1
|
Plank JR, Gozdas E, Bruno J, McGhee CA, Wu H, Raman MM, Saggar M, Green T. Quantitative T1 mapping indicates elevated white matter myelin in children with RASopathies. Biol Psychiatry 2025:S0006-3223(25)01148-5. [PMID: 40316128 DOI: 10.1016/j.biopsych.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Evidence suggests a pathological role of myelination in neurodevelopmental disorders with links to cognitive difficulties, but in vivo assessment remains challenging. Quantitative T1 mapping (QT1) has been used in prior clinical studies (e.g., of multiple sclerosis) and shows promise for reliable measurement of myelin alterations. We investigated QT1 for measuring myelination in children with neurodevelopmental disorders of the RAS-MAPK signaling pathway (RASopathies). METHODS We collected QT1, diffusion-weighted, and structural MRI scans from 72 children (49 RASopathies, 23 typical developing (TD)). QT1 myelin content measures included white matter macromolecular tissue volume (MTV) and cortical R1 (1/T1 relaxation). Group differences were assessed across 39 white matter tracts. Principal components analysis captured cortical myelination patterns across 360 regions, followed by a MANOVA. A support vector machine (SVM) identified the most discriminative features between-groups. RESULTS Thirty-four of 39 tracts were higher in MTV in RASopathies relative to TD (pFDR<.05), indicating widespread elevation in myelination. MANOVA revealed a group effect on cortical R1 (p=.002, η2=.028), suggesting cortical myelination differences between-groups. The SVM yielded an accuracy of 87% and identified cognitive and cortical R1 features as the most discriminant between-groups. CONCLUSIONS We found widespread elevated white matter tract myelin and region-dependent cortical myelination patterns in children with RASopathies. Leveraging preclinical models showing oligodendrocyte dysfunction, QT1 revealed precocious myelination. Further work is needed to explore relationships with cognition. QT1 is a promising tool for identification and monitoring of myelin as a treatment target in neurodevelopmental disorders, offering significant potential for advancing current therapeutic strategies.
Collapse
Affiliation(s)
- Julia R Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA.
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Jennifer Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Chloe A McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Plank JR, Gozdas E, Bruno J, McGhee CA, Wu H, Raman MM, Saggar M, Green T. Quantitative T1 mapping indicates elevated white matter myelin in children with RASopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.25.25322881. [PMID: 40061352 PMCID: PMC11888482 DOI: 10.1101/2025.02.25.25322881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Evidence suggests pathological roles of myelination in neurodevelopmental disorders, but our understanding is limited. We investigated quantitative T1 mapping (QT1) as a clinically feasible tool for measuring myelination in children with neurodevelopmental disorders of the RAS-MAPK signaling pathway (RASopathies). Methods We collected QT1, diffusion-weighted, and structural MRI scans from 72 children (49 RASopathies, 23 typical developing (TD)). QT1 measures of myelin content included the macromolecular tissue volume (MTV) in white matter and R1 (1/T1 relaxation) of the cortex. For white matter, we assessed between-groups differences across 39 tracts. For cortical R1, we used principal components analysis to reduce dimensionality and capture myelination patterns across 360 regions. A multivariate ANOVA assessed differences across principal components. Finally, a support vector machine (SVM) identified the most discriminative features between TD and RASopathies. Results Thirty-four of 39 tracts were higher in MTV in RASopathies relative to TD (pFDR <.05), indicating widespread elevation in myelination. Our MANOVA revealed a group effect on cortical R1 (p=.002, η2 =.028), suggesting cortical myelination differences between-groups. SVM yielded an accuracy of 87% and identified cognitive and cortical R1 features as the most discriminant between-groups. Conclusions We found widespread elevated myelin in white matter tracts and region-dependent patterns of cortical myelination in children with RASopathies. QT1 enabled us to leverage preclinical models showing oligodendrocyte dysfunction to uncover the myelination pattern in vivo in the developing human brain. Using QT1, myelin represents a promising treatment target that can be identified and monitored in neurodevelopmental disorders, offering significant potential for advancing current therapeutic strategies.
