1
|
Dabbaghizadeh A, Dion J, Maali Y, Fouda A, Bédard N, Evaristo G, Hassan GS, Tchervenkov J, Shoukry NH. Novel RORγt inverse agonists limit IL-17-mediated liver inflammation and fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf014. [PMID: 40073158 DOI: 10.1093/jimmun/vkaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025]
Abstract
Liver fibrosis is a global health problem. IL-17A has proven profibrogenic properties in liver disease making it an interesting therapeutic target. IL-17A is regulated by RORγt and produced by Th17 CD4+ and γδ-T cells. We hypothesized that blocking IL-17A production will limit fibrosis progression by reducing recruitment of inflammatory cells. Herein, we tested the therapeutic potential of 2 novel RORγt inverse agonists (2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene) in a mouse model of CCl4-induced liver injury. C57BL/6 mice received 2 weekly injections of CCl4 for 4 weeks. As of week 3, mice were treated with the 2 novel inverse agonists (TF-S10 and TF-S14) and GSK805 as a positive control. Mice treated with the inverse agonists showed reduced immune cells infiltrate around the portal and central veins. TF-S14 significantly reduced AST levels (P < 0.05), and all inhibitors led to an improvement in relative liver weight (liver index). Flow cytometry analysis demonstrated that all inhibitors reduced the numbers of intrahepatic lymphocytes (CD4+, CD8+, and γδ-T cells, P < 0.05), and myeloid (CD11b+) cells (P = 0.04), most significantly eosinophils (P < 0.05). Furthermore, IL-17A production by CD4+ and γδ-T cells was diminished (P < 0.05 and P < 0. 01, respectively). Finally, livers from inhibitors-treated mice showed decreased markers of hepatic stellate cell activation (desmin and ɑ-smooth muscle actin [ɑ-SMA]) and significantly reduced expression of the profibrogenic genes (Col1a1, Acta, Loxl2, and Tgfβ) (P < 0.001). This was accompanied by diminished collagen deposition as measured by Picrosirius Red staining (P < 0.001). In conclusion, our results suggest that inhibition of the IL-17A pathway could be a promising therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Jessica Dion
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yousef Maali
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ahmed Fouda
- Division of Surgical and Interventional Science, Department of Surgery, McGill University, Montreal, QC, Canada
- Division of General Surgery, Section of Transplant Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill University Health Centre, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Gertruda Evaristo
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Ghada S Hassan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Science, Department of Surgery, McGill University, Montreal, QC, Canada
- Division of General Surgery, Section of Transplant Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Collins M, Pehrson R, Grindebacke H, Leffler A, Ramnegård M, Rannikmäe H, Krutrök N, Yrlid L, Pollard C, Dainty I, Narjes F, von Berg S, Llinas A, Malmberg A, McPheat J, Hansson E, Bäck E, Bernström J, Hansson TG, Keeling D, Jirholt J. RORγt inverse agonists demonstrating a margin between inhibition of IL-17A and thymocyte apoptosis. PLoS One 2025; 20:e0317090. [PMID: 39820614 PMCID: PMC11737796 DOI: 10.1371/journal.pone.0317090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
Multiple genetic associations suggest a causative relationship between Th17-related genes coding for proteins, such as IL-17A, IL-23 and STAT3, and psoriasis. Further support for this link comes from the findings that neutralizing antibodies directed against IL-17A, IL-17RA and IL-23 are efficacious in diseases like psoriasis, psoriatic arthritis and ankylosing spondylitis. RORγt is a centrally positioned transcription factor driving Th17 polarization and cytokine secretion and modulation of RORγt may thus provide additional benefit to patients. However, RORγt also plays a role in the normal development of T cells in the thymus and genetic disruption of RORγt in the mouse leads to the development of lymphoma originating in the thymus. Whilst it is not established that down-regulation of RORγt activity would lead to the same consequence in humans, further understanding of the thymus effects is desirable to support progress of this target as a potential treatment of Th17-driven disease. Herein we present the characterisation of recently disclosed RORγt inverse agonists demonstrating target engagement and efficacy in vitro and in vivo against Th17 endpoints but requiring higher concentrations in vitro to affect thymocyte apoptosis.
Collapse
Affiliation(s)
- Mia Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rikard Pehrson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Grindebacke
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Agnes Leffler
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Ramnegård
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Rannikmäe
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nina Krutrök
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Pollard
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian Dainty
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Narjes
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan von Berg
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Antonio Llinas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Malmberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane McPheat
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eva Hansson
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny Bernström
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas G. Hansson
- Projects, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - David Keeling
- Projects, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Jirholt
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Engesser J, Wang H, Kapffer S, Kaffke A, Peters A, Paust HJ, Geissen M, Krebs CF, Panzer U, Asada N. S1PR1 mediates Th17 cell migration from the thymus to the skin in health and disease. Front Immunol 2024; 15:1473130. [PMID: 39380990 PMCID: PMC11459589 DOI: 10.3389/fimmu.2024.1473130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Th17 cells play crucial roles in host defense and the pathogenesis of autoimmune diseases in the skin. While their differentiation mechanisms have been extensively studied, the origin of skin Th17 cells remains unclear. In this study, we analyzed single-cell RNA-sequencing data and identify the presence of Th17 cells in the human thymus. Thymic Th17 cells were characterized by high expression levels of Sphingosine-1-Phosphate Receptor 1 (S1PR1), a receptor crucial for T cell egress from lymphoid tissues. In mice, Th17 cell-specific knockout of S1pr1 resulted in the accumulation of Th17 cells in the thymus and a corresponding decrease in their numbers in the skin. Th17 cells that accumulated in the thymus exhibited a lower IL-17A production capacity compared to those in the skin, indicating that the local environment in the skin is important for maintaining the Th17 cell phenotype. Additionally, using a murine psoriasis model, we demonstrated that Th17 cell-specific knockout of S1pr1 reduced their migration to the inflamed skin, thereby ameliorating disease progression. Collectively, our data suggest that S1PR1 mediates Th17 cell migration from the thymus to the skin, thereby modulating their functional engagement in both homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Huiying Wang
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sonja Kapffer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Kaffke
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Anett Peters
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Markus Geissen
- Clinic and Polyclinic for Vascular Medicine, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
He Y, Zhu D, Greenman K, Ruiz C, Shang J, Lu Q, Kojetin DJ, Drakas R, Cameron MD, Lizarzaburu M, Solt LA, Kamenecka TM. Structure-Activity Relationship and Biological Investigation of a REV-ERBα-Selective Agonist SR-29065 ( 34) for Autoimmune Disorders. J Med Chem 2023; 66:14815-14823. [PMID: 37888788 DOI: 10.1021/acs.jmedchem.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Autoimmune diseases affect 50 million Americans, predominantly women, and are thought to be one of the top 10 leading causes of death among women in age groups up to 65 years. A central role for TH17 cells has been highlighted by genome-wide association studies (GWAS) linking genes preferentially expressed in TH17 cells to several human autoimmune diseases. We and others have reported that the nuclear receptors REV-ERBα and β are cell-intrinsic repressors of TH17 cell development and pathogenicity and might therefore be therapeutic targets for intervention. Herein, we describe detailed SAR studies of a novel REV-ERBα-selective scaffold. Metabolic stability of the ligands was optimized allowing for in vivo interrogation of the receptor in a mouse model of multiple sclerosis (EAE) with a ligand (34). Reduction in frequency and number of T-cells in the CNS as well as key REV-ERB target genes is a measure of target engagement in vivo.
Collapse
Affiliation(s)
- Yuanjun He
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Di Zhu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Kevin Greenman
- ChemPartner Corporation, 280 Utah Avenue, Suite 100, South San Francisco, California 94080, United States
| | - Claudia Ruiz
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Jinsai Shang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Douglas J Kojetin
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Robert Drakas
- ShangPharma Innovation, 280 Utah Avenue, Suite 100, South San Francisco, California 94080, United States
| | - Michael D Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Mike Lizarzaburu
- ChemPartner Corporation, 280 Utah Avenue, Suite 100, South San Francisco, California 94080, United States
| | - Laura A Solt
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| | - Theodore M Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States
| |
Collapse
|
6
|
Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, Yang H, Zhao Y, Wang A, Shen J, Du F, Chen Y, Deng S, Wang F, Zhang Z, Li Z, Wang T, Wang S, Xiao Z, Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal 2023; 13:545-562. [PMID: 37440911 PMCID: PMC10334362 DOI: 10.1016/j.jpha.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.
