1
|
Wang H, Weissenhorn W, Boscheron C. Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III. STAR Protoc 2025; 6:103808. [PMID: 40372921 DOI: 10.1016/j.xpro.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
We present a protocol for temporal inhibition of HIV-1 virus-like particle (VLP) release using ESCRT-III proteins fused to the Hepatitis C virus NS3 protease. These fusion proteins function like wild-type ESCRT-III but convert into dominant-negative inhibitors upon addition of the NS3 inhibitor Glecaprevir. The procedure involves co-transfection of Gag and CHMP-NS3-Green plasmids into HEK293 or HeLa cells, followed by drug treatment. Steps for protein expression analysis, VLP quantification by immunoblotting, and live-cell imaging of VLP release kinetics are included. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
2
|
Barbeau LMO, Beelen NA, Savelkouls KG, Keulers TGH, Wieten L, Rouschop KMA. MAP1LC3C repression reduces CIITA- and HLA class II expression in non-small cell lung cancer. PLoS One 2025; 20:e0316716. [PMID: 39928678 PMCID: PMC11809862 DOI: 10.1371/journal.pone.0316716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/15/2024] [Indexed: 02/12/2025] Open
Abstract
In the last decade, advancements in understanding the genetic landscape of lung squamous cell carcinoma (LUSC) have significantly impacted therapy development. Immune checkpoint inhibitors (ICI) have shown great promise, improving overall and progression-free survival in approximately 25% of the patients. However, challenges remain, such as the lack of predictive biomarkers, difficulties in patient stratification, and identifying mechanisms that cancers use to become immune-resistant ("immune-cold"). Analysis of TCGA datasets reveals reduced MAP1LC3C expression in cancer. Further analysis indicates that low MAP1LC3C is associated with reduced CIITA and HLA expression and with decreased immune cell infiltration. In tumor cells, silencing MAP1LC3C inhibits CIITA expression and suppresses HLA class II production. These findings suggest that cancer cells are selected for low MAP1LC3C expression to evade efficient immune responses.
Collapse
Affiliation(s)
- Lydie M. O. Barbeau
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim G. Savelkouls
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tom G. H. Keulers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
3
|
Lu S, Chen S, Zhang Y, Mou X, Li M, Zhu S, Chen X, Strandin TM, Jiang Y, Xiang Z, Liu Y, Xiong H, Guo D, Chen L, Li Y, Hou W, Luo F. Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation. FASEB J 2025; 39:e70295. [PMID: 39792131 PMCID: PMC11721564 DOI: 10.1096/fj.202401916r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown. Here, we identified that HTNV infection inhibits PTEN expression in vitro and in vivo. The HTNV glycoprotein Gc promotes PTEN ubiquitination and degradation through 26S-proteasome pathway via the E3 ubiquitin ligase NEDD4. In addition, knockdown of PTEN prevents autophagy and increases HTNV production, while overexpression of PTEN induces autophagosome formation which can wrap HTNV particles, thus leading to restrain the production of progeny viruses. Altogether, our findings reveal the role of PTEN in HTNV infection by autophagy, highlighting the potential importance of PTEN and autophagy in the treatment of HFRS diseases.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- College of Life SciencesSouth‐Central Minzu UniversityWuhanHubeiChina
| | - Shuliang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Yuqing Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xiaoli Mou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Mingyang Li
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Shaowei Zhu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Xingyuan Chen
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Tomas M. Strandin
- Department of Virology, MedicumUniversity of HelsinkiHelsinkiFinland
| | - Yale Jiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Zhoufu Xiang
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Hairong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
| | - Deyin Guo
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouGuangdongChina
| | - Liangjun Chen
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yirong Li
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Shenzhen Research InstituteWuhan UniversityShenzhenGuangdongChina
- School of Public HealthWuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanHubeiChina
- Hubei Provincial Key Laboratory of Allergy and ImmunologyWuhanHubeiChina
- Pingyuan LaboratoryXinxiangHenanChina
| |
Collapse
|
4
|
Pradel B, Cantaloube G, Villares M, Deffieu MS, Robert-Hebmann V, Lucansky V, Faure M, Chazal N, Gaudin R, Espert L. LC3B conjugation machinery promotes autophagy-independent HIV-1 entry in CD4 + T lymphocytes. Autophagy 2024; 20:1825-1836. [PMID: 38566318 PMCID: PMC11262235 DOI: 10.1080/15548627.2024.2338573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
HIV-1 entry into CD4+ T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4+ T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown. Here we found that HIV-1 exposure leads to the rapid LC3B enrichment toward the target cell plasma membrane, in close proximity with the incoming viral particles. Furthermore, we demonstrated that Atg8ylation is a key event facilitating HIV-1 entry in target CD4+ T cells. Interestingly, this effect is independent of canonical autophagy as ATG13 silencing does not prevent HIV-1 entry. Together, our results provide an unconventional role of LC3B conjugation subverted by HIV-1 to achieve a critical step of its replication cycle.Abbreviations: BafA1: bafilomycin A1; BlaM: beta-lactamase; CD4+ TL: CD4+ T lymphocytes; PtdIns3K-BECN1 complex: BECN1-containing class III phosphatidylinositol 3-kinase complex; Env: HIV-1 envelope glycoproteins; HIV-1: type 1 human immunodeficiency virus; PM: plasma membrane; PtdIns3P: phosphatidylinositol-3-phosphate; VLP: virus-like particle.
