1
|
Voena C, Ambrogio C, Iannelli F, Chiarle R. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 2025; 25:359-378. [PMID: 40055571 DOI: 10.1038/s41568-025-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/01/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zrimšek M, Draganić K, Malzer A, Doblmayr V, Mišura K, de Freitas E Silva R, Matthews JD, Iannelli F, Wohlhaupter S, Pérez Malla CU, Fischer H, Schachner H, Schiefer AI, Sheibani-Tezerji R, Chiarle R, Turner SD, Ellmeier W, Seiser C, Egger G. HDAC1 acts as a tumor suppressor in ALK-positive anaplastic large cell lymphoma: implications for HDAC inhibitor therapy. Leukemia 2025:10.1038/s41375-025-02584-9. [PMID: 40175628 DOI: 10.1038/s41375-025-02584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
Histone deacetylases (HDACs) are frequently deregulated in cancer, and several HDAC inhibitors (HDACi) have gained approval for treating peripheral T cell lymphomas. Here, we investigated the effects of pharmacological or genetic HDAC inhibition on NPM::ALK positive anaplastic large cell lymphoma (ALCL) development to assess the potential use of HDACi for the treatment of this disease. Short-term systemic pharmacological inhibition of HDACs using the HDACi Entinostat in a premalignant ALCL mouse model postponed or even abolished lymphoma development, despite high expression of the NPM::ALK fusion oncogene. To further disentangle the effects of systemic HDAC inhibition from thymocyte intrinsic effects, conditional genetic deletions of HDAC1 and HDAC2 enzymes were employed. In sharp contrast, T cell-specific deletion of Hdac1 or Hdac2 in the ALCL mouse model significantly accelerated NPM::ALK-driven lymphomagenesis, with Hdac1 loss having a more pronounced effect. Integration of gene expression and chromatin accessibility data revealed that Hdac1 deletion selectively perturbed cell type-specific transcriptional programs, crucial for T cell differentiation and signaling. Moreover, multiple oncogenic signaling pathways, including PDGFRB signaling, were highly upregulated. Our findings underscore the tumor-suppressive function of HDAC1 and HDAC2 in T cells during ALCL development. Nevertheless, systemic pharmacological inhibition of HDACs could still potentially improve current therapeutic outcomes.
Collapse
Affiliation(s)
- Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Malzer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Verena Doblmayr
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katarina Mišura
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rafael de Freitas E Silva
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Carlos Uziel Pérez Malla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Helga Schachner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Raheleh Sheibani-Tezerji
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Roberto Chiarle
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzanne Dawn Turner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
3
|
Watanabe T, Kidoguchi K, Kimura S. Treating Hematological Malignancies With OR-2100, an Orally Bioavailable Prodrug of Decitabine. Cancer Sci 2025; 116:853-861. [PMID: 39837580 PMCID: PMC11967254 DOI: 10.1111/cas.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
DNA methylation is an enzyme-driven epigenetic modification that must be precisely regulated to maintain cellular homeostasis. Aberrant methylation status, especially hypermethylation of the promoter sites of tumor-suppressor genes, is observed in human malignancies and is a proven target for cancer therapy. The first-generation DNA demethylating agents, azacitidine and decitabine, are widely used for treating several hematological malignancies. In addition, orally bioavailable prodrugs of azacitidine and decitabine have recently been approved by the FDA. We have developed a silylated derivative of decitabine, OR-2100, which is resistant to degradation by cytidine deaminase and orally bioavailable. It has efficacy against several human hematological malignancies in xenograft mouse models with less hematotoxicity than decitabine. Since DNA demethylating agents are combined with molecularly targeted drugs in clinical use and trials, we think that the less hematotoxic profile of OR-2100 makes it suitable for use as a combination therapy. In this article, we review the therapeutic approach in hematological malignancies with the DNA demethylating agent OR-2100.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of MedicineSaga UniversitySagaJapan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of MedicineSaga UniversitySagaJapan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of MedicineSaga UniversitySagaJapan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of MedicineSaga UniversitySagaJapan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of MedicineSaga UniversitySagaJapan
| |
Collapse
|
4
|
Xie W, Medeiros LJ, Fan G, Li S, Xu J. Systemic ALK-negative anaplastic large cell lymphoma: Insights into morphologic, immunophenotypic, genetic and molecular characteristics. Hum Pathol 2025; 156:105671. [PMID: 39424106 DOI: 10.1016/j.humpath.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T-cell neoplasm characterized by large pleomorphic cells, often with horseshoe- or kidney-shaped nuclei and abundant cytoplasm (hallmark cells), and uniformly strong CD30 expression. Based on ALK expression or ALK rearrangement, ALCL is further classified into ALK-positive (ALK+) and ALK-negative types. This review focuses on the clinicopathologic, immunophenotypic, cytogenetic and molecular features of systemic ALK-negative ALCL. These patients are usually older adults who present with advanced stage disease and often a poor prognosis. ALK-negative ALCL is morphologically indistinguishable from the common pattern of ALK+ ALCL, but some cases show non-common morphology, such as "donut cells", Hodgkin-like features. ALK-negative ALCL is often negative for T-cell antigens (so-called "antigen loss") and in some cases can have a "null" immunophenotype and be confused with other hematopoietic and non-hematopoietic neoplasms. Recurrent genetic/molecular alterations have been identified in systemic ALK-negative ALCL, including rearrangements of DUSP22, TP63, JAK2, FRK, MYC, ROS1 and TYK2; mutations of JAK1, STAT3 and MSCE; and aberrant expression of ERBB4. Some of these alterations may have prognostic significance and/or provide potential therapeutic targets. Data support the idea that ALK-negative ALCL with DUSP22 rearrangement is a distinctive variant due to its unique morphologic, immunophenotypic and molecular features. Gene expression profiling data have shown that ALK-negative ALCL has distinctive molecular signatures, different from ALK+ ALCL and other T-cell lymphomas. Better understanding of the morphologic, immunophenotypic, genetic and molecular features of ALK-negative ALCL will help establish the correct diagnosis, guide therapeutic strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Jagasia P, Taritsa I, Bagdady K, Shah S, Fracol M. Silicone breast implant-associated pathologies and T cell-mediated responses. Inflamm Res 2025; 74:33. [PMID: 39891670 DOI: 10.1007/s00011-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Silicone breast implants elicit a foreign body response (FBR) defined by a complex cascade of various immune cells. Studies have shown that the capsule around silicone breast implants that forms as a result of the FBR contains large T cell populations. T cells are implicated in pathologies such as capsular contracture, which is defined by an excessively fibrotic capsule, and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), a non-Hodgkin's lymphoma. In this article, we provide a synthesis of 17 studies reporting on T cell-mediated responses to silicone breast implants and highlight recent developments on this topic. The lymphocytes present in the breast implant capsule are predominantly Th1 and Th17 cells. Patients with advanced capsular contracture had fewer T-regulatory (Treg) cells present in the capsules that were less able to suppress T effector cells such as Th17 cells, which can promote fibrosis in autoimmune conditions. Textured silicone implants, which are associated with BIA-ALCL, created a more robust T cell response, especially CD30 + T cells in the peri-implant fluid and CD4 + T cells in the capsule. Cultivating a deeper understanding of T cell-mediated responses to silicone breast implants may allow for novel treatments of breast implant-associated complications and malignancies.
Collapse
Affiliation(s)
- Puja Jagasia
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Iulianna Taritsa
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Kazimir Bagdady
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Shivani Shah
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Megan Fracol
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Shaw TI, Pounds S, Cao X, Ma J, Palacios G, Mason J, Perkins S, Wu G, Fan Y, Wang J, Zhou X, Obermayer A, Kinney MC, Kraveka J, Gross T, Sandlund J, Zhang J, Mullighan C, Lim MS, Leventaki V. Comprehensive genomic analysis reveals molecular heterogeneity in pediatric ALK-positive anaplastic large cell lymphoma. Leukemia 2025; 39:199-210. [PMID: 39592809 DOI: 10.1038/s41375-024-02468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that accounts for 10-15% of childhood lymphomas. Despite the observation that more than 90% of pediatric cases harbor the anaplastic lymphoma kinase (ALK) rearrangement resulting in aberrant ALK kinase expression, there is significant clinical, morphologic, and biological heterogeneity. To gain insights into the genomic aberrations and molecular heterogeneity within ALK-positive ALCL (ALK+ ALCL), we analyzed 46 pediatric ALK+ ALCLs by whole-exome sequencing, RNA sequencing, and DNA methylation profiling. Whole-exome sequencing found on average 25 SNV/Indel events per sample with recurring genetic events in regulators of DNA damage (TP53, MDM4), transcription (JUNB), and epigenetic regulators (TET1, KMT2B, KMT2A, KMT2C, KMT2E). Gene expression and methylation profiling consistently subclassified ALK+ ALCLs into two groups characterized by differential ALK expression levels. The ALK-low group showed enrichment of pathways associated with immune response, cytokine signaling, and a hypermethylated predominant pattern compared to the ALK-high group, which had more frequent copy number changes and was enriched with pathways associated with cell growth, proliferation, and metabolism. Altogether, these findings suggest that there is molecular heterogeneity within pediatric ALK+ ALCL, predicting distinct biological mechanisms that may provide novel insights into disease pathogenesis and represent prognostic markers.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Mason
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherrie Perkins
- Department of Pathology, University of Utah Health Sciences, Salt Lake City, UT, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Marsha C Kinney
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jacqueline Kraveka
- Division of Pediatric Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Gross
- Department of Pediatric Hematology-Oncology, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Sandlund
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vasiliki Leventaki
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Fischer A, Albert TK, Moreno N, Interlandi M, Mormann J, Glaser S, Patil P, de Faria FW, Richter M, Verma A, Balbach ST, Wagener R, Bens S, Dahlum S, Göbel C, Münter D, Inserte C, Graf M, Kremer E, Melcher V, Di Stefano G, Santi R, Chan A, Dogan A, Bush J, Hasselblatt M, Cheng S, Spetalen S, Fosså A, Hartmann W, Herbrüggen H, Robert S, Oyen F, Dugas M, Walter C, Sandmann S, Varghese J, Rossig C, Schüller U, Tzankov A, Pedersen MB, d'Amore FA, Mellgren K, Kontny U, Kancherla V, Veloza L, Missiaglia E, Fataccioli V, Gaulard P, Burkhardt B, Soehnlein O, Klapper W, de Leval L, Siebert R, Kerl K. Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas. Nat Commun 2024; 15:8571. [PMID: 39362842 PMCID: PMC11452211 DOI: 10.1038/s41467-024-52826-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOSSMARCB1- within the TME.
