1
|
Tong M, Tu Q, Wang L, Chen H, Wan X, Xu Z. Joint analysis of single-cell RNA sequencing and bulk transcriptome reveals the heterogeneity of the urea cycle of astrocytes in glioblastoma. Neurobiol Dis 2025; 208:106835. [PMID: 39938577 DOI: 10.1016/j.nbd.2025.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Glioblastoma (GB) is incurable with a dismal prognosis. Single-cell RNA sequencing (scRNA-seq) is a pivotal tool for studying tumor heterogeneity. The dysregulation of the urea cycle (UC) frequently occurs in tumors, but its characteristics in GB have not been illuminated. This study integrated scRNA-seq UC scores and bulk RNA-seq data to build a GB prognostic model. METHODS Samples from 3 pairs of GB patients were collected for scRNA-seq analysis. GB-mRNA expression data, clinical data, and SNV mutation data were sourced from the Cancer Genome Atlas (TCGA). GB-mRNA expression data and clinical data were downloaded from the Chinese Glioma Genome Atlas (CGGA). GB RNA-seq data and clinical data were obtained from Gene Expression Omnibus (GEO) database. The R package Seurat was applied for scRNA-seq data processing. UMAP and TSNE were used for dimensionality reduction. UCell enrichment method was employed to score each astrocyte. Monocle algorithm was applied for pseudotime trajectory analysis. CellChat R package was applied for cell communication analysis. Cell labeling was performed on the results of the nine subclusters of astrocytes. The GSE138794 dataset was used to validate the results of single-cell classification. For bulk RNA-seq, univariate Cox and LASSO analyses were undertaken to screen prognostic genes, while multivariate Cox regression analysis was applied to set up a prognostic model. The differences between high-risk (HR) and low-risk (LR) groups were studied in terms of immune infiltration, sensitivity to anti-tumor drugs, etc. We verified the effect of the marker gene on the function of GB cells at the cellular level. RESULTS The analysis of scRNA-seq data yielded 7 core cell types. Further clustering of the largest proportion of astrocytes resulted in 9 subclusters. UC score and pseudotime analysis revealed the heterogeneity and differentiation process among subclusters. Subcluster 8 was annotated as an immature astrocyte (marker: CXCL8), and this cell cluster had a higher UC score. The results were validated in the GSE138794 dataset. Combining UC scores, we performed univariate Cox and LASSO to select prognostic genes on bulk RNA-seq data. A prognostic model based on 5 feature genes (RGS4, CTSB, SERPINE2, ID1, and CALD1) was established through multivariate Cox analysis. In addition, patients in the HR group had higher immune infiltration and immune function. Final cell experiments demonstrated that 5 feature genes were highly expressed in GB cells. CALD1 promoted the malignant phenotype of GB cells. CONCLUSION We set up a novel prognostic model for predicting the survival of GB patients by integrating bulk RNA-seq and scRNA-seq data. The risk score was closely correlated with immune infiltration and drug sensitivity, pinpointing it as a promising independent prognostic factor.
Collapse
Affiliation(s)
- Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Qi Tu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Huahui Chen
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xing Wan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Zhijian Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| |
Collapse
|
2
|
Zhou W, Xu C, Yang S, Li H, Pan C, Jiang Z, Xie L, Li X, Qiao H, Mi D, Tang Y, Zhang L, Xi Q. An oncohistone-driven H3.3K27M/CREB5/ID1 axis maintains the stemness and malignancy of diffuse intrinsic pontine glioma. Nat Commun 2025; 16:3675. [PMID: 40246858 PMCID: PMC12006333 DOI: 10.1038/s41467-025-58795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a lethal pediatric cancer driven by H3K27M oncohistones, exhibits aberrant epigenetic regulation and stem-like cell states. Here, we uncover an axis involving H3.3K27M oncohistones, CREB5/ID1, which sustains the stem-like state of DIPG cells, promoting malignancy. We demonstrate that CREB5 mediates elevated ID1 levels in the H3.3K27M/ACVR1WT subtype, promoting tumor growth; while BMP signaling regulates this process in the H3.1K27M/ACVR1MUT subtype. Furthermore, we reveal that H3.3K27M directly enhances CREB5 expression by reshaping the H3K27me3 landscape at the CREB5 locus, particularly at super-enhancer regions. Additionally, we elucidate the collaboration between CREB5 and BRG1, the SWI/SNF chromatin remodeling complex catalytic subunit, in driving oncogenic transcriptional changes in H3.3K27M DIPG. Intriguingly, disrupting CREB5 super-enhancers with ABBV-075 significantly reduces its expression and inhibits H3.3K27M DIPG tumor growth. Combined treatment with ABBV-075 and a BRG1 inhibitor presents a promising therapeutic strategy for clinical translation in H3.3K27M DIPG treatment.
Collapse
Affiliation(s)
- Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuangrui Yang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Qiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Jin Y, Mao F, Wang X, Zhang J, Gao Y, Fan Y. The sonic hedgehog signaling inhibitor cyclopamine improves pulmonary arterial hypertension via regulating the bone morphogenetic protein receptor 2 pathway. Sci Rep 2025; 15:12512. [PMID: 40216933 PMCID: PMC11992095 DOI: 10.1038/s41598-025-97627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and progressive disease with hallmarks of pulmonary vascular remodeling and bone morphogenetic protein receptor 2 (BMPR2) mutation. Recent studies indicate Sonic hedgehog (SHH) signaling is involved in the proliferation of human pulmonary arterial smooth muscle cells (hPASMCs) but the role of the SHH signaling inhibitor cyclopamine in monocrotaline (MCT)-induced PAH has not been investigated. We hypothesized SHH promotes pulmonary vascular remodeling and that inhibition of SHH signaling by cyclopamine could attenuate pulmonary hypertension via the bone morphogenetic protein (BMP) pathway. SHH and BMPR2 proteins were measured in pulmonary arteries isolated from MCT-induced PAH rats and in hPASMCs. The therapeutic effects of cyclopamine were tested in PAH rats and in BMPR2 knockdown hPASMCs. SHH protein levels were increased in PAH rats and exogenous recombinant SHH protein promoted proliferation of hPASMCs via BMPR2 and osteopontin. Furthermore, cyclopamine attenuated hemodynamics and vascular remodeling via the BMP pathway in PAH rats. Finally, cyclopamine enhanced apoptosis and reduced proliferation in hPASMCs with impaired BMPR2. The findings of this study provide evidence that SHH has a role in pulmonary vascular remodeling via BMP4/BMPR2/ID1, and its inhibition by cyclopamine could be a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Youpeng Jin
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China
| | - Fei Mao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, PR China
| | - Xuehui Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China
| | - Jie Zhang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China
| | - Yanting Gao
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China
| | - Youfei Fan
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, Jinan, 250014, Shandong, PR China.
