1
|
Tomaz da Silva M, Joshi AS, Kumar A. Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair. JCI Insight 2025; 10:e187825. [PMID: 39874107 PMCID: PMC11949035 DOI: 10.1172/jci.insight.187825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduced their expansion and skeletal muscle regeneration following injury. Fn14 was required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibited Notch signaling but led to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improved proliferation and inhibited premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbated myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD), whereas its overexpression improved the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.
Collapse
MESH Headings
- Animals
- Satellite Cells, Skeletal Muscle/metabolism
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Mice, Inbred mdx
- Cell Differentiation
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- TWEAK Receptor/metabolism
- TWEAK Receptor/genetics
- Cell Proliferation
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Signal Transduction
- Cell Self Renewal
- Disease Models, Animal
- PAX7 Transcription Factor/metabolism
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, and
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, USA
| |
Collapse
|
2
|
Tomaz da Silva M, Joshi AS, Kumar A. Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.06.616900. [PMID: 39803454 PMCID: PMC11722277 DOI: 10.1101/2024.10.06.616900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduces their expansion and skeletal muscle regeneration following injury. Fn14 is required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibits Notch signaling but leads to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improves proliferation and inhibits premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbates myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD) whereas its overexpression improves the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aniket S. Joshi
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Ashok Kumar
- Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
3
|
Liu Y, Li S, Robertson R, Granet JA, Aubry I, Filippelli RL, Tremblay ML, Chang NC. PTPN1/2 inhibition promotes muscle stem cell differentiation in Duchenne muscular dystrophy. Life Sci Alliance 2025; 8:e202402831. [PMID: 39477543 PMCID: PMC11527974 DOI: 10.26508/lsa.202402831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the DMD gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model mdx, we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs. To restore STAT3-mediated myogenic signaling, we examined the effect of K884, a novel PTPN1/2 inhibitor, on DMD MuSCs. Treatment with K884 enhanced STAT3 phosphorylation and promoted myogenic differentiation of DMD patient-derived MuSCs. In MuSCs from mdx mice, K884 treatment increased the number of asymmetric cell divisions, correlating with enhanced myogenic differentiation. Interestingly, the pro-myogenic effect of K884 is specific to human and murine DMD MuSCs and is absent from control MuSCs. Moreover, PTPN1/2 loss-of-function experiments indicate that the pro-myogenic impact of K884 is mediated mainly through PTPN1. We propose that PTPN1/2 inhibition may serve as a therapeutic strategy to restore the myogenic function of MuSCs in DMD.
Collapse
MESH Headings
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Animals
- Cell Differentiation/drug effects
- Humans
- Mice
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Mice, Inbred mdx
- STAT3 Transcription Factor/metabolism
- Stem Cells/metabolism
- Stem Cells/cytology
- Muscle Development/genetics
- Muscle Development/drug effects
- Disease Models, Animal
- Phosphorylation
- Signal Transduction/drug effects
- Muscle, Skeletal/metabolism
Collapse
Affiliation(s)
- Yiyang Liu
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Jules A Granet
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Isabelle Aubry
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Michel L Tremblay
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
- Goodman Cancer Institute, McGill University, Montréal, Canada
| |
Collapse
|
4
|
Caputo L, Stamenkovic C, Tierney MT, Falzarano MS, Bassel-Duby R, Ferlini A, Olson EN, Puri PL, Sacco A. Modulation of the JAK2-STAT3 pathway promotes expansion and maturation of human iPSCs-derived myogenic progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.624203. [PMID: 39713478 PMCID: PMC11661153 DOI: 10.1101/2024.12.09.624203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Generation of in vitro induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation in vivo as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation. Here we demonstrate that modulation of the JAK2/STAT3 signaling pathway during an in vitro skeletal muscle differentiation protocol, increases the yield of PAX7+ and CD54+ SMPCs and drive them to a postnatal maturation stage, in both human ES and patient-derived iPSCs. Importantly, upon removal of the inhibition from the cultures, the obtained SMPCs are able to differentiate into multinucleated myotubes in vitro. These findings reveal that modulation of the JAK2/STAT3 signaling pathway is a potential therapeutic avenue to generate SMPCs in vitro with increase potential for cell-therapy approaches.
Collapse
Affiliation(s)
- Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew T. Tierney
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Wang L, Wang M, Tang X, Zhang M, Zhang K, Gao B. Mechanistic Studies of Cyclooxygenase-2 (COX-2) in Skeletal Muscle Cells During Rotator Cuff Injury: An In Vitro Study. Physiol Res 2024; 73:769-778. [PMID: 39545791 PMCID: PMC11629944 DOI: 10.33549/physiolres.935282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 12/13/2024] Open
Abstract
The mechanism of rotator cuff injury remains to be elucidated. And COX-2 plays a dual role in skeletal muscle injury and regeneration, would be associated with the development of rotator cuff injury. Therefore, we chose human skeletal muscle cells (HSKMC) as an in vitro muscle tissue model and transfected lentivirus with overexpressed COX-2 to simulate the in vitro environment of rotator cuff injury. To investigate the specific molecular biological mechanism of COX-2, transcriptome sequencing (RNA-Seq) was used to analyze the differentially expressed mRNAs in HSKMC overexpressing COX-2. Enrichment analysis was performed to analyze these differentially expressed genes and real-time quantitative PCR (RT-qPCR) was used to examine the mRNA levels of genes induced by overexpression. Subsequently, the role of COX-2 in cell proliferation was confirmed by cell counting kit-8 (CCK-8), and focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by COX-2 was utilized by western blotting (WB). The results showed that total of 30,759 differentially expressed genes were obtained, and the expression of CYP4F3 and GPR87 was significantly increased. COX-2 could bind CYP4F3 and GPR87 and co-localize with them in the cytoplasm. Finally, COX-2 promoted the proliferation of human skeletal muscle cells by activating the FAK and STAT3 pathways.
