1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
3
|
Zhou P, Zhang Q, Yang Y, Chen D, Jongkaewwattana A, Jin H, Zhou H, Luo R. Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. Autophagy 2025; 21:754-770. [PMID: 39508267 DOI: 10.1080/15548627.2024.2426114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck Anas platyrhynchos domesticus TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; co-IP: co-immunoprecipitation; DEFs: duck embryonic fibroblasts; DTMUV: duck Tembusu virus; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; IP: immunoprecipitation; IRF7: interferon regulatory factor 7; ISRE: interferon-stimulated response element; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB: nuclear factor kappa B; pAb: polyclonal antibody; poly(I:C): Polyriboinosinic polyribocytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like-receptor; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious dose; TM: tansmembrane; TOLLIP: toll interacting protein; TRIM: tripartite motif containing; UBA: ubiquitin-associated domain; Ub: ubiquitin; VSV: vesicular stomatitis virus; WT: wild type.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| |
Collapse
|
4
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Jiang H, Xie Y, Hu Z, Lu J, Zhang J, Li H, Zeng K, Peng W, Yang C, Huang J, Han Z, Bai X, Yu X. VANGL2 alleviates inflammatory bowel disease by recruiting the ubiquitin ligase MARCH8 to limit NLRP3 inflammasome activation through OPTN-mediated selective autophagy. PLoS Biol 2025; 23:e3002961. [PMID: 39899477 PMCID: PMC11790156 DOI: 10.1371/journal.pbio.3002961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/01/2024] [Indexed: 02/05/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and potentially life-threatening inflammatory disease of gastroenteric tissue characterized by episodes of intestinal inflammation, but the underlying mechanisms remain elusive. Here, we explore the role and precise mechanism of Van-Gogh-like 2 (VANGL2) during the pathogenesis of IBD. VANGL2 decreases in IBD patients and dextran sulfate sodium (DSS)-induced colitis in mice. Myeloid VANGL2 deficiency exacerbates the progression of DSS-induced colitis in mice and specifically enhances the activation of NLRP3 inflammasome in macrophages. NLRP3-specific inhibitor MCC950 effectively alleviates DSS-induced colitis in VANGL2 deficient mice. Mechanistically, VANGL2 interacts with NLRP3 and promotes the autophagic degradation of NLRP3 through enhancing the K27-linked polyubiquitination at lysine 823 of NLRP3 by recruiting E3 ligase MARCH8, leading to optineurin (OPTN)-mediated selective autophagy. Notably, decreased VANGL2 in the peripheral blood mononuclear cells from IBD patients results in overt NLRP3 inflammasome activation and sustained inflammation. Taken together, this study demonstrates that VANGL2 acts as a repressor of IBD progression by inhibiting NLRP3 inflammasome activation and provides insights into the crosstalk between inflammation and autophagy in preventing IBD.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqiang Peng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Yang
- Department of Orthopaedics, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junsheng Huang
- First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Youth Medical Association of Macao, Macao, China
| | - Zelong Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
7
|
Chen Y, Li H, Wang J, Yang S, Su Z, Wang W, Rao C, Hou L. The Ednrb-Aim2-AKT axis regulates neural crest-derived melanoblast proliferation during early development. Development 2024; 151:dev202444. [PMID: 39555938 DOI: 10.1242/dev.202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Ednrb is specifically required to develop neural crest (NC) stem cell-derived lineages. However, it is still unknown why Ednrb signaling is only needed for the early development of melanoblasts in the skin and eye. We show that Ednrb is required for the proliferation of melanoblasts during early mouse development. To understand the mechanism of melanoblast proliferation, we found that the gene absent in melanoma 2 (Aim2) is upregulated in Ednrb-deficient NC cells by RNA-sequencing analysis. Consequently, the knockdown or knockout of Aim2 partially rescued the proliferation of Ednrb-deficient melanoblasts. Conversely, the overexpression of Aim2 in melanoblasts suppressed their proliferation. We further show that Ednrb signaling could act through the microRNA miR-196b to block the suppression of melanoblast proliferation by Aim2 in primary NC cell cultures. These results reveal the Ednrb-Aim2-AKT axis in regulating melanocyte development and suggest that Ednrb signaling functions as a negative regulator of Aim2, which inhibits the proliferation of melanoblasts in early development. These findings uncover a previously unreported role for Aim2 outside the inflammasome, showing that it is a significant regulator controlling NC stem cell-derived lineage development.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongyuan Su
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunbao Rao
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
8
|
Li N, Qiu G, Xu X, Shen Y, Chen Y. TRIM11 Prevents Ferroptosis in model of asthma by UBE2N-TAX1BP1 signaling. BMC Pulm Med 2024; 24:542. [PMID: 39472837 PMCID: PMC11523820 DOI: 10.1186/s12890-024-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a complex chronic respiratory inflammatory disease affected by both genetic and environmental factors. Therefore, our study explored the influence of TRIM11 on asthma and its underlying mechanisms. Our research involved patients diagnosed with asthma and healthy volunteers recruited from our hospital. We observed a reduction in serum TRIM11 expression in asthma patients, which positively correlated with the levels of anti-IgE or IgE. Additionally, both TRIM11 mRNA and protein expression in lung tissue were diminished. The introduction of the TRIM11 gene resulted in a reduction in inflammation in an in vitro asthma model and prevented the development of asthma in a mouse model. Moreover, the TRIM11 gene exhibited a suppressive effect on Ferroptosis and mitigated ROS-induced mitochondrial damage in the asthma model. TRIM11 was found to stimulate UBE2N-TAX1BP1 signaling in the asthma model, with UBE2N being identified as the specific target for TRIM11's effects on Ferroptosis. Furthermore, TRIM11 protein interacted with UBE2N protein and facilitated the dissociation of UBE2N-UBE2N in the asthma model. In conclusion, TRIM11 plays a vital role in preventing Ferroptosis in the asthma model through UBE2N-TAX1BP1 signaling. This indicates that targeting the TRIM11 mechanism could serve as a promising strategy for anti-Ferroptosis immunotherapy in asthma treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China.
| | - Guoqing Qiu
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Xiangqin Xu
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Yan Shen
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| | - Yuming Chen
- Department of Respiratory and Critical Care Medicine, Longgang Central Hospital, 6082 Longgang Avenue, Shenzhen, 518116, China
| |
Collapse
|
9
|
Zhang Y, Xuan X, Ye D, Liu D, Song Y, Gao F, Lu S. The Role of the AIM2 Gene in Obesity-Related Glucose and Lipid Metabolic Disorders: A Recent Update. Diabetes Metab Syndr Obes 2024; 17:3903-3916. [PMID: 39465122 PMCID: PMC11512477 DOI: 10.2147/dmso.s488978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
Absent in melanoma 2 (AIM2) is a protein encoded by the AIM2 gene located on human chromosomes, AIM2 can recognize and bind to double stranded DNA (dsDNA), leading to the assembly of the AIM2 inflammasome. The AIM2 inflammasome plays important proinflammation role in many diseases, and can induce pyroptotic cell death. It has also been closely linked to the development and progression of metabolic diseases and can be activated in obesity, diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this article, we mainly review the role of AIM2 in glucose metabolism, especially in obesity-related disorders of glucose and lipid metabolism, and provide insights to better understand the role of AIM2 in the pathogenesis, and clinical treatment of metabolic disease.
