat in the Flightless 1 Interaction Protein 1 gene (GCF2/LRRFIP1) is predicted to be alternatively spliced in five different isoforms. Although important peptide sequence differences are expected to result from this alternative splicing, to date, only the gene transcription regulator properties of LRRFIP1-Iso5 were unveiled. Based on molecular, cellular and biochemical data, we show here that the five isoforms define two molecular entities with different expression profiles in human tissues, subcellular localizations, oligomerization properties and transcription enhancer properties of the canonical Wnt pathway. We demonstrated that LRRFIP1-Iso3, -4 and -5, which share over 80% sequence identity, are primarily located in the cell cytoplasm and form homo and hetero-multimers between each other. In contrast, LRRFIP1-Iso1 and -2 are primarily located in the cell nucleus in part thanks to their shared C-terminal domain. Furthermore, we showed that LRRFIP1-Iso1 is preferentially expressed in the myocardium and skeletal muscle. Using the in vitro Topflash reporter assay we revealed that among LRRFIP1 isoforms, LRRFIP1-Iso1 is the strongest enhancer of the β-catenin Wnt canonical transcription pathway thanks to a specific N-terminal domain harboring two critical tryptophan residues (W76, 82). In addition, we showed that the Wnt enhancer properties of LRRFIP1-Iso1 depend on its homo-dimerisation which is governed by its specific coiled coil domain. Together our study identified LRRFIP1-Iso1 as a critical regulator of the Wnt canonical pathway with a potential role in myocyte differentiation and myogenesis.
Collapse
Affiliation(s)
- Pauline Labbé
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Emilie Faure
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | | | | | | | | | | | | | - Cécile Duplaà
- INSERM, Biology of Cardiovascular Diseases, U1034, F-33600 Pessac, France
| | | | - Jean Jacques Schott
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France; CHU Nantes, Nantes, France
| | - Jean Merot
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| |
Collapse
|
40
|
Luo C, Cheng Y, Liu Y, Chen L, Liu L, Wei N, Xie Z, Wu W, Feng Y. SRSF2 Regulates Alternative Splicing to Drive Hepatocellular Carcinoma Development. Cancer Res 2017; 77:1168-1178. [PMID: 28082404 DOI: 10.1158/0008-5472.can-16-1919] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Aberrant RNA splicing is recognized to contribute to cancer pathogenesis, but the underlying mechanisms remain mainly obscure. Here, we report that the splicing factor SRSF2 is upregulated frequently in human hepatocellular carcinoma (HCC), where this event is associated with poor prognosis in patients. RNA-seq and other molecular analyses were used to identify SRSF2-regulated alternative splicing events. SRSF2 binding within an alternative exon was associated with its inclusion in the RNA, whereas SRSF2 binding in a flanking constitutive exon was associated with exclusion of the alternative exon. Notably, cancer-associated splice variants upregulated by SRSF2 in clinical specimens of HCC were found to be crucial for pathogenesis and progression in hepatoma cells, where SRSF2 expression increased cell proliferation and tumorigenic potential by controlling expression of these variants. Our findings identify SRSF2 as a key regulator of RNA splicing dysregulation in cancer, with possible clinical implications as a candidate prognostic factor in patients with HCC. Cancer Res; 77(5); 1168-78. ©2017 AACR.
Collapse
Affiliation(s)
- Chunling Luo
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanming Cheng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Chen
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenwu Wu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China. .,The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ying Feng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|