Collapse
Affiliation(s)
- Julia R Plank
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Elveda Gozdas
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Jennifer Bruno
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Chloe A McGhee
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA 94305, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, 1520 Page Mill Road, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Huang D, Li M, Qiao Z, Zhou H, Zhang Z, Zhou J. Quetiapine Reverses the Behavior and Myelination in Alcohol-Exposed Gestational Diabetes Mellitus Offspring Mice via ERK1/2 Signaling. Biol Pharm Bull 2025; 48:323-335. [PMID: 40159228 DOI: 10.1248/bpb.b24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gestational diabetes mellitus (GDM) is a glucose metabolism abnormality that first emerges during pregnancy and may negatively affect the behavioral and neurodevelopmental outcomes of offspring. Quetiapine (QUE) has been shown to promote differentiation of oligodendrocyte precursor cells (OPCs) and protect oligodendrocytes and myelination. To explore the effects of QUE on improving the expression of conditioned place preference (CPP) and myelination in the infralimbic cortex (IL) of the medial prefrontal cortex in alcohol-exposed GDM offspring mice, we evaluated CPP expression in 5-week-old alcohol-exposed GDM offspring and treated them with QUE and the extracellular-regulated protein kinase (ERK) inhibitor U0126. Immunohistochemical staining compared the numbers of mature oligodendrocytes, OPCs, and myelin expression levels. Immunofluorescence staining was employed to examine OPC differentiation and the activation of the ERK1/2 signaling pathway. In GDM offspring, CPP expression increased considerably following alcohol exposure, whereas early treatment with QUE or U0126 significantly decreased CPP expression. Meanwhile, alcohol exposure resulted in substantial activation of the ERK1/2 signaling pathway within OPCs in the IL region, as well as a substantial reduction in OPC differentiation, mature oligodendrocyte count, and myelin expression. QUE or U0126 inhibited the activation of the ERK1/2 signaling pathway within OPCs in the IL region of alcohol-exposed GDM offspring and markedly restored OPC differentiation, mature oligodendrocyte numbers, and myelin expression. Collectively, QUE enhanced the differentiation of OPCs in the IL region of GDM offspring after alcohol exposure by regulating the overactivation of the ERK1/2 signaling pathway, thus partially reversing myelination loss and ultimately improving CPP expression.
Collapse
Affiliation(s)
- Dong Huang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Maolin Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhifei Qiao
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Hongli Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zuo Zhang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Jiyin Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| |
Collapse
|
4
|
Siqueiros-Sanchez M, Dai E, McGhee CA, McNab JA, Raman MM, Green T. Impact of pathogenic variants of the Ras-mitogen-activated protein kinase pathway on major white matter tracts in the human brain. Brain Commun 2024; 6:fcae274. [PMID: 39210910 PMCID: PMC11358645 DOI: 10.1093/braincomms/fcae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Noonan syndrome and neurofibromatosis type 1 are genetic conditions linked to pathogenic variants in genes of the Ras-mitogen-activated protein kinase signalling pathway. Both conditions hyper-activate signalling of the Ras-mitogen-activated protein kinase pathway and exhibit a high prevalence of neuropsychiatric disorders. Further, animal models of Noonan syndrome and neurofibromatosis type 1 and human imaging studies show white matter abnormalities in both conditions. While these findings suggest Ras-mitogen-activated protein kinas pathway hyper-activation effects on white matter, it is unknown whether these effects are syndrome-specific or pathway-specific. To characterize the effect of Noonan syndrome and neurofibromatosis type 1 on human white matter's microstructural integrity and discern potential syndrome-specific influences on microstructural integrity of individual tracts, we collected diffusion-weighted imaging data from children with Noonan syndrome (n = 24), neurofibromatosis type 1 (n = 28) and age- and sex-matched controls (n = 31). We contrasted the clinical groups (Noonan syndrome or neurofibromatosis type 1) and controls using voxel-wise, tract-based and along-tract analyses. Outcomes included voxel-wise, tract-based and along-tract fractional anisotropy, axial diffusivity, radial diffusivity and mean diffusivity. Noonan syndrome and neurofibromatosis type 1 showed similar patterns of reduced fractional anisotropy and increased axial diffusivity, radial diffusivity, and mean diffusivity on white matter relative to controls and different spatial patterns. Noonan syndrome presented a more extensive spatial effect than neurofibromatosis type 1 on white matter integrity as measured by fractional anisotropy. Tract-based analysis also demonstrated differences in effect magnitude with overall lower fractional anisotropy in Noonan syndrome compared to neurofibromatosis type 1 (d = 0.4). At the tract level, Noonan syndrome-specific effects on fractional anisotropy were detected in association tracts (superior longitudinal, uncinate and arcuate fasciculi; P < 0.012), and neurofibromatosis type 1-specific effects were detected in the corpus callosum (P < 0.037) compared to controls. Results from along-tract analyses aligned with results from tract-based analyses and indicated that effects are pervasive along the affected tracts. In conclusion, we find that pathogenic variants