Collapse
Affiliation(s)
- Baptiste Pradel
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Guilhem Cantaloube
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Maïka S. Deffieu
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Véronique Robert-Hebmann
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Vincent Lucansky
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
- Jessenius Faculty of Medicine in Martin (JFMED CU), Department of Pathophysiology, Comenius University in Bratislava, Martin, Slovakia
| | - Mathias Faure
- CIRI, University of Lyon, Inserm U1111, Claude Bernard University Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Nathalie Chazal
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Raphaël Gaudin
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| |
Collapse
|
5
|
Wellslager B, Roberts J, Chowdhury N, Madan L, Orellana E, Yilmaz Ö. Porphyromonas gingivalis activates Heat-Shock-Protein 27 to drive a LC3C-specific probacterial form of select autophagy that is redox sensitive for intracellular bacterial survival in human gingival mucosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601539. [PMID: 39005460 PMCID: PMC11244920 DOI: 10.1101/2024.07.01.601539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Porphyromonas gingivalis , a major oral pathobiont, evades canonical host pathogen clearance in human primary gingival epithelial cells (GECs) by initiating a non-canonical variant of autophagy consisting of Microtubule-associated protein 1A/1B-light chain 3 (LC3)-rich autophagosomes, which then act as replicative niches. Simultaneously, P. gingivalis inhibits apoptosis and oxidative-stress, including extracellular-ATP (eATP)-mediated reactive-oxygen-species (ROS) production via phosphorylating Heat Shock Protein 27 (HSp27) with the bacterial nucleoside-diphosphate-kinase (Ndk). Here, we have mechanistically identified that P. gingivalis -mediated induction of HSp27 is crucial for the recruitment of the LC3 isoform, LC3C, to drive the formation of live P. gingivalis -containing Beclin1-ATG14-rich autophagosomes that are redox sensitive and non-degrading. HSp27 depletions of both infected GECs and gingiva-mimicking organotypic-culture systems resulted in the collapse of P. gingivalis -mediated autophagosomes, and abolished P. gingivalis -induced LC3C-specific autophagic-flux in a HSp27-dependent manner. Concurrently, HSp27 depletion accompanied by eATP treatment abrogated protracted Beclin 1-ATG14 partnering and decreased live intracellular P. gingivalis levels. These events were only partially restored via treatments with the antioxidant N-acetyl cysteine (NAC), which rescued the cellular redox environment independent of HSp27. Moreover, the temporal phosphorylation of HSp27 by the bacterial Ndk results in HSp27 tightly partnering with LC3C, hindering LC3C canonical cleavage, extending Beclin 1-ATG14 association, and halting canonical maturation. These findings pinpoint how HSp27 pleiotropically serves as a major platform-molecule, redox regulator, and stepwise modulator of LC3C during P. gingivalis -mediated non-canonical autophagy. Thus, our findings can determine specific molecular strategies for interfering with the host-adapted P. gingivalis ' successful mucosal colonization and oral dysbiosis.
Collapse
|
6
|
Klute S, Sparrer KMJ. Friends and Foes: The Ambivalent Role of Autophagy in HIV-1 Infection. Viruses 2024; 16:500. [PMID: 38675843 PMCID: PMC11054699 DOI: 10.3390/v16040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Autophagy has emerged as an integral part of the antiviral innate immune defenses, targeting viruses or their components for lysosomal degradation. Thus, successful viruses, like pandemic human immunodeficiency virus 1 (HIV-1), evolved strategies to counteract or even exploit autophagy for efficient replication. Here, we provide an overview of the intricate interplay between autophagy and HIV-1. We discuss the impact of autophagy on HIV-1 replication and report in detail how HIV-1 manipulates autophagy in infected cells and beyond. We also highlight tissue and cell-type specifics in the interplay between autophagy and HIV-1. In addition, we weigh exogenous modulation of autophagy as a putative double-edged sword against HIV-1 and discuss potential implications for future antiretroviral therapy and curative approaches. Taken together, we consider both antiviral and proviral roles of autophagy to illustrate the ambivalent role of autophagy in HIV-1 pathogenesis and therapy.