| |
Collapse
|
4
|
Phadte P, Bishnu A, Dey P, M M, Mehrotra M, Singh P, Chakrabarty S, Majumdar R, Rekhi B, Patra M, De A, Ray P. Autophagy-mediated ID1 turnover dictates chemo-resistant fate in ovarian cancer stem cells. J Exp Clin Cancer Res 2024; 43:222. [PMID: 39123206 PMCID: PMC11316295 DOI: 10.1186/s13046-024-03147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms enabling dynamic shifts between drug-resistant and drug-sensitive states in cancer cells are still underexplored. This study investigated the role of targeted autophagic protein degradation in regulating ovarian cancer stem cell (CSC) fate decisions and chemo-resistance. METHODS Autophagy levels were compared between CSC-enriched side population (SP) and non-SP cells (NSP) in multiple ovarian cancer cell lines using immunoblotting, immunofluorescence, and transmission electron microscopy. The impact of autophagy modulation on CSC markers and differentiation was assessed by flow cytometry, immunoblotting and qRT-PCR. In silico modeling and co-immunoprecipitation identified ID1 interacting proteins. Pharmacological and genetic approaches along with Annexin-PI assay, ChIP assay, western blotting, qRT-PCR and ICP-MS were used to evaluate effects on cisplatin sensitivity, apoptosis, SLC31A1 expression, promoter binding, and intracellular platinum accumulation in ID1 depleted backdrop. Patient-derived tumor spheroids were analyzed for autophagy and SLC31A1 levels. RESULTS Ovarian CSCs exhibited increased basal autophagy compared to non-CSCs. Further autophagy stimulation by serum-starvation and chemical modes triggered proteolysis of the stemness regulator ID1, driving the differentiation of chemo-resistant CSCs into chemo-sensitive non-CSCs. In silico modeling predicted TCF12 as a potent ID1 interactor, which was validated by co-immunoprecipitation. ID1 depletion freed TCF12 to transactivate the cisplatin influx transporter SLC31A1, increasing intracellular cisplatin levels and cytotoxicity. Patient-derived tumor spheroids exhibited a functional association between autophagy, ID1, SLC31A1, and platinum sensitivity. CONCLUSIONS This study reveals a novel autophagy-ID1-TCF12-SLC31A1 axis where targeted autophagic degradation of ID1 enables rapid remodeling of CSCs to reverse chemo-resistance. Modulating this pathway could counter drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Aniketh Bishnu
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Manikandan M
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Prerna Singh
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Shritama Chakrabarty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Rounak Majumdar
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| | - Bharat Rekhi
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, 400012, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Tsai KK, Bae BI, Hsu CC, Cheng LH, Shaked Y. Oncogenic ASPM Is a Regulatory Hub of Developmental and Stemness Signaling in Cancers. Cancer Res 2023; 83:2993-3000. [PMID: 37384617 PMCID: PMC10502471 DOI: 10.1158/0008-5472.can-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/27/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Cheng LH, Hsu CC, Tsai HW, Liao WY, Yang PM, Liao TY, Hsieh HY, Chan TS, Tsai KK. ASPM Activates Hedgehog and Wnt Signaling to Promote Small Cell Lung Cancer Stemness and Progression. Cancer Res 2023; 83:830-844. [PMID: 36638332 DOI: 10.1158/0008-5472.can-22-2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Small cell lung cancer (SCLC) is among the most aggressive and lethal human malignancies. Most patients with SCLC who initially respond to chemotherapy develop disease relapse. Therefore, there is a pressing need to identify novel driver mechanisms of SCLC progression to unlock treatment strategies to improve patient prognosis. SCLC cells comprise subsets of cells possessing progenitor or stem cell properties, while the underlying regulatory pathways remain elusive. Here, we identified the isoform 1 of the neurogenesis-associated protein ASPM (ASPM-I1) as a prominently upregulated stemness-associated gene during the self-renewal of SCLC cells. The expression of ASPM-I1 was found to be upregulated in SCLC cells and tissues, correlated with poor patient prognosis, and indispensable for SCLC stemness and tumorigenesis. A reporter array screening identified multiple developmental signaling pathways, including Hedgehog (Hh) and Wnt pathways, whose activity in SCLC cells depended upon ASPM-I1 expression. Mechanistically, ASPM-I1 stabilized the Hh transcriptional factor GLI1 at the protein level through a unique exon-18-encoded region by competing with the E3 ligases β-TrCP and CUL3. In parallel, ASPM-I1 sustains the transcription of the Hh pathway transmembrane regulator SMO through the Wnt-DVL3-β-catenin signaling axis. Functional studies verified that the ASPM-I1-regulated Hh and Wnt activities significantly contributed to SCLC aggressiveness in vivo. Consistently, the expression of ASPM-I1 positively correlated with GLI1 and stemness markers in SCLC tissues. This study illuminates an ASPM-I1-mediated regulatory module that drives tumor stemness and progression in SCLC, providing an exploitable diagnostic and therapeutic target. SIGNIFICANCE ASPM promotes SCLC stemness and aggressiveness by stabilizing the expression of GLI1, DVL3, and SMO, representing a novel regulatory hub of Hh and Wnt signaling and targetable vulnerability.
Collapse
Affiliation(s)
- Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hsiao-Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
8
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
9
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
10
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
11
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Li M, Song D, Chen X, Wang X, Xu L, Yang M, Yang J, Kalvakolanu DV, Wei X, Liu X, Li Y, Guo B, Zhang L. RSL3 triggers glioma stem cell differentiation via the Tgm2/AKT/ID1 signaling axis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166529. [PMID: 36041715 DOI: 10.1016/j.bbadis.2022.166529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
RSL3 is a synthetic molecule that inactivates glutathione peroxidase 4 to induce ferroptosis. However, its effect on glioma stem cells (GSC) remains unclear. In this study, we found that RSL3 significantly suppressed GSC proliferation and induced their differentiation into astrocytes, which was accompanied by the downregulation of stemness-related markers, including Nestin and Sox2. Combined transcriptome and proteome analyses further revealed that RSL3 promoted GSC differentiation by suppressing transglutaminase 2 (Tgm2), but not by ferroptosis-related pathways. Tgm2 overexpression in CSC2078 cells rescued the changes in stemness-related markers and differentiation caused by RSL3, which was mediated by inhibitor of DNA binding 1 (ID1) activation. Further studies identified ID1 as a downstream signaling target of Tgm2. Blocking the phosphoinositide-3 kinase (PI3K)/Akt pathway with LY294002 suppressed PI3K, p-Akt, and ID1 levels but not Tgm2. Tgm2 overexpression abrogated the changes in PI3K, p-Akt, and ID1 levels caused by LY294002. Taken together, we demonstrate that RSL3 does not induce ferroptosis; instead, it inhibits GSC proliferation and triggers their differentiation by suppressing the Tgm2/Akt/ID1 signaling axis.