Collapse
Affiliation(s)
- Yongjiao Zhang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Xiaolei Xuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Diwen Ye
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Dong Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Yufan Song
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Fei Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
10
|
Xu C, Jing W, Liu C, Yuan B, Zhang X, Liu L, Zhang F, Chen P, Liu Q, Wang H, Du X. Cytoplasmic DNA and AIM2 inflammasome in RA: where they come from and where they go? Front Immunol 2024; 15:1343325. [PMID: 39450183 PMCID: PMC11499118 DOI: 10.3389/fimmu.2024.1343325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease of undetermined etiology characterized by symmetric synovitis with predominantly destructive and multiple joint inflammation. Cytoplasmic DNA sensors that recognize protein molecules that are not themselves or abnormal dsDNA fragments play an integral role in the generation and perpetuation of autoimmune diseases by activating different signaling pathways and triggering innate immune signaling pathways and host defenses. Among them, melanoma deficiency factor 2 (AIM2) recognizes damaged DNA and double-stranded DNA and binds to them to further assemble inflammasome, initiating the innate immune response and participating in the pathophysiological process of rheumatoid arthritis. In this article, we review the research progress on the source of cytoplasmic DNA, the mechanism of assembly and activation of AIM2 inflammasome, and the related roles of other cytoplasmic DNA sensors in rheumatoid arthritis.
Collapse
Affiliation(s)
- Conghui Xu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Zheng's Acupuncture, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Fengfan Zhang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Qiang Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
11
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Yang K, Wang X, Pan H, Wang X, Hu Y, Yao Y, Zhao X, Sun T. The roles of AIM2 in neurodegenerative diseases: insights and therapeutic implications. Front Immunol 2024; 15:1441385. [PMID: 39076969 PMCID: PMC11284019 DOI: 10.3389/fimmu.2024.1441385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
AIM2, a cytosolic innate immune receptor, has the capability to recognize double-stranded DNA (dsDNA). This paper delineates the structural features of AIM2 and its mechanisms of activation, emphasizing its capacity to detect cytosolic DNA and initiate inflammasome assembly. Additionally, we explore the diverse functions of AIM2 in different cells. Insights into AIM2-mediated neuroinflammation provide a foundation for investigating novel therapeutic strategies targeting AIM2 signaling pathways. Furthermore, we present a comprehensive review of the roles of AIM2 in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we discuss its therapeutic implications. In conclusion, a profound understanding of AIM2 in neurodegenerative diseases may facilitate the development of effective interventions to mitigate neuronal damage and slow disease progression.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Hanyu Pan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinqing Wang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunhan Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yihe Yao
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
13
|
Wang S, Song A, Xie J, Wang YY, Wang WD, Zhang MJ, Wu ZZ, Yang QC, Li H, Zhang J, Sun ZJ. Fn-OMV potentiates ZBP1-mediated PANoptosis triggered by oncolytic HSV-1 to fuel antitumor immunity. Nat Commun 2024; 15:3669. [PMID: 38693119 PMCID: PMC11063137 DOI: 10.1038/s41467-024-48032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Jun Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Zhong Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
14
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
15
|
Hu C, Li M, Chen Y, Cheng W, Wang H, Zhou Y, Teng F, Ling T, Pan J, Xu H, Zheng Y, Ji G, Zhao T, You Q. AIM2 regulates autophagy to mitigate oxidative stress in aged mice with acute liver injury. Cell Death Discov 2024; 10:107. [PMID: 38429284 PMCID: PMC10907373 DOI: 10.1038/s41420-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
The cytoplasmic pattern recognition receptor, absent in melanoma 2 (AIM2), detects cytosolic DNA, activating the inflammasome and resulting in pro-inflammatory cytokine production and pyroptotic cell death. Recent research has illuminated AIM2's contributions to PANoptosis and host defense. However, the role of AIM2 in acetaminophen (APAP)-induced hepatoxicity remains enigmatic. In this study, we unveil AIM2's novel function as a negative regulator in the pathogenesis of APAP-induced liver damage in aged mice, independently of inflammasome activation. AIM2-deficient aged mice exhibited heightened lipid accumulation and hepatic triglycerides in comparison to their wild-type counterparts. Strikingly, AIM2 knockout mice subjected to APAP overdose demonstrated intensified liver injury, compromised mitochondrial stability, exacerbated glutathione depletion, diminished autophagy, and elevated levels of phosphorylated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Furthermore, our investigation revealed AIM2's mitochondrial localization; its overexpression in mouse hepatocytes amplified autophagy while dampening JNK phosphorylation. Notably, induction of autophagy through rapamycin administration mitigated serum alanine aminotransferase levels and reduced the necrotic liver area in AIM2-deficient aged mice following APAP overdose. Mechanistically, AIM2 deficiency exacerbated APAP-induced acute liver damage and inflammation in aged mice by intensifying oxidative stress and augmenting the phosphorylation of JNK and ERK. Given its regulatory role in autophagy and lipid peroxidation, AIM2 emerges as a promising therapeutic target for age-related acute liver damage treatment.