Collapse
Affiliation(s)
- L Wang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Jiangbei District, Ningbo, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|
6
|
Catarinella G, Bracaglia A, Skafida E, Procopio P, Ruggieri V, Parisi C, De Bardi M, Borsellino G, Madaro L, Puri PL, Sacco A, Latella L. STAT3 inhibition recovers regeneration of aged muscles by restoring autophagy in muscle stem cells. Life Sci Alliance 2024; 7:e202302503. [PMID: 38843935 PMCID: PMC11157169 DOI: 10.26508/lsa.202302503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.
Collapse
Affiliation(s)
| | - Andrea Bracaglia
- IRCCS Fondazione Santa Lucia, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Emilia Skafida
- IRCCS Fondazione Santa Lucia, Rome, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Veronica Ruggieri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Parisi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Luca Madaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lucia Latella
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
7
|
Fang Y, Yuan C, Li C, Lu C, Yu W, Wang G. The Mediator Med23 controls a transcriptional switch for muscle stem cell proliferation and differentiation in muscle regeneration. Cell Rep 2024; 43:114177. [PMID: 38691453 DOI: 10.1016/j.celrep.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Muscle stem cells (MuSCs) contribute to a robust muscle regeneration process after injury, which is highly orchestrated by the sequential expression of multiple key transcription factors. However, it remains unclear how key transcription factors and cofactors such as the Mediator complex cooperate to regulate myogenesis. Here, we show that the Mediator Med23 is critically important for MuSC-mediated muscle regeneration. Med23 is increasingly expressed in activated/proliferating MuSCs on isolated myofibers or in response to muscle injury. Med23 deficiency reduced MuSC proliferation and enhanced its precocious differentiation, ultimately compromising muscle regeneration. Integrative analysis revealed that Med23 oppositely impacts Ternary complex factor (TCF)-targeted MuSC proliferation genes and myocardin-related transcription factor (MRTF)-targeted myogenic differentiation genes. Consistently, Med23 deficiency decreases the ETS-like transcription factor 1 (Elk1)/serum response factor (SRF) binding at proliferation gene promoters but promotes MRTF-A/SRF binding at myogenic gene promoters. Overall, our study reveals the important transcriptional control mechanism of Med23 in balancing MuSC proliferation and differentiation in muscle regeneration.
Collapse
Affiliation(s)
- Yi Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunlei Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chonghui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengjiang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Ahmad SS, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Therapeutic applications of biological macromolecules and scaffolds for skeletal muscle regeneration: A review. Int J Biol Macromol 2024; 267:131411. [PMID: 38588841 DOI: 10.1016/j.ijbiomac.2024.131411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
9
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Grant Rowe R, Wainwright DA, McCortney K, Billingham LK, Miska J, Horbinski C, Lesniak MS, Chen P. Lactate dehydrogenase A regulates tumor-macrophage symbiosis to promote glioblastoma progression. Nat Commun 2024; 15:1987. [PMID: 38443336 PMCID: PMC10914854 DOI: 10.1038/s41467-024-46193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heba Ali
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Madeline Dunterman
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wen-Hao Hsu
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Katie Frenis
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - R Grant Rowe
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Khan F, Lin Y, Ali H, Pang L, Dunterman M, Hsu WH, Frenis K, Rowe RG, Wainwright D, McCortney K, Billingham L, Miska J, Horbinski C, Lesniak M, Chen P. LDHA-regulated tumor-macrophage symbiosis promotes glioblastoma progression. RESEARCH SQUARE 2023:rs.3.rs-3401154. [PMID: 37886538 PMCID: PMC10602051 DOI: 10.21203/rs.3.rs-3401154/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase (LDH) inhibitor stiripentol (an FDA-approved anti-seizure drug for Dravet Syndrome) emerges as the top hit. Combined profiling and functional studies demonstrate that LDHA-directed ERK pathway activates YAP1/STAT3 transcriptional co-activators in glioblastoma cells to upregulate CCL2 and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
| | - Yiyu Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center
| | - Heba Ali
- Department of Genetics, The University of Texas MD Anderson Cancer Center
| | - Lizhi Pang
- Feinberg School of Medicine, Northwestern University
| | | | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang S, Yang F, Huang Y, He L, Li Y, Wan YCE, Ding Y, Chan KM, Xie T, Sun H, Wang H. ATF3 induction prevents precocious activation of skeletal muscle stem cell by regulating H2B expression. Nat Commun 2023; 14:4978. [PMID: 37591871 PMCID: PMC10435463 DOI: 10.1038/s41467-023-40465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
Skeletal muscle stem cells (also called satellite cells, SCs) are important for maintaining muscle tissue homeostasis and damage-induced regeneration. However, it remains poorly understood how SCs enter cell cycle to become activated upon injury. Here we report that AP-1 family member ATF3 (Activating Transcription Factor 3) prevents SC premature activation. Atf3 is rapidly and transiently induced in SCs upon activation. Short-term deletion of Atf3 in SCs accelerates acute injury-induced regeneration, however, its long-term deletion exhausts the SC pool and thus impairs muscle regeneration. The Atf3 loss also provokes SC activation during voluntary exercise and enhances the activation during endurance exercise. Mechanistically, ATF3 directly activates the transcription of Histone 2B genes, whose reduction accelerates nucleosome displacement and gene transcription required for SC activation. Finally, the ATF3-dependent H2B expression also prevents genome instability and replicative senescence in SCs. Therefore, this study has revealed a previously unknown mechanism for preserving the SC population by actively suppressing precocious activation, in which ATF3 is a key regulator.