Collapse
|
7
|
Gawaz A, Schindler M, Hagelauer E, Blanchard G, Riel S, Vollert A, Gilliet M, Unterluggauer L, Stary G, Pospischil I, Hoetzenecker W, Fehrenbacher B, Schaller M, Guenova E, Forchhammer S. SARS-CoV-2-Induced Vasculitic Skin Lesions Are Associated with Massive Spike Protein Depositions in Autophagosomes. J Invest Dermatol 2024; 144:369-377.e4. [PMID: 37580012 DOI: 10.1016/j.jid.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
In patients infected with severe acute respiratory syndrome coronavirus 2, vasculopathic changes of the skin are associated with a severe prognosis. However, the pathogenesis of this vasculopathy is not conclusively clarified. In this study, 25 prospectively collected skin samples from patients with COVID-19-related skin lesions were examined for vasculopathic changes and, in case of vasculitis, were further analyzed with electron microscopy and immunohistochemistry. Vasculopathy was observed in 76% of all COVID-19-related inflammatory skin lesions. Visual endothelial changes without manifest leukocytoclastic vasculitis were found in 60% of the COVID-19-related skin lesions, whereas leukocytoclastic vasculitis was diagnosed in 16%. In the cases of vasculitis, there were extensive spike protein depositions in microvascular endothelial cells that colocalized with the autophagosome proteins LC3B and LC3C. The autophagy protein complex LC3-associated endocytosis in microvascular endothelial cells seems to be an important pathogenic factor for severe acute respiratory syndrome coronavirus 2-related vasculitis in the skin. On ultrastructural morphology, the vasculitic process was dominated by intracellular vesicle formation and endothelial cell disruption. Direct presence of severe acute respiratory syndrome coronavirus 2 particles in the skin was not observed. Therefore, our results suggest that instead of direct viral infection, dermal vasculitic lesions in COVID-19 are caused by severe acute respiratory syndrome coronavirus 2 spike protein deposition followed by endothelial damage with activation of autophagy.
Collapse
Affiliation(s)
- Andrea Gawaz
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Elena Hagelauer
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Gabriela Blanchard
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Simon Riel
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Anneli Vollert
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Michel Gilliet
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pospischil
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Wolfram Hoetzenecker
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | | | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Dermatology, Hospital 12 de Octubre, Medical school, University Complutense, Madrid, Spain.
| | | |
Collapse
|
8
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Judith D, Versapuech M, Bejjani F, Palaric M, Verlhac P, Kuster A, Lepont L, Gallois-Montbrun S, Janvier K, Berlioz-Torrent C. ATG5 selectively engages virus-tethered BST2/tetherin in an LC3C-associated pathway. Proc Natl Acad Sci U S A 2023; 120:e2217451120. [PMID: 37155854 PMCID: PMC10193943 DOI: 10.1073/pnas.2217451120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.
Collapse
Affiliation(s)
- Delphine Judith
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Margaux Versapuech
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Fabienne Bejjani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Marjory Palaric
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Pauline Verlhac
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Aurelia Kuster
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | - Leslie Lepont
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | | - Katy Janvier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014Paris, France
| | | |
Collapse
|
10
|
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 2022; 40:650-667. [PMID: 36062813 DOI: 10.1002/cbf.3740] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.
Collapse
Affiliation(s)
- Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sargeet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Endosomal LC3C-pathway selectively targets plasma membrane cargo for autophagic degradation. Nat Commun 2022; 13:3812. [PMID: 35780247 PMCID: PMC9250516 DOI: 10.1038/s41467-022-31465-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.
Collapse
|
12
|
Presle A, Frémont S, Salles A, Commere PH, Sassoon N, Berlioz-Torrent C, Gupta-Rossi N, Echard A. The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface. Curr Biol 2021; 31:2203-2213.e5. [PMID: 33711249 DOI: 10.1016/j.cub.2021.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022]
Abstract
The midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis.1-5 Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo.6-12 Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.13-16 Yet the mechanisms by which the MBR is captured by either a daughter cell or a distant cell are poorly described.10,14 Here, we report that BST2/tetherin, a well-established restriction factor that blocks the release of numerous enveloped viruses from the surface of infected cells,17-20 plays an analogous role in retaining midbody remnants. We found that BST2 is enriched at the midbody during cytokinesis and localizes at the surface of MBRs in a variety of cells. Knocking out BST2 induces the detachment of MBRs from the cell surface, their accumulation in the extracellular medium, and their transfer to distant cells. Mechanistically, the localization of BST2 at the MBR membrane is both necessary and sufficient for the interaction between MBRs and the cell surface. We thus propose that BST2 tethers post-cytokinetic midbody remnants to the cell surface. This finding reveals new parallels between cytokinesis and viral biology21-26 that unexpectedly extend beyond the ESCRT-dependent abscission step.