Collapse
Affiliation(s)
- Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
7
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
8
|
Hall JA, Pokrovskii M, Kroehling L, Kim BR, Kim SY, Wu L, Lee JY, Littman DR. Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity 2022; 55:2027-2043.e9. [PMID: 36243007 DOI: 10.1016/j.immuni.2022.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
T helper 17 (Th17) cells regulate mucosal barrier defenses but also promote multiple autoinflammatory diseases. Although many molecular determinants of Th17 cell differentiation have been elucidated, the transcriptional programs that sustain Th17 cells in vivo remain obscure. The transcription factor RORγt is critical for Th17 cell differentiation; however, it is not clear whether the closely related RORα, which is co-expressed in Th17 cells, has a distinct role. Here, we demonstrated that although dispensable for Th17 cell differentiation, RORα was necessary for optimal Th17 responses in peripheral tissues. The absence of RORα in T cells led to reductions in both RORγt expression and effector function among Th17 cells. Cooperative binding of RORα and RORγt to a previously unidentified Rorc cis-regulatory element was essential for Th17 lineage maintenance in vivo. These data point to a non-redundant role of RORα in Th17 lineage maintenance via reinforcement of the RORγt transcriptional program.
Collapse
Affiliation(s)
- Jason A Hall
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Maria Pokrovskii
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Lina Kroehling
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Yong Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - June-Yong Lee
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York, NY 10016, USA.
| |
Collapse
|
9
|
Sun R, Lei C, Chen L, He L, Guo H, Zhang X, Feng W, Yan J, McClain CJ, Deng Z. Alcohol-driven metabolic reprogramming promotes development of RORγt-deficient thymic lymphoma. Oncogene 2022; 41:2287-2302. [PMID: 35246617 PMCID: PMC9018612 DOI: 10.1038/s41388-022-02257-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
Abstract
RORγt is a master regulator of Th17 cells. Despite evidence linking RORγt deficiency/inhibition with metastatic thymic T cell lymphomas, the role of RORγt in lymphoma metabolism is unknown. Chronic alcohol consumption plays a causal role in many human cancers. The risk of T cell lymphoma remains unclear in humans with alcohol use disorders (AUD) after chronic RORγt inhibition. Here we demonstrated that alcohol consumption accelerates RORγt deficiency-induced lymphomagenesis. Loss of RORγt signaling in the thymus promotes aerobic glycolysis and glutaminolysis and increases allocation of glutamine carbon into lipids. Importantly, alcohol consumption results in a shift from aerobic glycolysis to glutaminolysis. Both RORγt deficiency- and alcohol-induced metabolic alterations are mediated by c-Myc, as silencing of c-Myc decreases the effects of alcohol consumption and RORγt deficiency on glutaminolysis, biosynthesis, and tumor growth in vivo. The ethanol-mediated c-Myc activation coupled with increased glutaminolysis underscore the critical role of RORγt-Myc signaling and translation in lymphoma.
Collapse
Affiliation(s)
- Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Liang Chen
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY, USA
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Wenke Feng
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Robley Rex VA Medical Center, Louisville, KY, USA
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA.
- Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Alcohol Research Center, University of Louisville, Louisville, KY, USA.
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
10
|
Ma S, Patel SA, Abe Y, Chen N, Patel PR, Cho BS, Abbasi N, Zeng S, Schnabl B, Chang JT, Huang WJM. RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep 2022; 38:110520. [PMID: 35294872 PMCID: PMC8982147 DOI: 10.1016/j.celrep.2022.110520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/03/2022] [Accepted: 02/18/2022] [Indexed: 01/13/2023] Open
Abstract
RAR-related orphan receptor-γ (RORγt) is an essential transcription factor for thymic T cell development, secondary lymphoid tissue organogenesis, and peripheral immune cell differentiation. Serine 182 phosphorylation is a major post-translational modification (PTM) on RORγt. However, the in vivo contribution of this PTM in health and disease settings is unclear. We report that this PTM is not involved in thymic T cell development and effector T cell differentiation. Instead, it is a critical regulator of inflammation downstream of IL-1β signaling and extracellular signal regulated kinases (ERKs) activation. ERKs phosphorylation of serine 182 on RORgt serves to simultaneously restrict Th17 hyperactivation and promote anti-inflammatory cytokine IL-10 production in RORγt+ Treg cells. Phospho-null RORγtS182A knockin mice experience exacerbated inflammation in models of colitis and experimental autoimmune encephalomyelitis (EAE). In summary, the IL-1β-ERK-RORγtS182 circuit protects against T cell-mediated inflammation and provides potential therapeutic targets to combat autoimmune diseases. A balanced mucosal T cell population is essential for tissue homeostasis and wound healing post-injury and infection. In this study, Ma et al. report a surprising role for the phosphorylated transcription factor RORγt as a cell-intrinsic regulator for maintaining mucosal T cell heterogeneity and promoting inflammation resolution.
Collapse
Affiliation(s)
- Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shefali A Patel
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nicholas Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Parth R Patel
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Benjamin S Cho
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Suling Zeng
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Medicine, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV, Turnbaugh PJ. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 2022; 30:17-30.e9. [PMID: 34822777 PMCID: PMC8785648 DOI: 10.1016/j.chom.2021.11.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 01/14/2023]
Abstract
Bacterial activation of T helper 17 (Th17) cells exacerbates mouse models of autoimmunity, but how human-associated bacteria impact Th17-driven disease remains elusive. We show that human gut Actinobacterium Eggerthella lenta induces intestinal Th17 activation by lifting inhibition of the Th17 transcription factor Rorγt through cell- and antigen-independent mechanisms. E. lenta is enriched in inflammatory bowel disease (IBD) patients and worsens colitis in a Rorc-dependent manner in mice. Th17 activation varies across E. lenta strains, which is attributable to the cardiac glycoside reductase 2 (Cgr2) enzyme. Cgr2 is sufficient to induce interleukin (IL)-17a, a major Th17 cytokine. cgr2+ E. lenta deplete putative steroidal glycosides in pure culture; related compounds are negatively associated with human IBD severity. Finally, leveraging the sensitivity of Cgr2 to dietary arginine, we prevented E. lenta-induced intestinal inflammation in mice. Together, these results support a role for human gut bacterial metabolism in driving Th17-dependent autoimmunity.
Collapse
Affiliation(s)
- Margaret Alexander
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Qi Yan Ang
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Renuka R Nayak
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Moriah Sandy
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bing Zhang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Yang X, Wang X, Lei L, Su Y, Zou Y, Liu H, Jiao A, Zhang C, Liu J, Li W, Ding R, Zhou X, Shi L, Zhang D, Sun C, Zhang B. Arid1a promotes thymocyte development through β-selection-dependent and β-selection-independent mechanisms. Immunology 2021; 165:402-413. [PMID: 34921692 DOI: 10.1111/imm.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023] Open
Abstract
Early T-cell development from CD4- CD8- double-negative (DN) stage to CD4+ CD8+ double-positive (DP) stage in the thymus is regulated through multiple steps involving a batch of sequentially expressed factors. Our preliminary data and a recent report showed that AT-rich interaction domain 1A (Arid1a) is required for the transition from DN to DP stages, but the mechanism is not fully understood. In this study, we consolidated that conditional deletion of Arid1a in T-cell lineage intrinsically caused developmental blocks from DN3 to DN4 stages, as well as from DN4 to DP stages using both in vivo adoptive T-cell transfer model and in vitro culture system. The expression of intracellular TCRβ is significantly decreased in Arid1a-deficient DN4 cells compared with WT cells. OT1 transgenic TCR can rescue the defect in the transition from DN3 to DN4 stages, but not from DN to DP stages. Furthermore, we observed a comparable or stronger proliferation capacity accompanied by a significant increase in cell death in Arid1a-/- DP cells compared with that in WT controls. RNA-Seq analysis shows a significant enrichment of apoptotic pathway within differentially expressed genes between Arid1a-/- and WT DP cells, including the upregulation of Bim, Casp3 and Trp53 and the downregulation of Rorc, Bcl-XL and Mcl1. Therefore, our study reveals a novel mechanism that Arid1a controls early T-cell development by maintaining intracellular TCRβ expression-mediated β-selection and activating parallel cell survival pathways.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Duke University Medical Center, Durham, North Carolina, USA
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
13
|
Saenz SA, Local A, Carr T, Shakya A, Koul S, Hu H, Chourb L, Stedman J, Malley J, D’Agostino LA, Shanmugasundaram V, Malona J, Schwartz CE, Beebe L, Clements M, Rajaraman G, Cho J, Jiang L, Dubrovskiy A, Kreilein M, Shimanovich R, Hamann LG, Escoubet L, Ellis JM. Small molecule allosteric inhibitors of RORγt block Th17-dependent inflammation and associated gene expression in vivo. PLoS One 2021; 16:e0248034. [PMID: 34752458 PMCID: PMC8577775 DOI: 10.1371/journal.pone.0248034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Retinoic acid receptor-related orphan nuclear receptor (ROR) γt is a member of the RORC nuclear hormone receptor family of transcription factors. RORγt functions as a critical regulator of thymopoiesis and immune responses. RORγt is expressed in multiple immune cell populations including Th17 cells, where its primary function is regulation of immune responses to bacteria and fungi through IL-17A production. However, excessive IL-17A production has been linked to numerous autoimmune diseases. Moreover, Th17 cells have been shown to elicit both pro- and anti-tumor effects. Thus, modulation of the RORγt/IL-17A axis may represent an attractive therapeutic target for the treatment of autoimmune disorders and some cancers. Herein we report the design, synthesis and characterization of three selective allosteric RORγt inhibitors in preclinical models of inflammation and tumor growth. We demonstrate that these compounds can inhibit Th17 differentiation and maintenance in vitro and Th17-dependent inflammation and associated gene expression in vivo, in a dose-dependent manner. Finally, RORγt inhibitors were assessed for efficacy against tumor formation. While, RORγt inhibitors were shown to inhibit tumor formation in pancreatic ductal adenocarcinoma (PDAC) organoids in vitro and modulate RORγt target genes in vivo, this activity was not sufficient to delay tumor volume in a KP/C human tumor mouse model of pancreatic cancer.