Collapse
Affiliation(s)
- Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangqiang He
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Ching Esther Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518172, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| |
Collapse
|
12
|
Stec MJ, Su Q, Adler C, Zhang L, Golann DR, Khan NP, Panagis L, Villalta SA, Ni M, Wei Y, Walls JR, Murphy AJ, Yancopoulos GD, Atwal GS, Kleiner S, Halasz G, Sleeman MW. A cellular and molecular spatial atlas of dystrophic muscle. Proc Natl Acad Sci U S A 2023; 120:e2221249120. [PMID: 37410813 PMCID: PMC10629561 DOI: 10.1073/pnas.2221249120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Asynchronous skeletal muscle degeneration/regeneration is a hallmark feature of Duchenne muscular dystrophy (DMD); however, traditional -omics technologies that lack spatial context make it difficult to study the biological mechanisms of how asynchronous regeneration contributes to disease progression. Here, using the severely dystrophic D2-mdx mouse model, we generated a high-resolution cellular and molecular spatial atlas of dystrophic muscle by integrating spatial transcriptomics and single-cell RNAseq datasets. Unbiased clustering revealed nonuniform distribution of unique cell populations throughout D2-mdx muscle that were associated with multiple regenerative timepoints, demonstrating that this model faithfully recapitulates the asynchronous regeneration observed in human DMD muscle. By probing spatiotemporal gene expression signatures, we found that propagation of inflammatory and fibrotic signals from locally damaged areas contributes to widespread pathology and that querying expression signatures within discrete microenvironments can identify targetable pathways for DMD therapy. Overall, this spatial atlas of dystrophic muscle provides a valuable resource for studying DMD disease biology and therapeutic target discovery.
Collapse
Affiliation(s)
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | - Lance Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | | | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Institute for Immunology, University of California Irvine, Irvine, CA92697
- Department of Neurology, University of California Irvine, Irvine, CA92697
| | - Min Ni
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | - Yi Wei
- Regeneron Pharmaceuticals, Tarrytown, NY10591
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
14
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
15
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
16
|
Andre AB, Rees KP, O’Connor S, Severson GW, Newbern JM, Wilson-Rawls J, Plaisier CL, Rawls A. Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Front Cell Dev Biol 2023; 11:1084068. [PMID: 37051469 PMCID: PMC10083252 DOI: 10.3389/fcell.2023.1084068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Background: The expression of proinflammatory signals at the site of muscle injury are essential for efficient tissue repair and their dysregulation can lead to inflammatory myopathies. Macrophages, neutrophils, and fibroadipogenic progenitor cells residing in the muscle are significant sources of proinflammatory cytokines and chemokines. However, the inducibility of the myogenic satellite cell population and their contribution to proinflammatory signaling is less understood.Methods: Mouse satellite cells were isolated and exposed to lipopolysaccharide (LPS) to mimic sterile skeletal muscle injury and changes in the expression of proinflammatory genes was examined by RT-qPCR and single cell RNA sequencing. Expression patterns were validated in skeletal muscle injured with cardiotoxin by RT-qPCR and immunofluorescence.Results: Satellite cells in culture were able to express Tnfa, Ccl2, and Il6, within 2 h of treatment with LPS. Single cell RNA-Seq revealed seven cell clusters representing the continuum from activation to differentiation. LPS treatment led to a heterogeneous pattern of induction of C-C and C-X-C chemokines (e.g., Ccl2, Ccl5, and Cxcl0) and cytokines (e.g., Tgfb1, Bmp2, Il18, and Il33) associated with innate immune cell recruitment and satellite cell proliferation. One cell cluster was enriched for expression of the antiviral interferon pathway genes under control conditions and LPS treatment. Activation of this pathway in satellite cells was also detectable at the site of cardiotoxin induced muscle injury.Conclusion: These data demonstrate that satellite cells respond to inflammatory signals and secrete chemokines and cytokines. Further, we identified a previously unrecognized subset of satellite cells that may act as sensors for muscle infection or injury using the antiviral interferon pathway.
Collapse
Affiliation(s)
- Alexander B. Andre
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Samantha O’Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, United States
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Christopher L. Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Alan Rawls,
| |
Collapse
|
17
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
18
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Growth differentiation factor 11: A proangiogenic drug as a potential antiaging regulating molecule. Arch Cardiovasc Dis 2023; 116:41-46. [PMID: 36572608 DOI: 10.1016/j.acvd.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2022]
Abstract
Organs and tissues are subjected to numerous alterations during aging, as a result of complex biochemical changes. Aging is certainly associated with the accumulation of "antiaging" and "proaging" factors in the systemic circulation. The effects of young blood on rejuvenation of regenerative capacity suggest the existence of multiple "proyouthful" factors, such as growth differentiation factor 11 (GDF11), in the young blood of animals. GDF11 is a member of the transforming growth factor beta (TGFβ) superfamily of cytokines, and appears to be a critical rejuvenation factor in aging organs. In the context of aging, GDF11 promotes vascular and neural plasticity of the central nervous system. Parabiosis, the surgical linking of circulations between old and young mice, was employed to identify GDF11 as an antihypertrophic factor that appears to rejuvenate the aging murine heart. Current theories suggest that GDF11 in young blood has beneficial effects on cognitive and cardiovascular functions and wound healing. The cellular mechanisms of GDF11 in cardiovascular, neurological, skin and skeletal muscle diseases are not clearly defined, but evidence indicates that it may function as a proneurogenic and proangiogenic drug. GDF11 binds and activates specific receptor complexes, which transmit signals by two procedures: the TGFβ-Smad pathway and the bone morphogenic protein (BMP)-Smad pathway. GDF11 is perhaps only the first in a series of circulating molecules that will be found to influence the aging of different tissues, and it may be a potential candidate for therapeutic intervention against angiogenesis-related disorders.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France.