Collapse
MESH Headings
- Animals
- SMARCB1 Protein/genetics
- SMARCB1 Protein/metabolism
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Mice
- Histone Deacetylase Inhibitors/pharmacology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/drug effects
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Female
- Cell Line, Tumor
- Male
- Vorinostat/pharmacology
- Single-Cell Analysis
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Jana Mormann
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Paurnima Patil
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Archana Verma
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Eva Kremer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Gioia Di Stefano
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Raffaella Santi
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Alexander Chan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Sylvia Cheng
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexander Fosså
- Department of Oncology, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude D17, 48149, Münster, Germany
| | - Heidi Herbrüggen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Stella Robert
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin B Pedersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesco A d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Mellgren
- Department of Pediatric Oncology and Hematology, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Venkatesh Kancherla
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Veloza
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Ishov A, Opavsky R. Genome-Wide Methylation Profiling of Peripheral T-Cell Lymphomas Identifies TRIP13 as a Critical Driver of Tumor Proliferation and Survival. EPIGENOMES 2024; 8:32. [PMID: 39189258 PMCID: PMC11348144 DOI: 10.3390/epigenomes8030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Cytosine methylation contributes to the regulation of gene expression and normal hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent aggressive mature T-cell malignancies exhibiting a broad spectrum of clinical features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we profiled DNA methylation and gene expression of PTCLs. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples, suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose genetic and pharmacologic inactivation inhibited the proliferation of T-cell lines by inducing G2-M arrest and apoptosis. Our data thus show that human PTCLs have a significant number of recurrent methylation alterations that may affect the expression of genes critical for proliferation whose targeting might be beneficial in anti-lymphoma treatments.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Julian Tobon
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Biomedical Research Center, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arshee Badar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Duo Chen
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Emma Noel
- College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL 32610, USA
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Alexander Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Shaw TI, Pounds S, Cao X, Ma J, Palacios G, Mason J, Perkins S, Wu G, Fan Y, Wang J, Zhou X, Obermayer A, Kinney MC, Kraveka J, Gross T, Sandlund J, Zhang J, Mullighan C, Lim MS, Leventaki V. Comprehensive genomic analysis reveals molecular heterogeneity in pediatric ALK-positive anaplastic large cell lymphoma. RESEARCH SQUARE 2024:rs.3.rs-4145750. [PMID: 38585847 PMCID: PMC10996813 DOI: 10.21203/rs.3.rs-4145750/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that accounts for for 10-15% of childhood lymphomas. Despite the observation that more than 90% of pediatric cases harbor the anaplastic lymphoma kinase (ALK) rearrangement resulting in aberrant ALK kinase expression, there is significant clinical, morphologic, and biological heterogeneity. To gain insights into the genomic aberrations and molecular heterogeneity within ALK-positive ALCL(ALK+ ALCL), we analyzed 46 pediatric ALK+ ALCLs by whole-exome sequencing, RNA-sequencing, and DNA methylation profiling. Whole-exome sequencing found on average 25 SNV/Indel events per sample with recurring genetic events in regulators of DNA damage (TP53, MDM4), transcription (JUNB), and epigenetic regulators (TET1, KMT2B, KMT2A, KMT2C, KMT2E). Gene expression and methylation profiling consistently subclassified ALK+ ALCLs into two groups characterized by diferential ALK expression levels. The ALK-low group showed enrichment of pathways associated with immune response, cytokine signaling, and a hypermethylated predominant pattern compared to the ALK- high group, which had more frequent copy number changes, and was enriched with pathways associated with cell growth, proliferation, metabolic pathways, and. Taken together, these findings suggest that there is molecular heterogeneity within pediatric ALK+ALCL, predicting distinct biological mechanisms that may provide novel insights into disease pathogenesis and represent prognostic markers.
Collapse
Affiliation(s)
- Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Health Promotion and Disease Prevention, University of Tennessee Health Science Center, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gustavo Palacios
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John Mason
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sherrie Perkins
- Department of Pathology, University of Utah Health Sciences, Salt Lake City, UT
| | - Gang Wu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Marsha C. Kinney
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, at San Antonio, San Antonio, TX
| | - Jacqueline Kraveka
- Division of Pediatric Hematology-Oncology, Medical University of South Carolina, Charleston, SC
| | - Thomas Gross
- Department of Pediatric Hematology-Oncology, Nationwide Children’s Hospital, Columbus, OH
| | - John Sandlund
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vasiliki Leventaki
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Nowialis P, Tobon J, Lopusna K, Opavska J, Badar A, Chen D, Abdelghany R, Pozas G, Fingeret J, Noel E, Riva A, Fujiwara H, Opavsky R. Genome-wide methylation profiling of Peripheral T-cell lymphomas identifies TRIP13 as a critical driver of tumor proliferation and survival. RESEARCH SQUARE 2024:rs.3.rs-3971059. [PMID: 38464090 PMCID: PMC10925438 DOI: 10.21203/rs.3.rs-3971059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Duo Chen
- University of Florida College of Medicine
| | - Reem Abdelghany
- UF College of Liberal Arts and Sciences, University of Florida
| | - Gene Pozas
- UF College of Liberal Arts and Sciences, University of Florida
| | - Jacob Fingeret
- UF College of Liberal Arts and Sciences, University of Florida
| | | | | | | | | |
Collapse
|
11
|
Seňavová J, Rajmonová A, Heřman V, Jura F, Veľasová A, Hamová I, Tkachenko A, Kupcová K, Havránek O. Immune Checkpoints and Their Inhibition in T-Cell Lymphomas. Folia Biol (Praha) 2024; 70:123-151. [PMID: 39644109 DOI: 10.14712/fb2024070030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
T-cell lymphomas (TCLs) are a rare and heterogeneous subgroup of non-Hodgkin lymphomas (NHLs), forming only 10 % of all NHL cases in Western countries. Resulting from their low incidence and heterogeneity, the current treatment outcome is generally unfavorable, with limited availability of novel therapeutic approaches. Therefore, the recent success of immune checkpoint inhibitors (ICIs) in cancer treatment motivated their clinical investigation in TCLs as well. Multiple studies showed promising results; however, cases of TCL hyperprogression following ICI treatment and secondary T-cell-derived malignancies associated with ICI treatment of other cancer types were also reported. In our review, we first briefly summarize classification of T-cell-derived malignancies, general anti-tumor immune response, immune evasion, and immune checkpoint signaling. Next, we provide an overview of immune checkpoint molecule deregulation in TCLs, summarize available studies of ICIs in TCLs, and review the above-mentioned safety concerns associa-ted with ICI treatment and T-cell-derived malignancies. Despite initial promising results, further studies are necessary to define the most suitable clinical applications and ICI therapeutic combinations with other novel treatment approaches within TCL treatment. ICIs, and their combinations, might hopefully bring the long awaited improvement for the treatment of T-cell-derived malignancies.
