1
|
Huang C, Lin J, Chen L, Sun W, Xia J, Wu M. Upregulation of C1QC as a Mediator of Blood-Brain Barrier Damage in Type 2 Diabetes Mellitus. Mol Neurobiol 2025; 62:5234-5251. [PMID: 39531193 DOI: 10.1007/s12035-024-04615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated. The primary aim of this investigation was to uncover the pivotal dysregulation of specific genes observed within the cerebral microvascular endothelial cells of diabetic patients, with a particular focus on understanding its biological implications in the disruption of the BBB. By integrating bioinformatics analysis, we identified C1QC as a potential upregulated marker. The expression level of C1QC was subsequently verified in both in vivo and in vitro models. Our experiments have discovered that, under diabetic conditions, suppressing C1QC leads to the mitigation of BBB damage. The presence of a high level of C1QC, through its binding to discoidin domain receptor 2 (DDR2), may trigger the activation of its downstream MMP9, a calcium-dependent enzyme that is capable of degrading protein components in the extracellular matrix, consequently leading to the structural and functional disruption of BBB. In summary, the findings of this study indicate that the aberrantly upregulated expression of C1QC may exert deleterious effects on the BBB under diabetes. To alleviate neurological impairments in individuals with T2DM, C1QC may emerge as a promising therapeutic target worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxing Lin
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lan Chen
- Taylor's University, Subang Jaya, Malaysia
| | - Wenzhe Sun
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Wu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
2
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
4
|
Sato A, Takagi K, Yoshida M, Yamaguchi-Tanaka M, Sagehashi M, Miki Y, Miyashita M, Suzuki T. Discoidin Domain Receptor 2 Contributes to Breast Cancer Progression and Chemoresistance by Interacting with Collagen Type I. Cancers (Basel) 2024; 16:4285. [PMID: 39766183 PMCID: PMC11674238 DOI: 10.3390/cancers16244285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Chemoresistance is an important issue to be solved in breast cancer. It is well known that the content and morphology of collagens in tumor tissues are drastically altered following chemotherapy, and discoidin domain receptor 2 (DDR2) is a unique type of receptor tyrosine kinase (RTK). This RTK is activated by collagens, playing important roles in human malignancies. However, the contribution to the chemoresistance of DDR2 in terms of the association with collagens remains largely unclear in breast cancer. Methods: We immunolocalized DDR2 and collagen type I in 224 breast cancer tissues and subsequently conducted in vitro studies to confirm the role of DDR2 in breast cancer chemoresistance using chemosensitive and chemoresistant cell lines. Results: DDR2 immunoreactivity was positively correlated with aggressive behaviors of breast cancer and was significantly associated with an increased risk of recurrence, especially in those who received chemotherapy. Moreover, in vitro experiments demonstrated that DDR2 promoted the proliferative activity of breast cancer cells, and cell viability after epirubicin treatment was significantly maintained by DDR2 in a collagen I-dependent manner. Conclusions: These data suggested that DDR2 could be a poor prognostic factor associated with cell proliferation and chemotherapy resistance in human breast cancer.
Collapse
Affiliation(s)
- Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Momoka Yoshida
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mikoto Sagehashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (A.S.); (T.S.)
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| |
Collapse
|
5
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
6
|
Tabatabaei K, Moazzezi S, Emamgholizadeh M, Vaez H, Baradaran B, Shokouhi B. Improved Therapeutic Efficacy of Doxorubicin Chemotherapy With Cannabidiol in 4T1 Mice Breast Cancer Model. Cancer Med 2024; 13:e70395. [PMID: 39503169 PMCID: PMC11538943 DOI: 10.1002/cam4.70395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND High dose chemotherapy is one of the therapeutic strategies for breast cancer and doxorubicin (DOX) as a chemotherapy agent is widely used. DOX indication is limited due to its dose-depended cardiotoxicity. Recently, cannabidiol (CBD) shows antitumoral and cardioprotective effects, so we hypothesized that CBD administration with high-dose DOX chemotherapy can improve anticancer activity and reduce cardiotoxic side effects. METHOD Mice breast cancer model established by injecting 4T1 cell lines. One group was not injected by 4T1 cells as a not cancerous group and received normal saline (NS, 0.1 mL). In cancerous groups, first group was considered as cancerous control and received NS (0.1 mL); the second group received CBD (5 mg/kg, IP) on Days 1,7, and 14; in the third group DOX (5 mg/kg, IV) as CBD schedule was administrated; the fourth group treated with CBD 1 day before DOX injection as pretreatment, and the last group was treated with CBD and DOX at same time with previous doses and schedules. On Day 21, all mice were sacrificed, heart and lungs tissues were obtained and histological sections were isolated. SOD2, iNOS, MMP2, MMP9 were evaluated through western blot and TUNEL test preformed for breast tumor. RESULTS Tumor size and weight significantly decreased in DOX, pretreatment CBD + DOX and CBD + DOX groups. Administration of CBD with DOX could not prevent weight loss. TUNEL test demonstrated the highest tumor cell apoptosis in pretreatment CBD + DOX and CBD + DOX. In lungs belonged to CBD + DOX, there was not any sign of metastasis. Cardiac histopathological examination of pretreatment CBD + DOX and CBD + DOX did not show any sign of congestion or inflammation. In CBD + DOX SOD2 increased, also iNOS, MMP2, and MMP9 decreased compared to DOX. CONCLUSIONS This study demonstrated that simultaneous administration of CBD and DOX can increase antitumoral effect and reduce DOX cardiotoxicity. Nevertheless, CBD can induce cardiotoxicity as administrated alone.