in the Ras-mitogen-activated protein kinase pathway are associated with white matter abnormalities as measured by diffusion in the developing brain. Overall, Noonan syndrome and neurofibromatosis type 1 show common effects on fractional anisotropy and diffusion scalars, as well as specific unique effects, namely, on temporoparietal-frontal tracts (intra-hemispheric) in Noonan syndrome and on the corpus callosum (inter-hemispheric) in neurofibromatosis type 1. The observed specific effects not only confirm prior observations from independent cohorts of Noonan syndrome and neurofibromatosis type 1 but also inform on syndrome-specific susceptibility of individual tracts. Thus, these findings suggest potential targets for precise, brain-focused outcome measures for existing medications, such as MEK inhibitors, that act on the Ras-mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA 94305-5105, USA
| | - Chloe A McGhee
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA 94305-5105, USA
| | - Mira M Raman
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tamar Green
- Brain Imaging, Development and Genetic (BRIDGE) Lab, Stanford University School of Medicine, Palo Alto, CA 94306, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
6
|
Wei X, Rigopoulos A, Lienhard M, Pöhle-Kronawitter S, Kotsaris G, Franke J, Berndt N, Mejedo JO, Wu H, Börno S, Timmermann B, Murgai A, Glauben R, Stricker S. Neurofibromin 1 controls metabolic balance and Notch-dependent quiescence of murine juvenile myogenic progenitors. Nat Commun 2024; 15:1393. [PMID: 38360927 PMCID: PMC10869796 DOI: 10.1038/s41467-024-45618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Patients affected by neurofibromatosis type 1 (NF1) frequently show muscle weakness with unknown etiology. Here we show that, in mice, Neurofibromin 1 (Nf1) is not required in muscle fibers, but specifically in early postnatal myogenic progenitors (MPs), where Nf1 loss led to cell cycle exit and differentiation blockade, depleting the MP pool resulting in reduced myonuclear accretion as well as reduced muscle stem cell numbers. This was caused by precocious induction of stem cell quiescence coupled to metabolic reprogramming of MPs impinging on glycolytic shutdown, which was conserved in muscle fibers. We show that a Mek/Erk/NOS pathway hypersensitizes Nf1-deficient MPs to Notch signaling, consequently, early postnatal Notch pathway inhibition ameliorated premature quiescence, metabolic reprogramming and muscle growth. This reveals an unexpected role of Ras/Mek/Erk signaling supporting postnatal MP quiescence in concert with Notch signaling, which is controlled by Nf1 safeguarding coordinated muscle growth and muscle stem cell pool establishment. Furthermore, our data suggest transmission of metabolic reprogramming across cellular differentiation, affecting fiber metabolism and function in NF1.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Angelos Rigopoulos
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computation IMPRS-BAC, Berlin, Germany
| | - Matthias Lienhard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Georgios Kotsaris
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joy Orezimena Mejedo
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Hao Wu
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Medicine Berlin, 12203, Berlin, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Arunima Murgai
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Rainer Glauben
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité University Medicine Berlin, 12203, Berlin, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
- International Max Planck Research School for Biology and Computation IMPRS-BAC, Berlin, Germany.
| |
Collapse
|
7
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
8
|
Ulhaq ZS, Ogino Y, Tse WKF. FGF8 rescues motor deficits in zebrafish model of limb-girdle muscular dystrophy R18. Biochem Biophys Res Commun 2023; 652:76-83. [PMID: 36827861 DOI: 10.1016/j.bbrc.2023.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Variants in the gene encoding trafficking protein particle complex 11 (TRAPPC11) cause limb-girdle muscular dystrophy R18 (LGMD R18). Although recently several genes related to myopathies have been identified, correlations between genetic causes and signaling events that lead from mutation to the disease phenotype are still mostly unclear. Here, we utilized zebrafish to model LGMD R18 by specifically inactivating trappc11 using antisense-mediated knockdown strategies and evaluated the resulting muscular phenotypes. Targeted ablation of trappc11 showed compromised skeletal muscle function due to muscle disorganization and myofibrosis. Our findings pinpoint that fish lacking functional trappc11 suppressed FGF8, which resulted in the aberrant activation of Notch signaling and eventually stimulated epithelial-mesenchymal transition (EMT) and fibrotic changes in the skeletal muscle. In summary, our study provides the role of FGF8 in the pathogenesis and its therapeutic potential of LGMD R18.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, 16911, Indonesia.
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 8190395, Japan.
| |
Collapse
|
9
|
Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma. Front Med 2023; 17:240-262. [PMID: 36645634 DOI: 10.1007/s11684-022-0936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Collapse
|
10
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
11
|
Steudler J, Ecott T, Ivan DC, Bouillet E, Walthert S, Berve K, Dick TP, Engelhardt B, Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022; 70:2045-2061. [PMID: 35762739 PMCID: PMC9546135 DOI: 10.1002/glia.24235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.