Collapse
Affiliation(s)
- Jana Seňavová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anežka Rajmonová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Václav Heřman
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jura
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adriana Veľasová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Hamová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Kupcová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
12
|
Kawasoe K, Watanabe T, Yoshida-Sakai N, Yamamoto Y, Kurahashi Y, Kidoguchi K, Ureshino H, Kamachi K, Fukuda-Kurahashi Y, Kimura S. A Combination of Alectinib and DNA-Demethylating Agents Synergistically Inhibits Anaplastic-Lymphoma-Kinase-Positive Anaplastic Large-Cell Lymphoma Cell Proliferation. Cancers (Basel) 2023; 15:5089. [PMID: 37894456 PMCID: PMC10605931 DOI: 10.3390/cancers15205089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The recent evolution of molecular targeted therapy has improved clinical outcomes in several human malignancies. The translocation of anaplastic lymphoma kinase (ALK) was originally identified in anaplastic large-cell lymphoma (ALCL) and subsequently in non-small cell lung carcinoma (NSCLC). Since ALK fusion gene products act as a driver of carcinogenesis in both ALCL and NSCLC, several ALK tyrosine kinase inhibitors (TKIs) have been developed. Crizotinib and alectinib are first- and second-generation ALK TKIs, respectively, approved for the treatment of ALK-positive ALCL (ALK+ ALCL) and ALK+ NSCLC. Although most ALK+ NSCLC patients respond to crizotinib and alectinib, they generally relapse after several years of treatment. We previously found that DNA-demethylating agents enhanced the efficacy of ABL TKIs in chronic myeloid leukemia cells. Moreover, aberrant DNA methylation has also been observed in ALCL cells. Thus, to improve the clinical outcomes of ALK+ ALCL therapy, we investigated the synergistic efficacy of the combination of alectinib and the DNA-demethylating agent azacytidine, decitabine, or OR-2100 (an orally bioavailable decitabine derivative). As expected, the combination of alectinib and DNA-demethylating agents synergistically suppressed ALK+ ALCL cell proliferation, concomitant with DNA hypomethylation and a reduction in STAT3 (a downstream target of ALK fusion proteins) phosphorylation. The combination of alectinib and OR-2100 markedly altered gene expression in ALCL cells, including that of genes implicated in apoptotic signaling, which possibly contributed to the synergistic anti-ALCL effects of this drug combination. Therefore, alectinib and OR-2100 combination therapy has the potential to improve the outcomes of patients with ALK+ ALCL.
Collapse
Affiliation(s)
- Kazunori Kawasoe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- OHARA Pharmaceutical Co., Ltd., Koka 520-3403, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
13
|
Lannon M, Lu JQ, Chum M, Wang BH. ALK-negative CNS anaplastic large cell lymphoma: case report and review of literature. Br J Neurosurg 2023; 37:1245-1250. [PMID: 33253051 DOI: 10.1080/02688697.2020.1839630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Central nervous system (CNS) lymphomas frequently pose a diagnostic challenge to physicians. CNS anaplastic large cell lymphoma (ALCL) is a rare condition. A majority (80%) of ALCLs harbour anaplastic lymphoma kinase 1 (ALK-1) mutation with only a minority testing negative for this mutation. METHODS Here we report a rare case of ALK-negative CNS ALCL with dural involvement. We conducted a literature search using PubMed for published studies in English on cases of patients with ALCL of the brain. The keywords used were 'anaplastic large cell lymphoma', 'ALK' and 'primary central nervous system lymphoma'. RESULTS A 63-year-old man presents with waxing and waning cranial nerve and spinal cord symptoms. MRI revealed multiple intracranial and intra-spinal lesions that were highly steroid responsive. A wide range of serum and CSF tests were non-diagnostic during three months of workup before a lesion appeared in the cervical spine that required decompression and allowed us to obtain a tissue sample. Final pathology revealed ALK-negative ALCL. There are only 24 reported adult cases to date of CNS ALCL in the English literature. To our knowledge, this is the first case of ALK-negative ALCL with primarily CNS and meningeal involvement. CONCLUSIONS ALK-negative ALCL with CNS involvement is extremely rare, which frequently results in delayed diagnosis (average 40.5 days). The diagnostic challenge posed by this case highlights the importance of a team approach to workup and diligent patient follow-up for such a rare disease.
Collapse
Affiliation(s)
- Melissa Lannon
- Division of Neurosurgery, Department of Surgery, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Jian-Qiang Lu
- Neuropathology Section, Department of Pathology and Molecular Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Marvin Chum
- Division of Neurology, Department of Medicine, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Bill Hao Wang
- Division of Neurosurgery, Department of Surgery, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Nagel S, Fischer A, Bens S, Hauer V, Pommerenke C, Uphoff CC, Zaborski M, Siebert R, Quentmeier H. PI3K/AKT inhibitor BEZ-235 targets CCND2 and induces G1 arrest in breast implant-associated anaplastic large cell lymphoma. Leuk Res 2023; 133:107377. [PMID: 37647808 DOI: 10.1016/j.leukres.2023.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a mature, CD30-positive T-cell lymphoma lacking expression of the anaplastic lymphoma kinase (ALK). In contrast to ALK-positive ALCL, BIA-ALCL cells express cyclin D2 (CCND2) which controls cyclin dependent kinases 4 and 6 (CDK4/6). DNA methylation and expression analyses performed with cell lines and primary cells suggest that the expression of CCND2 in BIA-ALCL cell lines conforms to the physiological status of differentiated T-cells, and that it is not the consequence of genomic alterations as observed in other hematopoietic tumors. Using cell line model systems we show that treatment with the CDK4/6 inhibitor palbociclib effects dephosphorylation of the retinoblastoma protein (RB) and causes cell cycle arrest in G1 in BIA-ALCL. Moreover, we show that the PI3K/AKT inhibitor BEZ-235 induces dephosphorylation of the mTORC1 target S6 and of GSK3β, indicators for translational inhibition and proteasomal degradation. Consequently, CCND2 protein levels declined after stimulation with BEZ-235, RB was dephosphorylated and the cell cycle was arrested in G1. Taken together, our data imply potential application of CDK4/6 inhibitors and PI3K/AKT inhibitors for the therapy of BIA-ALCL.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany.
| | - Anja Fischer
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Susanne Bens
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Vivien Hauer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Bioinformatics and Databases, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Margarete Zaborski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Reiner Siebert
- Ulm University and Ulm University Medical Center, Institute of Human Genetics, Ulm, Germany
| | - Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| |
Collapse
|
15
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
16
|
Mastini C, Campisi M, Patrucco E, Mura G, Ferreira A, Costa C, Ambrogio C, Germena G, Martinengo C, Peola S, Mota I, Vissio E, Molinaro L, Arigoni M, Olivero M, Calogero R, Prokoph N, Tabbò F, Shoji B, Brugieres L, Geoerger B, Turner SD, Cuesta-Mateos C, D’Aliberti D, Mologni L, Piazza R, Gambacorti-Passerini C, Inghirami GG, Chiono V, Kamm RD, Hirsch E, Koch R, Weinstock DM, Aster JC, Voena C, Chiarle R. Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma. Sci Transl Med 2023; 15:eabo3826. [PMID: 37379367 PMCID: PMC10804420 DOI: 10.1126/scitranslmed.abo3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.
Collapse
Affiliation(s)
- Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Marco Campisi
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10129, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Antonio Ferreira
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Carlotta Costa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giulia Germena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Silvia Peola
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Ines Mota
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Vissio
- Department of Oncology, University of Torino, Orbassano, Torino 10043, Italy
| | - Luca Molinaro
- Department of Medical Science, University of Torino, Torino 10126, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Martina Olivero
- Department of Oncology, University of Torino, Orbassano, Torino 10043, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino 10060, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Fabrizio Tabbò
- Department of Pathology, Cornell University, New York NY 10121, USA
| | - Brent Shoji
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif 94805, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif 94805, France
- Université Paris-Saclay, INSERM U1015, Villejuif 94805, France
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Faculty of Medicine, Masaryk University, Brno 601 77, Czech Republic
| | - Carlos Cuesta-Mateos
- Department of Pre-Clinical Development, Catapult Therapeutics B.V., 8243 RC, Lelystad, Netherlands
| | - Deborah D’Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | | | | | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10129, Italy
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Raphael Koch
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- University Medical Center Göttingen, 37075 Göttingen, Germany
| | - David M. Weinstock
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Mura G, Karaca Atabay E, Menotti M, Martinengo C, Ambrogio C, Giacomello G, Arigoni M, Olivero M, Calogero RA, Chiarle R, Voena C. Regulation of CD45 phosphatase by oncogenic ALK in anaplastic large cell lymphoma. Front Oncol 2023; 12:1085672. [PMID: 36698412 PMCID: PMC9869957 DOI: 10.3389/fonc.2022.1085672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL.
Collapse
Affiliation(s)
- Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elif Karaca Atabay
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Gloria Giacomello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Martina Olivero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Torino, Italy
| | - Raffaele A. Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Department of Pathology, Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
18
|
Anaplastic large cell lymphoma, ALK-negative exhibiting rare CD4 [ +] CD8 [ +] double-positive immunophenotype. J Hematop 2022. [DOI: 10.1007/s12308-022-00517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
Garces de Los Fayos Alonso I, Zujo L, Wiest I, Kodajova P, Timelthaler G, Edtmayer S, Zrimšek M, Kollmann S, Giordano C, Kothmayer M, Neubauer HA, Dey S, Schlederer M, Schmalzbauer BS, Limberger T, Probst C, Pusch O, Högler S, Tangermann S, Merkel O, Schiefer AI, Kornauth C, Prutsch N, Zimmerman M, Abraham B, Anagnostopoulos J, Quintanilla-Martinez L, Mathas S, Wolf P, Stoiber D, Staber PB, Egger G, Klapper W, Woessmann W, Look TA, Gunning P, Turner SD, Moriggl R, Lagger S, Kenner L. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol Cancer 2022; 21:172. [PMID: 36045346 PMCID: PMC9434917 DOI: 10.1186/s12943-022-01640-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. METHODS AND RESULTS In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. CONCLUSIONS We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.