Collapse
Affiliation(s)
- Koorosh Tabatabaei
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of Veterinary MedicineTabriz Islamic Azad UniversityTabrizIran
| | - Sara Moazzezi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of Veterinary MedicineTabriz Islamic Azad UniversityTabrizIran
| | | | - Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behrooz Shokouhi
- Department of PathologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
7
|
Vessella T, Rozen EJ, Shohet J, Wen Q, Zhou HS. Investigation of Cell Mechanics and Migration on DDR2-Expressing Neuroblastoma Cell Line. Life (Basel) 2024; 14:1260. [PMID: 39459560 PMCID: PMC11509142 DOI: 10.3390/life14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroblastoma is a devastating disease accounting for ~15% of all childhood cancer deaths. Collagen content and fiber association within the tumor stroma influence tumor progression and metastasis. High expression levels of collagen receptor kinase, Discoidin domain receptor II (DDR2), are associated with the poor survival of neuroblastoma patients. Additionally, cancer cells generate and sustain mechanical forces within their environment as a part of their normal physiology. Despite this, evidence regarding whether collagen-activated DDR2 signaling dysregulates these migration forces is still elusive. To address these questions, a novel shRNA DDR2 knockdown neuroblastoma cell line (SH-SY5Y) was engineered to evaluate the consequence of DDR2 on cellular mechanics. Atomic force microscopy (AFM) and traction force microscopy (TFM) were utilized to unveil the biophysical altercations. DDR2 downregulation was found to significantly reduce proliferation, cell stiffness, and cellular elongation. Additionally, DDR2-downregulated cells had decreased traction forces when plated on collagen-coated elastic substrates. Together, these results highlight the important role that DDR2 has in reducing migration mechanics in neuroblastoma and suggest DDR2 may be a promising novel target for future therapies.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| | - Esteban J. Rozen
- Crnic Institute Bolder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jason Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - Hong Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| |
Collapse
|
8
|
Audun Klingen T, Chen Y, Aas H, Akslen LA. DDR2 expression in breast cancer is associated with blood vessel invasion, basal-like tumors, tumor associated macrophages, regulatory T cells, detection mode and prognosis. Hum Pathol 2024; 150:29-35. [PMID: 38914168 DOI: 10.1016/j.humpath.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase for collagen, stimulating epithelial-mesenchymal transition and stiffness in breast cancer. Here, we investigated levels of DDR2 in breast tumor cells in relation to vascular invasion, TIL subsets, macrophages, molecular tumor subtypes, modes of detection and prognosis. This retrospective, population-based series of invasive breast carcinomas from the Norwegian Screening Program in Vestfold County (Norway), period 2004-2009, included 200 screening patients and 82 cases detected in screening intervals. DDR2 was examined on core needle biopsies using a semi-quantitative, immunohistochemical staining index and dichotomized as low or high DDR2 expression. Counts of macrophages and TIL subsets were dichotomized based on immunohistochemistry using TMA. We also recorded blood or lymphatic vessel invasion (BVI or LVI) as present or absent by immunohistochemistry. High expression of DDR2 in tumor cells showed significant relation with high counts of CD163+ macrophages (p < 0.001) and FOXP3 TILs (p = 0.011), presence of BVI (p = 0.028), high tumor cell proliferation by Ki67 (p = 0.033), ER negativity (p = 0.001), triple-negative cases (p = 0.038), basal-like features (p < 0.001) as well as interval detection (p < 0.001). By multivariate analysis, high DDR2 expression was related to reduced recurrence-free survival (HR, 2.3, p = 0.017), when examined together with histologic grading, lymph node assessment, tumor diameter, BVI, and molecular tumor subtype. This study supports a link between high DDR2 expression, high counts of macrophages by CD163 (tumor associated) and regulatory T cells by FOXP3 together with the presence of BVI, possibly indicating increased tumor motility and intravasation in aggressive breast tumors.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Retrospective Studies
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/pathology
- Biomarkers, Tumor/analysis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Neoplasm Invasiveness
- Middle Aged
- Immunohistochemistry
- Discoidin Domain Receptor 2
- Aged
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Norway
- Prognosis
- Receptors, Cell Surface/analysis
- Kaplan-Meier Estimate
- Antigens, CD
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Biopsy, Large-Core Needle
- Proportional Hazards Models
- Predictive Value of Tests
- Forkhead Transcription Factors/analysis
- Macrophages/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tor Audun Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Vestfold Hospital Trust, Norway.
| | - Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of pathology, Fürst Medical Laboratory, Norway.
| | - Hans Aas
- Department of Surgery, Vestfold Hospital Trust, Norway.
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Norway; Department of Pathology, Haukeland University Hospital, Norway.
| |
Collapse
|
9
|
Rozen EJ, Frantz W, Wigglesworth K, Vessella T, Zhou HS, Shohet JM. Blockade of Discoidin Domain Receptor Signaling with Sitravatinib Reveals DDR2 as a Mediator of Neuroblastoma Pathogenesis and Metastasis. Mol Cancer Ther 2024; 23:1124-1138. [PMID: 38670553 DOI: 10.1158/1535-7163.mct-23-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Oncogene-driven expression and activation of receptor tyrosine kinases promotes tumorigenesis and contributes to drug resistance. Increased expression of the kinases discoidin domain receptor 2 (DDR2), RET Proto-Oncogene (RET), Platelet Derived Growth Factor Receptor Alpha (PDGFRA), KIT Proto-Oncogene (KIT), MET Proto-Oncogene (MET), and anaplastic lymphoma kinase (ALK) independently correlate with decreased overall survival and event free survival of pediatric neuroblastoma. The multikinase inhibitor sitravatinib targets DDR2, RET, PDGFRA, KIT, and MET with low nanomolar activity and we therefore tested its efficacy against orthotopic and syngeneic tumor models. Sitravatinib markedly reduced cell proliferation and migration in vitro independently of N-Myc proto-oncogene (MYCN), ALK, or c-Myc proto-oncogene status and inhibited proliferation and metastasis of human orthotopic xenografts. Oral administration of sitravatinib to homozygous Th-MYCN transgenic mice (Th-MYCN+/+) after tumor initiation completely arrested further tumor development with no mice dying of disease while maintained on sitravatinib treatment (control cohort 57 days median time to sacrifice). Among these top kinases, DDR2 expression has the strongest correlation with poor survival and high stage at diagnosis and the highest sensitivity to the drug. We confirmed on-target inhibition of collagen-mediated activation of DDR2. Genetic knockdown of DDR2 partially phenocopies sitravatinib treatment, limiting tumor development and metastasis across tumor models. Analysis of single-cell sequencing data demonstrated that DDR2 is restricted to mesenchymal-type tumor subpopulations and is enriched in Schwann cell precursor subpopulations found in high-risk disease. These data define an unsuspected role for sitravatinib as a therapeutic agent in neuroblastoma and reveal a novel function for DDR2 as a driver of tumor growth and metastasis.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - William Frantz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kim Wigglesworth
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Theadora Vessella
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Hong S Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jason M Shohet
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
10
|
Liu W, Zhang F, Quan B, Yao F, Chen R, Ren Z, Dong L, Yin X. DDR2/STAT3 Positive Feedback Loop Mediates the Immunosuppressive Microenvironment by Upregulating PD-L1 and Recruiting MDSCs in Oxaliplatin-Resistant HCC. Cell Mol Gastroenterol Hepatol 2024; 18:101377. [PMID: 38969205 PMCID: PMC11386308 DOI: 10.1016/j.jcmgh.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND AND AIMS Transcriptome sequencing revealed high expression of DDR2 in oxaliplatin-resistant hepatocellular carcinoma (HCC). This study aimed to explore the role of DDR2 in oxaliplatin resistance and immune evasion in HCC. METHODS Oxaliplatin-resistant HCC cell lines were established. The interaction between DDR2 and STAT3 was investigated, along with the mechanisms involved in DDR2/STAT3-mediated PD-L1 upregulation and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) accumulation both in vitro and in vivo. RESULTS DDR2 was found to induce the phosphorylation of STAT3, leading to its nuclear translocation. Conversely, the activation of STAT3 enhanced DDR2 expression. A positive feedback loop involving DDR2/STAT3 was identified in oxaliplatin-resistant HCC, which was associated with PD-L1 upregulation and PMN-MDSCs accumulation. Knockdown of DDR2 and STAT3 sensitized oxaliplatin-resistant HCC cells to oxaliplatin and resulted in decreased PMN-MDSCs and increased CD8+ T cells in the tumor microenvironment. Enzyme-linked immunosorbent array and MDSC transwell migration assays indicated that oxaliplatin-resistant HCC cells recruited PMN-MDSCs through CCL20. Dual luciferase reporter assays demonstrated that STAT3 can directly enhance the transcription of PD-L1 and CCL20. Furthermore, treatment with a PD-L1 antibody in combination with CCL20 blockade had significant antitumor effects on oxaliplatin-resistant HCC. CONCLUSIONS Our findings revealed a positive feedback mechanism involving DDR2 and STAT3 that mediates the immunosuppressive microenvironment and promotes oxaliplatin resistance and immune evasion via PD-L1 upregulation and PMN-MDSC recruitment. Targeting the DDR2/STAT3 pathway may be a promising therapeutic strategy to overcome immune escape and chemoresistance in HCC.