Collapse
Affiliation(s)
- Chao Hu
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yongzhen Chen
- Department of general practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wei Cheng
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Haining Wang
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yiming Zhou
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fengmeng Teng
- Affilated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Tao Ling
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Haozhe Xu
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanan Zheng
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Guozhong Ji
- Department of general practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Qiang You
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
16
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
17
|
Ahsan N, Shariq M, Surolia A, Raj R, Khan MF, Kumar P. Multipronged regulation of autophagy and apoptosis: emerging role of TRIM proteins. Cell Mol Biol Lett 2024; 29:13. [PMID: 38225560 PMCID: PMC10790450 DOI: 10.1186/s11658-023-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
TRIM proteins are characterized by their conserved N-terminal RING, B-box, and coiled-coil domains. These proteins are efficient regulators of autophagy, apoptosis, and innate immune responses and confer immunity against viruses and bacteria. TRIMs function as receptors or scaffold proteins that target substrates for autophagy-mediated degradation. Most TRIMs interact with the BECN1-ULK1 complex to form TRIMosomes, thereby efficiently targeting substrates to autophagosomes. They regulate the functions of ATG proteins through physical interactions or ubiquitination. TRIMs affect the lipidation of MAP1LC3B1 to form MAP1LC3B2, which is a prerequisite for phagophore and autophagosome formation. In addition, they regulate MTOR kinase and TFEB, thereby regulating the expression of ATG genes. TRIM proteins are efficient regulators of apoptosis and are crucial for regulating cell proliferation and tumor formation. Many TRIM proteins regulate intrinsic and extrinsic apoptosis via the cell surface receptors TGFBR2, TNFRSF1A, and FAS. Mitochondria modulate the anti- and proapoptotic functions of BCL2, BAX, BAK1, and CYCS. These proteins use a multipronged approach to regulate the intrinsic and extrinsic apoptotic pathways, culminating in coordinated activation or inhibition of the initiator and executor CASPs. Furthermore, TRIMs can have a dual effect in determining cell fate and are therefore crucial for cellular homeostasis. In this review, we discuss mechanistic insights into the role of TRIM proteins in regulating autophagy and apoptosis, which can be used to better understand cellular physiology. These findings can be used to develop therapeutic interventions to prevent or treat multiple genetic and infectious diseases.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohd Shariq
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 460012, India.
| | - Reshmi Raj
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | | | - Pramod Kumar
- Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
18
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
19
|
Jiang H, Xie Y, Lu J, Li H, Zeng K, Hu Z, Wu D, Yang J, Yao Z, Chen H, Gong X, Yu X. Pristimerin suppresses AIM2 inflammasome by modulating AIM2-PYCARD/ASC stability via selective autophagy to alleviate tendinopathy. Autophagy 2024; 20:76-93. [PMID: 37647255 PMCID: PMC10761048 DOI: 10.1080/15548627.2023.2249392] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Macroautophagy/autophagy plays an important role in regulating cellular homeostasis and influences the pathogenesis of degenerative diseases. Tendinopathy is characterized by tendon degeneration and inflammation. However, little is known about the role of selective autophagy in tendinopathy. Here, we find that pristimerin (PM), a quinone methide triterpenoid, is more effective in treating tendinopathy than the first-line drug indomethacin. PM inhibits the AIM2 inflammasome and alleviates inflammation during tendinopathy by promoting the autophagic degradation of AIM2 through a PYCARD/ASC-dependent manner. A mechanistic study shows that PM enhances the K63-linked ubiquitin chains of PYCARD/ASC at K158/161, which serves as a recognition signal for SQSTM1/p62-mediated autophagic degradation of the AIM2-PYCARD/ASC complex. We further identify that PM binds the Cys53 site of deubiquitinase USP50 through the Michael-acceptor and blocks the binding of USP50 to PYCARD/ASC, thereby reducing USP50-mediated cleavage of K63-linked ubiquitin chains of PYCARD/ASC. Finally, PM treatment in vivo generates an effect comparable to inflammasome deficiency in alleviating tendinopathy. Taken together, these findings demonstrate that PM alleviates the progression of tendinopathy by modulating AIM2-PYCARD/ASC stability via SQSTM1/p62-mediated selective autophagic degradation, thus providing a promising autophagy-based therapeutic for tendinopathy.Abbreviations: 3-MA: 3-methyladenine; AIM2: absent in melanoma 2; AT: Achilles tenotomy; ATP: adenosine triphosphate; BMDMs: bone marrow-derived macrophages; CHX: cycloheximide; Col3a1: collagen, type III, alpha 1; CQ: chloroquine; Cys: cysteine; DARTS: drug affinity responsive target stability; DTT: dithiothreitol; DUB: deubiquitinase; gDNA: genomic DNA; GSH: glutathione; His: histidine; IL1B/IL-1β: interleukin 1 beta; IND: indomethacin; IP: immunoprecipitation; LPS: lipopolysaccharide; MMP: mitochondrial membrane potential; NLRP3: NLR family, pyrin domain containing 3; PM: pristimerin; PYCARD/ASC: PYD and CARD domain containing; SN: supernatants; SOX9: SRY (sex determining region Y)-box 9; SQSTM1: sequestosome 1; Tgfb: transforming growth factor, beta; TIMP3: tissue inhibitor of metalloproteinase 3; TNMD: tenomodulin; TRAF6: TNF receptor-associated factor 6; Ub: ubiquitin; USP50: ubiquitin specific peptidase 50; WCL: whole cell lysates.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenxia Yao
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Huadan Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqian Gong
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Dudley-Fraser J, Rittinger K. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Front Mol Neurosci 2023; 16:1287257. [PMID: 38115822 PMCID: PMC10728303 DOI: 10.3389/fnmol.2023.1287257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The tripartite motif (TRIM) protein family members have been implicated in a multitude of physiologies and pathologies in different tissues. With diverse functions in cellular processes including regulation of signaling pathways, protein degradation, and transcriptional control, the impact of TRIM dysregulation can be multifaceted and complex. Here, we focus on the cellular and molecular roles of TRIMs identified in the brain in the context of a selection of pathologies including cancer and neurodegeneration. By examining each disease in parallel with described roles in brain development, we aim to highlight fundamental common mechanisms employed by TRIM proteins and identify opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jane Dudley-Fraser
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