Collapse
Affiliation(s)
- I Garces de Los Fayos Alonso
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Zujo
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - I Wiest
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - P Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - G Timelthaler
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - S Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - M Zrimšek
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - C Giordano
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Kothmayer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - H A Neubauer
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Dey
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria
| | - M Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - B S Schmalzbauer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - T Limberger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria
| | - C Probst
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - O Pusch
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - O Merkel
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - A I Schiefer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - C Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - N Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Anagnostopoulos
- Institute of Pathology, University of Wuerzburg, 97080, Würzburg, Germany
- Institute of Pathology, Charité-Medical University of Berlin, 10117, Berlin, Germany
| | - L Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Cluster of excellence iFIT, "Image-Guided and Functionally Instructed Tumor Therapy", University of Tübingen, 72076, Tübingen, Germany
| | - S Mathas
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Medical University of Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125, Berlin, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - D Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - P B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - G Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
- Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - W Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - W Woessmann
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - T A Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - S D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - R Moriggl
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria.
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory of Applied Metabolomics, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Anaplastic Large Cell Lymphoma: Molecular Pathogenesis and Treatment. Cancers (Basel) 2022; 14:cancers14071650. [PMID: 35406421 PMCID: PMC8997054 DOI: 10.3390/cancers14071650] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma is a rare type of disease that occurs throughout the world and has four subtypes. A summary and comparison of these subtypes can assist with advancing our knowledge of the mechanism and treatment of ALCL, which is helpful in making progress in this field. Abstract Anaplastic large cell lymphoma (ALCL) is an uncommon type of non-Hodgkin’s lymphoma (NHL), as well as one of the subtypes of T cell lymphoma, accounting for 1 to 3% of non-Hodgkin’s lymphomas and around 15% of T cell lymphomas. In 2016, the World Health Organization (WHO) classified anaplastic large cell lymphoma into four categories: ALK-positive ALCL (ALK+ALCL), ALK-negative ALCL (ALK−ALCL), primary cutaneous ALCL (pcALCL), and breast-implant-associated ALCL (BIA-ALCL), respectively. Clinical symptoms, gene changes, prognoses, and therapy differ among the four types. Large lymphoid cells with copious cytoplasm and pleomorphic characteristics with horseshoe-shaped or reniform nuclei, for example, are found in both ALK+ and ALK−ALCL. However, their epidemiology and pathogenetic origins are distinct. BIA-ALCL is currently recognized as a new provisional entity, which is a noninvasive disease with favorable results. In this review, we focus on molecular pathogenesis and management of anaplastic large cell lymphoma.
Collapse
|
21
|
Wang Y, He J, Xu M, Xue Q, Zhu C, Liu J, Zhang Y, Shi W. Holistic View of ALK TKI Resistance in ALK-Positive Anaplastic Large Cell Lymphoma. Front Oncol 2022; 12:815654. [PMID: 35211406 PMCID: PMC8862178 DOI: 10.3389/fonc.2022.815654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed at early stages of normal development and in various cancers including ALK-positive anaplastic large cell lymphoma (ALK+ ALCL), in which it is the main therapeutic target. ALK tyrosine kinase inhibitors (ALK TKIs) have greatly improved the prognosis of ALK+ALCL patients, but the emergence of drug resistance is inevitable and limits the applicability of these drugs. Although various mechanisms of resistance have been elucidated, the problem persists and there have been relatively few relevant clinical studies. This review describes research progress on ALK+ ALCL including the application and development of new therapies, especially in relation to drug resistance. We also propose potential treatment strategies based on current knowledge to inform the design of future clinical trials.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Jing He
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingfeng Xue
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cindy Zhu
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Juan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Nantong University School of Medicine, Nantong, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Wurster KD, Costanza M, Kreher S, Glaser S, Lamprecht B, Schleussner N, Anagnostopoulos I, Hummel M, Jöhrens K, Stein H, Molina A, Diepstra A, Gillissen B, Köchert K, Siebert R, Merkel O, Kenner L, Janz M, Mathas S. Aberrant Expression of and Cell Death Induction by Engagement of the MHC-II Chaperone CD74 in Anaplastic Large Cell Lymphoma (ALCL). Cancers (Basel) 2021; 13:cancers13195012. [PMID: 34638496 PMCID: PMC8507667 DOI: 10.3390/cancers13195012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma (ALCL) is a lymphoid malignancy considered to be derived from T cells. Currently, two types of systemic ALCL are distinguished: anaplastic lymphoma kinase (ALK)-positive and ALK-negative ALCL. Although ALK+ and ALK− ALCL differ at the genomic and molecular levels, various key biological and molecular features are highly similar between both entities. We have developed the concept that both ALCL entities share a common principle of pathogenesis. In support of this concept, we here describe a common deregulation of CD74, which is usually not expressed in T cells, in ALCL. Ligation of CD74 induces cell death of ALCL cells in various conditions, and an anti-CD74-directed antibody-drug conjugate efficiently kills ALCL cell lines. Furthermore, we reveal expression of the proto-oncogene and known CD74 interaction partner MET in a fraction of ALCL cases. These data give insights into ALCL pathogenesis and might help to develop new treatment strategies for ALCL. Abstract In 50–60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL. Key pathogenic events in ALK-negative (ALK−) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK+ and ALK− ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK+ ALCL or of CD95 death-receptor signaling in ALK− ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity.
Collapse
Affiliation(s)
- Kathrin D. Wurster
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Mariantonia Costanza
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Stephan Kreher
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University, Ulm University Medical Center, 89081 Ulm, Germany; (S.G.); (R.S.)
| | - Björn Lamprecht
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Nikolai Schleussner
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | - Michael Hummel
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | - Korinna Jöhrens
- Institute of Pathology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (I.A.); (K.J.)
| | | | - Arturo Molina
- Sutro Biopharma, South San Francisco, CA 94080, USA;
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bernd Gillissen
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Karl Köchert
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University, Ulm University Medical Center, 89081 Ulm, Germany; (S.G.); (R.S.)
| | - Olaf Merkel
- Unit of Experimental and Laboratory Animal Pathology, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.K.)
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
| | - Lukas Kenner
- Unit of Experimental and Laboratory Animal Pathology, Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria; (O.M.); (L.K.)
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
| | - Martin Janz
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
| | - Stephan Mathas
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125 Berlin, Germany; (M.C.); (N.S.); (M.J.)
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200 Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- European Research Initiative on ALK-related malignancies (ERIA), 1090 Vienna, Austria
- Correspondence: ; Tel.: +49-30-94062863; Fax: +49-30-94063124
| |
Collapse
|
23
|
Hu Y, Wang M, Wang K, Gao J, Tong J, Zhao Z, Li M. A potential role for metastasis-associated in colon cancer 1 ( MACC1) as a pan-cancer prognostic and immunological biomarker. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8331-8353. [PMID: 34814302 DOI: 10.3934/mbe.2021413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Metastasis-Associated in Colon Cancer 1(MACC1) is a validated biomarker for metastasis and is linked to survival. Although extensive experimental evidence indicates an association between MACC1 and diverse cancers, no pan-cancer analyses have yet been performed for this marker, and the role of MACC1 in immunology remains unknown. MATERIAL AND METHODS In our study, we performed the analysis of MACC1 expression and its influence on prognosis using multiple databases, including TIMER2, GEPIA2, Kaplan-Meier plotter. MACC1 promoter methylation levels were evaluated using the UALCAN database. Based on the TCGA database, we explored the relationship between MACC1 and tumor mutational burden (TMB), microsatellite instability (MSI), immune checkpoints using the R programming language. We evaluated the association between MACC1 and immune infiltration via TIMER and UALCAN. RESULTS Our results revealed that abnormal DNA methylation may be an important cause for the different expression of MACC1 across cancer types. Meanwhile, we explored the potential oncogenic roles of MACC1 and found significant prognostic value. MACC1 may be related to T-cell function and the polarization of tumor-associated macrophages, especially in STAD and LGG. Its expression was associated with immune infiltration and was found to be closely related to immune checkpoint-associated genes, especially CD274 and SIGLEC15, indicating that MACC1 may be a potential immune therapeutic target for several malignancies. Our paper reveals for the first time the relationship between MACC1 and cancer immunology. CONCLUSIONS MACC1 might act as a predictor for the immune response in cancer patients, and could also represent a new potential immunotherapeutic target.
