1
|
Co M, O’Brien GK, Wright KM, O’Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. Autism Res 2025; 18:922-932. [PMID: 39548698 PMCID: PMC12078632 DOI: 10.1002/aur.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Cre recombinase knock-in mouse lines have served as invaluable genetic tools for understanding key developmental processes altered in autism. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame before the stop codon of the transcription factor gene Tbr1. Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure (AC). Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the AC, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1-null mice to Tbr1-null complementation crosses showed reductions of TBR1 dosage ranging from 20% to 100%. Using six combinatorial genotypes, we found that moderate to severe TBR1 reductions (≥44%) were associated with cortical layer 5 expansion, while only the complete absence of TBR1 was associated with reeler-like "inverted" cortical layering. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Grace K. O’Brien
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Brian J. O’Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Babu A, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Altered proportions of retinal cell types and distinct visual codes in rodents occupying divergent ecological niches. Curr Biol 2025; 35:1446-1458.e5. [PMID: 40043699 DOI: 10.1016/j.cub.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 04/10/2025]
Abstract
Vertebrate retinas share a basic blueprint comprising 5 neuronal classes arranged according to a common wiring diagram. Yet, vision is aligned with species differences in behavior and ecology, raising the question of how evolution acts on this circuit to adjust its computational characteristics. We address that problem by comparing the thalamic visual code and retinal cell composition in closely related species occupying different niches: Rhabdomys pumilio, which are day-active murid rodents, and nocturnal laboratory mice (Mus musculus). Using high-density electrophysiological recordings, we compare visual responses at both single-unit and population levels in the thalamus of these two species. We find that Rhabdomys achieves a higher spatiotemporal resolution visual code through the selective expansion of information channels characterized by non-linear spatiotemporal summation. Comparative analysis of single-cell transcriptomic atlases reveals that this difference originates with the increased relative abundance of retinal bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate that evolution may drive changes in neural computation by adjusting the proportions of shared cell types rather than inventing new types and show the power of matching high-density physiological recordings with transcriptomic cell atlases to study evolution in the brain.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aadhithyan Babu
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
3
|
St Laurent R, Kusche KM, Rein B, Raymond KB, Kreitzer AC, Malenka RC. Intercalated Amygdala Dysfunction Drives Avoidance Extinction Deficits in the Sapap3 Mouse Model of Obsessive-Compulsive Disorder. Biol Psychiatry 2025; 97:707-720. [PMID: 39491639 DOI: 10.1016/j.biopsych.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The avoidance of aversive stimuli through negative reinforcement learning, which demands dynamic responding to both positive and negative stimuli that often conflict with each other, is critical for survival in real-world environments. Individuals with obsessive-compulsive disorder commonly exhibit impaired negative reinforcement and extinction, perhaps involving deficits in amygdala functioning. The intercalated nuclei of the amygdala (ITC) is an amygdala subregion of particular interest that has been linked to negative reinforcement and extinction, with distinct clusters mediating separate aspects of behavior. This study focuses on the dorsal ITC cluster (ITCd) and its role in negative reinforcement during a complex behavior that models real-world dynamic decision making. METHODS We investigated the impact of ITCd function on negative reinforcement and extinction by applying fiber photometry measurement of GCaMP6f signals and optogenetic manipulations during a platform-mediated avoidance task in a mouse model of obsessive-compulsive disorder-like behavior, the Sapap3-null mouse. RESULTS We found impaired neural activity in the ITCd of male and female Sapap3-null mice to the encoding of negative stimuli during platform-mediated avoidance. Sapap3-null mice also exhibited deficits in extinction of avoidant behavior, which were modulated by ITCd neural activity. CONCLUSIONS Sapap3-null mice failed to extinguish avoidant behavior in platform-mediated avoidance due to heightened ITCd activity. This deficit was rescued by optogenetically inhibiting ITCd during extinction. Together, our results provide insight into the neural mechanisms that underlie negative reinforcement deficits in the context of obsessive-compulsive disorder and emphasize the necessity of ITCd in responding to negative stimuli in complex environments.
Collapse
Affiliation(s)
- Robyn St Laurent
- Gladstone Institutes, San Francisco, California; Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | | | - Ben Rein
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Kendall B Raymond
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Anatol C Kreitzer
- Gladstone Institutes, San Francisco, California; Department of Physiology and Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California.
| |
Collapse
|
4
|
Laniado DD, Maron Y, Gemmer JA, Sabbah S. A spherical code of retinal orientation selectivity enables decoding in ensembled and retinotopic operation. Cell Rep 2025; 44:115373. [PMID: 40023844 DOI: 10.1016/j.celrep.2025.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/04/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Selectivity to orientations of edges is seen at the earliest stages of visual processing in retinal orientation-selective ganglion cells (OSGCs), which are thought to prefer vertical or horizontal orientation. However, because stationary edges are projected on the hemispherical retina as lines of longitude or latitude, how edge orientation is encoded and decoded by the brain is unknown. Here, by mapping the orientation selectivity (OS) of thousands of OSGCs at known retinal locations in mice, we identify three OSGC types whose preferences match two longitudinal fields and a fourth type matching two latitudinal fields, with the members of each field pair being non-orthogonal. A geometric decoder reveals that two OS sensors yield optimal orientation decoding when approaching the deviation from orthogonality we observe for OSGC field pairs. Retinotopically organized decoding generates type-specific variation in decoding efficiency across the visual field. OS tuning is greater in the dorsal retina, possibly reflecting an evolutionary adaptation to an environmental gradient of edges.
Collapse
Affiliation(s)
- Dimitrios D Laniado
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yariv Maron
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - John A Gemmer
- Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
5
|
Olguin AGR, Rochon PL, Theriault C, Brown T, Yao H, Cayouette M, Cook EP, Krishnaswamy A. Cadherin 4 assembles a family of color-preferring retinal circuits that respond to light offset. Curr Biol 2025; 35:1298-1310.e7. [PMID: 40081378 DOI: 10.1016/j.cub.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
Retinal interneurons and projection neurons (retinal ganglion cells, RGCs) connect in specific combinations in a specialized neuropil called the inner plexiform layer (IPL). The IPL is divided into multiple sublaminae, with neurites of each neuronal type confined to one or a few layers. This laminar specificity is a major determinant of circuit specificity and circuit function. Using a combination of approaches, we show that RGCs targeting IPL sublaminae 1 and 3a (s1-s3a) express the cell adhesion molecule cadherin 4 (Cdh4). Using calcium imaging and iterative immunostaining, we classified Cdh4 RGCs into nine types that each encode unique aspects of dark visual stimuli. Cdh4 loss selectively disrupted the layer targeting of these RGCs, reduced their synaptic inputs from interneurons, and severely altered their visual responses. Overexpression of Cdh4 in other retinal neurons directed their neurites to s1-s3a through homophilic interactions. Taken together, these results demonstrate that Cdh4 is a novel layer-targeting system for nearly a quarter of all RGCs.