Collapse
Affiliation(s)
- Adrien Presle
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- UTechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Pierre-Henri Commere
- UTechS CB, Centre de Recherche et de Ressources Technologiques C2RT, Institut Pasteur, 75015 Paris, France
| | - Nathalie Sassoon
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | | | - Neetu Gupta-Rossi
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, UMR3691, CNRS, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
13
|
Bischoff ME, Zang Y, Chu J, Price AD, Ehmer B, Talbot NJ, Newbold MJ, Paul A, Guan JL, Plas DR, Meller J, Czyzyk-Krzeska MF. Selective MAP1LC3C (LC3C) autophagy requires noncanonical regulators and the C-terminal peptide. J Cell Biol 2021; 220:212107. [PMID: 33988680 PMCID: PMC8129795 DOI: 10.1083/jcb.202004182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022] Open
Abstract
LC3s are canonical proteins necessary for the formation of autophagosomes. We have previously established that two paralogs, LC3B and LC3C, have opposite activities in renal cancer, with LC3B playing an oncogenic role and LC3C a tumor-suppressing role. LC3C is an evolutionary late gene present only in higher primates and humans. Its most distinct feature is a C-terminal 20-amino acid peptide cleaved in the process of glycine 126 lipidation. Here, we investigated mechanisms of LC3C-selective autophagy. LC3C autophagy requires noncanonical upstream regulatory complexes that include ULK3, UVRAG, RUBCN, PIK3C2A, and a member of ESCRT, TSG101. We established that postdivision midbody rings (PDMBs) implicated in cancer stem-cell regulation are direct targets of LC3C autophagy. LC3C C-terminal peptide is necessary and sufficient to mediate LC3C-dependent selective degradation of PDMBs. This work establishes a new noncanonical human-specific selective autophagic program relevant to cancer stem cells.
Collapse
Affiliation(s)
- Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yuanwei Zang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Urology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Johnson Chu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Adam D Price
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Birgit Ehmer
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nicholas J Talbot
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael J Newbold
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Anurag Paul
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jarek Meller
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH.,Cincinnati Veterans Affairs Medical Center, Department of Veterans Affairs, Cincinnati, OH
| |
Collapse
|
14
|
Castro-Gonzalez S, Simpson S, Shi Y, Chen Y, Benjamin J, Serra-Moreno R. HIV Nef-mediated Ubiquitination of BCL2: Implications in Autophagy and Apoptosis. Front Immunol 2021; 12:682624. [PMID: 34025682 PMCID: PMC8134690 DOI: 10.3389/fimmu.2021.682624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a process that acts upon every step of the HIV replication cycle. The activity, subcellular localization, and stability of HIV dependency factors as well as negative modulators can be affected by ubiquitination. These modifications consequently have an impact on the progression and outcome of infection. Additionally, recent findings suggest new roles for ubiquitination in the interplay between HIV and the cellular environment, specifically in the interactions between HIV, autophagy and apoptosis. On one hand, autophagy is a defense mechanism against HIV that promotes the degradation of the viral protein Gag, likely through ubiquitination. Gag is an essential structural protein that drives virion assembly and release. Interestingly, the ubiquitination of Gag is vital for HIV replication. Hence, this post-translational modification in Gag represents a double-edged sword: necessary for virion biogenesis, but potentially detrimental under conditions of autophagy activation. On the other hand, HIV uses Nef to circumvent autophagy-mediated restriction by promoting the ubiquitination of the autophagy inhibitor BCL2 through Parkin/PRKN. Although the Nef-promoted ubiquitination of BCL2 occurs in both the endoplasmic reticulum (ER) and mitochondria, only ER-associated ubiquitinated BCL2 arrests the progression of autophagy. Importantly, both mitochondrial BCL2 and PRKN are tightly connected to mitochondrial function and apoptosis. Hence, by enhancing the PRKN-mediated ubiquitination of BCL2 at the mitochondria, HIV might promote apoptosis. Moreover, this effect of Nef might account for HIV-associated disorders. In this article, we outline our current knowledge and provide perspectives of how ubiquitination impacts the molecular interactions between HIV, autophagy and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
15
|