Collapse
Affiliation(s)
- Wenfeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Bing Quan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fan Yao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
11
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Dai B, Clark AM, Wells A. Mesenchymal Stem Cell-Secreted Exosomes and Soluble Signals Regulate Breast Cancer Metastatic Dormancy: Current Progress and Future Outlook. Int J Mol Sci 2024; 25:7133. [PMID: 39000239 PMCID: PMC11241820 DOI: 10.3390/ijms25137133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer is most common in women, and in most cases there is no evidence of spread and the primary tumor is removed, resulting in a 'cure'. However, in 10% to 30% of these women, distant metastases recur after years to decades. This is due to breast cancer cells disseminating to distant organs and lying quiescent. This is called metastatic dormancy. Dormant cells are generally resistant to chemotherapy, hormone therapy and immunotherapy as they are non-cycling and receive survival signals from their microenvironment. In this state, they are clinically irrelevant. However, risk factors, including aging and inflammation can awaken dormant cells and cause breast cancer recurrences, which may happen even more than ten years after the primary tumor removal. How these breast cancer cells remain in dormancy is being unraveled. A key element appears to be the mesenchymal stem cells in the bone marrow that have been shown to promote breast cancer metastatic dormancy in recent studies. Indirect co-culture, direct co-culture and exosome extraction were conducted to investigate the modes of signal operation. Multiple signaling molecules act in this process including both protein factors and microRNAs. We integrate these studies to summarize current findings and gaps in the field and suggest future research directions for this field.
Collapse
Affiliation(s)
- Bei Dai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.D.); (A.M.C.)
- R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Amanda M. Clark
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.D.); (A.M.C.)
- R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alan Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.D.); (A.M.C.)
- R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA
- Cell Biology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Shi L, Chen L, Gao X, Sun X, Jin G, Yang Y, Shao Y, Zhu F, Zhou G. Comparison of different sources of mesenchymal stem cells: focus on inflammatory bowel disease. Inflammopharmacology 2024; 32:1721-1742. [PMID: 38615278 DOI: 10.1007/s10787-024-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory bowel disease (IBD) poses a significant challenge in modern medicine, with conventional treatments limited by efficacy and associated side effects, necessitating innovative therapeutic approaches. Mesenchymal stem cells (MSC) have emerged as promising candidates for IBD treatment due to their immunomodulatory properties and regenerative potential. This thesis aims to explore and compare various sources of MSC and evaluate their efficacy in treating IBD. This study comprehensively analyses MSC derived from multiple sources, including bone marrow, adipose tissue, umbilical cord, and other potential reservoirs. Core elements of this investigation include assessing differences in cell acquisition, immunomodulatory effects, and differentiation capabilities among these MSC sources, as well as comparing their clinical trial outcomes in IBD patients to their therapeutic efficacy in animal models. Through meticulous evaluation and comparative analysis, this thesis aims to elucidate disparities in the efficacy of different MSC sources for IBD treatment, thereby identifying the most promising therapeutic applications. The findings of this study are intended to advance our understanding of MSC biology and offer valuable insights for selecting the most effective MSC sources for personalized IBD therapy. Ultimately, this research endeavor will optimise therapeutic strategies for managing inflammatory bowel disease through the utilization of MSC.
Collapse
Affiliation(s)
- Lihao Shi
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Leilei Chen
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xizhuang Gao
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Xufan Sun
- Clinical Medical College of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, People's Republic of China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, People's Republic of China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China
| | - Guangxi Zhou
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272000, People's Republic of China.
| |
Collapse
|
15
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
16
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Merino JJ, Cabaña-Muñoz ME. Nanoparticles and Mesenchymal Stem Cell (MSC) Therapy for Cancer Treatment: Focus on Nanocarriers and a si-RNA CXCR4 Chemokine Blocker as Strategies for Tumor Eradication In Vitro and In Vivo. MICROMACHINES 2023; 14:2068. [PMID: 38004925 PMCID: PMC10673568 DOI: 10.3390/mi14112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023]
Abstract
Mesenchymal stem cells (MSCs) have a high tropism for the hypoxic microenvironment of tumors. The combination of nanoparticles in MSCs decreases tumor growth in vitro as well as in rodent models of cancers in vivo. Covalent conjugation of nanoparticles with the surface of MSCs can significantly increase the drug load delivery in tumor sites. Nanoparticle-based anti-angiogenic systems (gold, silica and silicates, diamond, silver, and copper) prevented tumor growth in vitro. For example, glycolic acid polyconjugates enhance nanoparticle drug delivery and have been reported in human MSCs. Labeling with fluorescent particles (coumarin-6 dye) identified tumor cells using fluorescence emission in tissues; the conjugation of different types of nanoparticles in MSCs ensured success and feasibility by tracking the migration and its intratumor detection using non-invasive imaging techniques. However, the biosafety and efficacy; long-term stability of nanoparticles, and the capacity for drug release must be improved for clinical implementation. In fact, MSCs are vehicles for drug delivery with nanoparticles and also show low toxicity but inefficient accumulation in tumor sites by clearance of reticuloendothelial organs. To solve these problems, the internalization or conjugation of drug-loaded nanoparticles should be improved in MSCs. Finally, CXCR4 may prove to be a promising target for immunotherapy and cancer treatment since the delivery of siRNA to knock down this alpha chemokine receptor or CXCR4 antagonism has been shown to disrupt tumor-stromal interactions.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), 28040 Madrid, Spain
| | | |
Collapse
|
18
|