Collapse
Affiliation(s)
| | - Pierre-Luc Rochon
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Thomas Brown
- Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Houwen Yao
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michel Cayouette
- Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Erik P Cook
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
6
|
Oliveira-Valença VM, Roberts JM, Fernandes-Cerqueira VM, Colmerauer CH, de Toledo BC, Santos-França PL, Linden R, Martins RAP, Rocha-Martins M, Bosco A, Vetter ML, da Silveira MS. POU4F2 overexpression promotes the genesis of retinal ganglion cell-like projection neurons from late progenitors. Development 2025; 152:DEV204297. [PMID: 39946314 DOI: 10.1242/dev.204297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the projection neurons of the retina, and their death promotes an irreversible blindness. Several factors were described to control their genesis during retinal development. These include Atoh7, a major orchestrator of the RGC program, and downstream targets of this transcription factor, including Pou4f factors, that in turn regulate key aspects of terminal differentiation. The absence of POU4F family genes results in defects in RGC differentiation, aberrant axonal elaboration and, ultimately, RGC death. This confirms the requirement of POU4F factors for RGC development and survival, with a crucial role in regulating RGC axon outgrowth and pathfinding. Here, we have investigated in vivo whether ectopic Pou4f2 expression in late retinal progenitor cells (late RPCs) is sufficient to induce the generation of cells with RGC properties, including long-range axon projections. We show that Pou4f2 overexpression generates RGC-like cells that share morphological and transcriptional features with RGCs that are normally generated during early development and extend axonal projections up to the brain. In conclusion, these results show that POU4F2 alone is sufficient to promote the crucial properties of projection neurons that arise from retinal progenitors outside their developmental window.
Collapse
Affiliation(s)
- Viviane Medeiros Oliveira-Valença
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Jacqueline Marie Roberts
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Vitória Melo Fernandes-Cerqueira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carolina Herkenhoff Colmerauer
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Beatriz Cardoso de Toledo
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Pedro Lucas Santos-França
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Neurogenesis Lab, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Rodrigo Alves Portela Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Maurício Rocha-Martins
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Monica Lynn Vetter
- Department of Neurobiology, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | - Mariana Souza da Silveira
- Laboratory for Investigation in Neuroregeneration and Development (LINDes), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Duda S, Block CT, Pradhan DR, Arzhangnia Y, Klaiber A, Greschner M, Puller C. Spatial distribution and functional integration of displaced retinal ganglion cells. Sci Rep 2025; 15:7123. [PMID: 40016499 PMCID: PMC11868576 DOI: 10.1038/s41598-025-91045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
The retina contains distinct types of ganglion cells, which form mosaics with cells of each type at each position of the visual field. Displaced retinal ganglion cells (dRGCs) occur with cell bodies in the inner nuclear layer (INL), and regularly placed RGCs with cell bodies in the ganglion cell layer. An example of mammalian dRGCs are M1-type intrinsically photosensitive ganglion cells (ipRGCs). Little is known, however, about their relationship with regularly placed ipRGCs. We identified mouse ipRGC types M1, M2, and M4/sONɑ by immunohistochemistry and light microscopy. Reconstruction of immunolabeled mosaics from M1 and sONɑ RGCs indicated that dRGCs tiled the retina with their regular RGC partners. Multi-electrode array recordings revealed conventional receptive fields of displaced sONɑ RGCs which fit into the mosaic of their regular counterparts. An RGC distribution analysis showed type-specific dRGC patterns which followed neither the global density distribution of all RGCs nor the local densities of corresponding cell types. The displacement of RGC bodies into the INL occurs in a type-dependent manner, where dRGCs are positioned to form complete mosaics with their regular partners. Our data suggest that dRGCs and regular RGCs serve the same functional role within their corresponding population of RGCs.
Collapse
Affiliation(s)
- Sabrina Duda
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christoph T Block
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Dipti R Pradhan
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Yousef Arzhangnia
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Alina Klaiber
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Martin Greschner
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christian Puller
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany.
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany.
| |
Collapse
|
8
|
Budoff SA, Poleg-Polsky A. A Complete Spatial Map of Mouse Retinal Ganglion Cells Reveals Density and Gene Expression Specializations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637538. [PMID: 39990332 PMCID: PMC11844403 DOI: 10.1101/2025.02.10.637538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Retinal ganglion cells (RGCs) transmit visual information from the eye to the brain. In mice, several RGC subtypes show nonuniform spatial distributions, potentially mediating specific visual functions. However, the full extent of RGC specialization remains unknown. Here, we used en-face cryosectioning, spatial transcriptomics, and machine learning to map the spatial distribution of all RGC subtypes identified in previous single-cell studies. While two-thirds of RGC subtypes were evenly distributed, others showed strong biases toward ventral or dorso-temporal regions associated with sky vision and the area retinae temporalis (ART), the predicted homolog of the area centralis. Additionally, we observed unexpected spatial variation in gene expression within several subtypes along the dorso-ventral axis or within vs. outside the ART, independent of RGC density profiles. Finally, we found limited correlations between the gene profiles of the ART and the primate macula, suggesting divergent specialization between the mouse and primate central vision.