Collapse
Affiliation(s)
- Ye Hu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Meiling Wang
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Kainan Wang
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiyue Gao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jiaci Tong
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zuowei Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Man Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
24
|
ALK-Negative Anaplastic Large Cell Lymphoma: Current Concepts and Molecular Pathogenesis of a Heterogeneous Group of Large T-Cell Lymphomas. Cancers (Basel) 2021; 13:cancers13184667. [PMID: 34572893 PMCID: PMC8472588 DOI: 10.3390/cancers13184667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary ALK- anaplastic large cell lymphoma (ALK- ALCL) is a rare subtype of CD30+ large T-cell lymphoma that typically affects older adults and has a poor prognosis. Recognition of its histopathologic spectrum, subtypes, and of other tumors that can resemble ALK- ALCL is crucial to avoid making a wrong diagnosis that could result in inappropriate treatment for a patient. In recent years, several important studies have identified recurrent molecular alterations that have shed light on the pathogenesis of this lymphoma. However, on the other hand, putting all this vast information together into a concise form has become challenging. In this review, we present not only a more detailed view of the histopathologic findings of ALK- ALCL but also, we attempt to provide a more simplified perspective of the relevant genetic and molecular alterations of this type of lymphoma, that in our opinion, is not available to date. Abstract Anaplastic large cell lymphoma (ALCL) is a subtype of CD30+ large T-cell lymphoma (TCL) that comprises ~2% of all adult non-Hodgkin lymphomas. Based on the presence/absence of the rearrangement and expression of anaplastic lymphoma kinase (ALK), ALCL is divided into ALK+ and ALK-, and both differ clinically and prognostically. This review focuses on the historical points, clinical features, histopathology, differential diagnosis, and relevant cytogenetic and molecular alterations of ALK- ALCL and its subtypes: systemic, primary cutaneous (pc-ALCL), and breast implant-associated (BIA-ALCL). Recent studies have identified recurrent genetic alterations in this TCL. In systemic ALK- ALCL, rearrangements in DUSP22 and TP63 are detected in 30% and 8% of cases, respectively, while the remaining cases are negative for these rearrangements. A similar distribution of these rearrangements is seen in pc-ALCL, whereas none have been detected in BIA-ALCL. Additionally, systemic ALK- ALCL—apart from DUSP22-rearranged cases—harbors JAK1 and/or STAT3 mutations that result in the activation of the JAK/STAT signaling pathway. The JAK1/3 and STAT3 mutations have also been identified in BIA-ALCL but not in pc-ALCL. Although the pathogenesis of these alterations is not fully understood, most of them have prognostic value and open the door to the use of potential targeted therapies for this subtype of TCL.
Collapse
|
25
|
Arosio G, Sharma GG, Villa M, Mauri M, Crespiatico I, Fontana D, Manfroni C, Mastini C, Zappa M, Magistroni V, Ceccon M, Redaelli S, Massimino L, Garbin A, Lovisa F, Mussolin L, Piazza R, Gambacorti-Passerini C, Mologni L. Synergistic Drug Combinations Prevent Resistance in ALK+ Anaplastic Large Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13174422. [PMID: 34503232 PMCID: PMC8431561 DOI: 10.3390/cancers13174422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Despite success of targeted therapy, cancer cells very often find a way to survive treatment; this eventually causes a tumor to relapse. In a particular type of lymphoma carrying a specific chromosomal rearrangement named anaplastic large-cell lymphoma (ALCL), selective drugs targeting the cause of the disease can induce spectacular remission of chemotherapy-resistant cancer. However, the lymphoma relapses again in about half of the cases, leaving no therapeutic options. We studied the possibility to combine two simultaneous treatments in order to prevent the relapse, starting from the hypothesis that acquiring resistance to two drugs at the same time is statistically very unlikely. We demonstrate that treating lymphoma cells with drug combinations has superior efficacy in comparison with single drug treatments, both in cell cultures and in mice. Abstract Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30–40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.
Collapse
Affiliation(s)
- Giulia Arosio
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Geeta G. Sharma
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Department Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Matteo Villa
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Mario Mauri
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Ilaria Crespiatico
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Diletta Fontana
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Chiara Manfroni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Cristina Mastini
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Marina Zappa
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Vera Magistroni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Monica Ceccon
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Sara Redaelli
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Luca Massimino
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Department Gastroenterology, Humanitas University, Pieve Emanuele, 20090 Milano, Italy
| | - Anna Garbin
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Federica Lovisa
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Lara Mussolin
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Rocco Piazza
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Carlo Gambacorti-Passerini
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Luca Mologni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Correspondence:
| |
Collapse
|
26
|
Carras S, Chartoire D, Mareschal S, Heiblig M, Marçais A, Robinot R, Urb M, Pommier RM, Julia E, Chebel A, Verney A, Bertheau C, Bardel E, Fezelot C, Courtois L, Lours C, Bouska A, Sharma S, Lefebvre C, Rouault JP, Sibon D, Ferrari A, Iqbal J, de Leval L, Gaulard P, Traverse-Glehen A, Sujobert P, Blery M, Salles G, Walzer T, Bachy E, Genestier L. Chronic T cell receptor stimulation unmasks NK receptor signaling in peripheral T cell lymphomas via epigenetic reprogramming. J Clin Invest 2021; 131:e139675. [PMID: 34043588 DOI: 10.1172/jci139675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules.
Collapse
Affiliation(s)
- Sylvain Carras
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Dimitri Chartoire
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Sylvain Mareschal
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Maël Heiblig
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Antoine Marçais
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Rémy Robinot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Mirjam Urb
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Roxane M Pommier
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Edith Julia
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Amel Chebel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Aurélie Verney
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | | | - Emilie Bardel
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Caroline Fezelot
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Lucien Courtois
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Camille Lours
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine Lefebvre
- Department of Genetics of Hematological Malignancies, Grenoble University Hospital, Grenoble, France.,INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Institute for Advanced Biosciences, Grenoble, France
| | - Jean-Pierre Rouault
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - David Sibon
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anthony Ferrari
- Synergie Lyon Cancer, Plateforme de Bioinformatique "Gilles Thomas" Centre Léon Bérard, Lyon, France
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France.,Department of Pathology, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri-Mondor, Créteil, France
| | - Alexandra Traverse-Glehen
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Pathology, Hospices Civils de Lyon, Lyon, France
| | - Pierre Sujobert
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Laboratory of Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - Gilles Salles
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Walzer
- INSERM U1111, CNRS UMR 5308, Centre International de Recherche en Infectiologie, Lyon, France
| | - Emmanuel Bachy
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France.,Department of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Laurent Genestier
- UR LIB, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon - Equipe Labellisée La Ligue 2017, INSERM U1052, Centre National de Recherche Scientifique (CNRS) UMR 5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| |
Collapse
|
27
|
Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, Zhang Q, Wang HY, Tobias JW, Walter DM, Zullo KM, Javaid S, Watkins A, Wasik MA, Bushman FD, Riley JL. NPM-ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res 2021; 81:3241-3254. [PMID: 33619116 PMCID: PMC8260452 DOI: 10.1158/0008-5472.can-20-2297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.
Collapse
MESH Headings
- Apoptosis
- Cell Dedifferentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/immunology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Cookmeyer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fang Wei
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Kong
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Walter
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly M Zullo
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Javaid
- Merck Research Laboratories, Boston, Massachusetts
| | | | - Mariusz A Wasik
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James L Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Congras A, Hoareau-Aveilla C, Caillet N, Tosolini M, Villarese P, Cieslak A, Rodriguez L, Asnafi V, Macintyre E, Egger G, Brousset P, Lamant L, Meggetto F. ALK-transformed mature T lymphocytes restore early thymus progenitor features. J Clin Invest 2021; 130:6395-6408. [PMID: 33141118 DOI: 10.1172/jci134990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.
Collapse
Affiliation(s)
- Annabelle Congras
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Coralie Hoareau-Aveilla
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Nina Caillet
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Marie Tosolini
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Pôle Technologique du CRCT, Plateau Bioinformatique, Toulouse, France
| | - Patrick Villarese
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Agata Cieslak
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laura Rodriguez
- Etablissement Français du Sang, Nouvelle Aquitaine, INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Vahid Asnafi
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Elisabeth Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pierre Brousset
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France
| | - Laurence Lamant
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| | - Fabienne Meggetto
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| |
Collapse
|
29
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
30
|
The DNA-helicase HELLS drives ALK - ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis 2021; 12:130. [PMID: 33504766 PMCID: PMC7840974 DOI: 10.1038/s41419-021-03425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Deregulation of chromatin modifiers, including DNA helicases, is emerging as one of the mechanisms underlying the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL). We recently identified the DNA-helicase HELLS as central for proficient ALK-ALCL proliferation and progression. Here we assessed in detail its function by performing RNA-sequencing profiling coupled with bioinformatic prediction to identify HELLS targets and transcriptional cooperators. We demonstrated that HELLS, together with the transcription factor YY1, contributes to an appropriate cytokinesis via the transcriptional regulation of genes involved in cleavage furrow regulation. Binding target promoters, HELLS primes YY1 recruitment and transcriptional activation of cytoskeleton genes including the small GTPases RhoA and RhoU and their effector kinase Pak2. Single or multiple knockdowns of these genes reveal that RhoA and RhoU mediate HELLS effects on cell proliferation and cell division of ALK-ALCLs. Collectively, our work demonstrates the transcriptional role of HELLS in orchestrating a complex transcriptional program sustaining neoplastic features of ALK-ALCL.