| | - Geoffrey Dogon
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Yves Cottin
- Service de Cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| |
Collapse
|
19
|
García-Benlloch S, Revert-Ros F, Blesa JR, Alis R. MOTS-c promotes muscle differentiation in vitro. Peptides 2022; 155:170840. [PMID: 35842023 DOI: 10.1016/j.peptides.2022.170840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
MOTS-c (mitochondrial open reading frame of the 12 S rRNA-c) is a newly discovered peptide that has been shown to have a protective role in whole-body metabolic homeostasis. This could be a consequence of the effect of MOTS-c on muscle tissue. Here, we investigated the role of MOTS-c in the differentiation of human (LHCN-M2) and murine (C2C12) muscle progenitor cells. Cells were treated with peptides at the onset of differentiation or after myotubes had been formed. We identified in silico a putative Src Homology 2 (SH2) binding motif in the YIFY region of the MOTS-c sequence, and created a Y8F mutant MOTS-c peptide to explore the role of this region. In both cellular models, treatment with wild-type MOTS-c peptide increased myotube formation whereas treatment with the Y8F peptide did not. MOTS-c wild-type, but not Y8F peptide, also protected against interleukin-6 (IL-6)-induced reduction of nuclear myogenin staining in myocytes. Thus, we investigated whether MOTS-c interacts with the IL-6/Janus kinase/ Signal transducer and activator of transcription 3 (STAT3) pathway, and found that MOTS-c, but not the Y8F peptide, blocked the transcriptional activity of STAT3 induced by IL-6. Altogether, our findings suggest that, in muscle cells, MOTS-c interacts with STAT3 via the putative SH2 binding motif in the YIFY region to reduce STAT3 transcriptional activity, which enhances myotube formation. This newly discovered mechanism of action highlights MOTS-c as a potential therapeutic target against muscle-wasting in several diseases.
Collapse
Affiliation(s)
- Sandra García-Benlloch
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain; Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, c/ Quevedo 2, 46001 Valencia, Spain
| | - Francisco Revert-Ros
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain
| | - Jose Rafael Blesa
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain
| | - Rafael Alis
- Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, c/Quevedo 2, 46001 Valencia, Spain; Present affiliation, Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, Spain.
| |
Collapse
|
20
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
21
|
Yang X, Li M, Ji Y, Lin Y, Xu L, Gu X, Sun H, Wang W, Shen Y, Liu H, Zhu J. Changes of Gene Expression Patterns of Muscle Pathophysiology-Related Transcription Factors During Denervated Muscle Atrophy. Front Physiol 2022; 13:923190. [PMID: 35812340 PMCID: PMC9263185 DOI: 10.3389/fphys.2022.923190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injury is common, and can lead to skeletal muscle atrophy and dysfunction. However, the underlying molecular mechanisms are not fully understood. The transcription factors have been proved to play a key role in denervated muscle atrophy. In order to systematically analyze transcription factors and obtain more comprehensive information of the molecular regulatory mechanisms in denervated muscle atrophy, a new transcriptome survey focused on transcription factors are warranted. In the current study, we used microarray to identify and analyze differentially expressed genes encoding transcription factors in denervated muscle atrophy in a rat model of sciatic nerve dissection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to explore the biological functions of differentially expressed transcription factors and their target genes related to skeletal muscle pathophysiology. We found that the differentially expressed transcription factors were mainly involved in the immune response. Based on correlation analysis and the expression trends of transcription factors, 18 differentially expressed transcription factors were identified. Stat3, Myod1, Runx1, Atf3, Junb, Runx2, Myf6, Stat5a, Tead4, Klf5, Myog, Mef2a, and Hes6 were upregulated. Ppargc1a, Nr4a1, Lhx2, Ppara, and Rxrg were downregulated. Functional network mapping revealed that these transcription factors are mainly involved in inflammation, development, aging, proteolysis, differentiation, regeneration, autophagy, oxidative stress, atrophy, and ubiquitination. These findings may help understand the regulatory mechanisms of denervated muscle atrophy and provide potential targets for future therapeutic interventions for muscle atrophy following peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoming Yang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Lai Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yuntian Shen, ; Hua Liu, ; Jianwei Zhu,
| |
Collapse
|
22
|
He S, Fu T, Yu Y, Liang Q, Li L, Liu J, Zhang X, Zhou Q, Guo Q, Xu D, Chen Y, Wang X, Chen Y, Liu J, Gan Z, Liu Y. IRE1α regulates skeletal muscle regeneration through Myostatin mRNA decay. J Clin Invest 2021; 131:143737. [PMID: 34283807 PMCID: PMC8409588 DOI: 10.1172/jci143737] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle can undergo a regenerative process from injury or disease to preserve muscle mass and function, which is critically influenced by cellular stress responses. Inositol-requiring enzyme 1 (IRE1) is an ancient endoplasmic reticulum (ER) stress sensor and mediates a key branch of the unfolded protein response (UPR). In mammals, IRE1α is implicated in the homeostatic control of stress responses during tissue injury and regeneration. Here, we show that IRE1α serves as a myogenic regulator in skeletal muscle regeneration in response to injury and muscular dystrophy. We found in mice that IRE1α was activated during injury-induced muscle regeneration, and muscle-specific IRE1α ablation resulted in impaired regeneration upon cardiotoxin-induced injury. Gain- and loss-of-function studies in myocytes demonstrated that IRE1αacts to sustain both differentiation in myoblasts and hypertrophy in myotubes through regulated IRE1-dependent decay (RIDD) of mRNA encoding Myostatin, a key negative regulator of muscle repair and growth. Furthermore, in the mouse model of Duchenne muscular dystrophy (DMD), loss of muscle IRE1α resulted in augmented Myostatin signaling and exacerbated the dystrophic phenotypes. Thus, these results reveal a pivotal role for the RIDD output of IRE1α in muscle regeneration, offering new insight into potential therapeutic strategies for muscle loss diseases.