Collapse
Affiliation(s)
- Samuel A. Budoff
- University of Colorado Anschutz Medical Center, Department of Physiology and Biophysics, Aurora, 80045, USA
| | - Alon Poleg-Polsky
- University of Colorado Anschutz Medical Center, Department of Physiology and Biophysics, Aurora, 80045, USA
| |
Collapse
|
9
|
Somaiya RD, Po MA, Feller MB, Shekhar K. Cholinergic waves have a modest influence on the transcriptome of retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.627027. [PMID: 39713433 PMCID: PMC11661095 DOI: 10.1101/2024.12.05.627027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In the early stages of development, correlated activity known as retinal waves causes periodic depolarizations of retinal ganglion cells (RGCs). The β2KO mouse, which lacks the β2 subunit of the nicotinic acetylcholine receptor, serves as a model for understanding the role of these cholinergic waves. β2KO mice have disruptions in several developmental processes of the visual system, including reduced retinotopic and eye-specific refinement of RGC axonal projections to their primary brain targets and an impact on the retinal circuits underlying direction selectivity. However, the effects of this mutation on gene expression in individual functional RGC types remain unclear. Here, we performed single-cell RNA sequencing on RGCs isolated at the end of the first postnatal week from wild-type and β2KO mice. We found that in β2KO mice, the molecular programs governing RGC differentiation were not impacted and the magnitude of transcriptional changes was modest compared to those observed during two days of normal postnatal maturation. This contrasts with the substantial transcriptomic changes seen in downstream visual system areas under wave disruption in recent studies. However, we identified ∼238 genes whose expression was altered in a type-specific manner. We confirmed this result via in situ hybridization and whole-cell recording by focusing on one of the downregulated genes in aRGCs, Kcnk9 , which encodes the two-pore domain leak potassium channel TASK3. Our study reveals a limited transcriptomic impact of cholinergic signaling in the retina and instead of affecting all RGCs uniformly, these waves show subtle modulation of molecular programs in a type-specific manner. SIGNIFICANCE STATEMENT Spontaneous retinal waves are critical for the development of the mammalian visual system. However, their role in transcriptional regulation in the retina across the diverse retinal ganglion cell (RGC) types that underpin the detection and transmission of visual features is unclear. Using single-cell RNA sequencing, we analyzed RGC transcriptome from wild-type mice and mice with disrupted retinal waves. We identified several genes that show RGC-type-specific regulation in their expression, including multiple neuropeptides and ion channels. However, wave-dependent changes in the transcriptome were more subtle than developmental changes, indicating that spontaneous activity-dependent molecular changes in retinal ganglion cells are not primarily manifested at the transcriptomic level.
Collapse
|
10
|
Riccitelli S, Yaakov H, Heukamp AS, Ankri L, Rivlin-Etzion M. Retinal ganglion cells encode the direction of motion outside their classical receptive field. Proc Natl Acad Sci U S A 2025; 122:e2415223122. [PMID: 39793063 PMCID: PMC11725840 DOI: 10.1073/pnas.2415223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc. Pharmacological manipulations revealed the necessity of glycinergic amacrine cells for this response. Using in vivo recordings, we identified similar extraclassical responses in lateral geniculate nucleus neurons, suggesting such non conventional DS information is transferred to downstream structures. Our results suggest a complex integration of motion direction processing across the visual field, which arises beyond the classical receptive field boundaries.
Collapse
Affiliation(s)
- Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Michal Rivlin-Etzion
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
11
|
Wang J, Zhang L, Cavallini M, Pahlevan A, Sun J, Morshedian A, Fain GL, Sampath AP, Peng YR. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat Commun 2024; 15:10761. [PMID: 39737973 PMCID: PMC11685597 DOI: 10.1038/s41467-024-55019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species. The conservation of cell types indicates their emergence early in vertebrate evolution, highlighting primordial designs of retinal circuits for the rod pathway, ON-OFF discrimination, and direction selectivity. The diversification of amacrine and some ganglion cell types appears, however, to be distinct in the lamprey. We further infer genetic regulators in specifying retinal cell classes and identify ancestral regulatory elements across species, noting decreased conservation in specifying amacrine cells. Altogether, our characterization of the lamprey retina illuminates the evolutionary origin of visual processing in the retina.
Collapse
Affiliation(s)
- Junqiang Wang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lin Zhang
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martina Cavallini
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ali Pahlevan
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Junwei Sun
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Spinelli M, Acevedo Harnecker A, Block CT, Lindenthal L, Schuhmann F, Greschner M, Janssen-Bienhold U, Dedek K, Puller C. The first interneuron of the mouse visual system is tailored to the natural environment through morphology and electrical coupling. iScience 2024; 27:111276. [PMID: 39628560 PMCID: PMC11613193 DOI: 10.1016/j.isci.2024.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons. We asked whether regional specializations are present in terms of horizontal cell density distributions, morphological properties, localization of gap junction proteins, and the spatial extent of electrical coupling. These key features were asymmetrically organized along the dorsoventral axis. Dorsal cells were less densely distributed, had larger dendritic trees, and electrical coupling was more extensive than in ventral cells. The steepest change occurred at the visual horizon. Our results show that the cellular and synaptic organization of the mouse visual system are adapted to the visual environment at the earliest possible level and that horizontal cells are suited to form the substrate for the global gradient of ganglion cell receptive fields.
Collapse
Affiliation(s)
- Matteo Spinelli
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alejandra Acevedo Harnecker
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christoph T. Block
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lucia Lindenthal
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Fabian Schuhmann
- Quantum Biology and Computational Physics, Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martin Greschner
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Neurosensorics/Animal Navigation, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Christian Puller
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| |
Collapse
|
13
|
Tsai NY, Nimkar K, Zhao M, Lum MR, Yi Y, Garrett TR, Wang Y, Toma K, Caval-Holme F, Reddy N, Ehrlich AT, Kriegstein AR, Do MTH, Sivyer B, Shekhar K, Duan X. Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628587. [PMID: 39763751 PMCID: PMC11702564 DOI: 10.1101/2024.12.15.628587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register en face somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Kushal Nimkar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Mengya Zhao
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Lum
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yujuan Yi
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tavita R Garrett
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yixiao Wang
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Franklin Caval-Holme
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Nikhil Reddy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Michael Tri H Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Benjamin Sivyer
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- These authors contributed equally
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
14
|
Hagihara KM, Lüthi A. Bidirectional valence coding in amygdala intercalated clusters: A neural substrate for the opponent-process theory of motivation. Neurosci Res 2024; 209:28-33. [PMID: 39033998 PMCID: PMC11621204 DOI: 10.1016/j.neures.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Processing emotionally meaningful stimuli and eliciting appropriate valence-specific behavior in response is a critical brain function for survival. Thus, how positive and negative valence are represented in neural circuits and how corresponding neural substrates interact to cooperatively select appropriate behavioral output are fundamental questions. In previous work, we identified that two amygdala intercalated clusters show opposite response selectivity to fear- and anxiety-inducing stimuli - negative valence (Hagihara et al., 2021). Here, we further show that the two clusters also exhibit distinctly different representations of stimuli with positive valence, demonstrating a broader role of the amygdala intercalated system beyond fear and anxiety. Together with the mutually inhibitory connectivity between the two clusters, our findings suggest that they serve as an ideal neural substrate for the integrated processing of valence for the selection of behavioral output.