Collapse
Affiliation(s)
- Mengxin Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China; Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Dong Song
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Libo Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Kundu S, Nandhu MS, Longo SL, Longo JA, Rai S, Chin LS, Richardson TE, Viapiano MS. The scaffolding protein DLG5 promotes glioblastoma growth by controlling Sonic Hedgehog signaling in tumor stem cells. Neuro Oncol 2022; 24:1230-1242. [PMID: 34984467 PMCID: PMC9340653 DOI: 10.1093/neuonc/noac001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tumor invasion, a hallmark of malignant gliomas, involves reorganization of cell polarity and changes in the expression and distribution of scaffolding proteins associated with polarity complexes. The scaffolding proteins of the DLG family are usually downregulated in invasive tumors and regarded as tumor suppressors. Despite their important role in regulating neurodevelopmental signaling, the expression and functions of DLG proteins have remained almost entirely unexplored in malignant gliomas. METHODS Western blot, immunohistochemistry, and analysis of gene expression were used to quantify DLG members in glioma specimens and cancer datasets. Over-expression and knockdown of DLG5, the highest-expressed DLG member in glioblastoma, were used to investigate its effects on tumor stem cells and tumor growth. qRT-PCR, Western blotting, and co-precipitation assays were used to investigate DLG5 signaling mechanisms. RESULTS DLG5 was upregulated in malignant gliomas compared to other solid tumors, being the predominant DLG member in all glioblastoma molecular subtypes. DLG5 promoted glioblastoma stem cell invasion, viability, and self-renewal. Knockdown of this protein in vivo disrupted tumor formation and extended survival. At the molecular level, DLG5 regulated Sonic Hedgehog (Shh) signaling, making DLG5-deficient cells insensitive to Shh ligand. Loss of DLG5 increased the proteasomal degradation of Gli1, underlying the loss of Shh signaling and tumor stem cell sensitization. CONCLUSIONS The high expression and pro-tumoral functions of DLG5 in glioblastoma, including its dominant regulation of Shh signaling in tumor stem cells, reveal a novel role for this protein that is strikingly different from its proposed tumor-suppressor role in other solid tumors.
Collapse
Affiliation(s)
- Somanath Kundu
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mohan S Nandhu
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sharon L Longo
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - John A Longo
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Shawn Rai
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lawrence S Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Timothy E Richardson
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Mariano S Viapiano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
14
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
15
|
Park CG, Choi SH, Lee SY, Eun K, Park MG, Jang J, Jeong HJ, Kim SJ, Jeong S, Lee K, Kim H. Cytoplasmic LMO2-LDB1 Complex Activates STAT3 Signaling through Interaction with gp130-JAK in Glioma Stem Cells. Cells 2022; 11:cells11132031. [PMID: 35805116 PMCID: PMC9265747 DOI: 10.3390/cells11132031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.
Collapse
Affiliation(s)
- Cheol Gyu Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Sang-Hun Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Kiyoung Eun
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Min Gi Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Junseok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Hyeon Ju Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Seong Jin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Sohee Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Kanghun Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3059; Fax: +82-2-3290-3040
| |
Collapse
|
16
|
Liu Y, Luan Y, Ma K, Zhang Z, Liu Y, Chen XL. ISL1 promotes human glioblastoma-derived stem cells self-renewal by activation of SHH/GLI1 function. Stem Cells Dev 2022; 31:258-268. [DOI: 10.1089/scd.2021.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Kaige Ma
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Yong Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., China
| | - Xin-lin Chen
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an, Shaanxi 710061, China., Xi'an, Shaanxi, China,
| |
Collapse
|
17
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
18
|
Chen W, Su J, Cai S, Shi C. Cullin3 aggravates the inflammatory response of periodontal ligament stem cells via regulation of SHH signaling and Nrf2. Bioengineered 2021; 12:3089-3100. [PMID: 34193016 PMCID: PMC8806625 DOI: 10.1080/21655979.2021.1943603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is found that the activation of Sonic Hedgehog (SHH) signaling pathway is related to the degree of inflammation in patients suffering from periodontitis. Cullin3 (CUL3), an important ubiquitin ligase, can control SHH signaling. In this study, we were dedicated to clarify the roles of SHH and CUL3 in P. gingivalis-LPS (Pg-LPS)-treated periodontal ligament stem cells (PDLSCs). In this study, cell viability was detected using cell counting kit-8 (CCK-8). The inflammatory cytokines of PDLSCs were estimated by enzyme-linked immunosorbent assay (ELISA). With the application of western blots, the protein levels of SHH, Gli1 and NF-E2-related factor 2 (Nrf2) were determined. Alkaline phosphatase staining and Alizarin red staining were performed to evaluate the differentiation and mineralization capabilities of PDLSCs. The apoptotic cells were screened using TUNEL staining. The results showed that Pg-LPS inhibited cell viability and triggered inflammation of PDLSCs. Overexpression of CUL3 weakened the differentiation and mineralization capabilities of PDLSCs. Moreover, CUL3 overexpression aggravated inflammation and cell apoptosis induced by Pg-LPS. It is worth noting that although the protein levels of SHH, Gli1 and Nrf2 were elevated in PDLSCs treated with Pg-LPS, overexpression of CUL3 decreased the expressions of Gli1 and Nrf2. Overall, SHH/Gli1 and Nrf2 were involved in the inflammation and cell apoptosis of PDLSCs, which was dominated by CUL3.