Collapse
Affiliation(s)
- Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Timothy Ecott
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
12
|
CRISPR/CasRx-Mediated RNA Knockdown Reveals That ACE2 Is Involved in the Regulation of Oligodendroglial Cell Morphological Differentiation. Noncoding RNA 2022; 8:ncrna8030042. [PMID: 35736639 PMCID: PMC9229887 DOI: 10.3390/ncrna8030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/05/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays a role in catalyzing angiotensin II conversion to angiotensin (1–7), which often counteracts the renin-angiotensin system. ACE2 is expressed not only in the cells of peripheral tissues such as the heart and kidney, but also in those of the central nervous system (CNS). Additionally, ACE2 acts as the receptor required for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose binding leads to endocytotic recycling and possible degradation of the ACE2 proteins themselves. One of the target cells for SARS-CoV-2 in the CNS is oligodendrocytes (oligodendroglial cells), which wrap neuronal axons with their differentiated plasma membranes called myelin membranes. Here, for the first time, we describe the role of ACE2 in FBD-102b cells, which are used as the differentiation models of oligodendroglial cells. Unexpectedly, RNA knockdown of ACE2 with CasRx-mediated gRNA or the cognate siRNA promoted oligodendroglial cell morphological differentiation with increased expression or phosphorylation levels of differentiation and/or myelin marker proteins, suggesting the negative role of ACE2 in morphological differentiation. Notably, ACE2′s intracellular region preferentially interacted with the active GTP-bound form of Ras. Thus, knockdown of ACE2 relatively increased GTP-bound Ras in an affinity-precipitation assay. Indeed, inhibition of Ras resulted in decreasing both morphological differentiation and expression or phosphorylation levels of marker proteins, confirming the positive role of Ras in differentiation. These results indicate the role of ACE2 itself as a negative regulator of oligodendroglial cell morphological differentiation, newly adding ACE2 to the list of regulators of oligodendroglial morphogenesis as well as of Ras-binding proteins. These findings might help us to understand why SARS-CoV-2 causes pathological effects in the CNS.
Collapse
|
13
|
Wang S, Friedman JM, Suppa P, Buchert R, Mautner VF. White matter is increased in the brains of adults with neurofibromatosis 1. Orphanet J Rare Dis 2022; 17:115. [PMID: 35248131 PMCID: PMC8898512 DOI: 10.1186/s13023-022-02273-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Neurofibromatosis 1 (NF1) is a rare autosomal dominant disease characterized by increased Schwann cell proliferation in peripheral nerves. Several small studies of brain morphology in children with NF1 have found increased total brain volume, total white matter volume and/or corpus callosum area. Some studies (mostly in children with NF1) also attempted to correlate changes in brain morphology and volume with cognitive or behavioural abnormalities, although the findings were inconsistent. We aimed to characterize alterations in brain volumes by three-dimensional (3D) MRI in adults with NF1 in major intracranial sub-regions. We also aimed to assess the effect of age on these volumes and correlated brain white matter and grey matter volumes with neuropsychometric findings in adults with NF1. Methods We obtained brain volume measurements using 3D magnetic resonance imaging for 351 adults with NF1 and, as a comparison group, 43 adults with neurofibromatosis 2 (NF2) or Schwannomatosis. We assessed a subset of 19 adults with NF1 for clinical severity of NF1 features and neurological problems and conducted psychometric testing for attention deficiencies and intelligence quotient. We compared brain volumes between NF1 patients and controls and correlated volumetric measurements to clinical and psychometric features in the NF1 patients. Results Total brain volume and total and regional white matter volumes were all significantly increased in adults with NF1. Grey matter volume decreased faster with age in adults with NF1 than in controls. Greater total brain volume and white matter volume were correlated with lower attention deficits and higher intelligence quotients in adults with NF1. Conclusion Our findings are consistent with the hypothesis that dysregulation of brain myelin production is a cardinal manifestation of NF1 and that these white matter changes may be functionally important in affected adults. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02273-1.
Collapse
|
14
|
Coban G, Parlak S, Gumeler E, Altunbuker H, Konuşkan B, Karakaya J, Anlar B, Oguz KK. Synthetic MRI in Neurofibromatosis Type 1. AJNR Am J Neuroradiol 2021; 42:1709-1715. [PMID: 34266869 DOI: 10.3174/ajnr.a7214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Synthetic MRI enables the generation of various contrast-weighted images and quantitative data in a reasonable scanning time. We aimed to use synthetic MRI to assess the detection and underlying tissue characteristics of focal areas of signal intensity and normal-appearing brain parenchyma and morphometric alterations in the brains of patients with neurofibromatosis type 1. MATERIALS AND METHODS Conventional MR imaging and synthetic MRI were prospectively obtained from 19 patients with neurofibromatosis type 1 and 18 healthy controls. Two neuroradiologists independently evaluated focal areas of signal intensity on both conventional MR imaging and synthetic MRI. Additionally, automatically segmented volume calculations of the brain in both groups and quantitative analysis of myelin, including the focal areas of signal intensity and normal-appearing brain parenchyma, of patients with neurofibromatosis type 1 were performed using synthetic MRI. RESULTS The comparison of conventional MR imaging and synthetic MRI showed good correlation in the supratentorial region of the brain (κ = 0.82-1). Automatically segmented brain parenchymal volume, intracranial volume, and GM volumes were significantly increased in the patients with neurofibromatosis type 1 (P < .05). The myelin-correlated compound, myelin fraction volume, WM fraction volume, transverse relaxation rate, and longitudinal relaxation rate values were significantly decreased in focal areas of signal intensity on myelin and WM maps (P < .001); however, GM, GM fraction volume, and proton density values were significantly increased on the GM map (P < .001). CONCLUSIONS Synthetic MRI is a potential tool for the assessment of morphometric and tissue alterations as well as the detection of focal areas of signal intensity in patients with neurofibromatosis type 1 in a reasonable scan time.