Collapse
Affiliation(s)
- Steven A. Saenz
- Immunology, Cardiovascular & Fibrosis, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
- * E-mail: (SAS); (JME)
| | - Andrea Local
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, California, United States of America
| | - Tiffany Carr
- Immunology, Cardiovascular & Fibrosis, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Arvind Shakya
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, California, United States of America
| | - Shivsmriti Koul
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, California, United States of America
| | - Haiqing Hu
- Preclinical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Lisa Chourb
- Preclinical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Justin Stedman
- Preclinical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Jenna Malley
- Nonclinical Development, Celgene Corporation, Cambridge, Massachusetts, United States of America
| | - Laura Akullian D’Agostino
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | | | - John Malona
- Drug Substance Development, Bristol Myers Squibb, Summit, New Jersey, United States of America
| | - C. Eric Schwartz
- Drug Substance Development, Bristol Myers Squibb, Summit, New Jersey, United States of America
| | - Lisa Beebe
- Preclinical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Meghan Clements
- Nonclinical Development, Celgene Corporation, Cambridge, Massachusetts, United States of America
| | - Ganesh Rajaraman
- Nonclinical Development, Celgene Corporation, Cambridge, Massachusetts, United States of America
| | - John Cho
- Immunology & Inflammation, Celgene Corporation, Cambridge, Massachusetts, United States of America
| | - Lan Jiang
- Immunology, Cardiovascular & Fibrosis, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Alex Dubrovskiy
- Immunology, Cardiovascular & Fibrosis, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Matt Kreilein
- Drug Substance Development, Bristol Myers Squibb, Summit, New Jersey, United States of America
| | - Roman Shimanovich
- Preclinical Candidate Optimization, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Lawrence G. Hamann
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
| | - Laure Escoubet
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, California, United States of America
| | - J. Michael Ellis
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts, United States of America
- * E-mail: (SAS); (JME)
| |
Collapse
|
14
|
Strutzenberg TS, Zhu Y, Novick SJ, Garcia-Ordonez RD, Doebelin C, He Y, Chang MR, Kamenecka TM, Edwards DP, Griffin PR. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement. J Mol Biol 2021; 433:167258. [PMID: 34547329 PMCID: PMC8556364 DOI: 10.1016/j.jmb.2021.167258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/09/2022]
Abstract
The retinoic acid receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor of the nuclear receptor super family that underpins metabolic activity, immune function, and cancer progression. Despite being a valuable drug target in health and disease, our understanding of the ligand-dependent activities of RORγ is far from complete. Like most nuclear receptors, RORγ must recruit coregulatory protein to enact the RORγ target gene program. To date, a majority of structural studies have been focused exclusively on the RORγ ligand-binding domain and the ligand-dependent recruitment of small peptide segments of coregulators. Herein, we examine the ligand-dependent assembly of full length RORγ:coregulator complexes on cognate DNA response elements using structural proteomics and small angle x-ray scattering. The results from our studies suggest that RORγ becomes elongated upon DNA recognition, preventing long range interdomain crosstalk. We also determined that the DNA binding domain adopts a sequence-specific conformation, and that coregulatory protein may be able to 'sense' the ligand- and DNA-bound status of RORγ. We propose a model where ligand-dependent coregulator recruitment may be influenced by the sequence of the DNA to which RORγ is bound. Overall, the efforts described herein will illuminate important aspects of full length RORγ and monomeric orphan nuclear receptor target gene regulation through DNA-dependent conformational changes.
Collapse
Affiliation(s)
| | - Yingmin Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Mi Ra Chang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
15
|
Mukherjee N, Ji N, Tan X, Lin C, Rios E, Chen C, Huang T, Svatek RS. Bladder tumor ILC1s undergo Th17-like differentiation in human bladder cancer. Cancer Med 2021; 10:7101-7110. [PMID: 34496133 PMCID: PMC8525153 DOI: 10.1002/cam4.4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Niannian Ji
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Xi Tan
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Lin Lin
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Emily Rios
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Chun‐Liang Chen
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Tim Huang
- Department of Molecular MedicineUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| | - Robert S. Svatek
- Department of UrologyUniversity of Texas Health San Antonio (UTHSA)San AntonioTexasUSA
| |
Collapse
|
16
|
Stehle C, Rückert T, Fiancette R, Gajdasik DW, Willis C, Ulbricht C, Durek P, Mashreghi MF, Finke D, Hauser AE, Withers DR, Chang HD, Zimmermann J, Romagnani C. T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nat Immunol 2021; 22:1231-1244. [PMID: 34556887 PMCID: PMC7614953 DOI: 10.1038/s41590-021-01029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Pawel Durek
- Cell Biology, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Anja Erika Hauser
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Department of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany.
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany.
| |
Collapse
|
17
|
Aicher TD, Van Huis CA, Hurd AR, Skalitzky DJ, Taylor CB, Beleh OM, Glick G, Toogood PL, Yang B, Zheng T, Huo C, Gao J, Qiao C, Tian X, Zhang J, Demock K, Hao LY, Lesch CA, Morgan RW, Moisan J, Wang Y, Scatina J, Paulos CM, Zou W, Carter LL, Hu X. Discovery of LYC-55716: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ) Agonist for Use in Treating Cancer. J Med Chem 2021; 64:13410-13428. [PMID: 34499493 DOI: 10.1021/acs.jmedchem.1c00731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinoic acid receptor-related orphan receptor γ (RORc, RORγ, or NR1F3) is the nuclear receptor master transcription factor that drives the function and development of IL-17-producing T helper cells (Th17), cytotoxic T cells (Tc17), and subsets of innate lymphoid cells. Activation of RORγ+ T cells in the tumor microenvironment is hypothesized to render immune infiltrates more effective at countering tumor growth. To test this hypothesis, a family of benzoxazines was optimized to provide LYC-55716 (37c), a potent, selective, and orally bioavailable small-molecule RORγ agonist. LYC-55716 decreases tumor growth and enhances survival in preclinical tumor models and was nominated as a clinical development candidate for evaluation in patients with solid tumors.