Xiao T, Yu X, Yang L, Duan X. Palmatine treats urticaria by reducing inflammation and increasing autophagy. Front Immunol 2023; 14:1268467. [PMID: 38035098 PMCID: PMC10682667 DOI: 10.3389/fimmu.2023.1268467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Chronic spontaneous urticaria (CSU) is mainly manifested as wheals and erythema on the skin accompanied by itching, which will cause emotional anxiety and seriously affect the quality of life in patients. Palmatine (PAL) is a main chemical component of Yajieshaba, which has been found to effectively alleviate the symptoms of food allergy. However, its role and mechanism in CSU remain unclear. The present study aimed to investigate the protective effect of PAL on CSU rats. Methods We replicated the CSU rat model by intraperitoneal injection of ovalbumin (OVA) in rats on days 0, 2, 4, and 14, with a double dose given on the last challenge. PAL, loratadine and saline were given by gavage from day 5 to day 14. We observed the skin pathologic changes, mast cell degranulation, immune factor levels, inflammatory response and autophagy-related protein expression in CSU rats. Results We found PAL treatment to be effective in alleviating CSU-like skin lesions and reducing itching and mast cell degranulation in rats. Compared with the OVA group, the levels of immune and inflammatory factors were significantly reduced, neutrophil recruitment was alleviated, suggesting a reduced inflammatory response. The autophagy results showed that PAL further increased the expression of LC3, Beclin-1 and p-LKB1, p-AMPK, Atg5, Atg12 and Atg5-Atg12, while P62 and p-p70S6K1 expression decreased. They collectively suggested that autophagic flux was activated after PAL treatment. However, there was an increase in the expression of LC3I, probably due to the fact that PAL induced its accumulation in order to provide substrate for the generation of more LC3II. Discussion Overall, PAL had a protective effect on CSU in normal rats, activated the expression of autophagy and improved the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
22
|
Guo R, Zhao G, Bai G, Chen J, Han W, Cui N, Wang H. Depletion of mTOR ameliorates CD 4+ T cell pyroptosis by promoting autophagy activity in septic mice. Int Immunopharmacol 2023; 124:110964. [PMID: 37738689 DOI: 10.1016/j.intimp.2023.110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
A reduction in the number of CD4+ T cells is a central part of the immunosuppression phase of sepsis and leads to impaired immune defense ability and increased mortality. Pyroptosis, a newly discovered programmed cell death, was confirmed to be an important mechanism of lymphocytopenia in a lot of human diseases and is under the regulation of autophagy. The mammalian target of rapamycin (mTOR) pathway is closely related to CD4+ T-cell survival. Whether the mTOR pathway influences CD4+ T cell pyroptosis by regulating autophagy remains unknown. In this study, a septic mouse model was developed using cecal ligation and puncture (CLP) to explore the degree of pyroptosis and autophagy of CD4+ T cells. T-cell-specific mTOR/TSC1-knockout mice were used to investigate the role of mTOR pathway in the regulation of CD4+ T cell pyroptosis. Bafilomycin, a specific autophagy inhibitor, was used to verify the regulatory effect of autophagy on pyroptosis in septic mice. We observed aggravated pyroptosis in CD4+ T cells in CLP mice accompanied by impaired autophagy activity and an overactivated mTOR signaling pathway. Depletion of mTOR relieved autophagy deficiency and reduced the proportion of pyroptotic CD4+ T cells. In T-cell-specific mTOR-knockout mice treated with bafilomycin, the protective effect of mTOR depletion vanished. This indicated that autophagy negatively regulates CD4+ T cell pyroptosis, which is under the control of the mTOR pathway. Taken together, our findings emphasize the importance of pyroptosis in sepsis-induced lymphopenia and reveal the regulatory effects of the mTOR pathway and the role of autophagy in this regulation.
Collapse
Affiliation(s)
- Ran Guo
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guangxu Bai
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Wen Han
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Beijing 100035, China.
| |
Collapse
|
23
|
Yu T, Yang X, Fu Q, Liang J, Wu X, Sheng J, Chen Y, Xiao L, Wu Y, Nie D, You X, Mai H, Chen K, Hu S. TRIM11 attenuates Treg cell differentiation by p62-selective autophagic degradation of AIM2. Cell Rep 2023; 42:113231. [PMID: 37804507 DOI: 10.1016/j.celrep.2023.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023] Open
Abstract
Ubiquitination is an important protein modification that regulates diverse biological processes, including CD4+ T cell differentiation and functions. However, the function of most E3 ubiquitin ligases in CD4+ T cell differentiation and CD4+ T cell-mediated pathological diseases remains unclear. In this study, we find that tripartite motif-containing motif 11 (TRIM11) specifically negatively regulates regulatory T (Treg) cell differentiation in CD4+ T cells and promotes autoimmune disease development in an AIM2-dependent manner. Mechanistically, TRIM11 interacts with absent in melanoma 2 (AIM2) and promotes the selective autophagic degradation of AIM2 by inducing AIM2 ubiquitination and binding to p62 in CD4+ T cells. AIM2 attenuates AKT and FOXO1 phosphorylation, MYC signaling, and glycolysis, thereby promoting the stability of Treg cells during experimental autoimmune encephalomyelitis (EAE). Our findings suggest that TRIM11 serves as a potential target for immunotherapeutic intervention for dysregulated immune responses that lead to autoimmunity and cancers.
Collapse
Affiliation(s)
- Ting Yu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Pharmacy, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaofang Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Fu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Junyu Liang
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinger Wu
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Junli Sheng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Lu Xiao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuxia Wu
- Department of Pharmacy, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, HaiKou, Hainan, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Haiyan Mai
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Kang Chen
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Li L, Dickinson MS, Coers J, Miao EA. Pyroptosis in defense against intracellular bacteria. Semin Immunol 2023; 69:101805. [PMID: 37429234 PMCID: PMC10530505 DOI: 10.1016/j.smim.2023.101805] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Pathogenic microbes invade the human body and trigger a host immune response to defend against the infection. In response, host-adapted pathogens employ numerous virulence strategies to overcome host defense mechanisms. As a result, the interaction between the host and pathogen is a dynamic process that shapes the evolution of the host's immune response. Among the immune responses against intracellular bacteria, pyroptosis, a lytic form of cell death, is a crucial mechanism that eliminates replicative niches for intracellular pathogens and modulates the immune system by releasing danger signals. This review focuses on the role of pyroptosis in combating intracellular bacterial infection. We examine the cell type specific roles of pyroptosis in neutrophils and intestinal epithelial cells. We discuss the regulatory mechanisms of pyroptosis, including its modulation by autophagy and interferon-inducible GTPases. Furthermore, we highlight that while host-adapted pathogens can often subvert pyroptosis, environmental microbes are effectively eliminated by pyroptosis.