Schab AM, Greenwade MM, Stock E, Lomonosova E, Cho K, Grither WR, Noia H, Wilke D, Mullen MM, Hagemann AR, Hagemann IS, Thaker PH, Kuroki LM, McCourt CK, Khabele D, Powell MA, Mutch DG, Zhao P, Shriver LP, Patti GJ, Longmore GD, Fuh KC. Stromal DDR2 Promotes Ovarian Cancer Metastasis through Regulation of Metabolism and Secretion of Extracellular Matrix Proteins. Mol Cancer Res 2023; 21:1234-1248. [PMID: 37527178 PMCID: PMC10832402 DOI: 10.1158/1541-7786.mcr-23-0347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer-related deaths. The propensity for metastasis within the peritoneal cavity is a driving factor for the poor outcomes associated with this disease, but there is currently no effective therapy targeting metastasis. In this study, we investigate the contribution of stromal cells to ovarian cancer metastasis and identify normal stromal cell expression of the collagen receptor, discoidin domain receptor 2 (DDR2), that acts to facilitate ovarian cancer metastasis. In vivo, global genetic inactivation of Ddr2 impairs the ability of Ddr2-expressing syngeneic ovarian cancer cells to spread throughout the peritoneal cavity. Specifically, DDR2 expression in mesothelial cells lining the peritoneal cavity facilitates tumor cell attachment and clearance. Subsequently, omentum fibroblast expression of DDR2 promotes tumor cell invasion. Mechanistically, we find DDR2-expressing fibroblasts are more energetically active, such that DDR2 regulates glycolysis through AKT/SNAI1 leading to suppressed fructose-1,6-bisphosphatase and increased hexokinase activity, a key glycolytic enzyme. Upon inhibition of DDR2, we find decreased protein synthesis and secretion. Consequently, when DDR2 is inhibited, there is reduction in secreted extracellular matrix proteins important for metastasis. Specifically, we find that fibroblast DDR2 inhibition leads to decreased secretion of the collagen crosslinker, LOXL2. Adding back LOXL2 to DDR2 deficient fibroblasts rescues the ability of tumor cells to invade. Overall, our results suggest that stromal cell expression of DDR2 is an important mediator of ovarian cancer metastasis. IMPLICATIONS DDR2 is highly expressed by stromal cells in ovarian cancer that can mediate metastasis and is a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Angela M. Schab
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Molly M. Greenwade
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth Stock
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Elena Lomonosova
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Kevin Cho
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Whitney R. Grither
- Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, MO 63110, USA
| | - Hollie Noia
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Daniel Wilke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Andrea R. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Ian S. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Carolyn K. McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Dineo Khabele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Matthew A. Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - David G. Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Barnes Jewish Hospital, Washington University, St. Louis, MO 63110, USA
| | - Leah P. Shriver
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gary J. Patti
- Center for Metabolomics and Isotope Tracing, Department of Chemistry, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gregory D. Longmore
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
- ICCE Institute, Washington University, St. Louis MO 63110, USA
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
- Center for Reproductive Health Sciences, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology University of California, San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
19
|
Augimeri G, Gonzalez ME, Paolì A, Eido A, Choi Y, Burman B, Djomehri S, Karthikeyan SK, Varambally S, Buschhaus JM, Chen YC, Mauro L, Bonofiglio D, Nesvizhskii AI, Luker GD, Andò S, Yoon E, Kleer CG. A hybrid breast cancer/mesenchymal stem cell population enhances chemoresistance and metastasis. JCI Insight 2023; 8:e164216. [PMID: 37607007 PMCID: PMC10561721 DOI: 10.1172/jci.insight.164216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ahmad Eido
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Yehyun Choi
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sabra Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | | | | | - Johanna M. Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary D. Luker
- Rogel Cancer Center and
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Euisik Yoon
- Rogel Cancer Center and
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| |
Collapse
|
20
|
Eichberger J, Froschhammer D, Schulz D, Scholz KJ, Federlin M, Ebensberger H, Reichert TE, Ettl T, Bauer RJ. BMSC-HNC Interaction: Exploring Effects on Bone Integrity and Head and Neck Cancer Progression. Int J Mol Sci 2023; 24:14417. [PMID: 37833873 PMCID: PMC10573008 DOI: 10.3390/ijms241914417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
In recent research, the tumor microenvironment has been shown to attract mesenchymal stromal cells (MSCs), which is of particular interest due to its implications for cancer progression. The study focused on understanding the interaction between bone marrow-derived MSCs (BMSCs) and head and neck cancer (HNC) cells. This interaction was found to activate specific markers, notably the osteogenic marker alkaline phosphatase and the oncogene Runx2. These activations corresponded with the release of collagenase enzymes, MMP9 and MMP2. To gain insights into bone resorption related to this interaction, bovine bone slices were used, supporting the growth of "heterogeneous spheroids" that contained both BMSCs and HNC cells. Through scanning electron microscopy and energy-dispersive X-ray (EDX) analysis, it was observed that these mixed spheroids were linked to a notable increase in bone degradation and collagen fiber exposure, more so than spheroids of just BMSCs or HNC cells. Furthermore, the EDX results highlighted increased nitrogen content on bone surfaces with these mixed clusters. Overall, the findings underscore the significant role of BMSCs in tumor growth, emphasizing the need for further exploration in potential cancer treatment strategies.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Daniel Froschhammer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Konstantin J. Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Helga Ebensberger
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (K.J.S.); (M.F.); (H.E.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
| | - Richard J. Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.E.); (D.F.); (D.S.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Huang L, Xie Q, Deng J, Wei WF. The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon 2023; 9:e19802. [PMID: 37809511 PMCID: PMC10559166 DOI: 10.1016/j.heliyon.2023.e19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
Collapse
Affiliation(s)
- Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Wen-Fei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
23
|
Setayeshpour Y, Lee Y, Chi JT. Environmental Determinants of Ferroptosis in Cancer. Cancers (Basel) 2023; 15:3861. [PMID: 37568677 PMCID: PMC10417744 DOI: 10.3390/cancers15153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Given the enormous suffering and death associated with human cancers, there is an urgent need for novel therapeutic approaches to target tumor growth and metastasis. While initial efforts have focused on the dysregulated oncogenic program of cancer cells, recent focus has been on the modulation and targeting of many "cancer-friendly," non-genetic tumor microenvironmental factors, which support and enable tumor progression and metastasis. Two prominent examples are anti-angiogenesis and immunotherapy that target tumor-supporting vascularization and the immune-suppressive tumor microenvironment (TME), respectively. Lately, there has been significant interest in the therapeutic potential of ferroptosis, a natural tumor suppression mechanism that normally occurs as a result of oxidative stress, iron imbalance, and accumulation of lipid peroxides. While numerous studies have identified various cell intrinsic mechanisms to protect or promote ferroptosis, the role of various TME stress factors are also recently recognized to modulate the tumor cells' susceptibility to ferroptosis. This review aims to compile and highlight evidence of these factors, how various TME stresses affect ferroptosis, and their implications in various stages of tumor development and expected response to ferroptosis-triggering therapeutics under development. Consequently, understanding ways to enhance ferroptosis sensitivity both intracellularly and in the TME may optimize therapeutic sensitivity to minimize or prevent tumor growth and metastasis.