Collapse
Affiliation(s)
- Thomas D Aicher
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Chad A Van Huis
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Alexander R Hurd
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Donald J Skalitzky
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Clarke B Taylor
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Omar M Beleh
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Gary Glick
- Chief Scientific Officer, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Peter L Toogood
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Bing Yang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Tao Zheng
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Changxin Huo
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Jie Gao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Chenxi Qiao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Xiaolong Tian
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Junping Zhang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Kellie Demock
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Ling-Yang Hao
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Charles A Lesch
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Rodney W Morgan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Jacques Moisan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Yahong Wang
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - JoAnn Scatina
- Department of Preclinical Development, Lycera Corp., 620 Germantown Pike, Plymouth Meeting, Pennsylvania 19462, United States
| | - Chrystal M Paulos
- Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, MSC 509, Room 203, Charleston, South Carolina 29425, United States
| | - Weiping Zou
- School of Medicine, Department of Surgery, University of Michigan, 2101 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Laura L Carter
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Xiao Hu
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| |
Collapse
|
18
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
20
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
21
|
Hajishengallis G, Chavakis T, Lambris JD. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 2020; 84:14-34. [PMID: 32844416 DOI: 10.1111/prd.12331] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances indicate that periodontitis is driven by reciprocally reinforced interactions between a dysbiotic microbiome and dysregulated inflammation. Inflammation is not only a consequence of dysbiosis but, via mediating tissue dysfunction and damage, fuels further growth of selectively dysbiotic communities of bacteria (inflammophiles), thereby generating a self-sustained feed-forward loop that perpetuates the disease. These considerations provide a strong rationale for developing adjunctive host-modulation therapies for the treatment of periodontitis. Such host-modulation approaches aim to inhibit harmful inflammation and promote its resolution or to interfere directly with downstream effectors of connective tissue and bone destruction. This paper reviews diverse strategies targeted to modulate the host periodontal response and discusses their mechanisms of action, perceived safety, and potential for clinical application.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. RNA (NEW YORK, N.Y.) 2020; 26:1320-1333. [PMID: 32554554 PMCID: PMC7491319 DOI: 10.1261/rna.075929.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Human CD4+ T cells are often subdivided into distinct subtypes, including Th1, Th2, Th17, and Treg cells, that are thought to carry out distinct functions in the body. Typically, these T-cell subpopulations are defined by the expression of distinct gene repertoires; however, there is variability between studies regarding the methods used for isolation and the markers used to define each T-cell subtype. Therefore, how reliably studies can be compared to one another remains an open question. Moreover, previous analysis of gene expression in CD4+ T-cell subsets has largely focused on gene expression rather than alternative splicing. Here we take a meta-analysis approach, comparing eleven independent RNA-seq studies of human Th1, Th2, Th17, and/or Treg cells to determine the consistency in gene expression and splicing within each subtype across studies. We find that known master-regulators are consistently enriched in the appropriate subtype; however, cytokines and other genes often used as markers are more variable. Importantly, we also identify previously unknown transcriptomic markers that appear to consistently differentiate between subsets, including a few Treg-specific splicing patterns. Together this work highlights the heterogeneity in gene expression between samples designated as the same subtype, but also suggests additional markers that can be used to define functional groupings.
Collapse
Affiliation(s)
- Caleb M Radens
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Davia Blake
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Guha I, Bhuniya A, Nandi P, Dasgupta S, Sarkar A, Saha A, Das J, Ganguly N, Ghosh S, Ghosh T, Sarkar M, Ghosh S, Majumdar S, Baral R, Bose A. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8 + T cell pool. Immunotherapy 2020; 12:799-818. [PMID: 32698648 DOI: 10.2217/imt-2019-0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: As tumor causes atrophy in the thymus to target effector-T cells, this study is aimed to decipher the efficacy of neem leaf glycoprotein (NLGP) in tumor- and age-associated thymic atrophy. Materials & methods: Different thymus parameters were studied using flow cytometry, reverse transcriptase PCR and immunocyto-/histochemistry in murine melanoma and sarcoma models. Results: Longitudinal NLGP therapy in tumor hosts show tumor-reduction along with significant normalization of thymic alterations. NLGP downregulates intrathymic IL-10, which eventually promotes Notch1 to rescue blockade in CD25+CD44+c-Kit+DN2 to CD25+CD44-c-Kit-DN3 transition in T cell maturation and suppress Ikaros/IRF8/Pu.1 to prevent DN2-T to DC differentiation in tumor hosts. The CD5intTCRαβhigh DP3 population was also increased to endorse CD8+ T cell generation. Conclusion: NLGP rescues tumor-induced altered thymic events to generate more effector T cells to restrain tumor.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Partha Nandi
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Shayani Dasgupta
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Akata Saha
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Juhina Das
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Nilanjan Ganguly
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sarbari Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Madhurima Sarkar
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rathindranath Baral
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| | - Anamika Bose
- Department of Immunoregulation & Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, SP Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
24
|
Ono Y, Tsuboi H, Moriyama M, Asashima H, Kudo H, Takahashi H, Honda F, Abe S, Kondo Y, Takahashi S, Matsumoto I, Nakamura S, Sumida T. RORγt antagonist improves Sjögren's syndrome-like sialadenitis through downregulation of CD25. Oral Dis 2020; 26:766-777. [PMID: 31837283 DOI: 10.1111/odi.13255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We reported previously that T-cell-specific RORγt-transgenic mice under human CD2 promoter (RORγt-Tg mice) developed severe spontaneous Sjögren's syndrome (SS)-like sialadenitis, induced by RORγt-overexpressing CD4+ T cells and reduced regulatory T cells. The purpose of this study was to clarify the effectiveness and mechanisms of action of A213, a RORγt antagonist, in RORγt-Tg mice with SS-like sialadenitis. METHODS Six-week-old RORγt-Tg mice were administered orally of A213 or phosphate-buffered saline every 3 days for 2 weeks. We analyzed saliva volume, histopathology of salivary glands, populations of T cells in splenocytes and cervical lymph nodes (cLNs), and the protein expression levels of CD69 on CD4+ CD25+ Foxp3- and CD4+ CD25+ Foxp3+ cells in cLNs. We also investigated in vitro the potential immunomechanisms of action of A213. RESULTS A213 significantly increased saliva volume, reduced mononuclear cell infiltration in salivary glands, and reduced the focus score of sialadenitis. Analysis of the immunomechanisms using cLNs showed A213 significantly reduced the proportion of CD4+ CD25+ /CD4+ T cells and the protein expression levels of CD69 on CD4+ CD25+ Foxp3- cells. In vitro experiments showed that A213 suppressed CD25 expression on CD4+ T cells and reduced IL-2 production from CD4+ T cells derived from RORγt-Tg mice. CONCLUSION A213 improves SS-like sialadenitis through the inhibition of CD4+ CD25+ cells in cLNs.
Collapse
Affiliation(s)
- Yuko Ono
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hanae Kudo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumika Honda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Saori Abe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Zhang H, Lapointe BT, Anthony N, Azevedo R, Cals J, Correll CC, Daniels M, Deshmukh S, van Eenenaam H, Ferguson H, Hegde LG, Karstens WJ, Maclean J, Miller JR, Moy LY, Simov V, Nagpal S, Oubrie A, Palte RL, Parthasarathy G, Sciammetta N, van der Stelt M, Woodhouse JD, Trotter BW, Barr K. Discovery of N-(Indazol-3-yl)piperidine-4-carboxylic Acids as RORγt Allosteric Inhibitors for Autoimmune Diseases. ACS Med Chem Lett 2020; 11:114-119. [PMID: 32071676 DOI: 10.1021/acsmedchemlett.9b00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
The clinical success of anti-IL-17 monoclonal antibodies (i.e., Cosentyx and Taltz) has validated Th17 pathway modulation for the treatment of autoimmune diseases. The nuclear hormone receptor RORγt is a master regulator of Th17 cells and affects the production of a host of cytokines, including IL-17A, IL-17F, IL-22, IL-26, and GM-CSF. Substantial interest has been spurred across both academia and industry to seek small molecules suitable for RORγt inhibition. A variety of RORγt inhibitors have been reported in the past few years, the majority of which are orthosteric binders. Here we disclose the discovery and optimization of a class of inhibitors, which bind differently to an allosteric binding pocket. Starting from a weakly active hit 1, a tool compound 14 was quickly identified that demonstrated superior potency, selectivity, and off-target profile. Further optimization focused on improving metabolic stability. Replacing the benzoic acid moiety with piperidinyl carboxylate, modifying the 4-aza-indazole core in 14 to 4-F-indazole, and incorporating a key hydroxyl group led to the discovery of 25, which possesses exquisite potency and selectivity, as well as an improved pharmacokinetic profile suitable for oral dosing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gopal Parthasarathy
- Computational and Structural Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | | | | | | | | | | |
Collapse
|
26
|
Meijer FA, Doveston RG, de Vries RMJM, Vos GM, Vos AAA, Leysen S, Scheepstra M, Ottmann C, Milroy LG, Brunsveld L. Ligand-Based Design of Allosteric Retinoic Acid Receptor-Related Orphan Receptor γt (RORγt) Inverse Agonists. J Med Chem 2019; 63:241-259. [PMID: 31821760 PMCID: PMC6956242 DOI: 10.1021/acs.jmedchem.9b01372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Retinoic acid receptor-related orphan receptor γt
(RORγt) is a nuclear receptor associated with the pathogenesis
of autoimmune diseases. Allosteric inhibition of RORγt is conceptually
new, unique for this specific nuclear receptor, and offers advantages
over traditional orthosteric inhibition. Here, we report a highly
efficient in silico-guided approach that led to the discovery of novel
allosteric RORγt inverse agonists with a distinct isoxazole
chemotype. The the most potent compound, 25 (FM26), displayed submicromolar inhibition in a coactivator recruitment
assay and effectively reduced IL-17a mRNA production in EL4 cells,
a marker of RORγt activity. The projected allosteric mode of
action of 25 was confirmed by biochemical experiments
and cocrystallization with the RORγt ligand binding domain.