Collapse
Affiliation(s)
- Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yue Yu
- Division of Ophthalmology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Qinhao Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Luyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xuan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Blum J, Epstein R, Watts S, Thalacker-Mercer A. Importance of Nutrient Availability and Metabolism for Skeletal Muscle Regeneration. Front Physiol 2021; 12:696018. [PMID: 34335302 PMCID: PMC8322985 DOI: 10.3389/fphys.2021.696018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is fundamentally important for quality of life. Deterioration of skeletal muscle, such as that observed with advancing age, chronic disease, and dystrophies, is associated with metabolic and functional decline. Muscle stem/progenitor cells promote the maintenance of skeletal muscle composition (balance of muscle mass, fat, and fibrotic tissues) and are essential for the regenerative response to skeletal muscle damage. It is increasing recognized that nutrient and metabolic determinants of stem/progenitor cell function exist and are potential therapeutic targets to improve regenerative outcomes and muscle health. This review will focus on current understanding as well as key gaps in knowledge and challenges around identifying and understanding nutrient and metabolic determinants of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Rebekah Epstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
25
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
26
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
27
|
Targeting the JAK2/STAT3 Pathway-Can We Compare It to the Two Faces of the God Janus? Int J Mol Sci 2020; 21:ijms21218261. [PMID: 33158194 PMCID: PMC7663396 DOI: 10.3390/ijms21218261] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle cachexia is one of the most critical unmet medical needs. Identifying the molecular background of cancer-induced muscle loss revealed a promising possibility of new therapeutic targets and new drug development. In this review, we will define the signal transducer and activator of transcription 3 (STAT3) protein's role in the tumor formation process and summarize the role of STAT3 in skeletal muscle cachexia. Finally, we will discuss a vast therapeutic potential for the STAT3-inhibiting single-agent treatment innovation that, as the desired outcome, could block tumor growth and generally prevent muscle cachexia.
Collapse
|
28
|
Needling on trigger point promotes muscle regeneration after bupivacaine injection induced injury. Neurosci Lett 2020; 739:135436. [PMID: 33132179 DOI: 10.1016/j.neulet.2020.135436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022]
Abstract
Dry needling treatment has a promising relieving effect on Myofascial Pain Syndrome (MPS). In China, acupuncture practitioners use acupuncture needle instead to insert the "A-Shi" acupoint to treat MPS which is defined as the same as the trigger point of dry needling. This method has been applied for thousands of years in China. In this study, bupivacaine injection induced gastrocnemius muscle injury in mice. We applied the clinical improved needling method on animal model by making the angle between the skin and needle less than 30 degree. Animals got needling treatment 24 h later at the point where the bupivacaine was injected. Results of muscle H.E. staining showed that, compared to bupivacaine injection group without needling, acupuncture treatment group showed more intact muscle fibers, less inflammatory cell infiltration and fractured muscle fibers. By RNA sequencing analysis, our work firstly demonstrated that the physical stimulation of needling changed the gene expression of muscle tissue to accelerate the muscular regeneration process. Therefore, our study proved that simple needling at "A-Shi" acupoint promoted muscle regeneration and revealed underlying mechanisms of the beneficial effects of acupuncture and dry needle treatments.
Collapse
|
29
|
Lazure F, Blackburn DM, Corchado AH, Sahinyan K, Karam N, Sharanek A, Nguyen D, Lepper C, Najafabadi HS, Perkins TJ, Jahani-Asl A, Soleimani VD. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep 2020; 21:e49499. [PMID: 33047485 PMCID: PMC7726801 DOI: 10.15252/embr.201949499] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle‐secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase‐induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6‐knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Nabila Karam
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Duy Nguyen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada.,Faculty of Medicine, Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
30
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020; 11:1695. [PMID: 32849592 PMCID: PMC7427103 DOI: 10.3389/fimmu.2020.01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R. Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K. Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M. Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G. Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
31
|
Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118742. [PMID: 32417255 DOI: 10.1016/j.bbamcr.2020.118742] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle-resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that 'degenerative damage' to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| |
Collapse
|
32
|
Fontelonga TM, Jordan B, Nunes AM, Barraza-Flores P, Bolden N, Wuebbles RD, Griner LM, Hu X, Ferrer M, Marugan J, Southall N, Burkin DJ. Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2020; 28:2120-2132. [PMID: 30806670 DOI: 10.1093/hmg/ddz044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7β1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.
Collapse
Affiliation(s)
- Tatiana M Fontelonga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Brennan Jordan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Pamela Barraza-Flores
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Nicholas Bolden
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Ryan D Wuebbles
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| | - Lesley Mathews Griner
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Xin Hu
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Marc Ferrer
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Juan Marugan
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Noel Southall
- Division of Pre-clinical Innovation, NIH Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, , Reno, NV, USA
| |
Collapse
|
33
|
Hu K, Xu J, Fan K, Zhou D, Li L, Tang L, Peng X, Zhang L, Wang Y. Nuclear accumulation of pyruvate kinase M2 promotes liver regeneration via activation of signal transducer and activator of transcription 3. Life Sci 2020; 250:117561. [PMID: 32198052 DOI: 10.1016/j.lfs.2020.117561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
AIMS Pyruvate kinase M2 (PKM2), a unique isoform of the pyruvate kinases, not only acts as a crucial metabolic enzyme when it locates in the cytoplasm, but also plays important roles in tumor formation and growth when it accumulates in the nuclei. Our aim was to investigate the potential role of PKM2 in liver regeneration in mice insulted with carbon tetrachloride (CCl4). MATERIAL AND METHODS The liver regeneration model was established by intraperitoneal injection of CCl4 for 48 h in male BALB/c mice. The expression of PKM2, phospho-STAT3, STAT3, proliferating cell nuclear antigen (PCNA) and Cyclin D1 were evaluated by western blot. The distribution of PKM2 was verified by immunofluorescence staining. The degree of injured region was assessed by hematoxylin and eosin (HE) staining. The proliferation of liver cells was tested by Immunohistochemistry. KEY FINDINGS The nuclear accumulation of PKM2 increased in the liver treated with CCl4, but treatment with ML-265 significantly suppressed CCl4-induced nuclear accumulation of PKM2. In addition, treatment with ML-265 suppressed the level of cyclin D1 and proliferating cell nuclear antigen (PCNA), reduced the count of Ki67-positive hepatocytes, and expanded the damaged region in histological examination. Meanwhile, treatment with ML-265 suppressed the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3). Inhibition of STAT3 by stattic made the same effects as ML-265. SIGNIFICANCE These data uncovered the role of nuclear PKM2 in liver regeneration and the pro-proliferation effects of nuclear PKM2 may be through targeting its downstream transcription factor STAT3.