Collapse
Affiliation(s)
- Kenta M Hagihara
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Xiong LL, Sun YF, Niu RZ, Xue LL, Chen L, Huangfu LR, Li J, Wang YY, Liu X, Wang WY, Zuo ZF, Wang TH. Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. RESEARCH (WASHINGTON, D.C.) 2024; 7:0536. [PMID: 39574940 PMCID: PMC11579486 DOI: 10.34133/research.0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Tree shrews (TSs) possess a highly developed visual system. Here, we establish an age-related single-cell RNA sequencing atlas of retina cells from 15 TSs, covering 6 major retina cell classes and 3 glial cell types. An age effect is observed on the cell subset composition and gene expression pattern. We then verify the cell subtypes and identify specific markers in the TS retina including CA10 for bipolar cells, MEGF11 for H1 horizontal cells, and SLIT2, RUNX1, FOXP2, and SPP1 for retinal ganglion cell subpopulations. The cross-species analysis elucidates the cell type-specific transcriptional programs, different cell compositions, and cell communications. The comparisons also reveal that TS cones and subclasses of bipolar and amacrine cells exhibit the closest relationship with humans and macaques. Our results suggests that TS could be used as a better disease model to understand age-dependent cellular and genetic mechanisms of the retina, particularly for the retinal diseases associated with cones.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Anesthesiology,
The Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yi-Fei Sun
- Department of Urology,
the Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rui-Ze Niu
- Mental Health Center of Kunming Medical University, Kunming 650034, Yunnan, China
| | - Lu-Lu Xue
- State Key Lab of Biotherapy, West China Hospital,
Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Chen
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li-Ren Huangfu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jing Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yu-Ying Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Xin Liu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Zhong-Fu Zuo
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Research Institute of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| |
Collapse
|
16
|
Lee SCS, Wei AJ, Martin PR, Grünert U. Thorny and Tufted Retinal Ganglion Cells Express the Transcription Factor Forkhead Proteins Foxp1 and Foxp2 in Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25663. [PMID: 39235164 DOI: 10.1002/cne.25663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.
Collapse
Affiliation(s)
- Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anlai J Wei
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Allen AE, Hahn J, Richardson R, Pantiru A, Mouland J, Baño-Otalora B, Monavarfeshani A, Yan W, Williams C, Wynne J, Rodgers J, Milosavljevic N, Orlowska-Feuer P, Storchi R, Sanes JR, Shekhar K, Lucas RJ. Reconfiguration of the visual code and retinal cell type complement in closely related diurnal and nocturnal mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598659. [PMID: 38915685 PMCID: PMC11195227 DOI: 10.1101/2024.06.14.598659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
How does evolution act on neuronal populations to match computational characteristics to functional demands? We address this problem by comparing visual code and retinal cell composition in closely related murid species with different behaviours. Rhabdomys pumilio are diurnal and have substantially thicker inner retina and larger visual thalamus than nocturnal Mus musculus. High-density electrophysiological recordings of visual response features in the dorsal lateral geniculate nucleus (dLGN) reveals that Rhabdomys attains higher spatiotemporal acuity both by denser coverage of the visual scene and a selective expansion of elements of the code characterised by non-linear spatiotemporal summation. Comparative analysis of single cell transcriptomic cell atlases reveals that realignment of the visual code is associated with increased relative abundance of bipolar and ganglion cell types supporting OFF and ON-OFF responses. These findings demonstrate how changes in retinal cell complement can reconfigure the coding of visual information to match changes in visual needs.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Rose Richardson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andreea Pantiru
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Josh Mouland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Beatriz Baño-Otalora
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Christopher Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Wynne
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jessica Rodgers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nina Milosavljevic
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Patrycja Orlowska-Feuer
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA, 02138
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Science Graduate Group; Center for Computational Biology; Biophysics Graduate Group; California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - Robert J Lucas
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
18
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. iScience 2024; 27:109916. [PMID: 38812536 PMCID: PMC11134544 DOI: 10.1016/j.isci.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity by characterizing cell types across tissues and species. While several mouse retinal scRNA-seq datasets exist, each dataset is either limited in cell numbers or focused on specific cell classes, thereby hindering comprehensive gene expression analysis across all retina types. To fill the gap, we generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse retinas, enriched for rare population cells via antibody-based magnetic cell sorting. Integrating this dataset with public datasets, we constructed the Mouse Retina Cell Atlas (MRCA) for wild-type mice, encompassing over 330,000 cells, characterizing 12 major classes and 138 cell types. The MRCA consolidates existing knowledge, identifies new cell types, and is publicly accessible via CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal, providing a user-friendly resource for the mouse retina research community.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Kaur S, Lynch N, Sela Y, Lima JD, Thomas RC, Bandaru SS, Saper CB. Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia. Nat Commun 2024; 15:4475. [PMID: 38796568 PMCID: PMC11128025 DOI: 10.1038/s41467-024-48773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
About half of the neurons in the parabrachial nucleus (PB) that are activated by CO2 are located in the external lateral (el) subnucleus, express calcitonin gene-related peptide (CGRP), and cause forebrain arousal. We report here, in male mice, that most of the remaining CO2-responsive neurons in the adjacent central lateral (PBcl) and Kölliker-Fuse (KF) PB subnuclei express the transcription factor FoxP2 and many of these neurons project to respiratory sites in the medulla. PBclFoxP2 neurons show increased intracellular calcium during wakefulness and REM sleep and in response to elevated CO2 during NREM sleep. Photo-activation of the PBclFoxP2 neurons increases respiration, whereas either photo-inhibition of PBclFoxP2 or genetic deletion of PB/KFFoxP2 neurons reduces the respiratory response to CO2 stimulation without preventing awakening. Thus, augmenting the PBcl/KFFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Lynch
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yaniv Sela
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Janayna D Lima
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renner C Thomas
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Co M, O'Brien GK, Wright KM, O'Roak BJ. Detailed phenotyping of Tbr1-2A-CreER knock-in mice demonstrates significant impacts on TBR1 protein levels and axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588147. [PMID: 38617321 PMCID: PMC11014564 DOI: 10.1101/2024.04.04.588147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Spatiotemporal control of Cre-mediated recombination has been an invaluable tool for understanding key developmental processes. For example, knock-in of Cre into cell type marker gene loci drives Cre expression under endogenous promoter and enhancer sequences, greatly facilitating the study of diverse neuronal subtypes in the cerebral cortex. However, insertion of exogenous DNA into the genome can have unintended effects on local gene regulation or protein function that must be carefully considered. Here, we analyze a recently generated Tbr1-2A-CreER knock-in mouse line, where a 2A-CreER cassette was inserted in-frame just before the stop codon of the transcription factor gene Tbr1 . Heterozygous TBR1 mutations in humans and mice are known to cause autism or autism-like behavioral phenotypes accompanied by structural brain malformations, most frequently a reduction of the anterior commissure. Thus, it is critical for modified versions of Tbr1 to exhibit true wild-type-like activity. We evaluated the Tbr1-2A-CreER allele for its potential impact on Tbr1 function and complementation to Tbr1 loss-of-function alleles. In mice with one copy of the Tbr1-2A-CreER allele, we identified reduction of TBR1 protein in early postnatal cortex along with thinning of the anterior commissure, suggesting hypersensitivity of this structure to TBR1 dosage. Comparing Tbr1-2A-CreER and Tbr1 -null heterozygous and homozygous mice to Tbr1 -null complementation crosses showed reductions of TBR1 dosage ranging from 28.4% to 95.9%. Using these combinatorial genotypes, we found that low levels of TBR1 protein (∼16%) are sufficient to establish cortical layer positioning, while greater levels (>50%) are required for normal suppression of layer 5 identity. In total, these results strongly support the conclusion that Tbr1-2A-CreER is a hypomorphic allele. We advise caution when interpreting experiments using this allele, such as transcriptomic studies, considering the sensitivity of various corticogenic processes to TBR1 dosage and the association of heterozygous TBR1 mutations with complex neurodevelopmental disorders.