The isoxazole compounds have promising pharmacokinetic properties
comparable to other allosteric ligands but with a more diverse chemotype.
The efficient ligand-based design approach adopted demonstrates its
versatility in generating chemical diversity for allosteric targeting
of RORγt.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Richard G Doveston
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands.,Leicester Institute of Structural and Chemical Biology and Department of Chemistry , University of Leicester , University Road , Leicester LE1 7RH , U.K
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Gaël M Vos
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Alex A A Vos
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Marcel Scheepstra
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 AZ Eindhoven , The Netherlands
| |
Collapse
|
27
|
Yi JS, Russo MA, Raja S, Massey JM, Juel VC, Shin J, Hobson-Webb LD, Gable K, Guptill JT. Inhibition of the transcription factor ROR-γ reduces pathogenic Th17 cells in acetylcholine receptor antibody positive myasthenia gravis. Exp Neurol 2019; 325:113146. [PMID: 31838097 DOI: 10.1016/j.expneurol.2019.113146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022]
Abstract
IL-17 producing CD4 T cells (Th17) cells increase significantly with disease severity in myasthenia gravis (MG) patients. To suppress the generation of Th17 cells, we examined the effect of inhibiting retinoic acid receptor-related-orphan-receptor-C (RORγ), a Th17-specific transcription factor critical for differentiation. RORγ inhibition profoundly reduced Th17 cell frequencies, including IFN-γ and IL-17 co-producing pathogenic Th17 cells. Other T helper subsets were not affected. In parallel, CD8 T cell subsets producing IL-17 and IL-17/IFN-γ were increased in MG patients and inhibited by the RORγ inhibitor. These findings provide rationale for exploration of targeted Th17 therapies, including ROR-γ inhibitors, to treat MG patients.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 915 S., LaSalle Street, Box 2926, Durham, NC 27710, USA.
| | - Melissa A Russo
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Shruti Raja
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Janice M Massey
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Vern C Juel
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Jay Shin
- Duke University, Durham, NC 27710, USA
| | - Lisa D Hobson-Webb
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Karissa Gable
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| | - Jeffrey T Guptill
- Neuromuscular Section, Department of Neurology, Duke University Medical Center, Box 3403, Durham, NC 27710, USA
| |
Collapse
|
28
|
Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, Pelletier OB, He Y, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα Regulates T H17 Cell Development and Autoimmunity. Cell Rep 2019; 25:3733-3749.e8. [PMID: 30590045 PMCID: PMC6400287 DOI: 10.1016/j.celrep.2018.11.101] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
RORγt is well recognized as the lineage-defining transcription factor for T helper 17 (TH17) cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here, we demonstrate that the transcriptional repressor REV-ERBα is exclusively expressed in TH17 cells, competes with RORγt for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as RORγt dependent, including Il17a. Deletion of REV-ERBα enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as RORγ modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBα negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Amir
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sweena Chaudhari
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ran Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sean Campbell
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Sarah A Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Scripps Research, Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura B Chopp
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Qun Lu
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Oliver B Pelletier
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Christelle Doebelin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
29
|
Dutzan N, Kajikawa T, Abusleme L, Greenwell-Wild T, Zuazo CE, Ikeuchi T, Brenchley L, Abe T, Hurabielle C, Martin D, Morell RJ, Freeman AF, Lazarevic V, Trinchieri G, Diaz PI, Holland SM, Belkaid Y, Hajishengallis G, Moutsopoulos NM. A dysbiotic microbiome triggers T H17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med 2019; 10:10/463/eaat0797. [PMID: 30333238 DOI: 10.1126/scitranslmed.aat0797] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/03/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Periodontitis is one of the most common human inflammatory diseases, yet the mechanisms that drive immunopathology and could be therapeutically targeted are not well defined. Here, we demonstrate an expansion of resident memory T helper 17 (TH17) cells in human periodontitis. Phenocopying humans, TH17 cells expanded in murine experimental periodontitis through local proliferation. Unlike homeostatic oral TH17 cells, which accumulate in a commensal-independent and interleukin-6 (IL-6)-dependent manner, periodontitis-associated expansion of TH17 cells was dependent on the local dysbiotic microbiome and required both IL-6 and IL-23. TH17 cells and associated neutrophil accumulation were necessary for inflammatory tissue destruction in experimental periodontitis. Genetic or pharmacological inhibition of TH17 cell differentiation conferred protection from immunopathology. Studies in a unique patient population with a genetic defect in TH17 cell differentiation established human relevance for our murine experimental studies. In the oral cavity, human TH17 cell defects were associated with diminished periodontal inflammation and bone loss, despite increased prevalence of recurrent oral fungal infections. Our study highlights distinct functions of TH17 cells in oral immunity and inflammation and paves the way to a new targeted therapeutic approach for the treatment of periodontitis.
Collapse
Affiliation(s)
- Nicolas Dutzan
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA.,Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA.,Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | | | - Carlos E Zuazo
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Toshiharu Abe
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte Hurabielle
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, MD 20892, USA.,Inserm U976, Hôpital Saint Louis, Université Paris Diderot, Paris 75010, France
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20892, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Patricia I Diaz
- School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, MD 20892, USA
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Cibrian D, Castillo-González R, Fernández-Gallego N, de la Fuente H, Jorge I, Saiz ML, Punzón C, Ramírez-Huesca M, Vicente-Manzanares M, Fresno M, Daudén E, Fraga-Fernandez J, Vazquez J, Aragonés J, Sánchez-Madrid F. Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. J Allergy Clin Immunol 2019; 145:199-214.e11. [PMID: 31605740 DOI: 10.1016/j.jaci.2019.09.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Psoriasis is a frequent inflammatory skin disease that is mainly mediated by IL-23, IL-1β, and IL-17 cytokines. Although psoriasis is a hyperproliferative skin disorder, the possible role of amino acid transporters has remained unexplored. OBJECTIVE We sought to investigate the role of the essential amino acid transporter L-type amino acid transporter (LAT) 1 (SLC7A5) in psoriasis. METHODS LAT1 floxed mice were crossed to Cre-expressing mouse strains under the control of keratin 5, CD4, and retinoic acid receptor-related orphan receptor γ. We produced models of skin inflammation induced by imiquimod (IMQ) and IL-23 and tested the effect of inhibiting LAT1 (JPH203) and mammalian target of rapamycin (mTOR [rapamycin]). RESULTS LAT1 expression is increased in keratinocytes and skin-infiltrating lymphocytes of psoriatic lesions in human subjects and mice. LAT1 deletion in keratinocytes does not dampen the inflammatory response or their proliferation, which could be maintained by increased expression of the alternative amino acid transporters LAT2 and LAT3. Specific deletion of LAT1 in γδ and CD4 T cells controls the inflammatory response induced by IMQ. LAT1 deletion or inhibition blocks expansion of IL-17-secreting γ4+δ4+ and CD4 T cells and dampens the release of IL-1β, IL-17, and IL-22 in the IMQ-induced model. Moreover, inhibition of LAT1 blocks expansion of human γδ T cells and IL-17 secretion by human CD4 T cells. IL-23 and IL-1β stimulation upregulates LAT1 expression and induces mTOR activation in IL-17+ γδ and TH17 cells. Deletion or inhibition of LAT1 efficiently controls IL-23- and IL-1β-induced phosphatidylinositol 3-kinase/AKT/mTOR activation independent of T-cell receptor signaling. CONCLUSION Targeting LAT1-mediated amino acid uptake is a potentially useful immunosuppressive strategy to control skin inflammation mediated by the IL-23/IL-1β/IL-17 axis.