Collapse
Affiliation(s)
- Wanhong Chen
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Jiangling Su
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Shixiong Cai
- Department of Stomatology, Quanzhou First Hospital, Quanzhou, Fujian, China
| | - Chun Shi
- Department of Endodontics and Periodontics, School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
19
|
Chen H, Nio K, Yamashita T, Okada H, Li R, Suda T, Li Y, Doan PTB, Seki A, Nakagawa H, Toyama T, Terashima T, Iida N, Shimakami T, Takatori H, Kawaguchi K, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. BMP9-ID1 signaling promotes EpCAM-positive cancer stem cell properties in hepatocellular carcinoma. Mol Oncol 2021; 15:2203-2218. [PMID: 33834612 PMCID: PMC8333780 DOI: 10.1002/1878-0261.12963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The malignant nature of hepatocellular carcinoma (HCC) is closely related to the presence of cancer stem cells (CSCs). Bone morphologic protein 9 (BMP9), a member of the transforming growth factor‐beta (TGF‐β) superfamily, was recently reported to be involved in liver diseases including cancer. We aimed to elucidate the role of BMP9 signaling in HCC‐CSC properties and to assess the therapeutic effect of BMP receptor inhibitors in HCC. We have identified that high BMP9 expression in tumor tissues or serum from patients with HCC leads to poorer outcome. BMP9 promoted CSC properties in epithelial cell adhesion molecule (EpCAM)‐positive HCC subtype via enhancing inhibitor of DNA‐binding protein 1 (ID1) expression in vitro. Additionally, ID1 knockdown significantly repressed BMP9‐promoted HCC‐CSC properties by suppressing Wnt/β‐catenin signaling. Interestingly, cells treated with BMP receptor inhibitors K02288 and LDN‐212854 blocked HCC‐CSC activation by inhibiting BMP9‐ID1 signaling, in contrast to cells treated with the TGF‐β receptor inhibitor galunisertib. Treatment with LDN‐212854 suppressed HCC tumor growth by repressing ID1 and EpCAM in vivo. Our study demonstrates the pivotal role of BMP9‐ID1 signaling in promoting HCC‐CSC properties and the therapeutic potential of BMP receptor inhibitors in treating EpCAM‐positive HCC. Therefore, targeting BMP9‐ID1 signaling could offer novel therapeutic options for patients with malignant HCC.
Collapse
Affiliation(s)
- Han Chen
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Kouki Nio
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Taro Yamashita
- Department of General MedicineKanazawa University HospitalJapan
| | - Hikari Okada
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Ru Li
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Tsuyoshi Suda
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Yingyi Li
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Akihiro Seki
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Tadashi Toyama
- Innovative Clinical Research CenterKanazawa UniversityJapan
| | | | - Noriho Iida
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Hajime Takatori
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | - Yoshio Sakai
- Department of GastroenterologyKanazawa University HospitalJapan
| | | | | | - Masao Honda
- Department of GastroenterologyKanazawa University HospitalJapan
| | - Shuichi Kaneko
- Department of GastroenterologyKanazawa University HospitalJapan
| |
Collapse
|
20
|
Hsu CC, Liao WY, Chang KY, Chan TS, Huang PJ, Chiang CT, Shan YS, Cheng LH, Liao TY, Tsai KK. A multi-mode Wnt- and stemness-regulatory module dictated by FOXM1 and ASPM isoform I in gastric cancer. Gastric Cancer 2021; 24:624-639. [PMID: 33515163 DOI: 10.1007/s10120-020-01154-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer mortality globally and a molecularly heterogeneous disease. Identifying the driver pathways in GC progression is crucial to improving the clinical outcome. Recent studies identified ASPM (abnormal spindle-like microcephaly-associated) and FOXM1 (Forkhead box protein M1) as novel Wnt and cancer stem cell (CSC) regulators; their pathogenetic roles and potential crosstalks in GC remain unclarified. METHODS The expression patterns of ASPM isoforms and FOXM1 were profiled in normal gastric epithelial and GC tissues. The functional roles of ASPM and FOXM1 in Wnt activity, cancer stemness and GC progression, and the underlying signaling processes were investigated. RESULTS Approximately one third of GC cells upregulate the expression of ASPM isoform I (ASPMiI) in their cytoplasm; the tumors with a high ASPMiI positive score (≥ 10%) are associated with a poor prognosis of the patients. Mechanistically, the molecular interplay among FOXM1, ASPMiI and DVL3 was found to converge on β-catenin to control the Wnt activity and the stemness property of GC cells. This multi-mode Wnt-regulatory module serves to reinforce Wnt signals in CSCs by transcriptional regulation (FOXM1-ASPM), protein-protein interactions (ASPMiI-DVL3-β-catenin), and nuclear translocation (FOXM1-β-catenin). CONCLUSIONS This study illuminates a novel Wnt- and stemness-regulatory mechanism in GC cells and identifies a novel subset of FOXM1highASPMiIhigh GC with potential to guide Wnt- and stemness-related diagnostics and therapies.
Collapse
Affiliation(s)
- Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 824410, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes (NHRIs), Tainan City, 704016, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Po-Jui Huang
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Chun-Ting Chiang
- Department of Pathology, National Cheng-Kung University Hospital, Tainan City, 704302, Taiwan
| | - Yan-Shen Shan
- Department of Surgery, National Cheng-Kung University Hospital, Tainan City, 704302, Taiwan
| | - Lin-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Xinyi Dist., Taipei City, 110301, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes (NHRIs), Tainan City, 704016, Taiwan.
- Division of Gastroenterology, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan.
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, 110301, Taiwan.
- TMU and Affiliated Hospitals Pancreatic Cancer Group, Taipei Medical University, Taipei City, 110301, Taiwan.
| |
Collapse
|
21
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
22
|
Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J, Sun C. Mitochondria's Role in the Maintenance of Cancer Stem Cells in Glioblastoma. Front Oncol 2021; 11:582694. [PMID: 33692947 PMCID: PMC7937970 DOI: 10.3389/fonc.2021.582694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs' stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.
Collapse
Affiliation(s)
| | - Biao Jiang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Okoye C Favour
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jiawei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| | - Chongran Sun
- Department of Neurosurgery, The 2nd Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
23
|
Rybin MJ, Ivan ME, Ayad NG, Zeier Z. Organoid Models of Glioblastoma and Their Role in Drug Discovery. Front Cell Neurosci 2021; 15:605255. [PMID: 33613198 PMCID: PMC7892608 DOI: 10.3389/fncel.2021.605255] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is a devastating adult brain cancer with high rates of recurrence and treatment resistance. Cellular heterogeneity and extensive invasion of surrounding brain tissues are characteristic features of GBM that contribute to its intractability. Current GBM model systems do not recapitulate some of the complex features of GBM and have not produced sufficiently-effective treatments. This has cast doubt on the effectiveness of current GBM models and drug discovery paradigms. In search of alternative pre-clinical GBM models, various 3D organoid-based GBM model systems have been developed using human cells. The scalability of these systems and potential to more accurately model characteristic features of GBM, provide promising new avenues for pre-clinical GBM research and drug discovery efforts. Here, we review the current suite of organoid-GBM models, their individual strengths and weaknesses, and discuss their future applications with an emphasis on compound screening.