Collapse
|
31
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
32
|
Zhao H, Chen C, Chen X, Zhang D, Li J, Yang C, Ren C, Ren X, Fu X, Li Y, He J, Zhao H. Analysis of CNOT Family Gene Expression, Clinicopathological Features, and Prognosis Value in Hepatocellular Carcinoma. DNA Cell Biol 2020; 39:2226-2244. [PMID: 33085544 DOI: 10.1089/dna.2020.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The carbon catabolite repressor 4-negative on TATA (CCR4-NOT) complex, abbreviated CNOT, has deadenylation and 3'-5' exonuclease activity, mediates deadenylation in the degradation of RNA, initiates the exonuclease degradation pathway, and participates in tumor gene regulation. CNOT proteins comprise a family of global transcriptional regulators that are evolutionarily conserved in eukaryotic cells. Several subunit types of the CNOT complex have been discovered; however, little is known about the role of different subunits in tumorigenesis and development. We observed overexpression of CNOT1-11 in liver cancer and correlations with clinicopathological characteristics. The expression of some CNOTs subunits was associated with histological grades, lymph node metastasis, and tumor stages in patients with hepatocellular carcinoma (HCC). Our data suggested that some CNOTs can be used as predictors of poor prognosis in HCC patients. At the same time, we conducted an analysis of CNOTs mutations in HCC patients. Moreover, we selected CNOT6, CNOT10, and CNOT11 for protein interaction network analysis and Gene Ontology enrichment analysis to investigate their related biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, the results of western blot and quantitative reverse transcription-PCR (qRT-PCR) experiments were consistent with the database findings. Results of this study suggest that CNOT6, CNOT10, and CNOT11, acting as regulators of transcription, may play an important role in the development of HCC and may serve as biological markers in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Jian Li
- Shanxi Medical University, Taiyuan, China
| | - Chuanli Yang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Chongren Ren
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiaojing Ren
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Xifeng Fu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Yanjun Li
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jiefeng He
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Haoliang Zhao
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer 2020; 20:323-342. [PMID: 32249838 DOI: 10.1038/s41568-020-0247-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of orphan neoplasms. Despite the introduction of anthracycline-based chemotherapy protocols, with or without autologous haematopoietic transplantation and a plethora of new agents, the progression-free survival of patients with PTCLs needs to be improved. The rarity of these neoplasms, the limited knowledge of their driving defects and the lack of experimental models have impaired clinical successes. This scenario is now rapidly changing with the discovery of a spectrum of genomic defects that hijack essential signalling pathways and foster T cell transformation. This knowledge has led to new genomic-based stratifications, which are being used to establish objective diagnostic criteria, more effective risk assessment and target-based interventions. The integration of genomic and functional data has provided the basis for targeted therapies and immunological approaches that underlie individual tumour vulnerabilities. Fortunately, novel therapeutic strategies can now be rapidly tested in preclinical models and effectively translated to the clinic by means of well-designed clinical trials. We believe that by combining new targeted agents with immune regulators and chimeric antigen receptor-expressing natural killer and T cells, the overall survival of patients with PTCLs will dramatically increase.
Collapse
MESH Headings
- Epigenesis, Genetic/genetics
- Epigenesis, Genetic/physiology
- Humans
- Immunotherapy
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/immunology
- Lymphoma, T-Cell, Peripheral/metabolism
- Molecular Targeted Therapy
- Mutation
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA.
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Kreutmair S, Klingeberg C, Poggio T, Andrieux G, Keller A, Miething C, Follo M, Pfeifer D, Shoumariyeh K, Lengerke C, Gonzalez-Menendez I, Fend F, Zeiser R, Turner SD, Quintanilla-Martinez L, Boerries M, Duyster J, Illert AL. Existence of reprogrammed lymphoma stem cells in a murine ALCL-like model. Leukemia 2020; 34:3242-3255. [PMID: 32203142 DOI: 10.1038/s41375-020-0789-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
While cancer stem cells are well established in certain hematologic and solid malignancies, their existence in T cell lymphoma is unclear and the origin of disease is not fully understood. To examine the existence of lymphoma stem cells, we utilized a mouse model of anaplastic large cell lymphoma. Established NPM-ALK+ lymphomas contained heterogeneous cell populations ranging from mature T cells to undifferentiated hematopoietic stem cells. Interestingly, CD4-/CD8- double negative (DN) lymphoma cells aberrantly expressed the T cell receptor α/β chain. Serial transplantation of sorted CD4/CD8 and DN lymphoma subpopulations identified lymphoma stem cells within the DN3/DN4 T cell population, whereas all other subpopulations failed to establish serial lymphomas. Moreover, transplanted lymphoma DN3/DN4 T cells were able to differentiate and gave rise to mature lymphoma T cells. Gene expression analyses unmasked stem-cell-like transcriptional regulation of the identified lymphoma stem cell population. Furthermore, these lymphoma stem cells are characterized by low CD30 expression levels, which might contribute to limited long-term therapeutic success in patients treated with anti-CD30-targeted therapies. In summary, our results highlight the existence of a lymphoma stem cell population in a NPM-ALK-driven CD30+ mouse model, thereby giving the opportunity to test innovative treatment strategies developed to eradicate the origin of disease.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Cathrin Klingeberg
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Teresa Poggio
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Keller
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Claudia Lengerke
- Division of Hematology, University Hospital Basel, 4031, Basel, Switzerland
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, University of Tübingen, 72076, Tübingen, Germany
| | - Falko Fend
- Department of Pathology and Neuropathology, University of Tübingen, 72076, Tübingen, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | | | - Melanie Boerries
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Anna L Illert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
35
|
Abstract
Anaplastic large cell lymphomas are a rare subtype of peripheral/mature T-cell lymphomas which are clinically, pathologically and genetically heterogeneous. Both ALK-positive (ALK+) and ALK-negative (ALK-) ALCL are composed of large lymphoid cells with abundant cytoplasm and pleomorphic features with horseshoe-shaped and reniform nuclei. ALK+ ALCL were considered as a definite entity in the 2008 World Health Organization classification of hematopoietic and lymphoid tissues. ALK-ALCL was included as a provisional entity in the WHO 2008 edition and in the most recent 2017 edition, it is now considered a distinct entity that includes cytogenetic subsets that appear to have prognostic implications (e.g. 6p25 rearrangements at IRF4/DUSP22 locus). ALK+ ALCLs are distinct in epidemiology and pathogenetic origin and should be distinguished from ALK-ALCL, cutaneous ALCL and breast implant associated ALCL which have distinct clinical course and pathogenetic features. Breast implant-associated ALCL is now recognized as a new provisional entity distinct from other ALK-ALCL; notably that it is a noninvasive disease associated with excellent outcome. In this article, we will provide an overview of the salient themes relevant to the pathology and genetic mechanisms in ALCL.
Collapse
Affiliation(s)
- Vasiliki Leventaki
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA United States.
| |
Collapse
|
36
|
Cell of Origin and Immunologic Events in the Pathogenesis of Breast Implant-Associated Anaplastic Large-Cell Lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:2-10. [PMID: 31610171 PMCID: PMC7298558 DOI: 10.1016/j.ajpath.2019.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Breast implant–associated anaplastic large-cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase–negative T-cell lymphoma. Nearly all cases have been associated with textured implants. Most cases are of effusion-limited, indolent disease, with an excellent prognosis after implant and capsule removal. However, capsular invasion and tumor mass have a more aggressive course and a fatal outcome risk. This review summarizes the current knowledge on BIA-ALCL cell of origin and immunologic factors underlying its pathogenesis. Cytokine expression profiling of BIA-ALCL cell lines and clinical specimens reveals a predominantly type 17 helper T-cell (Th17)/Th1 signature, implicating this as its cell of origin. However, a Th2 allergic inflammatory response is suggested by the presence of IL-13, with infiltration of eosinophils and IgE-coated mast cells in clinical specimens of BIA-ALCL. The microenvironment-induced T-cell plasticity, a factor increasingly appreciated, may partially explain these divergent results. Mutations resulting in constitutive Janus kinase (JAK)–STAT activation have been detected and associated with BIA-ALCL pathogenesis in a small number of cases. One possible scenario is that an inflammatory microenvironment stimulates an immune response, followed by polyclonal expansion of Th17/Th1 cell subsets with release of inflammatory cytokines and chemokines and accumulation of seroma. JAK-STAT3 gain-of-function mutations within this pathway and others may subsequently lead to monoclonal T-cell proliferation and clinical BIA-ALCL. Current research suggests that therapies targeting JAK proteins warrant investigation in BIA-ALCL.
Collapse
|
37
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Quentmeier H, Pommerenke C, Dirks WG, Eberth S, Koeppel M, MacLeod RAF, Nagel S, Steube K, Uphoff CC, Drexler HG. The LL-100 panel: 100 cell lines for blood cancer studies. Sci Rep 2019; 9:8218. [PMID: 31160637 PMCID: PMC6547646 DOI: 10.1038/s41598-019-44491-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
For many years, immortalized cell lines have been used as model systems for cancer research. Cell line panels were established for basic research and drug development, but did not cover the full spectrum of leukemia and lymphoma. Therefore, we now developed a novel panel (LL-100), 100 cell lines covering 22 entities of human leukemia and lymphoma including T-cell, B-cell and myeloid malignancies. Importantly, all cell lines are unequivocally authenticated and assigned to the correct tissue. Cell line samples were proven to be free of mycoplasma and non-inherent virus contamination. Whole exome sequencing and RNA-sequencing of the 100 cell lines were conducted with a uniform methodology to complement existing data on these publicly available cell lines. We show that such comprehensive sequencing data can be used to find lymphoma-subtype-characteristic copy number aberrations, mRNA isoforms, transcription factor activities and expression patterns of NKL homeobox genes. These exemplary studies confirm that the novel LL-100 panel will be useful for understanding the function of oncogenes and tumor suppressor genes and to develop targeted therapies.