Collapse
Affiliation(s)
- Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
25
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
26
|
Tang D, Kang R. SQSTM1 is a therapeutic target for infection and sterile inflammation. Cytokine 2023; 169:156317. [PMID: 37542833 DOI: 10.1016/j.cyto.2023.156317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Inflammation represents a fundamental immune response triggered by various detrimental stimuli, such as infections, tissue damage, toxins, and foreign substances. Protein degradation plays a crucial role in regulating the inflammatory process at multiple levels. The identification of sequestosome 1 (SQSTM1, also known as p62) protein as a binding partner of lymphocyte-specific protein tyrosine kinase in 1995 marked a significant milestone. Subsequent investigations unveiled the activity of SQSTM1 to interact with diverse unstructured substrates, including proteins, organelles, and pathogens, facilitating their delivery to the lysosome for autophagic degradation. In addition to its well-established intracellular functions, emerging studies have reported the active secretion or passive release of SQSTM1 by immune or non-immune cells, orchestrating the inflammatory responses. These distinct characteristics render SQSTM1 a critical therapeutic target in numerous human diseases, including infectious diseases, rheumatoid arthritis, inflammatory bowel disease, pancreatitis, asthma, chronic obstructive pulmonary disease, and cardiovascular diseases. This review provides a comprehensive overview of the structure and modulation of SQSTM1, discusses its intracellular and extracellular roles in inflammation, and highlights its significance in inflammation-related diseases. Future investigations focusing on elucidating the precise localization, structure, post-translational modifications of SQSTM1, as well as the identification of additional interacting partners, hold promise for unravelling further insights into the multifaceted functions of SQSTM1.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Xu J, Kong L, Oliver BA, Li B, Creasey EA, Guzman G, Schenone M, Carey KL, Carr SA, Graham DB, Deguine J, Xavier RJ. Constitutively active autophagy in macrophages dampens inflammation through metabolic and post-transcriptional regulation of cytokine production. Cell Rep 2023; 42:112708. [PMID: 37392388 PMCID: PMC10503440 DOI: 10.1016/j.celrep.2023.112708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Autophagy is an essential cellular process that is deeply integrated with innate immune signaling; however, studies that examine the impact of autophagic modulation in the context of inflammatory conditions are lacking. Here, using mice with a constitutively active variant of the autophagy gene Beclin1, we show that increased autophagy dampens cytokine production during a model of macrophage activation syndrome and in adherent-invasive Escherichia coli (AIEC) infection. Moreover, loss of functional autophagy through conditional deletion of Beclin1 in myeloid cells significantly enhances innate immunity in these contexts. We further analyzed primary macrophages from these animals with a combination of transcriptomics and proteomics to identify mechanistic targets downstream of autophagy. Our study reveals glutamine/glutathione metabolism and the RNF128/TBK1 axis as independent regulators of inflammation. Altogether, our work highlights increased autophagic flux as a potential approach to reduce inflammation and defines independent mechanistic cascades involved in this control.
Collapse
Affiliation(s)
- Jinjin Xu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Blayne A Oliver
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gaelen Guzman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Cheng X, Wei Y, Qian Z, Han L. Autophagy Balances Neuroinflammation in Alzheimer's Disease. Cell Mol Neurobiol 2023; 43:1537-1549. [PMID: 35960407 PMCID: PMC11412430 DOI: 10.1007/s10571-022-01269-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 01/20/2023]
Abstract
Autophagy is a highly evolutionary conserved process that degrades cytosolic macromolecules or damaged organelles (e.g., mitochondria), as well as intracellular pathogens for energy and survival. Dysfunction of autophagy has been associated with the pathologies of Alzheimer's disease (AD), including Aβ plaques and neurofibrillary tangles. Recently, the presence of sustained immune response in the brain has been considered a new core pathology in AD. Accumulating evidence suggests that autophagy activation may suppress inflammation response through degrading inflammasomes or pro-inflammatory cytokines and improving immune system function in both clinical trials and preclinical studies. This review provides an overview of updated information on autophagy and inflammation and their potential mediators in AD. In summary, we believe that understanding the relationship between autophagy and inflammation will provide insightful knowledge for future therapeutic implications in AD.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yong Wei
- GeneScience Pharmaceuticals CoLtd., Changchun, 130012, People's Republic of China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Li Han
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
29
|
Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARγ inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci 2023. [PMID: 37096255 DOI: 10.1111/cas.15818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Blockade of the programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) immune checkpoint could increase antitumor immunotherapy for multiple types of cancer, but the response rate of patients is about 10%-40%. Peroxisome proliferator activated receptor γ (PPARγ) plays an important role in regulating cell metabolism, inflammation, immunity, and cancer progression, while the mechanism of PPARγ on cancer cell immune escape is still unclear. Here we found that PPARγ expression exhibits a positive correlation with activation of T cells in non-small-cell lung cancer (NSCLC) by clinical analysis. Deficiency of PPARγ promoted immune escape of NSCLC by inhibiting T-cell activity, which was associated with increased PD-L1 protein level. Further analysis showed that PPARγ reduced PD-L1 expression independent of its transcriptional activity. PPARγ contains the microtubule-associated protein 1A/1B-light chain 3 (LC3) interacting region motif, which acts as an autophagy receptor for PPARγ binding to LC3, leading to degradation of PD-L1 in lysosomes, which in turn suppresses NSCLC tumor growth by increasing T-cell activity. These findings suggest that PPARγ inhibits the tumor immune escape of NSCLC by inducing PD-L1 autophagic degradation.
Collapse
Affiliation(s)
- Qian Gou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
30
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
31
|
Wang Z, Wang Q, Li S, Li XJ, Yang W, He D. Microglial autophagy in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci 2023; 14:1065183. [PMID: 36704504 PMCID: PMC9872664 DOI: 10.3389/fnagi.2022.1065183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genetic mutations that are inherited. Both sporadic and familial cases display complex neuropathology and represent the most perplexing neurological disorders. Because of the undefined pathogenesis and complex clinical manifestations, there is still no effective treatment for both AD and PD. Understanding the pathogenesis of these important neurodegenerative diseases is important for developing successful therapies. Increasing evidence suggests that microglial autophagy is associated with the pathogenesis of AD and PD, and its dysfunction has been implicated in disease progression. In this review, we focus on the autophagy function in microglia and its dysfunction in AD and PD disease models in an attempt to help our understanding of the pathogenesis and identifying new therapeutic targets of AD and PD.
Collapse
Affiliation(s)
| | | | | | | | | | - Dajian He
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
33
|
Abstract
The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell's ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called "canonical" inflammasomes.