Collapse
Affiliation(s)
- Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nieves Fernández-Gallego
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - María Laura Saiz
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Esteban Daudén
- Dermatology Service, Hospital de la Princesa, Madrid, Spain
| | | | - Jesús Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain
| | - Julián Aragonés
- CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain; Reasearch Unit, Hospital de La Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
31
|
Gauld SB, Jacquet S, Gauvin D, Wallace C, Wang Y, McCarthy R, Goess C, Leys L, Huang S, Su Z, Edelmayer R, Wetter J, Salte K, McGaraughty SP, Argiriadi MA, Honore P, Luccarini JM, Bressac D, Desino K, Breinlinger E, Cusack K, Potin D, Kort ME, Masson PJ. Inhibition of Interleukin-23-Mediated Inflammation with a Novel Small Molecule Inverse Agonist of ROR γt. J Pharmacol Exp Ther 2019; 371:208-218. [PMID: 31375639 DOI: 10.1124/jpet.119.258046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/18/2019] [Indexed: 03/08/2025] Open
Abstract
Blockade of interleukin (IL)-23 or IL-17 with biologics is clinically validated as a treatment of psoriasis. However, the clinical impact of targeting other nodes within the IL-23/IL-17 pathway, especially with small molecules, is less defined. We report on a novel small molecule inverse agonist of retinoid acid-related orphan receptor (ROR) γt and its efficacy in preclinical models of psoriasis and arthritis. 1-(2,4-Dichloro-3-((1,4-dimethyl-6-(trifluoromethyl)-1H-indol-2-yl)methyl)benzoyl)piperidine-4-carboxylic acid (A-9758) was optimized from material identified from a high-throughput screening campaign. A-9758 is selective for RORγt and exhibits robust potency against IL-17A release both in vitro and in vivo. In vivo, we also show that IL-23 is sufficient to drive the accumulation of RORγt+ cells, and inhibition of RORγt significantly attenuates IL-23-driven psoriasiform dermatitis. Therapeutic treatment with A-9758 (i.e., delivered during active disease) was also effective in blocking skin and joint inflammation. Finally, A-9758 exhibited efficacy in an ex vivo human whole blood assay, suggesting small molecule inverse agonists of RORγt could be efficacious in human IL-17-related diseases. SIGNIFICANCE STATEMENT: Using a novel small molecule inverse agonist, and preclinical assays, we show that RORγt is a viable target for the inhibition of RORγt/Th17-driven diseases such as psoriasis. Preclinical models of psoriasis show that inhibition of RORγt blocks both the accumulation and effector function of IL-17-producing T cells.
Collapse
Affiliation(s)
- Stephen B Gauld
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Sebastien Jacquet
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Donna Gauvin
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Craig Wallace
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Yibing Wang
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Richard McCarthy
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Christian Goess
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Laura Leys
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Susan Huang
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Zhi Su
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Rebecca Edelmayer
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Joseph Wetter
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Katherine Salte
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Steven P McGaraughty
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Maria A Argiriadi
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Prisca Honore
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Jean-Michel Luccarini
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Didier Bressac
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Kelly Desino
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Eric Breinlinger
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Kevin Cusack
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Dominique Potin
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Michael E Kort
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| | - Philippe J Masson
- AbbVie Inc., North Chicago, Illinois (S.B.G., Y.W., L.L., S.H., Z.S., J.W., K.S., S.P.M., P.H., K.D., M.E.K., D.G., R.E.); Inventiva, Daix, France (J.-M.L., D.B., D.P., P.J.M., S.J.); and AbbVie Bioresearch Center, Worcester, Massachusetts (C.W., R.M., C.G., M.A.A., E.B., K.C.)
| |
Collapse
|
32
|
Abstract
T helper 17 (Th17) cells produce interleukin-17 (IL-17) cytokines and drive inflammatory responses in autoimmune diseases such as multiple sclerosis. The differentiation of Th17 cells is dependent on the retinoic acid receptor-related orphan nuclear receptor RORγt. Here, we identify REV-ERBα (encoded by Nr1d1), a member of the nuclear hormone receptor family, as a transcriptional repressor that antagonizes RORγt function in Th17 cells. REV-ERBα binds to ROR response elements (RORE) in Th17 cells and inhibits the expression of RORγt-dependent genes including Il17a and Il17f Furthermore, elevated REV-ERBα expression or treatment with a synthetic REV-ERB agonist significantly delays the onset and impedes the progression of experimental autoimmune encephalomyelitis (EAE). These results suggest that modulating REV-ERBα activity may be used to manipulate Th17 cells in autoimmune diseases.
Collapse
|
33
|
Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t (RORγt) inhibitors in clinical development for the treatment of autoimmune diseases: a patent review (2016-present). Expert Opin Ther Pat 2019; 29:663-674. [DOI: 10.1080/13543776.2019.1655541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nannan Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
34
|
An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochem Soc Trans 2019; 47:1077-1089. [DOI: 10.1042/bst20180414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Abstract
In T cell development, a pivotal decision-making stage, termed β-selection, integrates a TCRβ checkpoint to coordinate survival, proliferation and differentiation to an αβ T cell. Here, we review how transcriptional regulation coordinates fate determination in early T cell development to enable β-selection. Errors in this transcription control can trigger T cell acute lymphoblastic leukaemia. We describe how the β-selection checkpoint goes awry in leukaemic transformation.
Collapse
|
35
|
Dai H, Kyttaris VC. Interleukin-23 deficiency alters thymic selection in lupus-prone mice. Lupus 2019; 28:1007-1012. [PMID: 31166866 DOI: 10.1177/0961203319854804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that IL-23 receptor deficiency in MRL.lpr mice ameliorates lupus by altering the balance of pro- and anti-inflammatory cytokines in secondary lymphoid organs. As IL-23 may also impact thymic selection, we evaluated the effect of IL-23 on thymic T cell development in lupus-prone mice. We generated IL-23p19-deficient MRL.lpr mice and harvested their thymus at 8 weeks of age. We found that the late stage double negative DN4 population was increased in IL-23p19-/- MRL.lpr mice when compared to IL-23p19+/+ MRL.lpr mice. Despite this, mature thymocytes (CD24-TCRβ+) were decreased by more than 50% in the IL-23p19-deficient mice versus wild-type controls. This was associated with a decrease in the generation of CD8+ T cells, possibly through downregulation of the IL-7 receptor. CD8+ T cells were not only fewer in numbers but also had decreased expression of the migration-related receptors CD44 and CD62L in the thymus and spleens of IL-23p19-deficient versus wild-type mice. We propose that IL-23 promotes the development of lupus-like autoimmunity not only through T cell polarization and cytokine production in the peripheral lymphoid organs but also by influencing T cell thymic development.
Collapse
Affiliation(s)
- H Dai
- 1 Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, USA.,2 Harvard Medical School, Boston, USA
| | - V C Kyttaris
- 1 Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, USA.,2 Harvard Medical School, Boston, USA
| |
Collapse
|
36
|
Bianchi E, Rogge L. The IL-23/IL-17 pathway in human chronic inflammatory diseases – new insight from genetics and targeted therapies. Microbes Infect 2019; 21:246-253. [DOI: 10.1016/j.micinf.2019.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
|
37
|
Leys L, Wang Y, Paulsboe S, Edelmayer R, Salte K, Wetter J, Namovic M, Phillips L, Dunstan R, Gauvin D, Donnelly-Roberts D, Su Z, Honore P, McGaraughty S. Characterization of psoriasiform dermatitis induced by systemic injection of interleukin-23 minicircles in mice. J Dermatol 2019; 46:482-497. [PMID: 31062408 DOI: 10.1111/1346-8138.14899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
The interleukin (IL)-23/IL-17 axis plays a central role in the pathogenesis of psoriasis and is elevated in lesional psoriatic skin. Different murine models have been developed to mimic this pathophysiology each carrying specific merits and limitations. In an attempt to address some of these limitations, B10.RIII mice received a single hydrodynamic injection of IL-23 minicircles (MC) to induce hepatic transcription and the endogenous production of IL-23. Plasma and ear IL-23 levels were dose-dependently (0.3-3 μg) increased in MC injected mice and were sustained over the 14-day study duration. Beginning on day 7 post-injection, mice developed dose-related ear inflammation, histologically confirmed increases in epidermal and dermal area, as well as enhanced neutrophil and macrophage content. Flow cytometry demonstrated increased levels of granulocytes, T cells and monocytes/macrophages in the ear skin, with T cells identified as the main cellular source of IL-17A. Evaluation of mRNA and protein showed time-dependent, increased levels of the IL-23/IL-17 pathway and inflammatory/microbial cytokines/chemokines in the ear which differed kinetically from circulating levels. An anti-IL-23p40 antibody was assessed following both prophylactic administration and administration once the disease was established. Prophylactic dosing completely prevented the development of the ear phenotype across endpoints. Treatment administration showed a dose-related response, with a maximum inhibition of 64-94%, depending on endpoint. These data demonstrate that the IL-23 MC model is a useful approach to study IL-23/IL-17-driven skin inflammation and may facilitate preclinical assessment of novel therapies.