Collapse
Affiliation(s)
- Hilmar Quentmeier
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany.
| | - Claudia Pommerenke
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Wilhelm G Dirks
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Sonja Eberth
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Max Koeppel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Roderick A F MacLeod
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Klaus Steube
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| | - Hans G Drexler
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Lines, Braunschweig, Germany
| |
Collapse
|
39
|
Hu J, Lin W, Lin B, Wu K, Fan H, Yu Y. Persistent DNA methylation changes in zebrafish following graphene quantum dots exposure in surface chemistry-dependent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:370-375. [PMID: 30466017 DOI: 10.1016/j.ecoenv.2018.11.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 05/20/2023]
Abstract
Modified nano-graphene quantum dots (M-GQDs) are widely used in bioimaging, drug delivery, and chemical engineering. Because M-GQDs could induce reactive oxygen species and DNA damage, we hypothesized that M-GQDs modulate DNA methylation. To test this hypothesis, zebrafish were exposed to reduced, hydroxylated, or aminated GQDs (graphene quantum dots) at different concentrations for 7 days; global DNA methylation in liver, gill, and intestine was then studied. M-GQDs induced global DNA hypermethylation in various tissues in a dose-dependent manner. The global DNA methylation of reduced and aminated GQDs exposure showed a significant increase in intestines even at low concentrations (2 mg/L), suggesting that intestines are the main target for these two M-GQDs. The effects of global DNA methylation were evaluated 14 days after exposure had ceased. DNA methylation in the livers of exposure groups was significantly higher than in control zebrafish. Global DNA methylation increased in livers of zebrafish even after exposure to aminated GQDs (2 mg/L) had ceased, indicating a more complex mechanism of DNA methylation deregulation. The present results showed that chemical groups in the surface of GQDs are a critical factor for modulating DNA methylation.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, PR China
| | - Wenting Lin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Boji Lin
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, PR China
| | - Kangming Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, PR China
| | - Hongbo Fan
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
40
|
Prutsch N, Gurnhofer E, Suske T, Liang HC, Schlederer M, Roos S, Wu LC, Simonitsch-Klupp I, Alvarez-Hernandez A, Kornauth C, Leone DA, Svinka J, Eferl R, Limberger T, Aufinger A, Shirsath N, Wolf P, Hielscher T, Sternberg C, Aberger F, Schmoellerl J, Stoiber D, Strobl B, Jäger U, Staber PB, Grebien F, Moriggl R, Müller M, Inghirami GG, Sanda T, Look AT, Turner SD, Kenner L, Merkel O. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 2019; 33:696-709. [PMID: 30131584 PMCID: PMC8076043 DOI: 10.1038/s41375-018-0239-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.
Collapse
Affiliation(s)
- Nicole Prutsch
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Huan Chang Liang
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Michaela Schlederer
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Simone Roos
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lawren C Wu
- Department of Oncology, Amgen Discovery Research, South San Francisco, CA, 94080, USA
| | | | | | - Christoph Kornauth
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Dario A Leone
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Svinka
- Institute of Cancer Research, Medical University of Vienna & Comprehensive Cancer Center (CCC), Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna & Comprehensive Cancer Center (CCC), Vienna, Austria
| | - Tanja Limberger
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Astrid Aufinger
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Nitesh Shirsath
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Sternberg
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Molecular Biology, Cancer Cluster Salzburg, Faculty of Natural Sciences, Paris Lodron University, Salzburg, Austria
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Faculty of Natural Sciences, Paris Lodron University, Salzburg, Austria
| | | | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrich Jäger
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Giorgio G Inghirami
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NYC, USA
- European Research Initiative for ALK related malignancies (www.erialcl.net), Vienna, Austria
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Suzanne D Turner
- European Research Initiative for ALK related malignancies (www.erialcl.net), Vienna, Austria
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Lukas Kenner
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.
- European Research Initiative for ALK related malignancies (www.erialcl.net), Vienna, Austria.
- CBMed Core Lab2, Medical University of Vienna, Vienna, Austria.
| | - Olaf Merkel
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.
- European Research Initiative for ALK related malignancies (www.erialcl.net), Vienna, Austria.
| |
Collapse
|
41
|
Turner SD. The Cellular Origins of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Implications for Immunogenesis. Aesthet Surg J 2019; 39:S21-S27. [PMID: 30715172 PMCID: PMC6355097 DOI: 10.1093/asj/sjy229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The exact cellular origins of most malignancies are unknown, largely because of the complex nature of malignancies, and because the potential vast number of pathways towards transformation are difficult to discern from established growths. This is compounded by the fact that cancer cells have evolved rather than being the consequence of a design process, with most data collected from (sometimes epidemiological) studies of large numbers of related malignancies. In the case of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), the relative rarity of this disease, coupled with limited insight into its biological basis, have hampered progress. The known facts that are holding up as our knowledge increases with rising incidences are that most cases have been reported in the context of textured breast implants, although not all women with these implants develop BIA-ALCL, and cure for early-stage disease (accounting for the majority of patients) can be achieved via complete capsulectomy and implant removal. However, some theories can be gleaned from the limited biological studies conducted to date whereby a T-helper cell derivation is implicated, with its specific and apparent subset of origin dependent on, and shaped by, a number of factors, including the inflammatory microenvironment (the presence of other inflammatory cell types), the driving antigen (bacterial and/or synthetic), the acquisition of driving oncogenic events, and the inherent genetics/health status of the patient.
Collapse
Affiliation(s)
- Suzanne Dawn Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Prieto-Torres L, Rodriguez-Pinilla SM, Onaindia A, Ara M, Requena L, Piris MÁ. CD30-positive primary cutaneous lymphoproliferative disorders: molecular alterations and targeted therapies. Haematologica 2019; 104:226-235. [PMID: 30630983 PMCID: PMC6355473 DOI: 10.3324/haematol.2018.197152] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Primary cutaneous CD30-positive T-cell lymphoproliferative disorders are the second most common subgroup of cutaneous T-cell lymphomas. They include two clinically different entities with some overlapping features and borderline cases: lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. Molecular studies of primary cutaneous anaplastic large cell lymphoma reveal an increasing level of heterogeneity that is associated with histological and immunophenotypic features of the cases and their response to specific therapies. Here, we review the most significant genetic, epigenetic and molecular alterations described to date in primary cutaneous CD30-positive T-cell lymphoproliferative disorders, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Socorro M Rodriguez-Pinilla
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid.,Hospital Universitario Fundación Jiménez Díaz, Madrid, CIBERONC, Madrid
| | - Arantza Onaindia
- Pathology, Hospital Universitario Marques de Valdecilla, Santander
| | - Mariano Ara
- Dermatology Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | - Miguel Á Piris
- Department of Pathology, Hospital Universitario Fundación Jiménez Díaz, Madrid.,Hospital Universitario Fundación Jiménez Díaz, Madrid, CIBERONC, Madrid
| |
Collapse
|
43
|
Wiskott-Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med 2018; 25:130-140. [PMID: 30510251 DOI: 10.1038/s41591-018-0262-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/25/2018] [Indexed: 01/10/2023]
Abstract
In T lymphocytes, the Wiskott-Aldrich Syndrome protein (WASP) and WASP-interacting-protein (WIP) regulate T cell antigen receptor (TCR) signaling, but their role in lymphoma is largely unknown. Here we show that the expression of WASP and WIP is frequently low or absent in anaplastic large cell lymphoma (ALCL) compared to other T cell lymphomas. In anaplastic lymphoma kinase-positive (ALK+) ALCL, WASP and WIP expression is regulated by ALK oncogenic activity via its downstream mediators STAT3 and C/EBP-β. ALK+ lymphomas were accelerated in WASP- and WIP-deficient mice. In the absence of WASP, active GTP-bound CDC42 was increased and the genetic deletion of one CDC42 allele was sufficient to impair lymphoma growth. WASP-deficient lymphoma showed increased mitogen-activated protein kinase (MAPK) pathway activation that could be exploited as a therapeutic vulnerability. Our findings demonstrate that WASP and WIP are tumor suppressors in T cell lymphoma and suggest that MAP-kinase kinase (MEK) inhibitors combined with ALK inhibitors could achieve a more potent therapeutic effect in ALK+ ALCL.
Collapse
|
44
|
Jacobsen ED, Weinstock DM. Challenges and implications of genomics for T-cell lymphomas. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:63-68. [PMID: 30504292 PMCID: PMC6246015 DOI: 10.1182/asheducation-2018.1.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Treatment outcomes for patients with peripheral T-cell lymphomas (PTCLs) and advanced-stage cutaneous T-cell lymphomas (CTCLs) remain poor. The past few years have witnessed an explosion in our understanding of the genetics of these diverse malignancies. Many subtypes harbor highly recurrent mutations, including single-nucleotide variants, insertions/deletions, and chromosomal rearrangements, that affect T-cell receptor signaling, costimulatory molecules, JAK/STAT and phosphatidylinositol 3-kinase pathways, transcription factors, and epigenetic modifiers. An important subset of these mutations is included within commercially available, multigene panels and, in rare circumstances, indicate therapeutic targets. However, current preclinical and clinical evidence suggests that only a minority of mutations identified in TCLs indicate biologic dependence. With a few exceptions that we highlight, mutations identified in TCLs should not be routinely used to select targeted therapies outside of a clinical trial. Participation in trials and publication of both positive and negative results remain the most important mechanisms for improving patient outcomes.