Bian S, Zhao Y, Li F, Lu S, He Z, Wang S, Bai X, Zhao D, Liu M, Wang J. Total ginsenosides induce autophagic cell death in cervical cancer cells accompanied by downregulation of bone marrow stromal antigen-2. Exp Ther Med 2021; 22:667. [PMID: 33986832 PMCID: PMC8112150 DOI: 10.3892/etm.2021.10099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides are important active components in Panax ginseng. In the present study, total ginsenosides (TGNs) were demonstrated to enhance autophagy by promoting acidic vacuole organelle formation, recruitment of enhanced green fluorescent protein-microtubule-associated protein light chain 3 and expression of autophagy-related factors in cervical cancer cell lines. TGN markedly increased the expression of p62 at the transcriptional level, but decreased p62 protein expression in the presence of actinomycin D. The autophagic regulatory effect was reversible. TGN (≤120 µg/ml) did not affect the proliferation of cervical cancer cells under normal culture conditions, but markedly inhibited the growth of serum-deprived cells. Treatment with an inhibitor of autophagy (3-methyladenine) impaired TGN-induced cell death. This suggested that TGN caused autophagic cell death. In addition, western blot analysis demonstrated that the protein level of bone marrow stromal antigen-2 (BST-2) was downregulated by TGN. Upregulation of BST-2 reduced cell death. The results of the combined actions of various monomeric ginsenosides in TGN provide the molecular basis to develop TGN as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Fangyu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shuyan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ziyan He
- College of Chemistry, Jilin University, Changchun, Jilin 13012, P.R. China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
16
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
17
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
18
|
LC3-associated phagocytosis - The highway to hell for phagocytosed microbes. Semin Cell Dev Biol 2020; 101:68-76. [DOI: 10.1016/j.semcdb.2019.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
|
19
|
Sánchez-Martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. J Mol Biol 2020; 432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
20
|
Jin S. The Cross-Regulation Between Autophagy and Type I Interferon Signaling in Host Defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:125-144. [PMID: 31728868 DOI: 10.1007/978-981-15-0606-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The production of type I interferons (IFNs) is one of the hallmarks of intracellular antimicrobial program. Typical type I IFN response activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, which results in the transcription of plentiful IFN-stimulated genes (ISGs) to establish the comprehensive antiviral states. Type I IFN signaling should initiate timely to provoke innate and adaptive immune responses for effective elimination of the invading pathogens. Meanwhile, a precise control must come on the stage to restrain the persistent activation of type I IFN responses to avoid attendant toxicity. Autophagy, a conserved eukaryotic degradation system, mediated by a number of autophagy-related (ATG) proteins, plays an essential role in the clearance of invading microorganism and manipulation of type I responses. Autophagy modulates type I IFN responses through regulatory integration with innate immune signaling pathways, and by removing endogenous ligands of innate immune sensors. Moreover, selective autophagy governs the choice of innate immune factors as specific cargoes for degradation, thus tightly monitoring the type I IFN responses. This review will focus on the cross-regulation between autophagy and type I IFN signaling in host defense.
Collapse
Affiliation(s)
- Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
21
|
Galais M, Pradel B, Vergne I, Robert-Hebmann V, Espert L, Biard-Piechaczyk M. [LAP (LC3-associated phagocytosis): phagocytosis or autophagy?]. Med Sci (Paris) 2019; 35:635-642. [PMID: 31532375 DOI: 10.1051/medsci/2019129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phagocytosis and macroautophagy, named here autophagy, are two essential mechanisms of lysosomal degradation of diverse cargos into membrane structures. Both mechanisms are involved in immune regulation and cell survival. However, phagocytosis triggers degradation of extracellular material whereas autophagy engulfs only cytoplasmic elements. Furthermore, activation and maturation of these two processes are different. LAP (LC3-associated phagocytosis) is a form of phagocytosis that uses components of the autophagy pathway. It can eliminate (i) pathogens, (ii) immune complexes, (iii) threatening neighbouring cells, dead or alive, and (iv) cell debris, such as POS (photoreceptor outer segment) and the midbody released at the end of mitosis. Cells have thus optimized their means of elimination of dangerous components by sharing some fundamental elements coming from the two main lysosomal degradation pathways.