Collapse
Affiliation(s)
- Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Yunji Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27708, USA
- Department of Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27708, USA
- Center for Advanced Genomic Technology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Huang J, Wang X, Wen J, Zhao X, Wu C, Wang L, Cao X, Dong H, Xu X, Huang F, Zhu W, Wang M. Gastric cancer cell-originated small extracellular vesicle induces metabolic reprogramming of BM-MSCs through ERK-PPARγ-CPT1A signaling to potentiate lymphatic metastasis. Cancer Cell Int 2023; 23:87. [PMID: 37158903 PMCID: PMC10169337 DOI: 10.1186/s12935-023-02935-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Tumor microenvironment and metabolic reprogramming are critical for tumor metastasis. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely involved in the formation of tumor microenvironment and present oncogenic phenotypes to facilitate lymph node metastasis (LNM) in response to small extracellular vesicles (sEV) released by gastric cancer (GC) cells. However, whether metabolic reprograming mediates transformation of BM-MSCs remains elusive. Herein, we revealed that the capacity of LNM-GC-sEV educating BM-MSCs was positively correlated with the LNM capacity of GC cells themselves. Fatty acid oxidation (FAO) metabolic reprogramming was indispensable for this process. Mechanistically, CD44 was identified as a critical cargo for LNM-GC-sEV enhancing FAO via ERK/PPARγ/CPT1A signaling. ATP was shown to activate STAT3 and NF-κB signaling to induce IL-8 and STC1 secretion by BM-MSCs, thereby in turn facilitating GC cells metastasis and increasing CD44 levels in GC cells and sEV to form a persistent positive feedback loop between GC cells and BM-MSCs. The critical molecules were abnormally expressed in GC tissues, sera and stroma, and correlated with the prognosis and LNM of GC patients. Together, our findings uncover the role of metabolic reprogramming mediated BM-MSCs education by LNM-GC-sEV, which presents a novel insight into the mechanism underlying LNM and provides candidate targets for GC detection and therapy.
Collapse
Affiliation(s)
- Jiaying Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Jing Wen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xinxin Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Chen Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Lin Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haibo Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Jiangsu University, 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Xuejing Xu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Jiangsu University, 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu Province, China
| | - Feng Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
- Department of Clinical Laboratory, Maternal and Child, Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, China.
| |
Collapse
|
25
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
26
|
Ren L, Ren Q, Wang J, He Y, Deng H, Wang X, Liu C. miR-199a-3p promotes gastric cancer progression by promoting its stemness potential via DDR2 mediation. Cell Signal 2023; 106:110636. [PMID: 36813149 DOI: 10.1016/j.cellsig.2023.110636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Peritoneal metastasis (PM) is an independent prognostic factor in gastric cancer (GC), however, the underlying mechanisms of PM occurrence remain unclear. METHOD The roles of DDR2 were investigated in GC and its potential relationship to PM, and orthotopic implants into nude mice were performed to assess the biological effects of DDR2 on PM. RESULTS Herein, DDR2 level is more significantly observed to elevate in PM lesion than the primary lesion. GC with DDR2-high expression evokes a worse overall survival (OS) in TCGA, similar results of the gloomy OS with high DDR2 levels are clarified via the stratifying stage of TNM. The conspicuously increased expression of DDR2 was found in GC cell lines, luciferase reporter assays verified that miR-199a-3p directly targeted DDR2 gene, which was correlated to tumor progression. We ulteriorly observed DDR2 participated in GC stemness maintenance via mediating pluripotency factor SOX2 expression and implicated in autophagy and DNA damage of cancer stem cells (CSCs). In particular, DDR2 dominated EMT programming through recruiting NFATc1-SOX2 complex to Snai1 in governing cell progression, controlling by DDR2-mTOR-SOX2 axis in SGC-7901 CSCs. Furthermore, DDR2 promoted the tumor peritoneal dissemination in gastric xenograft mouse model. CONCLUSION Phenotype screens and disseminated verifications incriminating in GC exposit the miR-199a-3p-DDR2-mTOR-SOX2 axis as a clinically actionable target for tumor PM progression. The herein-reported DDR2-based underlying axis in GC represents novel and potent tools for studying the mechanisms of PM.
Collapse
Affiliation(s)
- Lei Ren
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiang Ren
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghong He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xing Wang
- Inflammation and Allergic Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunfeng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Inflammation and Allergic Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Str. 36, Munich 80336, Germany.
| |
Collapse
|
27
|
Ding W, Zhang K, Li Q, Xu L, Ma Y, Han F, Zhu L, Sun X. Advances in Understanding the Roles of Mesenchymal Stem Cells in Lung Cancer. Cell Reprogram 2023; 25:20-31. [PMID: 36594933 DOI: 10.1089/cell.2022.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is the most common and deadliest type of cancer worldwide. Research concerning lung cancer has made considerable progress in recent decades, but lung cancer remains the leading cause of malignancy-related mortality rate. Mesenchymal stem cells (MSCs) mainly exist in fat, umbilical cord blood, bone marrow, bone, and muscle. MSCs are a primary component of the tumor microenvironment (TME). Recent studies have shown that MSCs have roles in lung cancer-related proliferation, invasion, migration, and angiogenesis, but the underlying mechanisms are poorly understood. Because MSCs can migrate to the TME, there is increasing attention toward the use of MSCs in drugs or gene vectors for cancer treatment. This review summarizes the roles and effects of MSCs in lung cancer, while addressing clinical applications of MSCs in lung cancer treatment.
Collapse
Affiliation(s)
- Wenli Ding
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qinying Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Linfei Xu
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liang Zhu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
28
|
Zhang L. The Role of Mesenchymal Stem Cells in Modulating the Breast Cancer Microenvironment. Cell Transplant 2023; 32:9636897231220073. [PMID: 38135917 DOI: 10.1177/09636897231220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
The role of mesenchymal stem cells (MSCs) in the breast tumor microenvironment (TME) is significant and multifaceted. MSCs are recruited to breast tumor sites through molecular signals released by tumor sites. Once in the TME, MSCs undergo polarization and interact with various cell populations, including immune cells, cancer-associated fibroblasts (CAFs), cancer stem cells (CSCs), and breast cancer cells. In most cases, MSCs play roles in breast cancer therapeutic resistance, but there is also evidence that indicates their abilities to sensitize cancer cells to chemotherapy and radiotherapy. MSCs possess inherent regenerative and homing properties, making them attractive candidates for cell-based therapies. Therefore, MSCs can be engineered to express therapeutic molecules or deliver anti-cancer agents directly to tumor sites. Unraveling the intricate relationship between MSCs and the breast TME has the potential to uncover novel therapeutic targets and advance our understanding of breast cancer biology.
Collapse
Affiliation(s)
- Luxiao Zhang
- Department of Surgical Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
29
|
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, Kent RN, Strong AL, Nunez JH, Medrano JMR, Patel N, Nanes BA, Dean KM, Li Z, Ge C, Baker BM, James AW, Weiss SJ, Franceschi RT, Levi B. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. SCIENCE ADVANCES 2022; 8:eabq6152. [PMID: 36542719 PMCID: PMC9770942 DOI: 10.1126/sciadv.abq6152] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.