Collapse
MESH Headings
- Genomics/methods
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/therapy
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Eric D. Jacobsen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA; and
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
45
|
Prognostic and therapeutic significance of phosphorylated STAT3 and protein tyrosine phosphatase-6 in peripheral-T cell lymphoma. Blood Cancer J 2018; 8:110. [PMID: 30420593 PMCID: PMC6232096 DOI: 10.1038/s41408-018-0138-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Abstract
Peripheral T cell lymphomas (PTCL) is a heterogenous group of non-Hodgkin lymphoma and many patients remain refractory to the frontline therapy. Identifying new prognostic markers and treatment is an unmet need in PTCL. We analyzed phospho-STAT3 (pSTAT3) expression in a cohort of 169 PTCL tumors and show overall 38% positivity with varied distribution among PTCL subtypes with 27% (16/59) in PTCL-NOS; 29% (11/38) in AITL, 57% (13/28) in ALK-negative ALCL, and 93% in ALK-pos ALCL (14/15), respectively. Correlative analysis indicated an adverse correlation between pSTAT3 and overall survival (OS). PTPN6, a tyrosine phosphatase and potential negative regulator of STAT3 activity, was suppressed in 62% of PTCL-NOS, 42% of AITL, 60% ALK-neg ALCL, and 86% of ALK-pos ALCL. Loss of PTPN6 combined with pSTAT3 positivity predicted an infwere considered significantferior OS in PTCL cases. In vitro treatment of TCL lines with azacytidine (aza), a DNA methyltransferase inhibitor (DNMTi), restored PTPN6 expression and decreased pSTAT3. Combining DNMTi with JAK3 inhibitor resulted in synergistic antitumor activity in SUDHL1 cell line. Overall, our results suggest that PTPN6 and activated STAT3 can be developed as prognostic markers, and the combination of DNMTi and JAK3 inhibitors as a novel treatment for patients with PTCL subtypes.
Collapse
|
46
|
Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, Niedobitek A, Griffin PR, Piva R, Sczakiel HL, Woessmann W, Damm-Welk C, Hinze C, Stoiber D, Gillissen B, Turner SD, Kaergel E, von Hoff L, Grau M, Lenz G, Dörken B, Scheidereit C, Kenner L, Janz M, Mathas S. The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia 2018; 32:1994-2007. [PMID: 29588546 PMCID: PMC6127090 DOI: 10.1038/s41375-018-0045-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023]
Abstract
Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Olaf Merkel
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Huan-Chang Liang
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
| | - Franziska Hummel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Chiara Romagnani
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
- Medical Department I, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Pawel Durek
- German Rheumatism Research Centre, German Rheumatism Research Centre (DRFZ), A Leibniz Institute, 10117, Berlin, Germany
| | | | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Korinna Jöhrens
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Antonia Niedobitek
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | | | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Henrike L Sczakiel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- NHL-BFM Study Centre and Department of Paediatric Haematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Christian Hinze
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Department of Nephrology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
| | - Bernd Gillissen
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - Eva Kaergel
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Linda von Hoff
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Grau
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149, Münster, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, 48149, Münster, Germany
| | - Bernd Dörken
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Lukas Kenner
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.
- University of Veterinary Medicine, Vienna, Austria.
- CBmed, Center for Biomarker Research in Medicine, 8010, Graz, Austria.
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany.
- Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, 12200, Berlin, Germany.
- European Research Initiative on ALK-Related Malignancies (ERIA), Cambridge, UK.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 13125, Berlin, Germany.
| |
Collapse
|
47
|
Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 2018; 132:1386-1398. [PMID: 30093402 DOI: 10.1182/blood-2018-03-838524] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022] Open
Abstract
Anaplastic large cell lymphomas (ALCLs) are CD30-positive T-cell non-Hodgkin lymphomas broadly segregated into ALK-positive and ALK-negative types. Although ALK-positive ALCLs consistently bear rearrangements of the ALK tyrosine kinase gene, ALK-negative ALCLs are clinically and genetically heterogeneous. About 30% of ALK-negative ALCLs have rearrangements of DUSP22 and have excellent long-term outcomes with standard therapy. To better understand this group of tumors, we evaluated their molecular signature using gene expression profiling. DUSP22-rearranged ALCLs belonged to a distinct subset of ALCLs that lacked expression of genes associated with JAK-STAT3 signaling, a pathway contributing to growth in the majority of ALCLs. Reverse-phase protein array and immunohistochemical studies confirmed the lack of activated STAT3 in DUSP22-rearranged ALCLs. DUSP22-rearranged ALCLs also overexpressed immunogenic cancer-testis antigen (CTA) genes and showed marked DNA hypomethylation by reduced representation bisulfate sequencing and DNA methylation arrays. Pharmacologic DNA demethylation in ALCL cells recapitulated the overexpression of CTAs and other DUSP22 signature genes. In addition, DUSP22-rearranged ALCLs minimally expressed PD-L1 compared with other ALCLs, but showed high expression of the costimulatory gene CD58 and HLA class II. Taken together, these findings indicate that DUSP22 rearrangements define a molecularly distinct subgroup of ALCLs, and that immunogenic cues related to antigenicity, costimulatory molecule expression, and inactivity of the PD-1/PD-L1 immune checkpoint likely contribute to their favorable prognosis. More aggressive ALCLs might be pharmacologically reprogrammed to a DUSP22-like immunogenic molecular signature through the use of demethylating agents and/or immune checkpoint inhibitors.
Collapse
|
48
|
Hudson S, Wang D, Middleton F, Nevaldine BH, Naous R, Hutchison RE. Crizotinib induces apoptosis and gene expression changes in ALK+ anaplastic large cell lymphoma cell lines; brentuximab synergizes and doxorubicin antagonizes. Pediatr Blood Cancer 2018; 65:e27094. [PMID: 29697184 DOI: 10.1002/pbc.27094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) shows 60-70% event free survival with standard treatments. Targeted therapies are being tested for increased benefit and/or reduced toxicity, but interactions with standard agents are not well known. METHODS We exposed four ALCL cell lines to two targeted agents, crizotinib and brentuximab vedotin, and to two standard agents, doxorubicin and vinblastine. For each agent and combination, we measured apoptosis and expression of approximately 300 previously annotated genes of interest using targeted RNA-sequencing. An aurora kinase inhibitor, alisertib, was similarly tested for gene expression effects. RESULTS Only crizotinib, alone or in combination, showed significant effects (adjusted P < 0.05) on expression and apoptosis. One hundred and nine of 277 gene expressions showed crizotinib-associated differential expression, mostly downregulation, 62 associated with apoptosis, and 28 associated with both crizotinib and apoptosis. Doxorubicin was antagonistic with crizotinib on gene expression and apoptosis. Brentuximab was synergistic with crizotinib in apoptosis, and not antagonistic in gene expression. Vinblastine also appeared synergistic with crizotinib but did not achieve statistical significance. Alisertib did not show significant expression changes. CONCLUSIONS Our data suggest that crizotinib induces apoptosis through orderly changes in cell signaling associated with ALK inhibition. Expression effects of crizotinib and associated apoptosis are antagonized by doxorubicin, but apoptosis is synergized by brentuximab vedotin and possibly vinblastine. These findings suggest that concurrent use of crizotinib and doxorubicin may be counterproductive, while the pairing of crizotinib with brentuximab (or vinblastine) may increase efficacy. Alisertib did not induce expression changes at cytotoxic dosage.
Collapse
Affiliation(s)
- Sandra Hudson
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Barbara H Nevaldine
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York
| | - Rana Naous
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York
| | - Robert E Hutchison
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
49
|
Novel insights into the pathogenesis of T-cell lymphomas. Blood 2018; 131:2320-2330. [DOI: 10.1182/blood-2017-11-764357] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
T-cell lymphomas are a heterogeneous group of rare malignancies with overlapping clinical, immunologic, and histologic features. Recent advances in our understanding of T-cell differentiation based on gene expression profiling, next-generation sequencing, and transgenic mouse modeling studies have better elucidated the pathogenetic mechanisms underlying the diverse biology of T-cell lymphomas. These studies show that although genetic alterations in epigenetic modifiers are implicated in all subtypes of T-cell lymphomas, specific subtypes demonstrate enrichment for particular recurrent alterations targeting specific genes. In this regard, RHOA and TET2 alterations are prevalent in nodal T-cell lymphomas, particularly angioimmunoblastic T-cell lymphomas, peripheral T-cell lymphomas (PTCLs) not otherwise specified, and nodal PTCLs with T-follicular helper phenotype. JAK-STAT signaling pathways are mutationally activated in many extranodal T-cell lymphomas, such as natural killer/T-cell and hepatosplenic T-cell lymphomas. The functional significance of many of these genetic alterations is becoming better understood. Altogether these advances will continue to refine diagnostic criteria, improve prognostication, and identify novel therapeutic targets, resulting in improved outcomes for patient with T-cell lymphomas.
Collapse
|
50
|
Yi S, Sun J, Qiu L, Fu W, Wang A, Liu X, Yang Y, Kadin ME, Tu P, Wang Y. Dual Role of EZH2 in Cutaneous Anaplastic Large Cell Lymphoma: Promoting Tumor Cell Survival and Regulating Tumor Microenvironment. J Invest Dermatol 2018; 138:1126-1136. [DOI: 10.1016/j.jid.2017.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/21/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023]
|