Collapse
Affiliation(s)
- Kai Hu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Juanjuan Xu
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dan Zhou
- Department of Pathology, Fuling Center Hospital of Chongqing City, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Xianwen Peng
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| | - Yaping Wang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
34
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
35
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020. [PMID: 32849592 DOI: 10.3389/fimmu.2020.01695/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
36
|
Weng Q, Zhao M, Zheng J, Yang L, Xu Z, Zhang Z, Wang J, Wang J, Yang B, Richard Lu Q, Ying M, He Q. STAT3 dictates β-cell apoptosis by modulating PTEN in streptozocin-induced hyperglycemia. Cell Death Differ 2020; 27:130-145. [PMID: 31097787 PMCID: PMC7205876 DOI: 10.1038/s41418-019-0344-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/31/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Insufficient pancreatic β-cell mass or insulin-producing β-cells are implicated in all forms of diabetes mellitus. However, the molecular mechanisms underlying β-cell destruction are complex and not fully defined. Here we observed that activation of STAT3 is intensely and specifically inhibited in β-cells under hyperglycemic conditions. By knocking out STAT3 specifically in mouse β-cells, we found that the loss of STAT3 sensitized mice to three low doses of STZ stimulation resulting in hyperglycemia. Mechanistically, accumulating PTEN, induced by STAT3 deficiency, directly represses phosphorylation of AKT, which negatively modulates transcription factor activation, dysregulates β-cell function, positively promotes apoptotic signaling, and finally induces β-cell apoptosis. Notably, the defective secretion of insulin and β-cells apoptosis was completely rescued by PTEN ablation in STAT3-null islets or PTEN inhibitor bpv(phen) treatment. Thus our data suggest that STAT3 is a vital modulator of β-cell survival and function, highlighting a critical role for STAT3 in the negative regulation of PTEN-AKT signaling pathway associated with β-cell dysfunction and apoptosis.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China
| | - Mengting Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zijie Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhikang Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
37
|
Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019; 23:8392-8409. [PMID: 31600036 PMCID: PMC6850925 DOI: 10.1111/jcmm.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023] Open
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc−/−) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc−/− enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihong Zou
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheliang Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Moresi V, Adamo S, Berghella L. The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front Physiol 2019; 10:500. [PMID: 31114509 PMCID: PMC6502894 DOI: 10.3389/fphys.2019.00500] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is a key intracellular mediator of a variety of metabolically relevant hormones and cytokines, including the interleukin-6 (IL-6) family of cytokines. The JAK/STAT pathway transmits extracellular signals to the nucleus, leading to the transcription of genes involved in multiple biological activities. The JAK/STAT pathway has been reported to be required for the homeostasis of different tissues and organs. Indeed, when deregulated, it promotes the initiation and progression of pathological conditions, including cancer, obesity, diabetes, and other metabolic diseases. In skeletal muscle, activation of the JAK/STAT pathway by the IL-6 cytokines accounts for opposite effects: on the one hand, it promotes muscle hypertrophy, by increasing the proliferation of satellite cells; on the other hand, it contributes to muscle wasting. The expression of IL-6 and of key members of the JAK/STAT pathway is regulated at the epigenetic level through histone methylation and histone acetylation mechanisms. Thus, manipulation of the JAK/STAT signaling pathway by specific inhibitors and/or drugs that modulate epigenetics is a promising therapeutic intervention for the treatment of numerous diseases. We focus this review on the JAK/STAT pathway functions in striated muscle pathophysiology and the potential role of IL-6 as an effector of the cross talk between skeletal muscle and other organs.
Collapse
Affiliation(s)
- Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Libera Berghella
- Unit of Histology and Medical Embryology, DAHFMO, University La Sapienza, Rome, Italy.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
39
|
Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CCL, Sun H, Wang H. YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 2019; 38:embj.201899727. [PMID: 30979776 DOI: 10.15252/embj.201899727] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.