Collapse
Affiliation(s)
- Mathilde Galais
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Baptiste Pradel
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Isabelle Vergne
- Institut de pharmacologie et de biologie structurale (IPBS), Université de Toulouse, CNRS, UPS, 205, route de Narbonne, 31400 Toulouse, France
| | - Véronique Robert-Hebmann
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Lucile Espert
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | - Martine Biard-Piechaczyk
- Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
22
|
Li A, Zhang H, Han H, Zhang W, Yang S, Huang Z, Tan J, Yi B. LC3 promotes the nuclear translocation of the vitamin D receptor and decreases fibrogenic gene expression in proximal renal tubules. Metabolism 2019; 98:95-103. [PMID: 31226352 DOI: 10.1016/j.metabol.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Vitamin D receptor (VDR) belongs to the nuclear receptor superfamily and exerts a renoprotective effect through inhibiting fibrosis. Microtubule-associated protein 1 light chain 3 (LC3), a key regulator of autophagy, is abundant in the nucleus, although its primary function is in the cytoplasm. The role of nuclear LC3 and the mechanism by which LC3 shuttles between the cytoplasm and nucleoplasm has not been fully elucidated. We found that LC3 binds to VDR in an LC3-interacting region (LIR)-independent manner and promotes the nuclear translocation of VDR. Further study indicated that LC3 promotes the formation of the VDR:retinoid X receptor (RXR) heterodimer and inhibits fibrogenic genes expression in HK-2 cells induced by high glucose. Our result demonstrates that LC3 is a negative regulator of high glucose-induced fibrogenic genes expression through its ability to promote VDR signaling.
Collapse
Affiliation(s)
- Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hailong Han
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhijun Huang
- Center for Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
23
|
Rojas VK, Park IW. Role of the Ubiquitin Proteasome System (UPS) in the HIV-1 Life Cycle. Int J Mol Sci 2019; 20:ijms20122984. [PMID: 31248071 PMCID: PMC6628307 DOI: 10.3390/ijms20122984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023] Open
Abstract
Given that the ubiquitin proteasome system (UPS) is the major protein degradation process in the regulation of a wide variety of cellular processes in eukaryotic cells, including alteration of cellular location, modulation of protein activity, and regulation of protein interaction, it is reasonable to suggest that the infecting HIV-1 and the invaded hosts exploit the UPS in a contest for survival and proliferation. However, to date, regulation of the HIV-1 life cycle has been mainly explained by the stage-specific expression of HIV-1 viral genes, not by elimination processes of the synthesized proteins after completion of their duties in the infected cells, which is also quintessential for understanding the molecular processes of the virus life cycle and thereby HIV-1 pathogenesis. In fact, several previous publications have indicated that the UPS plays a critical role in the regulation of the proteasomal degradation of viral and cellular counterparts at every step of the HIV-1 life cycle, from the virus entry to release of the assembled virus particles, which is integral for the regulation of survival and proliferation of the infecting HIV-1 and to replication restriction of the invading virus in the host. However, it is unknown whether and how these individual events taking place at different stages of the HIV-1 life cycle are orchestrated as an overall strategy to overcome the restrictions conferred by the host cells. Thus, in this review, we overview the interplay between HIV-1 viral and cellular proteins for restrictions/competitions for proliferation of the virus in the infected cell, which could open a new avenue for the development of therapeutics against HIV-1 via targeting a specific step of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Vivian K Rojas
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
24
|
Contribution of the Cytoplasmic Determinants of Vpu to the Expansion of Virus-Containing Compartments in HIV-1-Infected Macrophages. J Virol 2019; 93:JVI.00020-19. [PMID: 30867316 DOI: 10.1128/jvi.00020-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/09/2019] [Indexed: 12/30/2022] Open
Abstract
HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+ T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu's ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64 and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCE HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu's ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.
Collapse
|
25
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
26
|
Zotova A, Atemasova A, Pichugin A, Filatov A, Mazurov D. Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection. Viruses 2019; 11:v11050390. [PMID: 31027334 PMCID: PMC6563509 DOI: 10.3390/v11050390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells. Comparative analysis of HIV-1 replication in two cell systems showed that, irrespective of transmission way, accessory proteins were generally less required for virus replication in 293T/CD4/X4 cells than in Jurkat-to-Raji/CD4 cell cocultures. This is consistent with a well-established fact that lymphoid cells express a broad spectrum of restriction factors, while nonlymphoid cells are rather limited in this regard. Remarkably, Vpu deletion reduced the level of cell-free infection, but enhanced the level of cell coculture infection and increased the fraction of multiply infected cells. Nef deficiency did not influence or moderately reduced HIV-1 infection in nonlymphoid and lymphoid cell cocultures, respectively, but strongly affected cell-free infection. Knockout of BST2-a Vpu antagonizing restriction factor-in Jurkat producer cells abolished the enhanced replication of HIV-1 ΔVpu in cell coculture and prevented the formation of viral clusters on cell surface. Thus, BST2-tethered viral particles mediated cell coculture infection more efficiently and at a higher level of multiplicity than diffusely distributed virions. In conclusion, our results demonstrate that the mode of transmission may determine the degree of accessory protein requirements during HIV-1 infection.