Collapse
Affiliation(s)
- Matthew J. Rybin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael E. Ivan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nagi G. Ayad
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Liao WY, Hsu CC, Chan TS, Yen CJ, Chen WY, Pan HW, Tsai KK. Dishevelled 1-Regulated Superpotent Cancer Stem Cells Mediate Wnt Heterogeneity and Tumor Progression in Hepatocellular Carcinoma. Stem Cell Reports 2021; 14:462-477. [PMID: 32160521 PMCID: PMC7066362 DOI: 10.1016/j.stemcr.2020.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023] Open
Abstract
Various populations of cancer stem cells (CSCs) have been identified in hepatocellular carcinoma (HCC). Wnt signaling is variably activated in HCC and regulates CSCs and tumorigenesis. We explored cell-to-cell Wnt and stemness heterogeneity in HCC by labeling freshly isolated cancer cells with a Wnt-specific reporter, thereby identifying a small subset (0.4%–8.9%) of Wnt-activityhigh cells. Further cellular subset analysis identified a refined subset of Wnt-activityhighALDH1+EpCAM+ triple-positive (TP) cells as the most stem-like, phenotypically plastic, and tumorigenic among all putative CSC populations. These TP “superpotent CSCs” (spCSCs) specifically upregulate the expression of dishevelled 1 (DVL1) through the antagonism between abnormal spindle-like microcephaly-associated (ASPM) and the ubiquitin ligase complex Cullin-3/KLHL-12. Subsequent functional and molecular studies revealed the role of DVL1 in controlling spCSCs and their tumorigenic potential. These findings provide the mechanistic basis of the Wnt and stemness heterogeneity in HCC and highlight the important role of DVL1high spCSCs in tumor progression. Wnt activity displays a high degree of intratumoral heterogeneity in HCC Wnt-activityhighALDH1+EPCAM+ cells are identified as superpotent CSCs in HCC The proportion of superpotent CSCs correlates with poor patient prognosis in HCC Superpotent CSCs are regulated by the Wnt-ASPM-DVL1 signaling axis
Collapse
Affiliation(s)
- Wen-Ying Liao
- Graduate Institute of Clinical Medicine, Wan Fang Hospital, Taipei Medical University, 250 Wuxing St., Xinyi, Taipei 11031, Taiwan; Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Chi Hsu
- Graduate Institute of Clinical Medicine, Wan Fang Hospital, Taipei Medical University, 250 Wuxing St., Xinyi, Taipei 11031, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 84001, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; School of Medicine, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Integrative Therapy Center for Gastroenterologic Cancers, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Jui Yen
- Division of Hemato-oncology, Department of Medicine, National Cheng-Kung University Hospital, Tainan 70403, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Wei Pan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 84001, Taiwan
| | - Kelvin K Tsai
- Graduate Institute of Clinical Medicine, Wan Fang Hospital, Taipei Medical University, 250 Wuxing St., Xinyi, Taipei 11031, Taiwan; Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Integrative Therapy Center for Gastroenterologic Cancers, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; National Institute of Cancer Research, National Health Research Institutes (NHRIs), Zhunan 35053, Taiwan.
| |
Collapse
|
25
|
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li B, Li F, Xia X, Li X, Zhou H, Liu D, Huang N, Yang X, Xiao F, Zhang N. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol 2021; 22:33. [PMID: 33446260 PMCID: PMC7807754 DOI: 10.1186/s13059-020-02250-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aberrant activation of the Hedgehog pathway drives tumorigenesis of many cancers, including glioblastoma. However, the sensitization mechanism of the G protein-coupled-like receptor smoothened (SMO), a key component of Hedgehog signaling, remains largely unknown. RESULTS In this study, we describe a novel protein SMO-193a.a. that is essential for Hedgehog signaling activation in glioblastoma. Encoded by circular SMO (circ-SMO), SMO-193a.a. is required for sonic hedgehog (Shh) induced SMO activation, via interacting with SMO, enhancing SMO cholesterol modification, and releasing SMO from the inhibition of patched transmembrane receptors. Deprivation of SMO-193a.a. in brain cancer stem cells attenuates Hedgehog signaling intensity and suppresses self-renewal, proliferation in vitro, and tumorigenicity in vivo. Moreover, circ-SMO/SMO-193a.a. is positively regulated by FUS, a direct transcriptional target of Gli1. Shh/Gli1/FUS/SMO-193a.a. form a positive feedback loop to sustain Hedgehog signaling activation in glioblastoma. Clinically, SMO-193a.a. is more specifically expressed in glioblastoma than SMO and is relevant to Gli1 expression. Higher expression of SMO-193a.a. predicts worse overall survival of glioblastoma patients, indicating its prognostic value. CONCLUSIONS Our study reveals that SMO-193a.a., a novel protein encoded by circular SMO, is critical for Hedgehog signaling, drives glioblastoma tumorigenesis and is a novel target for glioblastoma treatment.
Collapse
Affiliation(s)
- Xujia Wu
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Songhua Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Maolei Zhang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Lixuan Yang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Jian Zhong
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Fanying Li
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Xin Xia
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Xixi Li
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Huangkai Zhou
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Nunu Huang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Xuesong Yang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Nu Zhang
- Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
26
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
27
|
Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer's Disease: Cell Cycle Reentry and Beyond. Cells 2020; 9:cells9071746. [PMID: 32708313 PMCID: PMC7409121 DOI: 10.3390/cells9071746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Inhibitor of DNA-binding/differentiation (Id) proteins, a family of helix-loop-helix (HLH) proteins that includes four members of Id1 to Id4 in mammalian cells, are critical for regulating cell growth, differentiation, senescence, cell cycle progression, and increasing angiogenesis and vasculogenesis, as well as accelerating the ability of cell migration. Alzheimer’s disease (AD), the most common neurodegenerative disease in the adult population, manifests the signs of cognitive decline, behavioral changes, and functional impairment. The underlying mechanisms for AD are not well-clarified yet, but the aggregation of amyloid-beta peptides (Aβs), the major components in the senile plaques observed in AD brains, contributes significantly to the disease progression. Emerging evidence reveals that aberrant cell cycle reentry may play a central role in Aβ-induced neuronal demise. Recently, we have shown that several signaling mediators, including Id1, hypoxia-inducible factor-1 (HIF-1), cyclin-dependent kinases-5 (CDK5), and sonic hedgehog (Shh), may contribute to Aβ-induced cell cycle reentry in postmitotic neurons; furthermore, Id1 and CDK5/p25 mutually antagonize the expression/activity of each other. Therefore, Id proteins may potentially have clinical applications in AD. In this review article, we introduce the underlying mechanisms for cell cycle dysregulation in AD and present some examples, including our own studies, to show different aspects of Id1 in terms of cell cycle reentry and other signaling that may be crucial to alter the neuronal fates in this devastating neurodegenerative disease. A thorough understanding of the underlying mechanisms may provide a rationale to make an earlier intervention before the occurrence of cell cycle reentry and subsequent apoptosis in the fully differentiated neurons during the progression of AD or other neurodegenerative diseases.