Collapse
Affiliation(s)
- Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Alec C. Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jonathan Y. Hong
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert N. Kent
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy L. Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna H. Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jessica Marie R. Medrano
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A. Nanes
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
| | - Kevin M. Dean
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
- Cecil H. and The Ida Green Center for Systems Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chunxi Ge
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
30
|
Development of minimally invasive cancer immunotherapy using anti-disialoganglioside GD2 antibody-producing mesenchymal stem cells for a neuroblastoma mouse model. Pediatr Surg Int 2022; 39:43. [PMID: 36484857 DOI: 10.1007/s00383-022-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Mouse IgG anti-disialoganglioside GD2 antibody-secreting mouse mesenchymal stem cells (anti-GD2-MSCs) were developed, and their anti-tumor effects were validated in an in vivo neuroblastoma mouse model. METHODS Anti-GD2 antibody constructs were generated, incorporating FLAG-tagged single-chain fragment variables against GD2 fused to a linker sequence, and a fragment of a stationary portion was changed from human IgG to mouse IgG and GFP protein. The construct was lentivirally introduced into mouse MSCs. A syngeneic mouse model was established through the subcutaneous transplantation of a tumor tissue fragment from a TH-MYCN transgenic mouse, and the homing effects of anti-GD2-MSCs were validated by In vivo imaging system imaging. The syngeneic model was divided into three groups according to topical injection materials: anti-GD2-MSCs with IL-2, IL-2, and PBS. The tumors were removed, and natural killer (NK) cells were counted. RESULTS Anti-GD2-MSCs showed homing effects in syngeneic models. The growth rate of subcutaneous tumors was significantly suppressed by anti-GD2-MSCs with IL-2 (p < 0.05). Subcutaneous tumor immunostaining showed an increased NK cell infiltration in the same group (p < 0.01). CONCLUSION Anti-GD2-MSCs using mouse IgG showed a homing effect and significant tumor growth suppression in syngeneic models. Anti-GD2-MSC-based cellular immunotherapy could be a novel therapeutic strategy for intractable neuroblastoma.
Collapse
|
31
|
Zheng Z, Li P, Shen F, Shi Y, Shao C. Mesenchymal Stem/Stromal Cells in Cancer: from Initiation to Metastasis. Arch Med Res 2022; 53:785-793. [PMID: 36462949 DOI: 10.1016/j.arcmed.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) exist in many tissues and have pleiotropic potential to self-renew and differentiate into multiple cell types. Recent research in tumor biology has focused on their low immunogenicity and tumorhoming properties. MSCs promote cancer initiation, progression, and metastasis through several different mechanisms, including epithelial-mesenchymal transition (EMT), angiogenesis, and through their interaction with immune cells. In this review, we discuss the recent advances in our understanding of the pathogenic role of MSCs in regulating tumor initiation, progression, and metastasis, thus providing a strong rationale for targeting MSCs in cancer therapy.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Center, Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Center, Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China.
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
32
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
33
|
A microfluidic demonstration of “cluster-sprout-infiltrating” mode for hypoxic mesenchymal stem cell guided cancer cell migration. Biomaterials 2022; 290:121848. [DOI: 10.1016/j.biomaterials.2022.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
34
|
Tu Z, Karnoub AE. Mesenchymal stem/stromal cells in breast cancer development and management. Semin Cancer Biol 2022; 86:81-92. [PMID: 36087857 DOI: 10.1016/j.semcancer.2022.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) encompass a heterogeneous population of fibroblastic progenitor cells that reside in multiple tissues around the body. They are endowed with capacities to differentiate into multiple connective tissue lineages, including chondrocytes, adipocytes, and osteoblasts, and are thought to function as trophic cells recruited to sites of injury and inflammation where they contribute to tissue regeneration. In keeping with these roles, MSCs also to home to sites of breast tumorigenesis, akin to their migration to wounds, and participate in tumor stroma formation. Mounting evidence over the past two decades has described the critical regulatory roles for tumor-associated MSCs in various aspects of breast tumor pathogenesis, be it tumor initiation, growth, angiogenesis, tumor microenvironment formation, immune evasion, cancer cell migration, invasion, survival, therapeutic resistance, dissemination, and metastatic colonization. In this review, we present a brief summary of the role of MSCs in breast tumor development and progression, highlight some of the molecular frameworks underlying their pro-malignant contributions, and present evidence of their promising utility in breast cancer therapy.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Research Institute, West Roxbury, MA 02132, USA.
| |
Collapse
|
35
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
36
|
Popescu VB, Kanhaiya K, Năstac DI, Czeizler E, Petre I. Network controllability solutions for computational drug repurposing using genetic algorithms. Sci Rep 2022; 12:1437. [PMID: 35082323 PMCID: PMC8791995 DOI: 10.1038/s41598-022-05335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdős-Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.
Collapse
Affiliation(s)
| | | | - Dumitru Iulian Năstac
- POLITEHNICA University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology, 061071, Bucharest, Romania
| | - Eugen Czeizler
- Computer Science, Åbo Akademi University, 20500, Turku, Finland
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 20014, Turku, Finland.
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania.
| |
Collapse
|
37
|
Xu X, Yu T, Wang Z. Discoidin Domain Receptor 2: A New Target in Cancer. Oncol Res Treat 2022; 45:205-215. [PMID: 35073544 DOI: 10.1159/000519645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Discoidin domain receptor is a new and unique type of receptor tyrosine kinases, which binds to collagen, the main compose of an extracellular matrix. DDR1 was identified to mediate cell aggregation, and dysregulation of DDR2 has also been shown to be involved in tumor pathogenesis, although its role in cancer development and progression remains controversial. SUMMARY Abnormal expression and mutations of DDR2 have been reported in several cancer types and its participation in different aspects of tumor progression, including proliferation, migration, invasion, metastasis, epithelial-mesenchymal transition, and chemotherapy resistance. Moreover, novel DDR2 inhibitors have been designed and indicate a therapeutic effect for the cancer treatment. Key Messages: In this review, we summarize the current knowledge on the role of DDR2 in cancer promotion and the potential therapeutic value of targeting DDR2.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhenxing Wang
- Department of Hematology and Breast Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
38
|
Chen L, Kong X, Fang Y, Paunikar S, Wang X, Brown JAL, Bourke E, Li X, Wang J. Recent Advances in the Role of Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian Cancer. Front Cell Dev Biol 2021; 9:747314. [PMID: 34805157 PMCID: PMC8595330 DOI: 10.3389/fcell.2021.747314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Discoidin domain receptor tyrosine kinases (DDRs) are a class of receptor tyrosine kinases (RTKs), and their dysregulation is associated with multiple diseases (including cancer, chronic inflammatory conditions, and fibrosis). The DDR family members (DDR1a-e and DDR2) are widely expressed, with predominant expression of DDR1 in epithelial cells and DDR2 in mesenchymal cells. Structurally, DDRs consist of three regions (an extracellular ligand binding domain, a transmembrane domain, and an intracellular region containing a kinase domain), with their kinase activity induced by receptor-specific ligand binding. Collagen binding to DDRs stimulates DDR phosphorylation activating kinase activity, signaling to MAPK, integrin, TGF-β, insulin receptor, and Notch signaling pathways. Abnormal DDR expression is detected in a range of solid tumors (including breast, ovarian, cervical liver, gastric, colorectal, lung, and brain). During tumorigenesis, abnormal activation of DDRs leads to invasion and metastasis, via dysregulation of cell adhesion, migration, proliferation, secretion of cytokines, and extracellular matrix remodeling. Differential expression or mutation of DDRs correlates with pathological classification, clinical characteristics, treatment response, and prognosis. Here, we discuss the discovery, structural characteristics, organizational distribution, and DDR-dependent signaling. Importantly, we highlight the key role of DDRs in the development and progression of breast and ovarian cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shishir Paunikar
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - James A. L. Brown
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Emer Bourke
- Discipline of Pathology, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Setayeshpour Y, Chi JT. Editorial: Novel Insights Into Ferroptosis. Front Cell Dev Biol 2021; 9:754160. [PMID: 34692708 PMCID: PMC8529149 DOI: 10.3389/fcell.2021.754160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yasaman Setayeshpour
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States.,Duke Center for Genomic and Computational Biology, Durham, NC, United States
| |
Collapse
|
40
|
Chen PY, Wei WF, Wu HZ, Fan LS, Wang W. Cancer-Associated Fibroblast Heterogeneity: A Factor That Cannot Be Ignored in Immune Microenvironment Remodeling. Front Immunol 2021; 12:671595. [PMID: 34305902 PMCID: PMC8297463 DOI: 10.3389/fimmu.2021.671595] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are important, highly heterogeneous components of the tumor extracellular matrix that have different origins and express a diverse set of biomarkers. Different subtypes of CAFs participate in the immune regulation of the tumor microenvironment (TME). In addition to their role in supporting stromal cells, CAFs have multiple immunosuppressive functions, via membrane and secretory patterns, against anti-tumor immunity. The inhibition of CAFs function and anti-TME therapy targeting CAFs provides new adjuvant means for immunotherapy. In this review, we outline the emerging understanding of CAFs with a particular emphasis on their origin and heterogeneity, different mechanisms of their regulation, as well as their direct or indirect effect on immune cells that leads to immunosuppression.