Collapse
Affiliation(s)
- G Coban
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - S Parlak
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - E Gumeler
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| | - H Altunbuker
- Istanbul Il Ambulans Servisi Başhekimliği, (H.A.), Istanbul, Turkey
| | - B Konuşkan
- Department of Pediatric Neurology (B.K.), Mardin State Hospital, Mardin, Turkey
| | | | - B Anlar
- Pediatric Neurology (B.A.), Hacettepe University School of Medicine, Ankara, Turkey
| | - K K Oguz
- From the Departments of Radiology (G.C., S.P., E.G., K.K.O.)
| |
Collapse
|
15
|
Talley MJ, Nardini D, Shabbir N, Ehrman LA, Prada CE, Waclaw RR. Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon. Front Cell Dev Biol 2021; 9:673995. [PMID: 34222248 PMCID: PMC8242193 DOI: 10.3389/fcell.2021.673995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The leucine zipper-like transcriptional regulator 1 (Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1IREScre/+. Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nisha Shabbir
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
16
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Talley MJ, Nardini D, Qin S, Prada CE, Ehrman LA, Waclaw RR. A role for sustained MAPK activity in the mouse ventral telencephalon. Dev Biol 2021; 476:137-147. [PMID: 33775695 DOI: 10.1016/j.ydbio.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
The MAPK pathway is a major growth signal that has been implicated during the development of progenitors, neurons, and glia in the embryonic brain. Here, we show that the MAPK pathway plays an important role in the generation of distinct cell types from progenitors in the ventral telencephalon. Our data reveal that phospho-p44/42 (called p-ERK1/2) and the ETS transcription factor Etv5, both downstream effectors in the MAPK pathway, show a regional bias in expression during ventral telencephalic development, with enriched expression in the dorsal region of the LGE and ventral region of the MGE at E13.5 and E15.5. Interestingly, expression of both factors becomes more uniform in ventricular zone (VZ) progenitors by E18.5. To gain insight into the role of MAPK activity during progenitor cell development, we used a cre inducible constitutively active MEK1 allele (RosaMEK1DD/+) in combination with a ventral telencephalon enriched cre (Gsx2e-cre) or a dorsal telencephalon enriched cre (Emx1cre/+). Sustained MEK/MAPK activity in the ventral telencephalon (Gsx2e-cre; RosaMEK1DD/+) expanded dorsal lateral ganglionic eminence (dLGE) enriched genes (Gsx2 and Sp8) and oligodendrocyte progenitor cell (OPC) markers (Olig2, Pdgfrα, and Sox10), and also reduced markers in the ventral (v) LGE domain (Isl1 and Foxp1). Activation of MEK/MAPK activity in the dorsal telencephalon (Emx1cre/+; RosaMEK1DD/+) did not initially activate the expression of dLGE or OPC genes at E15.5 but ectopic expression of Gsx2 and OPC markers were observed at E18.5. These results support the idea that MAPK activity as readout by p-ERK1/2 and Etv5 expression is enriched in distinct subdomains of ventral telencephalic progenitors during development. In addition, sustained activation of the MEK/MAPK pathway in the ventral or dorsal telencephalon influences dLGE and OPC identity from progenitors.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Shenyue Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Joerger-Messerli MS, Thomi G, Haesler V, Keller I, Renz P, Surbek DV, Schoeberlein A. Human Wharton's Jelly Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Drive Oligodendroglial Maturation by Restraining MAPK/ERK and Notch Signaling Pathways. Front Cell Dev Biol 2021; 9:622539. [PMID: 33869172 PMCID: PMC8044995 DOI: 10.3389/fcell.2021.622539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Peripartum cerebral hypoxia and ischemia, and intrauterine infection and inflammation, are detrimental for the precursor cells of the myelin-forming oligodendrocytes in the prematurely newborn, potentially leading to white matter injury (WMI) with long-term neurodevelopmental sequelae. Previous data show that hypomyelination observed in WMI is caused by arrested oligodendroglial maturation rather than oligodendrocyte-specific cell death. In a rat model of premature WMI, we have recently shown that small extracellular vesicles (sEV) derived from Wharton's jelly mesenchymal stromal cells (WJ-MSC) protect from myelination deficits. Thus, we hypothesized that sEV derived from WJ-MSC directly promote oligodendroglial maturation in oligodendrocyte precursor cells. To test this assumption, sEV were isolated from culture supernatants of human WJ-MSC by ultracentrifugation and co-cultured with the human immortalized oligodendrocyte precursor cell line MO3.13. As many regulatory functions in WMI have been ascribed to microRNA (miR) and as sEV are carriers of functional miR which can be delivered to target cells, we characterized and quantified the miR content of WJ-MSC-derived sEV by next-generation sequencing. We found that WJ-MSC-derived sEV co-localized with MO3.13 cells within 4 h. After 5 days of co-culture, the expression of myelin basic protein (MBP), a marker for mature oligodendrocytes, was significantly increased, while the oligodendrocyte precursor marker platelet-derived growth factor alpha (PDGFRα) was decreased. Notch and MAPK/ERK pathways known to inhibit oligodendrocyte maturation and differentiation were significantly reduced. The pathway enrichment analysis showed that the miR present in WJ-MSC-derived sEV target genes having key roles in the MAPK pathway. Our data strongly suggest that sEV from WJ-MSC directly drive the maturation of oligodendrocyte precursor cells by repressing Notch and MAPK/ERK signaling.