Collapse
|
21
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Prakash N, Matos HY, Sebaoui S, Tsai L, Tran T, Aromolaran A, Atrachji I, Campbell N, Goodrich M, Hernandez-Pineda D, Jesus Herrero M, Hirata T, Lischinsky J, Martinez W, Torii S, Yamashita S, Hosseini H, Sokolowski K, Esumi S, Kawasawa YI, Hashimoto-Torii K, Jones KS, Corbin JG. Connectivity and molecular profiles of Foxp2- and Dbx1-lineage neurons in the accessory olfactory bulb and medial amygdala. J Comp Neurol 2024; 532:e25545. [PMID: 37849047 PMCID: PMC10922300 DOI: 10.1002/cne.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Heidi Y Matos
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Luke Tsai
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Adejimi Aromolaran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Isabella Atrachji
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Nya Campbell
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tsutomu Hirata
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Wendolin Martinez
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shisui Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Hassan Hosseini
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Katie Sokolowski
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Kevin S Jones
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| |
Collapse
|
23
|
Li J, Choi J, Cheng X, Ma J, Pema S, Sanes JR, Mardon G, Frankfort BJ, Tran NM, Li Y, Chen R. Comprehensive single-cell atlas of the mouse retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577060. [PMID: 38328114 PMCID: PMC10849744 DOI: 10.1101/2024.01.24.577060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity at the single-cell resolution by classifying and characterizing cell types in multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have been published, each dataset either has a relatively small number of cells or is focused on specific cell classes, and thus is suboptimal for assessing gene expression patterns across all retina types at the same time. To establish a unified and comprehensive reference for the mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was generated through the targeted enrichment of rare population cells via antibody-based magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell types. It captured consensus cell type characterization from public datasets and identified additional new cell types. To facilitate the public use of the MRCA, we have deposited it in CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data resource for the mouse retina communities.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jongsu Choi
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Justin Ma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shahil Pema
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02130, USA
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin J. Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nicholas M. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
Stern DB, Wilke A, Root CM. Anatomical Connectivity of the Intercalated Cells of the Amygdala. eNeuro 2023; 10:ENEURO.0238-23.2023. [PMID: 37775310 PMCID: PMC10576262 DOI: 10.1523/eneuro.0238-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
The intercalated cells of the amygdala (ITCs) are a fundamental processing structure in the amygdala that remain relatively understudied. They are phylogenetically conserved from insectivores through primates, inhibitory, and project to several of the main processing and output stations of the amygdala and basal forebrain. Through these connections, the ITCs are best known for their role in conditioned fear, where they are required for fear extinction learning and recall. Prior work on ITC connectivity is limited, and thus holistic characterization of their afferent and efferent connectivity in a genetically defined manner is incomplete. The ITCs express the FoxP2 transcription factor, affording genetic access to these neurons for viral input-output mapping. To fully characterize the anatomic connectivity of the ITCs, we used cre-dependent viral strategies in FoxP2-cre mice to reveal the projections of the main (mITC), caudal (cITC), and lateral (lITC) clusters along with their presynaptic sources of innervation. Broadly, the results confirm many known pathways, reveal previously unknown ones, and demonstrate important novel insights about each nucleus's unique connectivity profile and relative distributions. We show that the ITCs receive information from a wide range of cortical, subcortical, basal, amygdalar, hippocampal, and thalamic structures, and project broadly to areas of the basal forebrain, hypothalamus, and entire extent of the amygdala. The results provide a comprehensive map of their connectivity and suggest that the ITCs could potentially influence a broad range of behaviors by integrating information from a wide array of sources throughout the brain.
Collapse
Affiliation(s)
- Daniel B Stern
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Anna Wilke
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Cory M Root
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
27
|
Zhao M, Toma K, Kinde B, Li L, Patel AK, Wu KY, Lum MR, Tan C, Hooper JE, Kriegstein AR, La Torre A, Liao YJ, Welsbie DS, Hu Y, Han Y, Duan X. Osteopontin drives retinal ganglion cell resiliency in glaucomatous optic neuropathy. Cell Rep 2023; 42:113038. [PMID: 37624696 PMCID: PMC10591811 DOI: 10.1016/j.celrep.2023.113038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.