Collapse
Affiliation(s)
| | | | | | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
41
|
Luo Q, He F, Cao J. A stromal and immune cell infiltration-based score model predicts prognosis and chemotherapy effect in colorectal cancer. Int Immunopharmacol 2021; 99:107940. [PMID: 34242996 DOI: 10.1016/j.intimp.2021.107940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
The stromal and immune cells crosstalk with cancer cells in tumor microenvironment, but few studies have fully considered the overall landscape of the infiltrating stromal and immune cells in colorectal cancer. We enrolled 1836 colorectal cancer patients and divided them into the training, validation and test cohorts. 64 stromal and immune cells were quantified in each primary colorectal cancer tissue by estimating gene expression data using xCell algorithm. Univariate, LASSO and multivariate Cox regression analyses were subsequently employed to establish a stromal and immune score prognostic model based on 13 potential cell biomarkers. Patients of the three cohorts were divided into the high- and low-risk groups according to the cutoff value. Compared with the low-risk group, high-risk group showed significant shorter survival, worse clinicopathologic outcomings, higher cancer-related expressions and more active epithelial-mesenchymal transformation. 5-Fu and FUFOL chemotherapy regimens made the low-risk patients gain significant survival advantage, while none chemotherapy regimens benefited the high-risk group, which may benefit from immune checkpoint inhibitors. The nomogram combining the stromal and immune score with standard TNM staging system showed better predictive accuracy than TNM stage alone. The stromal and immune cell infiltration-based score model can effectively and efficiently predict the prognosis and chemotherapy effect in colorectal cancer.
Collapse
Affiliation(s)
- Qingqing Luo
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Feng He
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Jie Cao
- Guangzhou Digestive Disease Center, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
42
|
Karbasiafshar C, Sellke FW, Abid MR. Mesenchymal stem cell-derived extracellular vesicles in the failing heart: past, present, and future. Am J Physiol Heart Circ Physiol 2021; 320:H1999-H2010. [PMID: 33861149 PMCID: PMC8163643 DOI: 10.1152/ajpheart.00951.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.
Collapse
Affiliation(s)
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
43
|
Tolba MF, Elghazaly H, Bousoik E, Elmazar MMA, Tolaney SM. Novel combinatorial strategies for boosting the efficacy of immune checkpoint inhibitors in advanced breast cancers. Clin Transl Oncol 2021; 23:1979-1994. [PMID: 33871826 DOI: 10.1007/s12094-021-02613-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The year 2019 witnessed the first approval of an immune checkpoint inhibitor (ICI) for the management of triple negative breast cancers (TNBC) that are metastatic and programmed death ligand (PD)-L1 positive. Extensive research has focused on testing ICI-based combinatorial strategies, with the ultimate goal of enhancing the response of breast tumors to immunotherapy to increase the number of breast cancer patients benefiting from this transformative treatment. The promising investigational strategies included immunotherapy combinations with monoclonal antibodies (mAbs) against human epidermal growth factor receptor (HER)-2 for the HER2 + tumors versus cyclin-dependent kinase (CDK)4/6 inhibitors in the estrogen receptor (ER) + disease. Multiple approaches are showing signals of success in advanced TNBC include employing Poly (ADP-ribose) polymerase (PARP) inhibitors, tyrosine kinase inhibitors, MEK inhibitors, phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) signaling inhibitors or inhibitors of adenosine receptor, in combination with the classical PD-1/PD-L1 immune checkpoint inhibitors. Co-treatment with chemotherapy, high intensity focused ultrasound (HIFU) or interleukin-2-βɣ agonist have also produced promising outcomes. This review highlights the latest combinatorial strategies under development for overcoming cancer immune evasion and enhancing the percentage of immunotherapy responders in the different subsets of advanced breast cancers.
Collapse
Affiliation(s)
- M F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Center of Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire-Hosted By Global Academic Foundation, New Capital City, Egypt.