Collapse
|
28
|
Suvà ML, Tirosh I. The Glioma Stem Cell Model in the Era of Single-Cell Genomics. Cancer Cell 2020; 37:630-636. [PMID: 32396858 DOI: 10.1016/j.ccell.2020.04.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Glioma stem cells (GSCs) are thought to underlie glioma initiation, evolution, and resistance to existing therapies. Although functional evidence for GSCs is abundant, tumor heterogeneity and intrinsic limitations in GSC assays have represented barriers for the field. In this perspective, we revisit the GSC model in light of recent single-cell expression profiling studies. We highlight how classes of glioma differ in their cellular architecture and relate the observed cellular states to established GSC markers. We additionally propose a set of single-cell informed definitions as a framework for our understanding of the cellular architecture of gliomas and a potential therapeutic outlook.
Collapse
Affiliation(s)
- Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.
| |
Collapse
|
29
|
Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of Differentiation 1 (Id1) in Cancer and Cancer Therapy. Int J Med Sci 2020; 17:995-1005. [PMID: 32410828 PMCID: PMC7211148 DOI: 10.7150/ijms.42805] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of DNA binding (Id) proteins are regulators of cell cycle and cell differentiation. Of all Id family proteins, Id1 is mostly linked to tumorigenesis, cellular senescence as well as cell proliferation and survival. Id1 is a stem cell-like gene more than a classical oncogene. Id1 is overexpressed in numerous types of cancers and exerts its promotion effect to these tumors through different pathways. Briefly, Id1 was found significantly correlated with EMT-related proteins, K-Ras signaling, EGFR signaling, BMP signaling, PI3K/Akt signaling, WNT and SHH signaling, c-Myc signaling, STAT3 signaling, RK1/2 MAPK/Egr1 pathway and TGF-β pathway, etc. Id1 has potent effect on facilitating tumorous angiogenesis and metastasis. Moreover, high expression of Id1 plays a facilitating role in the development of drug resistance, including chemoresistance, radiation resistance and resistance to drugs targeting angiogenesis. However, controversial results were also obtained. Overall, Id1 represent a promising target of anti-tumor therapeutics based on its potent promotion effect to cancer. Numerous drugs were found exerting their anti-tumor function through Id1-related signaling pathways, such as fucoidan, berberine, tetramethylpyrazine, crizotinib, cannabidiol and vinblastine.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Zhiyuan Bo
- The Second Department of Biliary Tract Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Weiyi Gong
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, PR China
| | - Yong Guo
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
30
|
Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203:107395. [DOI: 10.1016/j.pharmthera.2019.107395] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
31
|
Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, Jin X, Nam DH, Kim H. Ly6G + inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ 2019; 26:2139-2156. [PMID: 30804471 PMCID: PMC6748155 DOI: 10.1038/s41418-019-0282-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Most glioblastomas frequently recur at sites of radiotherapy, but it is unclear if changes in the tumor microenvironment due to radiotherapy influence glioblastoma recurrence. Here, we demonstrate that radiation-induced senescent glioblastoma cells exhibit a senescence-associated secretory phenotype that functions through NFκB signaling to influence changes in the tumor microenvironment, such as recruitment of Ly6G+ inflammatory cells and vessel formation. In particular, Ly6G+ cells promote conversion of glioblastoma cells to glioblastoma stem cells (GSCs) through the NOS2-NO-ID4 regulatory axis. Specific inhibition of NFκB signaling in irradiated glioma cells using the IκBα super repressor prevents changes in the tumor microenvironment and dedifferentiation of glioblastoma cells. Treatment with Ly6G-neutralizing antibodies also reduces the number of GSCs and prolongs survival in tumor-bearing mice after radiotherapy. Clinically, a positive correlation exists between Ly6G+ cells and the NOS2-NO-ID4 regulatory axis in patients diagnosed with recurrent glioblastoma. Together, our results illustrate important roles for Ly6G+ inflammatory cells recruited by radiation-induced SASP in cancer cell dedifferentiation and tumor recurrence.
Collapse
Affiliation(s)
- Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seok Won Ham
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xiong Jin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Jae Shin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Chang-Yong Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jason K Sa
- Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Refractory Cancer Research, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.,Department of Health Science & Technology, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea. .,Department of Medical Engineering, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
33
|
Lin DC, Dinh HQ, Xie JJ, Mayakonda A, Silva TC, Jiang YY, Ding LW, He JZ, Xu XE, Hao JJ, Wang MR, Li C, Xu LY, Li EM, Berman BP, Phillip Koeffler H. Identification of distinct mutational patterns and new driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. Gut 2018; 67:1769-1779. [PMID: 28860350 PMCID: PMC5980794 DOI: 10.1136/gutjnl-2017-314607] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oesophageal squamous cell carcinoma (OSCC) and adenocarcinoma (OAC) are distinct cancers in terms of a number of clinical and epidemiological characteristics, complicating the design of clinical trials and biomarker developments. We analysed 1048 oesophageal tumour-germline pairs from both subtypes, to characterise their genomic features, and biological and clinical significance. DESIGN Previously exome-sequenced samples were re-analysed to identify significantly mutated genes (SMGs) and mutational signatures. The biological functions of novel SMGs were investigated using cell line and xenograft models. We further performed whole-genome bisulfite sequencing and chromatin immunoprecipitation (ChIP)-seq to characterise epigenetic alterations. RESULTS OSCC and OAC displayed nearly mutually exclusive sets of driver genes, indicating that they follow independent developmental paths. The combined sample size allowed the statistical identification of a number of novel subtype-specific SMGs, mutational signatures and prognostic biomarkers. Particularly, we identified a novel mutational signature similar to Catalogue Of Somatic Mutations In Cancer (COSMIC)signature 16, which has prognostic value in OSCC. Two newly discovered SMGs, CUL3 and ZFP36L2, were validated as important tumour-suppressors specific to the OSCC subtype. We further identified their additional loss-of-function mechanisms. CUL3 was homozygously deleted specifically in OSCC and other squamous cell cancers (SCCs). Notably, ZFP36L2 is associated with super-enhancer in healthy oesophageal mucosa; DNA hypermethylation in its super-enhancer reduced active histone markers in squamous cancer cells, suggesting an epigenetic inactivation of a super-enhancer-associated SCC suppressor. CONCLUSIONS These data comprehensively contrast differences between OSCC and OAC at both genomic and epigenomic levels, and reveal novel molecular features for further delineating the pathophysiological mechanisms and treatment strategies for these cancers.