Collapse
Affiliation(s)
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
34
|
Du L, Wang X, Chen S, Guo X. The AIM2 inflammasome: A novel biomarker and target in cardiovascular disease. Pharmacol Res 2022; 186:106533. [PMID: 36332811 DOI: 10.1016/j.phrs.2022.106533] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic sensor that recognises the double-strand DNA. AIM2 inflammasome is a protein platform in the cell that initiates innate immune responses by cleaving pro-caspase-1 and converting IL-1β and IL-18 to their mature forms. Additionally, AIM2 inflammasome promotes pyroptosis by converting Gasdermin-D (GSDMD) to GSDMD-N fragments. An increasing number of studies have indicated the important and decisive roles of the AIM2 inflammasome, IL-1β, and pyroptosis in cardiovascular diseases, such as coronary atherosclerosis, myocardial infarction, ischaemia/reperfusion injury, heart failure, aortic aneurysm and ischaemic stroke. Here, we review the molecular mechanism of the activation and effect of the AIM2 inflammasome in cardiovascular disease, revealing new insights into pathogenic factors that may be targeted to treat cardiovascular disease and related dysfunctions.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Siyuan Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
35
|
Mehto S, Jena KK, Yadav R, Priyadarsini S, Samal P, Krishna S, Dhar K, Jain A, Chauhan NR, Murmu KC, Bal R, Sahu R, Jaiswal P, Sahoo BS, Patnaik S, Kufer TA, Rusten TE, Chauhan S, Prasad P, Chauhan S. Selective autophagy of RIPosomes maintains innate immune homeostasis during bacterial infection. EMBO J 2022; 41:e111289. [PMID: 36221902 PMCID: PMC9713718 DOI: 10.15252/embj.2022111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.
Collapse
Affiliation(s)
- Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Present address:
Division of Immunology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | | | - Pallavi Samal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Kollori Dhar
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,School of BiotechnologyKIIT UniversityBhubaneswarIndia
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Pundrik Jaiswal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | | | | | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Swati Chauhan
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,CSIR–Centre For Cellular And Molecular Biology (CCMB)HyderabadIndia
| |
Collapse
|
36
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
37
|
Jian Q, Ma Y. Pattern recognition receptor AIM2: Activation, regulation and the role in transplant immunology. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Zhang J, Wirtz S. Does Pyroptosis Play a Role in Inflammasome-Related Disorders? Int J Mol Sci 2022; 23:ijms231810453. [PMID: 36142364 PMCID: PMC9499396 DOI: 10.3390/ijms231810453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammasomes are multiprotein complexes orchestrating intracellular recognition of endogenous and exogenous stimuli, cellular homeostasis, and cell death. Upon sensing of certain stimuli, inflammasomes typically activate inflammatory caspases that promote the production and release of the proinflammatory cytokines IL-1β, IL-1α, and IL-18 and induce a type of inflammatory cell death known as “pyroptosis”. Pyroptosis is an important form of regulated cell death executed by gasdermin proteins, which is largely different from apoptosis and necrosis. Recently, several signaling pathways driving pyroptotic cell death, including canonical and noncanonical inflammasome activation, as well as caspase-3-dependent pathways, have been reported. While much evidence exists that pyroptosis is involved in the development of several inflammatory diseases, its contribution to inflammasome-related disorders (IRDs) has not been fully clarified. This article reviews molecular mechanisms leading to pyroptosis, and attempts to provide evidence for its possible role in inflammasome-related disorders, including NLR pyrin domain containing 3 (NLRP3) inflammasome disease, NLR containing a caspase recruitment domain 4 (NLRC4) inflammasome disease, and pyrin inflammasome disease. Although the specific mechanism needs further investigations, these studies have uncovered the role of pyroptosis in inflammasome-related disorders and may open new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Jiajia Zhang
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
39
|
Tian J, Zhou D, Xiang L, Xie B, Wang B, Li Y, Liu X. Calycosin represses AIM2 inflammasome-mediated inflammation and pyroptosis to attenuate monosodium urate-induced gouty arthritis through NF-κB and p62-Keap1 pathways. Drug Dev Res 2022; 83:1654-1672. [PMID: 36069386 DOI: 10.1002/ddr.21985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022]
Abstract
Gouty arthritis is an inflammatory disease induced by monosodium urate (MSU), and is closely related to the activation of inflammasomes. Calycosin plays an anti-inflammatory role in arthritis. This study explored the mechanism of Calycosin in MSU-induced gouty arthritis. MSU-induced gouty arthritis mouse models with or without treatment of Calycosin were established, and physiological and pathological indicators were determined. Similarly, peripheral blood mononuclear cells (PBMCs) and THP-1 macrophages were used in vitro. Lactate dehydrogenase (LDH) was tested. The degree of centrifugal infiltration was detected by immunofluorescence. ELISA and quantitative reverse-transcription polymerase chain reaction were conducted to determine the levels of inflammatory factors. Immunohistochemistry, immunofluorescence, and flow cytometry were utilized to detect the content of caspase-1. Protein expressions of NF-κB-, p62-Keap1 pathway-, and pyroptosis-related factors were examined by western blot. In MSU-induced mouse models, calycosin increased mechanical hyperalgesia but decreased the swelling index of the mouse knee joint in a time-dependent manner. MSU treatment increased inflammatory cells and LysM-eGFP+ neutrophils recruitment in vivo, and promoted the LDH content in vitro, and meanwhile, calycosin reversed the aforementioned effects of MSU. In addition, calycosin repressed the release of inflammatory factors, promoted p62 level and diminished the levels of AIM2, caspase-1, ASC, IL-1β, Keap1, Cleaved GSDMD, and Cleaved caspase-1 and phosphorylation of p65 and IκBα in MSU-induced mouse or cell models. Furthermore, AIM2 silencing also inhibited MSU-induced inflammation and pyroptosis. Collectively, calycosin may inhibit AIM2 inflammasomes-mediated inflammation and pyroptosis through NF-κB and p62-Keap1 pathways, ultimately playing a protective role in gouty arthritis.