| | - H Elghazaly
- Clinical Oncology Department, and Medical Research Center (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - E Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
- School of Pharmacy, Omar-Al-Mukhtar University, Derna, Libya
| | - M M A Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El Sherouk City, Egypt
| | - S M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Lan HR, Du WL, Liu Y, Mao CS, Jin KT, Yang X. Role of immune regulatory cells in breast cancer: Foe or friend? Int Immunopharmacol 2021; 96:107627. [PMID: 33862552 DOI: 10.1016/j.intimp.2021.107627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is the most common cancer among women between the ages of 20 and 50, affecting more than 2.1 million people and causing the annual death of more than 627,000 women worldwide. Based on the available knowledge, the immune system and its components are involved in the pathogenesis of several malignancies, including BC. Cancer immunobiology suggests that immune cells can play a dual role and induce anti-tumor or immunosuppressive responses, depending on the tumor microenvironment (TME) signals. The most important effector immune cells with anti-tumor properties are natural killer (NK) cells, B, and T lymphocytes. On the other hand, immune and non-immune cells with regulatory/inhibitory phenotype, including regulatory T cells (Tregs), regulatory B cells (Bregs), tolerogenic dendritic cells (tDCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), mesenchymal stem cells (MSCs), and regulatory natural killer cells (NKregs), can promote the growth and development of tumor cells by inhibiting anti-tumor responses, inducing angiogenesis and metastasis, as well as the expression of inhibitory molecules and suppressor mediators of the immune system. However, due to the complexity of the interaction and the modification in the immune cells' phenotype and the networking of the immune responses, the exact mechanism of action of the immunosuppressive and regulatory cells is not yet fully understood. This review article reviews the immune responses involved in BC as well as the role of regulatory and inhibitory cells in the pathogenesis of the disease. Finally, therapeutic approaches based on inhibition of immunosuppressive responses derived from regulatory cells are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, PR China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
45
|
Yu JL, Chan S, Fung MKL, Chan GCF. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model. BMC Cancer 2021; 21:393. [PMID: 33838662 PMCID: PMC8035760 DOI: 10.1186/s12885-021-08090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08090-2.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Marcus Kwong-Lam Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
46
|
The Yin and Yang of Discoidin Domain Receptors (DDRs): Implications in Tumor Growth and Metastasis Development. Cancers (Basel) 2021; 13:cancers13071725. [PMID: 33917302 PMCID: PMC8038660 DOI: 10.3390/cancers13071725] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in tumor development and metastasis. Collagens are major components of the extracellular matrix and can influence tumor development and metastasis by activating discoidin domain receptors (DDRs). This work shows the different roles of DDRs in various cancers and highlights the complexity of anti-DDR therapies in cancer treatment. Abstract The tumor microenvironment is a complex structure composed of the extracellular matrix (ECM) and nontumoral cells (notably cancer-associated fibroblasts (CAFs) and immune cells). Collagens are the main components of the ECM and they are extensively remodeled during tumor progression. Some collagens are ligands for the discoidin domain receptor tyrosine kinases, DDR1 and DDR2. DDRs are involved in different stages of tumor development and metastasis formation. In this review, we present the different roles of DDRs in these processes and discuss controversial findings. We conclude by describing emerging DDR inhibitory strategies, which could be used as new alternatives for the treatment of patients.
Collapse
|
47
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
48
|
Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13061472. [PMID: 33806906 PMCID: PMC8004890 DOI: 10.3390/cancers13061472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) are expressed simultaneously and have tumor-promoting roles in breast cancer. In parallel, mesenchymal stem cells (MSCs) undergo conversion at the tumor site to cancer-associated fibroblasts (CAFs), which are generally connected to enhanced tumor progression. Here, we determined the impact of consistent inflammatory stimulation on stromal cell plasticity. MSCs that were persistently stimulated by TNFα + IL-1β (generally 14-18 days) gained a CAF-like morphology, accompanied by prominent changes in gene expression, including in stroma/fibroblast-related genes. These CAF-like cells expressed elevated levels of vimentin and fibroblast activation protein (FAP) and demonstrated significantly increased abilities to contract collagen gels. Moreover, they gained the phenotype of inflammatory CAFs, as indicated by the reduced expression of α smooth muscle actin (αSMA), increased proliferation, and elevated expression of inflammatory genes and proteins, primarily inflammatory chemokines. These inflammatory CAFs released factors that enhanced tumor cell dispersion, scattering, and migration; the inflammatory CAF-derived factors elevated cancer cell migration by stimulating the chemokine receptors CCR2, CCR5, and CXCR1/2 and Ras-activating receptors, expressed by the cancer cells. Together, these novel findings demonstrate that chronic inflammation can induce MSC-to-CAF conversion, leading to the generation of tumor-promoting inflammatory CAFs.
Collapse
|
49
|
Lymph node metastasis-derived gastric cancer cells educate bone marrow-derived mesenchymal stem cells via YAP signaling activation by exosomal Wnt5a. Oncogene 2021; 40:2296-2308. [PMID: 33654199 PMCID: PMC7994201 DOI: 10.1038/s41388-021-01722-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Lymph node metastasis (LNM), a common metastatic gastric-cancer (GC) route, is closely related to poor prognosis in GC patients. Bone marrow-derived mesenchymal stem cells (BM-MSCs) preferentially engraft at metastatic lesions. Whether BM-MSCs are specifically reprogrammed by LNM-derived GC cells (LNM-GCs) and incorporated into metastatic LN microenvironment to prompt GC malignant progression remains unknown. Herein, we found that LNM-GCs specifically educated BM-MSCs via secretory exosomes. Exosomal Wnt5a was identified as key protein mediating LNM-GCs education of BM-MSCs, which was verified by analysis of serum exosomes collected from GC patients with LNM. Wnt5a-enriched exosomes induced YAP dephosphorylation in BM-MSCs, whereas Wnt5a-deficient exosomes exerted the opposite effect. Inhibition of YAP signaling by verteporfin blocked LNM-GC exosome- and serum exosome-mediated reprogramming in BM-MSCs. Analysis of MSC-like cells obtained from metastatic LN tissues of GC patients (GLN-MSCs) confirmed that BM-MSCs incorporated into metastatic LN microenvironment, and that YAP activation participated in maintaining their tumor-promoting phenotype and function. Collectively, our results show that LNM-GCs specifically educated BM-MSCs via exosomal Wnt5a-elicited activation of YAP signaling. This study provides new insights into the mechanisms of LNM in GC and BM-MSC reprogramming, and will provide potential therapeutic targets and detection indicators for GC patients with LNM.
Collapse
|
50
|
Lin CC, Yang WH, Lin YT, Tang X, Chen PH, Ding CKC, Qu DC, Alvarez JV, Chi JT. DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway. Oncogene 2021; 40:2018-2034. [PMID: 33603168 PMCID: PMC7988308 DOI: 10.1038/s41388-021-01676-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023]
Abstract
Recurrent breast cancer presents significant challenges with aggressive phenotypes and treatment resistance. Therefore, novel therapeutics are urgently needed. Here, we report that murine recurrent breast tumor cells, when compared with primary tumor cells, are highly sensitive to ferroptosis. Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), the receptor for collagen I, is highly expressed in ferroptosis-sensitive recurrent tumor cells and human mesenchymal breast cancer cells. EMT regulators, TWIST and SNAIL, significantly induce DDR2 expression and sensitize ferroptosis in a DDR2-dependent manner. Erastin treatment induces DDR2 upregulation and phosphorylation, independent of collagen I. Furthermore, DDR2 knockdown in recurrent tumor cells reduces clonogenic proliferation. Importantly, both the ferroptosis protection and reduced clonogenic growth may be compatible with the compromised YAP/TAZ upon DDR2 inhibition. Collectively, these findings identify the important role of EMT-driven DDR2 upregulation in recurrent tumors in maintaining growth advantage but activating YAP/TAZ-mediated ferroptosis susceptibility, providing potential strategies to eradicate recurrent breast cancer cells with mesenchymal features.
Collapse
Affiliation(s)
- Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi-Tzu Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan Chen Qu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James V. Alvarez
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA;,Correspondence: Jen-Tsan Ashley Chi, Department of Molecular Genetics and Microbiology, Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA. TEL: (919) 668-4759,
| |
Collapse
|