Collapse
Affiliation(s)
- De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Huy Q Dinh
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jian-Jun Xie
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tiago Chedraoui Silva
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jian-Zhong He
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Xiu-E Xu
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunquan Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou, China
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
34
|
Chronic myeloid leukaemia cells require the bone morphogenic protein pathway for cell cycle progression and self-renewal. Cell Death Dis 2018; 9:927. [PMID: 30206237 PMCID: PMC6134087 DOI: 10.1038/s41419-018-0905-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
Leukaemic stem cell (LSC) persistence remains a major obstacle to curing chronic myeloid leukaemia (CML). The bone morphogenic protein (BMP) pathway is deregulated in CML, with altered expression and response to the BMP ligands shown to impact on LSC expansion and behaviour. In this study, we determined whether alterations in the BMP pathway gene signature had any predictive value for therapeutic response by profiling 60 CML samples at diagnosis from the UK SPIRIT2 trial and correlating the data to treatment response using the 18-month follow-up data. There was significant deregulation of several genes involved in the BMP pathway with ACV1C, INHBA, SMAD7, SNAIL1 and SMURF2 showing differential expression in relation to response. Therapeutic targeting of CML cells using BMP receptor inhibitors, in combination with tyrosine kinase inhibitor (TKI), indicate a synergistic mode of action. Furthermore, dual treatment resulted in altered cell cycle gene transcription and irreversible cell cycle arrest, along with increased apoptosis compared to single agents. Targeting CML CD34+ cells with BMP receptor inhibitors resulted in fewer cell divisions, reduced numbers of CD34+ cells and colony formation when compared to normal donor CD34+ cells, both in the presence and absence of BMP4. In an induced pluripotent stem cell (iPSC) model generated from CD34+ hematopoietic cells, we demonstrate altered cell cycle profiles and dynamics of ALK expression in CML-iPSCs in the presence and absence of BMP4 stimulation, when compared to normal iPSC. Moreover, dual targeting with TKI and BMP inhibitor prevented the self-renewal of CML-iPSC and increased meso-endodermal differentiation. These findings indicate that transformed stem cells may be more reliant on BMP signalling than normal stem cells. These changes offer a therapeutic window in CML, with intervention using BMP inhibitors in combination with TKI having the potential to target LSC self-renewal and improve long-term outcome for patients.
Collapse
|
35
|
Ding X, Ding C, Wang F, Deng W, Yu M, Meng Q, Sun P. Effects of NOTCH1 signaling inhibitor γ-secretase inhibitor II on growth of cancer stem cells. Oncol Lett 2018; 16:6095-6099. [PMID: 30405755 DOI: 10.3892/ol.2018.9377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to observe the effect of the Notch1 signaling inhibitor γ-secretase inhibitor II (GSI II) on the growth and differentiation of tumor cells. The tumor cell line U87 was grown in serum-free media, and cell growth was evaluated using immunofluorescence. Single-cell wall-adherent growing conditions were prepared, GSI II was added, and the differentiation and growth of single tumor cells was evaluated. Immunofluorescence demonstrated positive results for the expression of Nestin and cluster of differentiation 133. The cell proliferation rate was reduced following the addition of GSI II (P<0.05). GSI II may significantly inhibit the proliferation and differentiation of U87 tumor stem cells.
Collapse
Affiliation(s)
- Xiaodong Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changqing Ding
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fei Wang
- Department of Neurosurgery, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wenshuai Deng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Mingming Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qinghai Meng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
36
|
Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML. Oncotarget 2018; 9:5703-5715. [PMID: 29464028 PMCID: PMC5814168 DOI: 10.18632/oncotarget.23655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted agents acting on distinct effectors, at the levels of both signal transduction and chromatin remodeling, in relapsed/refractory AML's, including Flt3ITD+ve, described with a signature of repressed tumor suppressor genes, involving Wnt antagonist RUNX3, occurring along with ID1 and HOXA over-expressions. We tracked patient response to combination of Flt3/Raf inhibitor, Sorafenib, and Vorinostat, pan-histone deacetylase inhibitor, without or with added Bortezomib, in consecutive phase I trials. A striking association of rapid objective remissions (near-complete, complete responses) was noted to accompany induced early pharmacodynamic changes within patient blasts in situ, involving these effectors, significantly linking RUNX3/Wnt antagonist de-repression (80%) and ID1 downregulation (85%), to a response, also preceded by profound HOXA9 repression. Response occurred in context of concurrent TET2 mutation/hypomorphy and Flt3ITD+ve mutation (83% of complete responses). Addition of Bortezomib to the combination was vital to attainment of complete response in Flt3ITD+ve cases exhibiting such Wnt pathway dysregulation.
Collapse
|
37
|
Jin X, Jin X, Kim LJY, Dixit D, Jeon HY, Kim EJ, Kim JK, Lee SY, Yin J, Rich JN, Kim H. Inhibition of ID1-BMPR2 Intrinsic Signaling Sensitizes Glioma Stem Cells to Differentiation Therapy. Clin Cancer Res 2017; 24:383-394. [PMID: 29208670 DOI: 10.1158/1078-0432.ccr-17-1529] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Normal stem cells tightly control self-renewal and differentiation during development, but their neoplastic counterparts, cancer stem cells (CSCs), sustain tumorigenicity both through aberrant activation of stemness and evasion of differentiation. Although regulation of CSC stemness has been extensively studied, the molecular mechanisms suppressing differentiation remain unclear.Experimental Design: We performed in silico screening and in vitro validation studies through Western blotting, qRT-PCR for treatment of WNT and SHH signaling inhibitors, and BMP signaling inducer with control and ID1-overexpressing cells. We also performed in vivo drug treatment assays with Balb/c nude mice.Results: Inhibitor of differentiation 1 (ID1) abrogated differentiation signals from bone morphogenetic protein receptor (BMPR) signaling in glioblastoma stem cells (GSCs) to promote self-renewal. ID1 inhibited BMPR2 expression through miRNAs, miR-17 and miR-20a, which are transcriptional targets of MYC. ID1 increases MYC expression by activating WNT and SHH signaling. Combined pharmacologic blockade of WNT and SHH signaling with BMP treatment significantly suppressed GSC self-renewal and extended survival of tumor-bearing mice.Conclusions: Collectively, our results suggested that ID1 simultaneously regulates stemness through WNT and SHH signaling and differentiation through BMPR-mediated differentiation signaling in GSCs, informing a novel therapeutic strategy of combinatorial targeting of stemness and differentiation. Clin Cancer Res; 24(2); 383-94. ©2017 AACR.