Collapse
Affiliation(s)
- Fengyuan Chen
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yang Cao
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- The State Key Lab in Molecular Neuroscience, Division of Life Science, Center for Stem Cell Research and Center for Systems Biology and Human Diseases, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly in myogenesis. Skelet Muscle 2018; 8:37. [PMID: 30526691 PMCID: PMC6286576 DOI: 10.1186/s13395-018-0183-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023] Open
Abstract
Background Members of the ZFP36 family of RNA-binding proteins regulate gene expression post-transcriptionally by binding to AU-rich elements in the 3’UTR of mRNA and stimulating mRNA degradation. The proteins within this family target different transcripts in different tissues. In particular, ZFP36 targets myogenic transcripts and may have a role in adult muscle stem cell quiescence. Our study examined the requirement of ZFP36L1 and ZFP36L2 in adult muscle cell fate regulation. Methods We generated single and double conditional knockout mice in which Zfp36l1 and/or Zfp36l2 were deleted in Pax7-expressing cells. Immunostained muscle sections were used to analyse resting skeletal muscle, and a cardiotoxin-induced injury model was used to determine the regenerative capacity of muscle. Results We show that ZFP36L1 and ZFP36L2 proteins are expressed in satellite cells. Mice lacking the two proteins in Pax7-expressing cells have reduced body weight and have reduced skeletal muscle mass. Furthermore, the number of satellite cells is reduced in adult skeletal muscle and the capacity of this muscle to regenerate following muscle injury is diminished. Conclusion ZFP36L1 and ZFP36L2 act redundantly in myogenesis. These findings add further intricacy to the regulation of the cell fate of Pax7-expressing cells in skeletal muscle by RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s13395-018-0183-9) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Jagot S, Sabin N, Le Cam A, Bugeon J, Rescan PY, Gabillard JC. Histological, transcriptomic and in vitro analysis reveal an intrinsic activated state of myogenic precursors in hyperplasic muscle of trout. BMC Genomics 2018; 19:865. [PMID: 30509177 PMCID: PMC6276237 DOI: 10.1186/s12864-018-5248-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dramatic increase in myotomal muscle mass in post-hatching fish is related to their ability to lastingly produce new muscle fibres, a process termed hyperplasia. The molecular and cellular mechanisms underlying fish muscle hyperplasia largely remain unknown. In this study, we aimed to characterize intrinsic properties of myogenic cells originating from hyperplasic fish muscle. For this purpose, we compared in situ proliferation, in vitro cell behavior and transcriptomic profile of myogenic precursors originating from hyperplasic muscle of juvenile trout (JT) and from non-hyperplasic muscle of fasted juvenile trout (FJT) and adult trout (AT). RESULTS For the first time, we showed that myogenic precursors proliferate in hyperplasic muscle from JT as shown by in vivo BrdU labeling. This proliferative rate was very low in AT and FJT muscle. Transcriptiomic analysis revealed that myogenic cells from FJT and AT displayed close expression profiles with only 64 differentially expressed genes (BH corrected p-val < 0.001). In contrast, 2623 differentially expressed genes were found between myogenic cells from JT and from both FJT and AT. Functional categories related to translation, mitochondrial activity, cell cycle, and myogenic differentiation were inferred from genes up regulated in JT compared to AT and FJT myogenic cells. Conversely, Notch signaling pathway, that signs cell quiescence, was inferred from genes down regulated in JT compared to FJT and AT. In line with our transcriptomic data, in vitro JT myogenic precursors displayed higher proliferation and differentiation capacities than FJT and AT myogenic precursors. CONCLUSIONS The transcriptomic analysis and examination of cell behavior converge to support the view that myogenic cells extracted from hyperplastic muscle of juvenile trout are intrinsically more potent to form myofibres than myogenic cells extracted from non-hyperplasic muscle. The generation of gene expression profiles in myogenic cell extracted from muscle of juvenile trout may yield insights into the molecular and cellular mechanisms controlling hyperplasia and provides a useful list of potential molecular markers of hyperplasia.
Collapse
Affiliation(s)
- Sabrina Jagot
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Nathalie Sabin
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Aurélie Le Cam
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Jérôme Bugeon
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Pierre-Yves Rescan
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | | |
Collapse
|
42
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Guadagnin E, Mázala D, Chen YW. STAT3 in Skeletal Muscle Function and Disorders. Int J Mol Sci 2018; 19:ijms19082265. [PMID: 30072615 PMCID: PMC6121875 DOI: 10.3390/ijms19082265] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) signaling plays critical roles in regulating skeletal muscle mass, repair, and diseases. In this review, we discuss the upstream activators of STAT3 in skeletal muscles, with a focus on interleukin 6 (IL6) and transforming growth factor beta 1 (TGF-β1). We will also discuss the double-edged effect of STAT3 activation in the muscles, including the role of STAT3 signaling in muscle hypertrophy induced by exercise training or muscle wasting in cachectic diseases and muscular dystrophies. STAT3 is a critical regulator of satellite cell self-renewal after muscle injury. STAT3 knock out affects satellite cell myogenic progression by impairing proliferation and inducing premature differentiation. Recent studies in STAT3 signaling demonstrated its direct role in controlling myogenic capacity of myoblasts and satellite cells, as well as the potential benefit in using STAT3 inhibitors to treat muscle diseases. However, prolonged STAT3 activation in muscles has been shown to be responsible for muscle wasting by activating protein degradation pathways. It is important to balance the extent of STAT3 activation and the duration and location (cell types) of the STAT3 signaling when developing therapeutic interventions. STAT3 signaling in other tissues and organs that can directly or indirectly affects skeletal muscle health are also discussed.
Collapse
Affiliation(s)
- Eleonora Guadagnin
- Department of Orthopeadic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Davi Mázala
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA.
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA.
- Department Genomics and Precision Medicine, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
44
|
Wang G, Zhu H, Situ C, Han L, Yu Y, Cheung TH, Liu K, Wu Z. p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J 2018; 37:embj.201798239. [PMID: 29581096 DOI: 10.15252/embj.201798239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon injury, MuSCs exit quiescence in vivo to become activated, re-enter the cell cycle to proliferate, and differentiate to repair the damaged muscles. It remains unclear which extrinsic cues and intrinsic signaling pathways regulate quiescence exit during MuSC activation. Here, we demonstrated that inducible MuSC-specific deletion of p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K), rendered MuSCs unable to exit quiescence, resulting in severely impaired MuSC proliferation and muscle regeneration. Genetic reactivation of mTORC1, or knockdown of FoxOs, in p110α-null MuSCs partially rescued the above defects, making them key effectors downstream of PI3K in regulating quiescence exit. c-Jun was found to be a key transcriptional target of the PI3K/mTORC1 signaling axis essential for MuSC quiescence exit. Moreover, induction of a constitutively active PI3K in quiescent MuSCs resulted in spontaneous MuSC activation in uninjured muscles and subsequent depletion of the MuSC pool. Thus, PI3K-p110α is both necessary and sufficient for MuSCs to exit quiescence in response to activating signals.