Collapse
Affiliation(s)
- Marianne S Joerger-Messerli
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Gierin Thomi
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Valérie Haesler
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Irene Keller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Patricia Renz
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Andreina Schoeberlein
- Department of Obstetrics and Feto-maternal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Osum SH, Watson AL, Largaespada DA. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:1954. [PMID: 33669386 PMCID: PMC7920315 DOI: 10.3390/ijms22041954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
20
|
Chiang ACA, Seua AV, Singhmar P, Arroyo LD, Mahalingam R, Hu J, Kavelaars A, Heijnen CJ. Bexarotene normalizes chemotherapy-induced myelin decompaction and reverses cognitive and sensorimotor deficits in mice. Acta Neuropathol Commun 2020; 8:193. [PMID: 33183353 PMCID: PMC7661216 DOI: 10.1186/s40478-020-01061-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022] Open
Abstract
Frequently reported neurotoxic sequelae of cancer treatment include cognitive deficits and sensorimotor abnormalities that have long-lasting negative effects on the quality of life of an increasing number of cancer survivors. The underlying mechanisms are not fully understood and there is no effective treatment. We show here that cisplatin treatment of mice not only caused cognitive dysfunction but also impaired sensorimotor function. These functional deficits are associated with reduced myelin density and complexity in the cingulate and sensorimotor cortex. At the ultrastructural level, myelin abnormalities were characterized by decompaction. We used this model to examine the effect of bexarotene, an agonist of the RXR-family of nuclear receptors. Administration of only five daily doses of bexarotene after completion of cisplatin treatment was sufficient to normalize myelin density and fiber coherency and to restore myelin compaction in cingulate and sensorimotor cortex. Functionally, bexarotene normalized performance of cisplatin-treated mice in tests for cognitive and sensorimotor function. RNAseq analysis identified the TR/RXR pathway as one of the top canonical pathways activated by administration of bexarotene to cisplatin-treated mice. Bexarotene also activated neuregulin and netrin pathways that are implicated in myelin formation/maintenance, synaptic function and axonal guidance. In conclusion, short term treatment with bexarotene is sufficient to reverse the adverse effects of cisplatin on white matter structure, cognitive function, and sensorimotor performance. These encouraging findings warrant further studies into potential clinical translation and the underlying mechanisms of bexarotene for chemobrain.
Collapse
|
21
|
Nebbioso M, Moramarco A, Lambiase A, Giustini S, Marenco M, Miraglia E, Fino P, Iacovino C, Alisi L. Neurofibromatosis Type 1: Ocular Electrophysiological and Perimetric Anomalies. Eye Brain 2020; 12:119-127. [PMID: 33117026 PMCID: PMC7585783 DOI: 10.2147/eb.s255184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a multisystemic disease caused by the mutation of Nf1 gene located on chromosome 17q11.2. The mutation determines the loss of function of the protein neurofibromin with consequent uncontrolled cellular proliferation. Patients are characterized by a wide range of dermatological, neurological, and ophthalmological symptoms. PURPOSE The aim of the study was to evaluate, through pattern visual evoked potentials (p-VEPs) and frequency doubling technology (FDT) Matrix perimetry, the objective and psychophysical functionality of the optic pathways in a group of NF1 patient. METHODS The study group consisted of 26 patients affected by NF1 and 17 healthy controls. Each patient underwent a complete ophthalmological examination, p-VEPs with the evaluation of amplitude and latency of the P100 wave, and FDT perimetry, with the evaluation of central sensitivity (CS), mean deviation (MD), pattern standard deviation (PSD) and glaucoma hemifield test (GHT). RESULTS NF1 patients showed a statistically significant alteration in the transmission of visual impulse. P-VEPs results highlighted a reduced amplitude and an increased latency of the P100 wave, suggesting an involvement of the visual pathway. Visual field analysis showed a significant reduction in all the observed parameters as well (CS, MD, PSD, and GHT). CONCLUSION The present study showed, in NF1 patients, a qualitative and quantitative alteration in the conduction of stimuli through the visual pathways. The observed alterations are present, although, only at a subclinical level. None of the patients included in the study showed any manifest visual deficit nor had any concomitant pathology that might have affected the outcome of the study. In conclusion, electrophysiological exams and computer perimetry may take part, alongside a wider array of exams, in the differential diagnosis and later monitoring of NF1.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | | | - Sandra Giustini