Collapse
Affiliation(s)
- Jing Tian
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Dapeng Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Liangbi Xiang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Bing Xie
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Baichuan Wang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Li
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinwei Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
40
|
Zhou F, Liu Y, Ai W, Wang Y, Gan M, Jiang Q, Han T, Wang JB. GNIP1 functions both as a scaffold protein and an E3 ubiquitin ligase to regulate autophagy in lung cancer. Cell Commun Signal 2022; 20:133. [PMID: 36042481 PMCID: PMC9426035 DOI: 10.1186/s12964-022-00936-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023] Open
Abstract
Background Glycogen-Interacting Protein 1 (GNIP1), an E3 ligase, is a member of the tripartite motif (TRIM) family proteins. Current studies on GNIP1 mainly focus on glycogen metabolism. However, the function and molecular mechanisms of GNIP1 in regulating autophagy still remains unclear. This study aimed to investigate the regulatory mechanism of GNIP1 in regulating autophagy in non-small cell lung cancer (NSCLC). Methods Crystal violet staining assays were used to evaluate the ability of cell growth and proliferation. Transwell and scratch wound healing assays were used to evaluate the cell migration ability. The protein expressions were measured by western blot and immunohistochemistry. Co-immunoprecipitation assays determined the protein–protein interactions. The in vivo effect of GNIP1 on tumor growth was determined by xenograft assay. Results We found that GNIP1 was overexpressed in tumor tissues and the expression level of GNIP1 was related to the poor prognosis and the survival time of NSCLC patients. In non-small cell lung cancer (NSCLC), GNIP1 increased proliferation and migration of cancer cells by promoting autophagy. Mechanistic studies indicated that GNIP1, as a scaffold protein, recruited BECN1 and LC3B to promote the formation of autophagosomes. Besides, GNIP1 mediated the degradation of 14-3-3ζ, the negative regulator of VPS34 complex, thus promoting autophagy. Overexpressing GNIP1 promoted tumorigenesis and enhanced autophagy in xenograft models. Conclusion GNIP1 promotes proliferation and migration of NSCLC cells through mediating autophagy, which provides theoretical basis for targeting GNIP1 as anti-cancer drugs. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00936-x.
Collapse
Affiliation(s)
- Feifei Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yufeng Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wenqian Ai
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yanan Wang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Qingkun Jiang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
41
|
Uresti-Rivera EE, García-Hernández MH. AIM2-inflammasome role in systemic lupus erythematous and rheumatoid arthritis. Autoimmunity 2022; 55:443-454. [PMID: 35880661 DOI: 10.1080/08916934.2022.2103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inflammasome AIM2 regulates multiple aspects of innate immune functions and serves as a critical mediator of inflammatory responses. AIM2 inflammasome activation leads to the production of pro-inflammatory cytokines, IL-1β and IL-18 and participates triggering a pyroptosis response needed to counteract excessive cell proliferation. In addition, AIM2 expression and activation is wide regulated since alteration in its activity may derived in pathological consequences. Consequently, deregulated AIM2 activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of AIM2 inflammasome, as well as its contribution in rheumatoid arthritis and systemic lupus erythematous pathology. Finally, we highlight the participation of the AIM2-inflammasome at the level of joint in rheumatoid arthritis and at kidney in systemic lupus erythematous. The development of therapeutic strategies based on modulation of AIM2-inflammasome activity should have a tissue-specific focus.
Collapse
Affiliation(s)
- E E Uresti-Rivera
- Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosi, Mexico.,Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, UASLP, San Luis Potosí, Mexico
| | - M H García-Hernández
- Instituto Mexicano del Seguro Social, IMSS, Unidad de Investigación Biomédica, Delegación Zacatecas, Zacatecas, México
| |
Collapse
|
42
|
Wu Y, Zhou T, Hu J, Liu Y, Jin S, Wu J, Guan X, Cui J. Autophagy Activation Induces p62-Dependent Autophagic Degradation of Dengue Virus Capsid Protein During Infection. Front Microbiol 2022; 13:889693. [PMID: 35865923 PMCID: PMC9294600 DOI: 10.3389/fmicb.2022.889693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, dengue virus infection is one of the most prevalent and rapidly spreading arthropod-borne diseases worldwide with about 400 million infections every year. Although it has been reported that the dengue virus could take advantage of autophagy to promote its propagation, the association between selective autophagy and the dengue virus remains largely unclear. Here, we demonstrated that dengue virus capsid protein, the key viral protein for virus assembly, maturation, and replication, underwent autophagic degradation after autophagy activation. Autophagy cargo receptor p62 delivered ubiquitinated capsid protein to autophagosomes for degradation, which could be enhanced by Torin 1 treatments. Further study revealed that the association between p62 and viral capsid protein was dependent on the ubiquitin-binding domain of p62, and the poly-ubiquitin conjugated at lysine 76 of capsid protein served as a recognition signal for autophagy. Consistently, p62 deficiency in Huh7 cells led to the enhancement of dengue virus replication. Our study revealed that p62 targeted dengue virus capsid protein for autophagic degradation in a ubiquitin-dependent manner, which might uncover the potential roles of p62 in restricting dengue virus replication.
Collapse
Affiliation(s)
- Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Evavold CL, Kagan JC. Diverse Control Mechanisms of the Interleukin-1 Cytokine Family. Front Cell Dev Biol 2022; 10:910983. [PMID: 35832789 PMCID: PMC9272893 DOI: 10.3389/fcell.2022.910983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022] Open
Abstract
The majority of interleukin-1 (IL-1) family cytokines lack amino terminal secretion signals or transmembrane domains for secretion along the conventional biosynthetic pathway. Yet, these factors must be translocated from the cytoplasm across the plasma membrane into the extracellular space in order to regulate inflammation. Recent work has identified an array of mechanisms by which IL-1 family cytokines can be released into the extracellular space, with supramolecular organizing centers known as inflammasomes serving as dominant drivers of this process. In this review, we discuss current knowledge of the mechanisms of IL-1 family cytokine synthesis, processing, and release from cells. Using this knowledge, we propose a model whereby host metabolic state dictates the route of IL-1β secretion, with implications for microbial infection and sterile inflammation.
Collapse
Affiliation(s)
- Charles L. Evavold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Charles L. Evavold, ; Jonathan C. Kagan,
| |
Collapse
|
45
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
46
|
Deng Y, Wang Y, Li L, Miao EA, Liu P. Post-Translational Modifications of Proteins in Cytosolic Nucleic Acid Sensing Signaling Pathways. Front Immunol 2022; 13:898724. [PMID: 35795661 PMCID: PMC9250978 DOI: 10.3389/fimmu.2022.898724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
The innate immune response is the first-line host defense against pathogens. Cytosolic nucleic acids, including both DNA and RNA, represent a special type of danger signal to initiate an innate immune response. Activation of cytosolic nucleic acid sensors is tightly controlled in order to achieve the high sensitivity needed to combat infection while simultaneously preventing false activation that leads to pathologic inflammatory diseases. In this review, we focus on post-translational modifications of key cytosolic nucleic acid sensors that can reversibly or irreversibly control these sensor functions. We will describe phosphorylation, ubiquitination, SUMOylation, neddylation, acetylation, methylation, succinylation, glutamylation, amidation, palmitoylation, and oxidation modifications events (including modified residues, modifying enzymes, and modification function). Together, these post-translational regulatory modifications on key cytosolic DNA/RNA sensing pathway members reveal a complicated yet elegantly controlled multilayer regulator network to govern innate immune activation.