Collapse
Affiliation(s)
- Anastasia Zotova
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia Atemasova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey Pichugin
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Alexander Filatov
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| | - Dmitriy Mazurov
- Cell and Gene Technology Group, Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
- NRC Institute of Immunology FMBA of Russia, 24 Kashirskoe Shosse, 115472 Moscow, Russia.
| |
Collapse
|
27
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
28
|
Lata S, Mishra R, Banerjea AC. Proteasomal Degradation Machinery: Favorite Target of HIV-1 Proteins. Front Microbiol 2018; 9:2738. [PMID: 30524389 PMCID: PMC6262318 DOI: 10.3389/fmicb.2018.02738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Proteasomal degradation pathways play a central role in regulating a variety of protein functions by controlling not only their turnover but also the physiological behavior of the cell. This makes it an attractive target for the pathogens, especially viruses which rely on the host cellular machinery for their propagation and pathogenesis. Viruses have evolutionarily developed various strategies to manipulate the host proteasomal machinery thereby creating a cellular environment favorable for their own survival and replication. Human immunodeficiency virus-1 (HIV-1) is one of the most dreadful viruses which has rapidly spread throughout the world and caused high mortality due to its high evolution rate. Here, we review the various mechanisms adopted by HIV-1 to exploit the cellular proteasomal machinery in order to escape the host restriction factors and components of host immune system for supporting its own multiplication, and successfully created an infection.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Lab II, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Virology Lab II, National Institute of Immunology, New Delhi, India
| |
Collapse
|
29
|
Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 ( ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol 2018; 9:2334. [PMID: 30386331 PMCID: PMC6199349 DOI: 10.3389/fimmu.2018.02334] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a highly conserved process that degrades certain intracellular contents in both physiological and pathological conditions. Autophagy-related proteins (ATG) are key players in this pathway, among which ATG5 is indispensable in both canonical and non-canonical autophagy. Recent studies demonstrate that ATG5 modulates the immune system and crosstalks with apoptosis. However, our knowledge of the pathogenesis and regulatory mechanisms of autophagy in various immune related diseases is lacking. Thus, a deeper understanding of ATG5's role in the autophagy mechanism may shed light on the link between autophagy and the immune response, and lead to the development of new therapies for autoimmune diseases and autoinflammatory diseases. In this focused review, we discuss the latest insights into the role of ATG5 in autoimmunity. Although these studies are at a relatively early stage, ATG5 may eventually come to be regarded as a “guardian of immune integrity.” Notably, accumulating evidence indicates that other ATG genes may have similar functions.
Collapse
Affiliation(s)
- Xin Ye
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
30
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
31
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
32
|
Implication of Different HIV-1 Genes in the Modulation of Autophagy. Viruses 2017; 9:v9120389. [PMID: 29258265 PMCID: PMC5744163 DOI: 10.3390/v9120389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a complex cellular degradation pathway, which plays important roles in the regulation of several developmental processes, cellular stress responses, and immune responses induced by pathogens. A number of studies have previously demonstrated that HIV-1 was capable of altering the regulation of autophagy and that this biological process could be induced in uninfected and infected cells. Furthermore, previous reports have indicated that the involvement of HIV-1 in autophagy regulation is a complex phenomenon and that different viral proteins are contributing in its modulation upon viral infection. Herein, we review the recent literature over the complex crosstalk of the autophagy pathway and HIV-1, with a particular focus on HIV-1 viral proteins, which have been shown to modulate autophagy.
Collapse
|
33
|
Hijacking of the Ubiquitin/Proteasome Pathway by the HIV Auxiliary Proteins. Viruses 2017; 9:v9110322. [PMID: 29088112 PMCID: PMC5707529 DOI: 10.3390/v9110322] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) ensures regulation of the protein pool in the cell by ubiquitination of proteins followed by their degradation by the proteasome. It plays a central role in the cell under normal physiological conditions as well as during viral infections. On the one hand, the UPS can be used by the cell to degrade viral proteins, thereby restricting the viral infection. On the other hand, it can also be subverted by the virus to its own advantage, notably to induce degradation of cellular restriction factors. This makes the UPS a central player in viral restriction and counter-restriction. In this respect, the human immunodeficiency viruses (HIV-1 and 2) represent excellent examples. Indeed, many steps of the HIV life cycle are restricted by cellular proteins, some of which are themselves components of the UPS. However, HIV itself hijacks the UPS to mediate defense against several cellular restriction factors. For example, the HIV auxiliary proteins Vif, Vpx and Vpu counteract specific restriction factors by the recruitment of cellular UPS components. In this review, we describe the interplay between HIV and the UPS to illustrate its role in the restriction of viral infections and its hijacking by viral proteins for counter-restriction.