- Department of Dermatology, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Pasquale Fino
- Department of Dermatology, Sapienza University of Rome, Rome, Italy
| | - Chiara Iacovino
- Department of Dermatology, Sapienza University of Rome, Rome, Italy
| | - Ludovico Alisi
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Baudou E, Nemmi F, Biotteau M, Maziero S, Assaiante C, Cignetti F, Vaugoyeau M, Audic F, Peran P, Chaix Y. Are morphological and structural MRI characteristics related to specific cognitive impairments in neurofibromatosis type 1 (NF1) children? Eur J Paediatr Neurol 2020; 28:89-100. [PMID: 32893091 DOI: 10.1016/j.ejpn.2020.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION NF1 children have cognitive disorders, especially in executive functions, visuospatial, and language domains, the pathophysiological mechanisms of which are still poorly understood. MATERIALS AND METHODS A correlation study was performed from neuropsychological assessments and brain MRIs of 38 NF1 patients and 42 controls, all right-handed, aged 8-12 years and matched in age and gender. The most discriminating neuropsychological tests were selected to assess their visuospatial, metaphonological and visuospatial working memory abilities. The MRI analyses focused on the presence and location of Unidentified Bright Objects (UBOs) (1), volume analysis (2) and diffusion analysis (fractional anisotropy and mean diffusivity) (3) of the regions of interest including subcortical structures and posterior fossa, as well as shape analysis of subcortical structures (4). The level of attention, intelligence quotient, age and gender of the patients were taken into account in the statistical analysis. Then, we studied how diffusion and volumes parameters were associated with neuropsychological characteristics in NF1 children. RESULTS NF1 children present different brain imaging characteristics compared to the control such as (1) UBOs in 68%, (2) enlarged total intracranial volume, involving all subcortical structures, especially thalamus, (3) increased MD and decreased FA in thalamus, corpus callosum and hippocampus. These alterations are diffuse, without shape involvement. In NF1 group, brain microstructure is all the more altered that volumes are enlarged. However, we fail to find a link between these brain characteristics and neurocognitive scores. CONCLUSION While NF1 patients have obvious pathological brain characteristics, the neuronal substrates of their cognitive deficits are still not fully understood, perhaps due to complex and multiple pathophysiological mechanisms underlying this disorder, as suggested by the heterogeneity observed in our study. However, our results are compatible with an interpretation of NF1 as a diffuse white matter disease.
Collapse
Affiliation(s)
- Eloïse Baudou
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France.
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Maëlle Biotteau
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Stéphanie Maziero
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Christine Assaiante
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France
| | - Fabien Cignetti
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France; CNRS, TIMC-IMAG, Université Grenoble Alpes, Grenoble, France
| | - Marianne Vaugoyeau
- CNRS, LNC, Aix Marseille Université, Marseille, France; CNRS, Fédération 3C, Aix Marseille Université, Marseille, France
| | - Frederique Audic
- Service de Neurologie Pédiatrique, CHU, Timone-Enfants, Marseille, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| | - Yves Chaix
- Children's Hospital, Toulouse-Purpan University Hospital, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France
| |
Collapse
|
23
|
Brain-wide structural and functional disruption in mice with oligodendrocyte-specific Nf1 deletion is rescued by inhibition of nitric oxide synthase. Proc Natl Acad Sci U S A 2020; 117:22506-22513. [PMID: 32839340 PMCID: PMC7486714 DOI: 10.1073/pnas.2008391117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study assessed the effects of myelin decompaction on motor behavior and brain-wide structural and functional connectivity, and the effect of nitric oxide synthase inhibition by N-nitro-l-arginine methyl ester (L-NAME) on these imaging measures. We report that inducible oligodendrocyte-specific inactivation of the Nf1 gene, which causes myelin decompaction, results in reduced initial motor coordination. Using diffusion-based magnetic resonance imaging (MRI), we show reduced myelin integrity, and using functional MRI, we show reduced functional connectivity in awake passive mice. L-NAME administration results in rescue of the pathology at the mesoscopic level, as measured using imaging procedures that can be directly applied to humans to study treatment efficacy in clinical trials. Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition.