Collapse
Affiliation(s)
- Yu Deng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ying Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lupeng Li
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward A. Miao
- Department of Immunology and Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Pengda Liu,
| |
Collapse
|
47
|
You R, He X, Zeng Z, Zhan Y, Xiao Y, Xiao R. Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Front Immunol 2022; 13:841732. [PMID: 35693810 PMCID: PMC9174462 DOI: 10.3389/fimmu.2022.841732] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases are a group of heterogeneous diseases with diverse clinical manifestations that can be divided into systemic and organ-specific. The common etiology of autoimmune diseases is the destruction of immune tolerance and the production of autoantibodies, which attack specific tissues and/or organs in the body. The pathogenesis of autoimmune diseases is complicated, and genetic, environmental, infectious, and even psychological factors work together to cause aberrant innate and adaptive immune responses. Although the exact mechanisms are unclear, recently, excessive exacerbation of pyroptosis, as a bond between innate and adaptive immunity, has been proven to play a crucial role in the development of autoimmune disease. Pyroptosis is characterized by pore formation on cell membranes, as well as cell rupture and the excretion of intracellular contents and pro-inflammatory cytokines, such as IL-1β and IL-18. This overactive inflammatory programmed cell death disrupts immune system homeostasis and promotes autoimmunity. This review examines the molecular structure of classical inflammasomes, including NLRP3, AIM2, and P2X7-NLRP3, as the switches of pyroptosis, and their molecular regulation mechanisms. The sophisticated pyroptosis pathways, including the canonical caspase-1-mediated pathway, the noncanonical caspase-4/5/11-mediated pathway, the emerging caspase-3-mediated pathway, and the caspase-independent pathway, are also described. We highlight the recent advances in pyroptosis in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, Sjögren's syndrome and dermatomyositis, and attempt to identify its potential advantages as a therapeutic target or prognostic marker in these diseases.
Collapse
Affiliation(s)
- Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
48
|
Zhang Y, Liu Q, Ning J, Jiang T, Kang A, Li L, Pang Y, Zhang B, Huang X, Wang Q, Bao L, Niu Y, Zhang R. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM 2.5 exposure-induced pulmonary fibrosis of mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128655. [PMID: 35334267 DOI: 10.1016/j.jhazmat.2022.128655] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Long-term inhalation of fine particulate matter (PM2.5) can cause serious effects on the respiratory system. It might be attributed to the fact that PM2.5 could directly enter and deposit in lung tissues. We established models of PM2.5 exposure in vivo and in vitro to explore the adverse effects of ambient PM2.5 on pulmonary and its potential pathogenic mechanisms. Our results showed that PM2.5 exposure promoted the deposition of ECM and the increased stiffness of the lungs, and then led to pulmonary fibrosis in time- and dose- dependent manners. Pulmonary function test showed restrictive ventilation function in mice after PM2.5 exposure. After PM2.5 exposure, ALKBH5 was recognized by TRIM11 and then degraded through the proteasome pathway. ALKBH5 deficiency (ALKBH5-/-) aggravated restrictive ventilatory disorder and promoted ECM deposition in lungs of mice induced by PM2.5. And the YAP1 signaling pathway was more activated in ALKBH5-/- than WT mice after PM2.5 exposure. In consequence, decreased ALKBH5 protein levels regulated miRNAs and then the miRNAs-targeted YAP1 signaling was activated to promote pulmonary fibrosis induced by PM2.5.
Collapse
Affiliation(s)
- Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Science and Technology Office, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - XiaoYan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
49
|
He J, Du C, Peng X, Hong W, Qiu D, Qiu X, Zhang X, Qin Y, Zhang Q. Hepatocyte nuclear factor 1A suppresses innate immune response by inducing degradation of TBK1 to inhibit steatohepatitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Xu J, Deng Y, Ke Y, Zhu Y, Wang P, Yu Q, Li C, Shi B. Mutation of Beclin1 acetylation site at K414 alleviates high glucose-induced podocyte impairment in the early stage of diabetic nephropathy by inhibiting hyperactivated autophagy. Mol Biol Rep 2022; 49:3919-3926. [PMID: 35175505 DOI: 10.1007/s11033-022-07242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Our group recently reported that a mutation of the novel Beclin1 K414R acetylation site impacts the stability of Beclin1 protein, which decreases autophagy in adipocytes and further impedes adipocyte differentiation and lipolysis. This study was to explore whether Beclin1 acetylation plays a role in the early renal injury induced by high glucose and to further investigate the K414R mutation site in podocytes. METHODS Male Sprague-Dawley rats were randomized to con (control) and diabetic nephropathy (DN) groups. The DN group was induced by a single 55 mg/kg intraperitoneal injection of streptozotocin and fed a high-fat and high-sugar diet (the con group received an equal volume of the vehicle and fed a plain diet), after 3 days of induction, blood glucose levels were measured to confirm the onset of diabetes. Then, at weeks 0 and 4, the biochemical index was assayed and renal cortex tissues were harvested. MPC5 podocytes were cultured in vitro. Beclin1 (K414R)-pLVX-ZsGreen1-N1(wild-type or mutant) lentiviral plasmids were transfected into podocytes. Western blot or immunoprecipitation was used to test proteins or the acetylation levels respectively, and immunohistochemistry was used to analyze morphological changes of podocytes. Immunofluorescence was used to detect the aggregation of LC3 puncta. RESULTS The acetylation level of Beclin1 was upregulated with podocyte injury exacerbated in high glucose at 24 h and that a mutation at K414R could inhibit hyperactivated autophagy, which ameliorated podocyte impairment. CONCLUSION These findings suggest that the acetylation site at K414 is a critical molecule and drug target and that further research into this area is warranted.
Collapse
Affiliation(s)
- Jun Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yujie Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Yingying Ke
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China
| | - Yunxia Zhu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Qing Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Chengqian Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|