Collapse
|
34
|
Jin S, Tian S, Luo M, Xie W, Liu T, Duan T, Wu Y, Cui J. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells. Mol Cell 2017; 68:308-322.e4. [PMID: 28965816 DOI: 10.1016/j.molcel.2017.09.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/13/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling.
Collapse
Affiliation(s)
- Shouheng Jin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuo Tian
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Man Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tao Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianhao Duan
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaoxing Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
35
|
Canonical and Non-Canonical Autophagy in HIV-1 Replication Cycle. Viruses 2017; 9:v9100270. [PMID: 28946621 PMCID: PMC5691622 DOI: 10.3390/v9100270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradative process essential for maintaining cellular homeostasis, and is a key player in innate and adaptive immune responses to intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). In HIV-1 target cells, autophagy mechanisms can (i) selectively direct viral proteins and viruses for degradation; (ii) participate in the processing and presentation of viral-derived antigens through major histocompatibility complexes; and (iii) contribute to interferon production in response to HIV-1 infection. As a consequence, HIV-1 has evolved different strategies to finely regulate the autophagy pathway to favor its replication and dissemination. HIV-1 notably encodes accessory genes encoding Tat, Nef and Vpu proteins, which are able to perturb and hijack canonical and non-canonical autophagy mechanisms. This review outlines the current knowledge on the complex interplay between autophagy and HIV-1 replication cycle, providing an overview of the autophagy-mediated molecular processes deployed both by infected cells to combat the virus and by HIV-1 to evade antiviral response.
Collapse
|
36
|
Jacomin AC, Samavedam S, Charles H, Nezis IP. iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Autophagy 2017; 13:1782-1789. [PMID: 28806134 PMCID: PMC5640201 DOI: 10.1080/15548627.2017.1356978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Hannah Charles
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Ioannis P Nezis
- a School of Life Sciences , University of Warwick , Coventry , UK
| |
Collapse
|
37
|
Roy N, Pacini G, Berlioz-Torrent C, Janvier K. Characterization of E3 ligases involved in lysosomal sorting of the HIV-1 restriction factor BST2. J Cell Sci 2017; 130:1596-1611. [PMID: 28320822 PMCID: PMC5450231 DOI: 10.1242/jcs.195412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/17/2017] [Indexed: 12/17/2022] Open
Abstract
The cellular protein BST2 (also known as tetherin) acts as a major intrinsic antiviral protein that prevents the release of enveloped viruses by trapping nascent viral particles at the surface of infected cells. Viruses have evolved specific strategies to displace BST2 from viral budding sites in order to promote virus egress. In HIV-1, the accessory protein Vpu counters BST2 antiviral activity and promotes sorting of BST2 for lysosomal degradation. Vpu increases polyubiquitylation of BST2, a post-translation modification required for Vpu-induced BST2 downregulation, through recruitment of the E3 ligase complex SCF adaptors β-TrCP1 and β-TrCP2 (two isoforms encoded by BTRC and FBXW11, respectively). Herein, we further investigate the role of the ubiquitylation machinery in the lysosomal sorting of BST2. Using a small siRNA screen, we highlighted two additional regulators of BST2 constitutive ubiquitylation and sorting to the lysosomes: the E3 ubiquitin ligases NEDD4 and MARCH8. Interestingly, Vpu does not hijack the cellular machinery that is constitutively involved in BST2 ubiquitylation to sort BST2 for degradation in the lysosomes but instead promotes the recognition of BST2 by β-TrCP proteins. Altogether, our results provide further understanding of the mechanisms underlying BST2 turnover in cells. Highlighted Article: We identify two E3 ubiquitin ligases, NEDD4 and MARCH8, as regulators of BST2 (tetherin) – a protein that restricts viral release; we thus provide further understanding of the mechanisms underlying BST2 turnover in cells.
Collapse
Affiliation(s)
- Nicolas Roy
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Grégory Pacini
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clarisse Berlioz-Torrent
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Katy Janvier
- Inserm, U1016, Institut Cochin, Paris, France .,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|