Collapse
Affiliation(s)
- Gang Wang
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Han Zhu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Chenghao Situ
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Lifang Han
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Youqian Yu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Kai Liu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| |
Collapse
|
45
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
46
|
Brandt AM, Kania JM, Reinholt BM, Johnson SE. Human IL6 stimulates bovine satellite cell proliferation through a Signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. Domest Anim Endocrinol 2018; 62:32-38. [PMID: 28917653 DOI: 10.1016/j.domaniend.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/20/2017] [Indexed: 01/15/2023]
Abstract
Bovine satellite cell (bSC) myogenesis and skeletal muscle hypertrophy occur through the orchestrated actions of multiple autocrine and paracrine growth factors. Intimate to the bSC niche is IL6, a dual-purpose cytokine with proinflammatory and mitogenic properties. The objective of the experiment was to examine the effects of IL6 on proliferation and differentiation of bSC in vitro. Treatment of primary bSC cultures with recombinant bovine IL6 (bIL6) failed to alter myogenesis owing to the absence of intracellular signal transduction. The cytokine was able to stimulate phosphorylation of signal transducer and activator of transcription 3 tyrosine 705 (STAT3Y705) in Madin-Darby bovine kidney (MDBK) epithelial cells, thus demonstrating bioactivity. Media supplemented with recombinant human IL6 (hIL6) caused phosphorylation of STAT3Y705 in bSC and increased (P < 0.05) proliferation. Inclusion of a STAT3 inhibitor in the media blunted phosphorylation of the STAT3Y705 and suppressed (P < 0.05) hIL6-mediated bSC proliferation. Morphologic and biochemical measures of bSC differentiation remained unchanged (P > 0.05) following treatment for 48 h with hIL6. These results support a role for hIL6 as a bSC mitogen in vitro. The inability of bIL6 to initiate an intracellular signal in bSC requires further investigation.
Collapse
Affiliation(s)
- A M Brandt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - J M Kania
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - B M Reinholt
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA
| | - S E Johnson
- Virginia Polytechnic Institute and State University, Animal and Poultry Sciences, Blacksburg, Virginia, USA.
| |
Collapse
|
47
|
Han AA, Currie HN, Loos MS, Scardoni G, Miller JV, Prince N, Mouch JA, Boyd JW. The impact of cytokine responses in the intra- and extracellular signaling network of a traumatic injury. Cytokine 2017; 106:136-147. [PMID: 29103821 DOI: 10.1016/j.cyto.2017.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
Investigations of cellular responses involved in injury and repair processes have generated valuable information contributing to the advancement of wound healing and treatments. Intra- and extracellular regulators of healing mechanisms, such as cytokines, signaling proteins, and growth factors, have been described to possess significant roles in facilitating optimal recovery. This study explored a collection of 30 spatiotemporal responses comprised of cytokines (IL-1α, IL-1ß, IL-2, IL-6, TNF-α, MIP-1α), intracellular proteins (Akt, c-Jun, CREB, ERK1/2, JNK, MEK1, p38, p53, p90RSK), phosphorylated proteins (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-GSK-3α/ß, p-HSP27, p-IκBα, p-JNK, p-MEK1, p-p38, p-p70S6K, p-p90RSK, p-STAT2, p-STAT3), and a protease (Caspase-3), measured in skeletal muscle tissue following a traumatic injury (rodent Gustilo IIIB fracture). To optimize the analysis of context-specific data sets, a network centrality parameter approach was used to assess the impact of each response in relation to all other measured responses. This approach identified proteins that were substantially amplified and potentially central in the wound healing network by evaluation of their corresponding centrality parameter, radiality. Network analysis allowed us to distinguish the progression of healing that occurred at certain time points and regions of injury. Notably, new tissue formation was proposed to occur by 168 h post-injury in severely injured tissue, while tissue 1-cm away from the site of injury that experienced relatively minor injury appeared to exhibit signs of new tissue formation as early as 24 h post-injury. In particular, hallmarks of inflammation, cytokines IL-1ß, IL-6, and IL-2, appear to have a pronounced impact at earlier time points (0-24 h post-injury), while intracellular proteins involved in cell proliferation, differentiation, or proteolysis (c-Jun, CREB, JNK, p38, p-c-Jun; p-MEK1, p-p38, p-STAT3) are more significant at later times (24-168 h). Overall, this study demonstrates the feasibility of a network analysis approach to extract significant information and also offers a spatiotemporal visualization of the intra- and extracellular signaling responses that regulate healing mechanisms.
Collapse
Affiliation(s)
- Alice A Han
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Holly N Currie
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew S Loos
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Giovanni Scardoni
- Center for BioMedical Computing, University of Verona, Istituti Biologici, Blocco A, Strada le Grazie 8, 37134 Verona, Italy
| | - Julie V Miller
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Julia A Mouch
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
48
|
Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle 2017; 7:23. [PMID: 29078808 PMCID: PMC5660454 DOI: 10.1186/s13395-017-0140-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Methods Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Results Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. Conclusion As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration. Electronic supplementary material The online version of this article (10.1186/s13395-017-0140-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan.
| | - Jun Tanihata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Akira Iwamura
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, Japan
| |
Collapse
|
49
|
Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM, Liu J. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget 2017; 8:69139-69161. [PMID: 28978186 PMCID: PMC5620326 DOI: 10.18632/oncotarget.19932] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the development of new blood vessels, which is required for tumor growth and metastasis. Signal transducer and activator of transcription factor 3 (STAT3) is a transcription factor that regulates a variety of cellular events including proliferation, differentiation and apoptosis. Previous studies revealed that activation of STAT3 promotes tumor angiogenesis. In this review, we described the activities of STAT3 signaling in different cell types involved in angiogenesis. Particularly, we elucidated the molecular mechanisms of STAT3-mediated gene regulation in angiogenic endothelial cells in response to external stimulations such as hypoxia and inflammation. The potential for STAT3 as a therapeutic target was also discussed. Overall, this review provides mechanistic insights for the roles of STAT3 signaling in tumor angiogenesis.
Collapse
Affiliation(s)
- Peng Gao
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Tianshu Wei
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Xiaocui Chen
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Caiqing Zhang
- Department of Respiratory Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, Isotope Science Center, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
50
|
Pawlikowski B, Vogler TO, Gadek K, Olwin BB. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 2017; 246:359-367. [PMID: 28249356 DOI: 10.1002/dvdy.24495] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics 246:359-367, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Thomas Orion Vogler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Katherine Gadek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Bradley B Olwin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|