Collapse
Affiliation(s)
- Laura Leys
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Yibing Wang
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | | | | | - Katie Salte
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Joseph Wetter
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Marian Namovic
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Lucy Phillips
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Robert Dunstan
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, Massachusetts, USA
| | - Donna Gauvin
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | | | - Zhi Su
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | - Prisca Honore
- Dermatology Discovery, AbbVie Inc., North Chicago, Illinois, USA
| | | |
Collapse
|
38
|
IL-17A Is Critical for CD8+ T Effector Response in Airway Epithelial Injury After Transplantation. Transplantation 2019; 102:e483-e493. [PMID: 30211827 DOI: 10.1097/tp.0000000000002452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Airway epithelium is the primary target of trachea and lung transplant rejection, the degree of epithelial injury is closely correlated with obliterative bronchiolitis development. In this study, we investigated the cellular and molecular mechanisms of IL-17A-mediated airway epithelial injury after transplantation. METHODS Murine orthotopic allogeneic trachea or lung transplants were implemented in wild type or RORγt mice. Recipients received anti-IL-17A or anti-IFNγ for cytokine neutralization, anti-CD8 for CD8 T-cell depletion, or STAT3 inhibitor to suppress type 17 CD4+/CD8+ T cell development. Airway injury and graft inflammatory cell infiltration were examined by histopathology and immunohistochemistry. Gene expression of IL-17A, IFNγ, perforin, granzyme B, and chemokines in grafts was quantitated by real-time RT-PCR. RESULTS IL-17A and IFNγ were rapidly expressed and associated with epithelial injury and CD8 T-cell accumulation after allotransplantation. Depletion of CD8 T cells prevented airway epithelial injury. Neutralization of IL-17A or devoid of IL-17A production by RORγt deficiency improved airway epithelial integrity of the trachea allografts. Anti-IL-17A reduced the expression of CXCL9, CXCL10, CXCL11, and CCL20, and abolished CD8 T-cell accumulation in the trachea allografts. Inhibition of STAT3 activation significantly reduced IL-17A expression in both trachea and lung allografts; however, it increased IFNγ expression and cytotoxic activities, which resulted in the failure of airway protection. CONCLUSIONS Our data reveal the critical role of IL-17A in mediating CD8 T effector response that causes airway epithelial injury and lung allograft rejection, and indicate that inhibition of STAT3 signals could drive CD8 T cells from Tc17 toward Tc1 development.
Collapse
|
39
|
The IL-23/IL-17 pathway in human chronic inflammatory diseases-new insight from genetics and targeted therapies. Genes Immun 2019; 20:415-425. [PMID: 31000797 DOI: 10.1038/s41435-019-0067-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
Chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, spondyloarthritis, and psoriasis cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function, and diminished quality of life, as well as for society, because of the associated high health-care costs and loss of productivity. Our limited understanding of the pathogenic mechanisms involved in these diseases currently hinders early diagnosis and the development of more specific and effective therapies. The past years have been marked by considerable progress in our insight of the genetic basis of many diseases. In particular, genome-wide association studies (GWAS) performed with thousands of patients have provided detailed information about the genetic variants associated with a large number of chronic inflammatory diseases. These studies have brought to the forefront many genes linked to signaling pathways that were not previously known to be involved in pathogenesis, pointing to new directions in the study of disease mechanisms. GWAS also provided fundamental evidence for a key role of the immune system in the pathogenesis of these diseases, because many of the identified loci map to genes involved in different immune processes. However, the mechanisms by which disease-associated genetic variants act on disease development and the targeted cell populations remain poorly understood. The challenge of the post-GWAS era is to understand how these variants affect pathogenesis, to allow translation of genetic data into better diagnostics and innovative treatment strategies. Here, we review recent results that document the importance of the IL-23/IL-17 pathway for the pathogenesis of several chronic inflammatory diseases and summarize data that demonstrate how therapeutic targeting of this pathway can benefit affected patients.
Collapse
|
40
|
Imura C, Ueyama A, Sasaki Y, Shimizu M, Furue Y, Tai N, Tsujii K, Katayama K, Okuno T, Shichijo M, Yasui K, Yamamoto M. A novel RORγt inhibitor is a potential therapeutic agent for the topical treatment of psoriasis with low risk of thymic aberrations. J Dermatol Sci 2019; 93:176-185. [PMID: 30905492 DOI: 10.1016/j.jdermsci.2019.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Retinoic acid receptor-related orphan receptor gamma t (RORγt) has critical roles in the development, maintenance and function of interleukin (IL)-17-producing cells and is a highly attractive target for the treatment of IL-17-mediated autoimmune disease, particularly psoriasis. On the other hand, RORγt is also critical for controlling apoptosis during thymopoiesis, and genetic RORγt ablation or systematic RORγt inhibition cause progressive thymic aberrations leading to T cell lymphomas. OBJECTIVE We investigated whether topical administration of our novel RORγt inhibitor, S18-000003 has therapeutic potential for psoriasis with low risk of thymic aberrations. METHODS We evaluated the effect of topical S18-000003 on psoriasis-like skin inflammation and influence on the thymus in a 12-O-tetradecanoylphorbol-13-acetate-induced K14.Stat3C mouse psoriasis model. RESULTS S18-000003 markedly inhibited the development of psoriatic skin inflammation via suppression of the IL-17 pathway. In the skin, S18-000003 suppressed all subsets of IL-17-producing cells that we previously identified in this psoriasis model: Th17 cells, Tc17 cells, dermal γδ T cells, TCR- cells that probably included innate lymphoid cells, and CD4-CD8- double-negative αβ T cells. Notably, neither reduction of CD4+CD8+ double-positive thymocytes nor dysregulation of cell cycling was observed in S18-000003-treated mice, even at a high dose. CONCLUSION Our topically administered RORγt inhibitor is a potential therapeutic agent for psoriasis with low risk of thymic lymphoma.
Collapse
Affiliation(s)
- Chihiro Imura
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan.
| | - Yoshikazu Sasaki
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Masaya Shimizu
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Yoko Furue
- Shionogi Techno Advance Research Co., Ltd., Toyonaka, Japan
| | - Nobuyuki Tai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kenichiro Tsujii
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Takayuki Okuno
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | | | - Kiyoshi Yasui
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Mina Yamamoto
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Japan
| |
Collapse
|
41
|
Yoshida H, Lareau CA, Ramirez RN, Rose SA, Maier B, Wroblewska A, Desland F, Chudnovskiy A, Mortha A, Dominguez C, Tellier J, Kim E, Dwyer D, Shinton S, Nabekura T, Qi Y, Yu B, Robinette M, Kim KW, Wagers A, Rhoads A, Nutt SL, Brown BD, Mostafavi S, Buenrostro JD, Benoist C. The cis-Regulatory Atlas of the Mouse Immune System. Cell 2019; 176:897-912.e20. [PMID: 30686579 PMCID: PMC6785993 DOI: 10.1016/j.cell.2018.12.036] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023]
Abstract
A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- Department of Immunology, Harvard Medical School, Boston, MA, USA; YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | | | | | - Samuel A Rose
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksandra Wroblewska
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aleksey Chudnovskiy
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Mortha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julie Tellier
- The Walter and Eliza Hall Institute and Department of Medical Biology, Melbourne University, Parkville, VIC, Australia
| | - Edy Kim
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - Dan Dwyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Tsukasa Nabekura
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - YiLin Qi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bingfei Yu
- Department of Biological Sciences, UCSD, La Jolla, CA, USA
| | - Michelle Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Wagers
- Joslin Diabetes Center, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA
| | - Andrew Rhoads
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute and Department of Medical Biology, Melbourne University, Parkville, VIC, Australia
| | - Brian D Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Mostafavi
- Department of Statistics and Department Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA USA.