Collapse
Affiliation(s)
- Xiong Jin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. .,Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Institute of Translational Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leo J Y Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Deobrat Dixit
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hee-Young Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Eun-Jung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Kyum Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jinlong Yin
- Specific Organ Cancer Division, Research Institute and hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Abstract
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Collapse
Affiliation(s)
- Xiong Jin
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Xun Jin
- 3 Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- 4 Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- 5 Institute of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hyunggee Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- 2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Kwon SJ, Kwon OS, Kim KT, Go YH, Yu SI, Lee BH, Miyoshi H, Oh E, Cho SJ, Cha HJ. Role of MEK partner-1 in cancer stemness through MEK/ERK pathway in cancerous neural stem cells, expressing EGFRviii. Mol Cancer 2017; 16:140. [PMID: 28830458 PMCID: PMC5567886 DOI: 10.1186/s12943-017-0703-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Glioma stem cells (GSCs) are a major cause of the frequent relapse observed in glioma, due to their high drug resistance and their differentiation potential. Therefore, understanding the molecular mechanisms governing the ‘cancer stemness’ of GSCs will be particularly important for improving the prognosis of glioma patients. Methods We previously established cancerous neural stem cells (CNSCs) from immortalized human neural stem cells (F3 cells), using the H-Ras oncogene. In this study, we utilized the EGFRviii mutation, which frequently occurs in brain cancers, to establish another CNSC line (F3.EGFRviii), and characterized its stemness under spheroid culture. Results The F3.EGFRviii cell line was highly tumorigenic in vitro and showed high ERK1/2 activity as well as expression of a variety of genes associated with cancer stemness, such as SOX2 and NANOG, under spheroid culture conditions. Through meta-analysis, PCR super-array, and subsequent biochemical assays, the induction of MEK partner-1 (MP1, encoded by the LAMTOR3 gene) was shown to play an important role in maintaining ERK1/2 activity during the acquisition of cancer stemness under spheroid culture conditions. High expression of this gene was also closely associated with poor prognosis in brain cancer. Conclusion These data suggest that MP1 contributes to cancer stemness in EGFRviii-expressing glioma cells by driving ERK activity. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0703-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soo-Jung Kwon
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Ok-Seon Kwon
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Keun-Tae Kim
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Young-Hyun Go
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Si-In Yu
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Byeong-Ha Lee
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Hiroyuki Miyoshi
- Subteam for manipulation of cell fate, RIKEN BioResource Center, Wako, Japan
| | - Eunsel Oh
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, South Korea
| | - Seung-Ju Cho
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, 121-742, South Korea.
| |
Collapse
|
40
|
Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget 2017; 8:82217-82230. [PMID: 29137258 PMCID: PMC5669884 DOI: 10.18632/oncotarget.19283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma recurrence after aggressive therapy typically occurs within six months, and patients inevitably succumb to their disease. Tumor recurrence is driven by a subpopulation of cancer stem cells in glioblastoma (glioblastoma stem-like cells, GSCs), which exhibit resistance to cytotoxic therapies, compared to their non-stem-cell counterparts. Here, we show that the Cox-2 and Wnt signaling pathways are aberrantly activated in GSCs and interact to maintain the cancer stem cell identity. Cox-2 stimulates GSC self-renewal and proliferation through prostaglandin E2 (PGE2), which in turn activates the Wnt signaling pathway. Wnt signaling underlies PGE2-induced GSC self-renewal and independently directs GSC self-renewal and proliferation. Inhibition of PGE2 enhances the effect of temozolomide on GSCs, but affords only a modest survival advantage in a xenograft model in the setting of COX-independent Wnt activation. Our findings uncover an aberrant positive feedback interaction between the Cox-2/PGE2 and Wnt pathways that mediates the stem-like state in glioblastoma.
Collapse
|
41
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
42
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
43
|
KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ 2017; 24:649-659. [PMID: 28060381 DOI: 10.1038/cdd.2016.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022] Open
Abstract
Cullin3 E3 ubiquitin ligase ubiquitinates a wide range of substrates through substrate-specific adaptors Bric-a-brac, Tramtrack, and Broad complex (BTB) domain proteins. These E3 ubiquitin ligase complexes are involved in diverse cellular functions. Our recent study demonstrated that decreased Cullin3 expression induces glioma initiation and correlates with poor prognosis of patients with malignant glioma. However, the substrate recognition mechanism associated with tumorigenesis is not completely understood. Through yeast two-hybrid screening, we identified potassium channel tetramerization domain-containing 2 (KCTD2) as a BTB domain protein that binds to Cullin3. The interaction of Cullin3 and KCTD2 was verified using immunoprecipitation and immunofluorescence. Of interest, KCTD2 expression was markedly decreased in patient-derived glioma stem cells (GSCs) compared with non-stem glioma cells. Depletion of KCTD2 using a KCTD2-specific short-hairpin RNA in U87MG glioma cells and primary Ink4a/Arf-deficient murine astrocytes markedly increased self-renewal activity in addition with an increased expression of stem cell markers, and mouse in vivo intracranial tumor growth. As an underlying mechanism for these KCTD2-mediated phenotypic changes, we demonstrated that KCTD2 interacts with c-Myc, which is a key stem cell factor, and causes c-Myc protein degradation by ubiquitination. As a result, KCTD2 depletion acquires GSC features and affects aerobic glycolysis via expression changes in glycolysis-associated genes through c-Myc protein regulation. Of clinical significance was our finding that patients having a profile of KCTD2 mRNA-low and c-Myc gene signature-high, but not KCTD2 mRNA-low and c-Myc mRNA-high, are strongly associated with poor prognosis. This study describes a novel regulatory mode of c-Myc protein in malignant gliomas and provides a potential framework for glioma therapy by targeting c-Myc function.
Collapse
|
44
|
Yi Y, Hsieh IY, Huang X, Li J, Zhao W. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy. Front Pharmacol 2016; 7:477. [PMID: 28003805 PMCID: PMC5141588 DOI: 10.3389/fphar.2016.00477] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/23/2016] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most fatal malignant primary brain tumor. GBM contains functional subsets of cells called glioblastoma stem-like cells (GSCs), which are radioresistant and chemoresistant and eventually lead to tumor recurrence. Recent studies showed that GSCs reside in particular tumor niches that are necessary to support their behavior. To successfully eradicate GBM growth and recurrence, new strategies selectively targeting GSCs and/or their microenvironmental niche should be designed. In this regard, here we focus on elucidating the molecular mechanisms that govern these GSC properties and on understanding the mechanism of the microenvironmental signals within the tumor mass. Moreover, to overcome the blood–brain barrier, which represents a critical limitation of GBM treatments, a new drug delivery system should be developed. Nanoparticles can be easily modified by different methods to facilitate delivery efficiency of chemotherapeutics, to enhance the accumulation within the tumors, and to promote the capacity for targeting the GSCs. Therefore, nanotechnology has become the most promising approach to GSC-targeting therapy. Additionally, we discussed the future of nanotechnology-based targeted therapy and point out the disadvantages that should be overcome.
Collapse
Affiliation(s)
- Yang Yi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - I-Yun Hsieh
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Xiaojia Huang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|