Collapse
Affiliation(s)
- Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Benyam Kinde
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Amit K Patel
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Kong-Yan Wu
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew R Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Chengxi Tan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jody E Hooper
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Kiyama T, Altay HY, Badea TC, Mao CA. Pou4f1-Tbr1 transcriptional cascade controls the formation of Jam2-expressing retinal ganglion cells. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1175568. [PMID: 38469155 PMCID: PMC10926710 DOI: 10.3389/fopht.2023.1175568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 03/13/2024]
Abstract
More than 40 retinal ganglion cell (RGC) subtypes have been categorized in mouse based on their morphologies, functions, and molecular features. Among these diverse subtypes, orientation-selective Jam2-expressing RGCs (J-RGCs) has two unique morphologic characteristics: the ventral-facing dendritic arbor and the OFF-sublaminae stratified terminal dendrites in the inner plexiform layer. Previously, we have discovered that T-box transcription factor T-brain 1 (Tbr1) is expressed in J-RGCs. We further found that Tbr1 is essential for the expression of Jam2, and Tbr1 regulates the formation and the dendritic morphogenesis of J-RGCs. However, Tbr1 begins to express in terminally differentiated RGCs around perinatal stage, suggesting that it is unlikely involved in the initial fate determination for J-RGC and other upstream transcription factors must control Tbr1 expression and J-RGC formation. Using the Cleavage Under Targets and Tagmentation technique, we discovered that Pou4f1 binds to Tbr1 on the evolutionary conserved exon 6 and an intergenic region downstream of the 3'UTR, and on a region flanking the promoter and the first exon of Jam2. We showed that Pou4f1 is required for the expression of Tbr1 and Jam2, indicating Pou4f1 as a direct upstream regulator of Tbr1 and Jam2. Most interestingly, the Pou4f1-bound element in exon 6 of Tbr1 possesses high-level enhancer activity, capable of directing reporter gene expression in J-RGCs. Together, these data revealed a Pou4f1-Tbr1-Jam2 genetic hierarchy as a critical pathway in the formation of J-RGC subtype.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Halit Y. Altay
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Tudor C. Badea
- Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
- National Center for Brain Research, Research Institute for Artificial Intelligence, Romanian Academy, Bucharest, Romania
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
31
|
Kaur S, Nicole L, Sela Y, Lima J, Thomas R, Bandaru S, Saper C. Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia. RESEARCH SQUARE 2023:rs.3.rs-2865756. [PMID: 37205337 PMCID: PMC10187408 DOI: 10.21203/rs.3.rs-2865756/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although CGRP neurons in the external lateral parabrachial nucleus (PBelCGRP neurons) are critical for cortical arousal in response to hypercapnia, activating them has little effect on respiration. However, deletion of all Vglut2 expressing neurons in the PBel region suppresses both the respiratory and arousal response to high CO2. We identified a second population of non-CGRP neurons adjacent to the PBelCGRP group in the central lateral, lateral crescent and Kölliker-Fuse parabrachial subnuclei that are also activated by CO2 and project to the motor and premotor neurons that innvervate respiratory sites in the medulla and spinal cord. We hypothesize that these neurons may in part mediate the respiratory response to CO2 and that they may express the transcription factor, Fork head Box protein 2 (FoxP2), which has recently been found in this region. To test this, we examined the role of the PBFoxP2 neurons in respiration and arousal response to CO2, and found that they show cFos expression in response to CO2 exposure as well as increased intracellular calcium activity during spontaneous sleep-wake and exposure to CO2. We also found that optogenetically photo-activating PBFoxP2 neurons increases respiration and that photo-inhibition using archaerhodopsin T (ArchT) reduced the respiratory response to CO2 stimulation without preventing awakening. Our results indicate that PBFoxP2 neurons play an important role in the respiratory response to CO2 exposure during NREM sleep, and indicate that other pathways that also contribute to the response cannot compensate for the loss of the PBFoxP2 neurons. Our findings suggest that augmentation of the PBFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.
Collapse
Affiliation(s)
| | | | | | | | | | - Sathyajit Bandaru
- Beth Israel Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Ma-02215
| | | |
Collapse
|
32
|
Qiu Y, Klindt DA, Szatko KP, Gonschorek D, Hoefling L, Schubert T, Busse L, Bethge M, Euler T. Efficient coding of natural scenes improves neural system identification. PLoS Comput Biol 2023; 19:e1011037. [PMID: 37093861 PMCID: PMC10159360 DOI: 10.1371/journal.pcbi.1011037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Neural system identification aims at learning the response function of neurons to arbitrary stimuli using experimentally recorded data, but typically does not leverage normative principles such as efficient coding of natural environments. Visual systems, however, have evolved to efficiently process input from the natural environment. Here, we present a normative network regularization for system identification models by incorporating, as a regularizer, the efficient coding hypothesis, which states that neural response properties of sensory representations are strongly shaped by the need to preserve most of the stimulus information with limited resources. Using this approach, we explored if a system identification model can be improved by sharing its convolutional filters with those of an autoencoder which aims to efficiently encode natural stimuli. To this end, we built a hybrid model to predict the responses of retinal neurons to noise stimuli. This approach did not only yield a higher performance than the "stand-alone" system identification model, it also produced more biologically plausible filters, meaning that they more closely resembled neural representation in early visual systems. We found these results applied to retinal responses to different artificial stimuli and across model architectures. Moreover, our normatively regularized model performed particularly well in predicting responses of direction-of-motion sensitive retinal neurons. The benefit of natural scene statistics became marginal, however, for predicting the responses to natural movies. In summary, our results indicate that efficiently encoding environmental inputs can improve system identification models, at least for noise stimuli, and point to the benefit of probing the visual system with naturalistic stimuli.