| | | |
Collapse
|
42
|
RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in Spondyloarthritis patients. Nat Commun 2019; 10:9. [PMID: 30602780 PMCID: PMC6315029 DOI: 10.1038/s41467-018-07911-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Dysregulated IL-23/IL-17 responses have been linked to psoriatic arthritis and other forms of spondyloarthritides (SpA). RORγt, the key Thelper17 (Th17) cell transcriptional regulator, is also expressed by subsets of innate-like T cells, including invariant natural killer T (iNKT) and γδ-T cells, but their contribution to SpA is still unclear. Here we describe the presence of particular RORγt+T-betloPLZF- iNKT and γδ-hi T cell subsets in healthy peripheral blood. RORγt+ iNKT and γδ-hi T cells show IL-23 mediated Th17-like immune responses and were clearly enriched within inflamed joints of SpA patients where they act as major IL-17 secretors. SpA derived iNKT and γδ-T cells showed unique and Th17-skewed phenotype and gene expression profiles. Strikingly, RORγt inhibition blocked γδ17 and iNKT17 cell function while selectively sparing IL-22+ subsets. Overall, our findings highlight a unique diversity of human RORγt+ T cells and underscore the potential of RORγt antagonism to modulate aberrant type 17 responses.
Collapse
|
43
|
Takeda Y, Kang HS, Jetten AM. Analysis of the Transcriptional Activity of Retinoic Acid-Related Orphan Receptors (RORs) and Inhibition by Inverse Agonists. Methods Mol Biol 2019; 1966:193-202. [PMID: 31041748 DOI: 10.1007/978-1-4939-9195-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here, we describe several assays to analyze the transcriptional activity of retinoic acid-related orphan receptors (RORs) and the effect of inverse agonists on their activity. One assay measures the effect of an inverse agonist on the transcriptional activation of a luciferase reporter by RORs in a Tet-On cell system. A mammalian two-hybrid assay analyzes the interaction of the ROR ligand binding domain with a coactivator peptide. Two additional assays examine the effect of an inverse agonist on the activation of a luciferase reporter under control of the promoter of the ROR target gene, IL17, and on ROR-mediated activation using a mammalian monohybrid assay.
Collapse
Affiliation(s)
- Yukimasa Takeda
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Hong Soon Kang
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton M Jetten
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
44
|
Pandya VB, Kumar S, Sachchidanand, Sharma R, Desai RC. Combating Autoimmune Diseases With Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J Med Chem 2018; 61:10976-10995. [DOI: 10.1021/acs.jmedchem.8b00588] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vrajesh B. Pandya
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Sanjay Kumar
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Sachchidanand
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Rajiv Sharma
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| | - Ranjit C. Desai
- Zydus Research Centre, Cadila Healthcare Limited, Sarkhej Bavla NH8A, Moraiya, Ahmedabad 382210, India
| |
Collapse
|
45
|
Jetten AM, Takeda Y, Slominski A, Kang HS. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. CURRENT OPINION IN TOXICOLOGY 2018; 8:66-80. [PMID: 29568812 DOI: 10.1016/j.cotox.2018.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholesterol and its metabolites are bioactive lipids that interact with and regulate the activity of various proteins and signaling pathways that are implicated in the control of a variety of physiological and pathological processes. Recent studies revealed that retinoic acid-related orphan receptors, RORα and γ, members of the ligand-dependent nuclear receptor superfamily, exhibit quite a wide binding specificity for a number of sterols. Several cholesterol intermediates and metabolites function as natural ligands of RORα and RORγ and act as agonists or inverse agonists. Changes in cholesterol homeostasis that alter the level or type of sterol metabolites in cells, can either enhance or inhibit ROR transcriptional activity that subsequently result in changes in the physiological processes regulated by RORs, including various immune responses and metabolic pathways. Consequently, this might negatively or positively impact pathologies, in which RORs are implicated, such as autoimmune disease, inflammation, metabolic syndrome, cancer, and several neurological disorders. Best studied are the links between cholesterol metabolism, RORγt activity, and their regulation of Th17 differentiation and autoimmune disease. The discovery that Th17-dependent inflammation is significantly attenuated in RORγ-deficient mice in several experimental autoimmune disease models, initiated a search for ROR modulators that led to the identification of a number of small molecular weight RORγ inverse agonists. The inverse agonists suppress Th17 differentiation and IL-17 production and protect against autoimmunity. Together, these studies suggest that RORγt may provide an attractive therapeutic target in the management of several (inflammatory) diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yukimasa Takeda
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrzej Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
46
|
Wanchoo A, Voigt A, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Single-cell analysis reveals sexually dimorphic repertoires of Interferon-γ and IL-17A producing T cells in salivary glands of Sjögren's syndrome mice. Sci Rep 2017; 7:12512. [PMID: 28970488 PMCID: PMC5624952 DOI: 10.1038/s41598-017-12627-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
The development of Sjögren's syndrome (SjS) is a dynamic and temporal process with a female predilection. Following the initial influx of immune cells, T cell clusters develop, accelerating the pathology in the salivary glands. Proinflammatory cytokines, IFN-γ and IL-17A, produced by T cells contribute synergistically to the disease. In this study, we examined the sexual dimorphism in cellular infiltrates of the salivary glands by using functional single-cell microengraving analysis. Using high-throughput sequencing, we investigated the clonal diversity of the T cell receptors (TCRs) of infiltrating IFN-γ and IL-17A-producing T cells in male and female SjS-susceptible (SjSs) C57BL/6.NOD-Aec1Aec2 mice. There were elevated frequencies of IFN-γ and IL-17A-producing effector T cell populations in female SjSS mice compared to male SjSS mice. MEME analysis shows high frequency and unique, sexually dimorphic motifs in the TCR hypervariable regions in the SjSS mice. Male mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG) TCR genes in Th1 cells and TRBV16/(TRBD1/2)TRBJ1-7 (CGGKRRLESIFR) in Th1 and Th17 cells. Female SjSS mice selected for TRAV8/TRAJ52 (CATDLNTGANTGKLTFG), TRAV13D-2/TRAJ23 (CVYLEHHFE), and TRBV23/(TRBD2)TRBJ2-2 (CRKLHSCATCALNFL) in Th1 cells. These findings suggest that there is an elevated prevalence of pathogenic effector T cells in the glands with a sexually dimorphic selection bias of TCR repertoires.
Collapse
Affiliation(s)
- Arun Wanchoo
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA
| | - Sukesh Sukumaran
- Rheumatology Section, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock Arkansas, USA
| | - Carol M Stewart
- Department of Oral and Maxillofacial Diagnostic Sciences, Gainesville Florida, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA
| | - Indraneel Bhattacharya
- Department of Oral and Maxillofacial Diagnostic Sciences, Gainesville Florida, USA
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville Florida, USA.
- Department of Oral Biology, Gainesville Florida, USA.
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville Florida, USA.
| |
Collapse
|
47
|
Fang D, Zhu J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. J Exp Med 2017. [PMID: 28630089 PMCID: PMC5502437 DOI: 10.1084/jem.20170494] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fang and Zhu discuss similarities and differences between CD4 T cell and ILC subsets and the master transcription factors that determine the heterogeneity and plasticity of these subsets. CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
Zhong C, Zhu J. Small-Molecule RORγt Antagonists: One Stone Kills Two Birds. Trends Immunol 2017; 38:229-231. [PMID: 28258823 DOI: 10.1016/j.it.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
Although small-molecule thymus-specific isoform of retinoic acid receptor-related orphan nuclear receptor γ (RORγt) antagonists suppressing interleukin (IL)-17-producing T helper (Th17) cells are widely reported, the effect of these molecules on other RORγt-expressing cells is unknown. However, a new study reports that RORγt inhibition in CD4+CD8+ thymocytes resulted in skewed T cell repertoire, contributing to a reduction in the frequency of self-reactive T cells and resistance to autoimmunity.
Collapse
Affiliation(s)
- Chao Zhong
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|