Collapse
Affiliation(s)
- Yongrong Qiu
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience (GTC), International Max Planck Research School, U Tübingen, Tübingen, Germany
| | - David A Klindt
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Klaudia P Szatko
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience (GTC), International Max Planck Research School, U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Dominic Gonschorek
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Research Training Group 2381, U Tübingen, Tübingen, Germany
| | - Larissa Hoefling
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Planegg-Martinsried, Germany
| | - Matthias Bethge
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
- Institute for Theoretical Physics, U Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, U Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), U Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, Tübingen, Germany
| |
Collapse
|
33
|
Hahn J, Monavarfeshani A, Qiao M, Kao A, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536039. [PMID: 37066415 PMCID: PMC10104162 DOI: 10.1101/2023.04.07.536039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allison Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley M. Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert J. Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joshua T. Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095 United States
| | - Joshua R. Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Zhang J, Roberts JM, Chang F, Schwakopf J, Vetter ML. Jarid2 promotes temporal progression of retinal progenitors via repression of Foxp1. Cell Rep 2023; 42:112237. [PMID: 36924502 PMCID: PMC10210259 DOI: 10.1016/j.celrep.2023.112237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Transitions in competence underlie the ability of CNS progenitors to generate a diversity of neurons and glia. Retinal progenitor cells in mouse generate early-born cell types embryonically and late-born cell types largely postnatally. We find that the transition from early to late progenitor competence is regulated by Jarid2. Loss of Jarid2 results in extended production of early cell types and extended expression of early progenitor genes. Jarid2 can regulate histone modifications, and we find reduction of repressive mark H3K27me3 on a subset of early progenitor genes with loss of Jarid2, most notably Foxp1. We show that Foxp1 regulates the competence to generate early-born retinal cell types, promotes early and represses late progenitor gene expression, and is required for extending early retinal cell production after loss of Jarid2. We conclude that Jarid2 facilitates progression of retinal progenitor temporal identity by repressing Foxp1, which is a primary regulator of early temporal patterning.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Jacqueline M Roberts
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Fei Chang
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA; Interdepartmental Program in Neuroscience, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Joon Schwakopf
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA
| | - Monica L Vetter
- Department of Neurobiology, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Hardwired to attack: Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532692. [PMID: 36993508 PMCID: PMC10055059 DOI: 10.1101/2023.03.16.532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Reggiani JDS, Jiang Q, Barbini M, Lutas A, Liang L, Fernando J, Deng F, Wan J, Li Y, Chen C, Andermann ML. Brainstem serotonin neurons selectively gate retinal information flow to thalamus. Neuron 2023; 111:711-726.e11. [PMID: 36584680 PMCID: PMC10131437 DOI: 10.1016/j.neuron.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.
Collapse
Affiliation(s)
- Jasmine D S Reggiani
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Qiufen Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Barbini
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Liang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesseba Fernando
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Hanson L, Ravi-Chander P, Berson D, Awatramani GB. Hierarchical retinal computations rely on hybrid chemical-electrical signaling. Cell Rep 2023; 42:112030. [PMID: 36696265 DOI: 10.1016/j.celrep.2023.112030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Bipolar cells (BCs) are integral to the retinal circuits that extract diverse features from the visual environment. They bridge photoreceptors to ganglion cells, the source of retinal output. Understanding how such circuits encode visual features requires an accounting of the mechanisms that control glutamate release from bipolar cell axons. Here, we demonstrate orientation selectivity in a specific genetically identifiable type of mouse bipolar cell-type 5A (BC5A). Their synaptic terminals respond best when stimulated with vertical bars that are far larger than their dendritic fields. We provide evidence that this selectivity involves enhanced excitation for vertical stimuli that requires gap junctional coupling through connexin36. We also show that this orientation selectivity is detectable postsynaptically in direction-selective ganglion cells, which were not previously thought to be selective for orientation. Together, these results demonstrate how multiple features are extracted by a single hierarchical network, engaging distinct electrical and chemical synaptic pathways.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | | | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Gautam B Awatramani
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada.
| |
Collapse
|
38
|
Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 2023; 508:153-173. [PMID: 35870562 PMCID: PMC10809145 DOI: 10.1016/j.neuroscience.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Collapse
Affiliation(s)
- Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Yan M, Li J, Yan L, Li X, Chen JG. Transcription factor Foxp1 is essential for the induction of choroidal neovascularization. EYE AND VISION 2022; 9:10. [PMID: 35248156 PMCID: PMC8898411 DOI: 10.1186/s40662-022-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/13/2022] [Indexed: 12/04/2022]
Abstract
Background The exudative form of age-related macular degeneration (AMD) is characterized by abnormal blood vessel growth, which is stimulated by vascular endothelial growth factor (VEGF) released from retinal pigment epithelium (RPE). The angiogenic behaviors of vascular endothelial cells in vitro depend on forkhead box protein P1 (Foxp1), a transcription repressor widely expressed in human and murine tissues during development. In this study, we aimed to determine whether loss of Foxp1 affects laser-induced choroidal neovascularization (CNV) in mouse. Methods Eye-selective deletion of Foxp1 was obtained by crossing Foxp1flox/flox with Six3-Cre mice. Laser photocoagulation was delivered to six- to eight-week-old mice to induce CNV. The expression of Foxp1 and Cre was determined by immunofluorescence in cryostat sections of the eyes. Fundus fluorescein angiography (FFA), optical coherence tomography (OCT), and B4 isolectin staining were applied to analyze the leakage, bulge height, and area of CNV lesions, respectively. RPE-choroid tissues were isolated for the determination of VEGF and pigment epithelium derived factor (PEDF) by Western blotting. Results Foxp1 was expressed in retinal ganglion cells, RPE, and the choroidal endothelial cells. Laser photocoagulation increased the number of Foxp1+-endothelial cells and induced CNV. Six3-Cre reduced Foxp1 expression in RPE but not the endothelium, leading to a lower level of VEGF in the RPE-choroid. Foxp1 knockout inhibited pathological angiogenesis and vascular leakage of the laser-induced CNV lesions. Conclusions Foxp1 regulates the expression of VEGF in the RPE, and inhibition of Foxp1 could potentially be a novel strategy for the prevention and therapy of neovascularization related to AMD.
Collapse
|
40
|
Shinozaki Y, Leung A, Namekata K, Saitoh S, Nguyen HB, Takeda A, Danjo Y, Morizawa YM, Shigetomi E, Sano F, Yoshioka N, Takebayashi H, Ohno N, Segawa T, Miyake K, Kashiwagi K, Harada T, Ohnuma SI, Koizumi S. Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy. SCIENCE ADVANCES 2022; 8:eabq1081. [PMID: 36332025 PMCID: PMC9635836 DOI: 10.1126/sciadv.abq1081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Alex Leung
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Aichi, Japan
- Department of Anatomy II and Cell Biology, Fujita Health University School of Medicine, Aichi, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, NIPS, Aichi, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh City, Vietnam
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yosuke Danjo
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yosuke M. Morizawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, NIPS, Aichi, Japan
- Department of Anatomy, Jichi Medical University, Tochigi, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
41
|
A small molecule M1 promotes optic nerve regeneration to restore target-specific neural activity and visual function. Proc Natl Acad Sci U S A 2022; 119:e2121273119. [PMID: 36306327 PMCID: PMC9636930 DOI: 10.1073/pnas.2121273119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes,
Opa1
or
Mfn2
, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.
Collapse
|
42
|
Huang W, Xu Q, Su J, Tang L, Hao ZZ, Xu C, Liu R, Shen Y, Sang X, Xu N, Tie X, Miao Z, Liu X, Xu Y, Liu F, Liu Y, Liu S. Linking transcriptomes with morphological and functional phenotypes in mammalian retinal ganglion cells. Cell Rep 2022; 40:111322. [PMID: 36103830 DOI: 10.1016/j.celrep.2022.111322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.
Collapse
Affiliation(s)
- Wanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhao-Zhe Hao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Ruifeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhui Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Nana Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiu Tie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhichao Miao
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Feng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100085, China.
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| |
Collapse
|
43
|
Spampinato GLB, Ronzitti E, Zampini V, Ferrari U, Trapani F, Khabou H, Agraval A, Dalkara D, Picaud S, Papagiakoumou E, Marre O, Emiliani V. All-optical inter-layers functional connectivity investigation in the mouse retina. CELL REPORTS METHODS 2022; 2:100268. [PMID: 36046629 PMCID: PMC9421538 DOI: 10.1016/j.crmeth.2022.100268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.
Collapse
Affiliation(s)
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Hanen Khabou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
44
|
Tapia ML, Nascimento-Dos-Santos G, Park KK. Subtype-specific survival and regeneration of retinal ganglion cells in response to injury. Front Cell Dev Biol 2022; 10:956279. [PMID: 36035999 PMCID: PMC9411869 DOI: 10.3389/fcell.2022.956279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.
Collapse
Affiliation(s)
- Mary L Tapia
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gabriel Nascimento-Dos-Santos
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
45
|
Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, Greer D, Kadri S, Segal J, Shekhar K, Sanes JR, Schwartz GW. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 2022; 40:111040. [PMID: 35830791 PMCID: PMC9364428 DOI: 10.1016/j.celrep.2022.111040] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Classification and characterization of neuronal types are critical for understanding their function and dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological, morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use these measurements to align the functional classification to publicly available morphological and transcriptomic datasets. We create an online database that allows users to browse or download the data and to classify RGCs from their light responses using a machine learning algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a framework for future efforts in neuronal classification and open data distribution.
Collapse
Affiliation(s)
- Jillian Goetz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary F Jessen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Adam Mani
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sam Cooler
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Devon Greer
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | - Sabah Kadri
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Jeremy Segal
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Gregory W Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
46
|
Tools and Biomarkers for the Study of Retinal Ganglion Cell Degeneration. Int J Mol Sci 2022; 23:ijms23084287. [PMID: 35457104 PMCID: PMC9025234 DOI: 10.3390/ijms23084287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is part of the central nervous system, its analysis may provide an idea of the health and functionality, not only of the retina, but also of the entire central nervous system, as has been shown in Alzheimer’s or Parkinson’s diseases. Within the retina, the ganglion cells (RGC) are the neurons in charge of processing and sending light information to higher brain centers. Diverse insults and pathological states cause degeneration of RGC, leading to irreversible blindness or impaired vision. RGCs are the measurable endpoints in current research into experimental therapies and diagnosis in multiple ocular pathologies, like glaucoma. RGC subtype classifications are based on morphological, functional, genetical, and immunohistochemical aspects. Although great efforts are being made, there is still no classification accepted by consensus. Moreover, it has been observed that each RGC subtype has a different susceptibility to injury. Characterizing these subtypes together with cell death pathway identification will help to understand the degenerative process in the different injury and pathological models, and therefore prevent it. Here we review the known RGC subtypes, as well as the diagnostic techniques, probes, and biomarkers for programmed and unprogrammed cell death in RGC.
Collapse
|
47
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
48
|
Narvaez Del Pilar O, Gacha Garay MJ, Chen J. Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts. Development 2022; 149:274755. [PMID: 35302583 PMCID: PMC8977099 DOI: 10.1242/dev.200081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.
Collapse
Affiliation(s)
- Odemaris Narvaez Del Pilar
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA.,University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico 00927
| | - Maria Jose Gacha Garay
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
49
|
Hilgen G, Kartsaki E, Kartysh V, Cessac B, Sernagor E. A novel approach to the functional classification of retinal ganglion cells. Open Biol 2022; 12:210367. [PMID: 35259949 PMCID: PMC8905177 DOI: 10.1098/rsob.210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinal neurons are remarkedly diverse based on structure, function and genetic identity. Classifying these cells is a challenging task, requiring multimodal methodology. Here, we introduce a novel approach for retinal ganglion cell (RGC) classification, based on pharmacogenetics combined with immunohistochemistry and large-scale retinal electrophysiology. Our novel strategy allows grouping of cells sharing gene expression and understanding how these cell classes respond to basic and complex visual scenes. Our approach consists of several consecutive steps. First, the spike firing frequency is increased in RGCs co-expressing a certain gene (Scnn1a or Grik4) using excitatory DREADDs (designer receptors exclusively activated by designer drugs) in order to single out activity originating specifically from these cells. Their spike location is then combined with post hoc immunostaining, to unequivocally characterize their anatomical and functional features. We grouped these isolated RGCs into multiple clusters based on spike train similarities. Using this novel approach, we were able to extend the pre-existing list of Grik4-expressing RGC types to a total of eight and, for the first time, we provide a phenotypical description of 13 Scnn1a-expressing RGCs. The insights and methods gained here can guide not only RGC classification but neuronal classification challenges in other brain regions as well.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Evgenia Kartsaki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Viktoriia Kartysh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria,Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bruno Cessac
- Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
50
|
Shekhar K, Whitney IE, Butrus S, Peng YR, Sanes JR. Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types. eLife 2022; 11:e73809. [PMID: 35191836 PMCID: PMC8956290 DOI: 10.7554/elife.73809] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The genesis of broad neuronal classes from multipotential neural progenitor cells has been extensively studied, but less is known about the diversification of a single neuronal class into multiple types. We used single-cell RNA-seq to study how newly born (postmitotic) mouse retinal ganglion cell (RGC) precursors diversify into ~45 discrete types. Computational analysis provides evidence that RGC transcriptomic type identity is not specified at mitotic exit, but acquired by gradual, asynchronous restriction of postmitotic multipotential precursors. Some types are not identifiable until a week after they are generated. Immature RGCs may be specified to project ipsilaterally or contralaterally to the rest of the brain before their type identity emerges. Optimal transport inference identifies groups of RGC precursors with largely nonoverlapping fates, distinguished by selectively expressed transcription factors that could act as fate determinants. Our study provides a framework for investigating the molecular diversification of discrete types within a neuronal class.
Collapse
Affiliation(s)
- Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, BerkeleyBerkeleyUnited States
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, BerkeleyBerkeleyUnited States
| | - Yi-Rong Peng
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of MedicineLos AngelesUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|