Collapse
|
24
|
Zambusi A, Pelin Burhan Ö, Di Giaimo R, Schmid B, Ninkovic J. Granulins Regulate Aging Kinetics in the Adult Zebrafish Telencephalon. Cells 2020; 9:E350. [PMID: 32028681 PMCID: PMC7072227 DOI: 10.3390/cells9020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Granulins (GRN) are secreted factors that promote neuronal survival and regulate inflammation in various pathological conditions. However, their roles in physiological conditions in the brain remain poorly understood. To address this knowledge gap, we analysed the telencephalon in Grn-deficient zebrafish and identified morphological and transcriptional changes in microglial cells, indicative of a pro-inflammatory phenotype in the absence of any insult. Unexpectedly, activated mutant microglia shared part of their transcriptional signature with aged human microglia. Furthermore, transcriptome profiles of the entire telencephali isolated from young Grn-deficient animals showed remarkable similarities with the profiles of the telencephali isolated from aged wildtype animals. Additionally, 50% of differentially regulated genes during aging were regulated in the telencephalon of young Grn-deficient animals compared to their wildtype littermates. Importantly, the telencephalon transcriptome in young Grn-deficent animals changed only mildly with aging, further suggesting premature aging of Grn-deficient brain. Indeed, Grn loss led to decreased neurogenesis and oligodendrogenesis, and to shortening of telomeres at young ages, to an extent comparable to that observed during aging. Altogether, our data demonstrate a role of Grn in regulating aging kinetics in the zebrafish telencephalon, thus providing a valuable tool for the development of new therapeutic approaches to treat age-associated pathologies.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| | - Özge Pelin Burhan
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80134 Naples, Italy;
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| |
Collapse
|
25
|
Kim S, Lee M, Choi YK. The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System. Biomol Ther (Seoul) 2020; 28:45-57. [PMID: 31484285 PMCID: PMC6939687 DOI: 10.4062/biomolther.2019.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson’s disease, and Alzheimer’s disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.
Collapse
Affiliation(s)
- Seunghee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minjae Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
26
|
Gripp KW, Schill L, Schoyer L, Stronach B, Bennett AM, Blaser S, Brown A, Burdine R, Burkitt-Wright E, Castel P, Darilek S, Dias A, Dyer T, Ellis M, Erickson G, Gelb BD, Green T, Gross A, Ho A, Holder JL, Inoue SI, Jelin AC, Kennedy A, Klein R, Kontaridis MI, Magoulas P, McConnell DB, McCormick F, Neel BG, Prada CE, Rauen KA, Roberts A, Rodriguez-Viciana P, Rosen N, Rumbaugh G, Sablina A, Solman M, Tartaglia M, Thomas A, Timmer WC, Venkatachalam K, Walsh KS, Wolters PL, Yi JS, Zenker M, Ratner N. The sixth international RASopathies symposium: Precision medicine-From promise to practice. Am J Med Genet A 2019; 182:597-606. [PMID: 31825160 DOI: 10.1002/ajmg.a.61434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS-mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life-limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.
Collapse
Affiliation(s)
- Karen W Gripp
- Al duPont Hospital for Children, Wilmington, Delaware
| | - Lisa Schill
- RASopathies Network USA, Altadena, California
| | | | | | | | - Susan Blaser
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Brown
- Noonan Syndrome Foundation, Farmington, Connecticut
| | | | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Pau Castel
- UCSF, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | - Alwyn Dias
- Bridge Group Consulting, Morristown, New Jersey
| | - Tuesdi Dyer
- CFC International, Saint Petersburg, Florida
| | | | | | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Genetics and Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Alan Ho
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Annie Kennedy
- Parent Project Muscular Dystrophy, Hackensack, New Jersey
| | | | | | | | | | - Frank McCormick
- UCSF, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Benjamin G Neel
- Perlmutter Cancer Center and NYU School of Medicine, NYU Langone Health, New York, New York
| | - Carlos E Prada
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, School of Medicine, Cincinnati, Ohio
| | - Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California
| | - Amy Roberts
- Department of Cardiology, Division of Genetics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Division of Genetics, Boston Children's Hospital, Boston, Massachusetts
| | | | - Neal Rosen
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Anna Sablina
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Maja Solman
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù-IRCCS, Rome, Italy
| | | | | | - Kartik Venkatachalam
- McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Karin S Walsh
- Children's National Hospital & The George Washington School of Medicine, Washington, District of Columbia
| | - Pamela L Wolters
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Jae-Sung Yi
- Yale University School of Medicine, New Haven, Connecticut
| | - Martin Zenker
- University Hospital Magdeburg, Institute of Human Genetics, Magdeburg, Germany
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, School of Medicine, Cincinnati, Ohio
| |
Collapse
|
27
|
Shofty B, Bergmann E, Zur G, Asleh J, Bosak N, Kavushansky A, Castellanos FX, Ben-Sira L, Packer RJ, Vezina GL, Constantini S, Acosta MT, Kahn I. Autism-associated Nf1 deficiency disrupts corticocortical and corticostriatal functional connectivity in human and mouse. Neurobiol Dis 2019; 130:104479. [PMID: 31128207 PMCID: PMC6689441 DOI: 10.1016/j.nbd.2019.104479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022] Open
Abstract
Children with the autosomal dominant single gene disorder, neurofibromatosis type 1 (NF1), display multiple structural and functional changes in the central nervous system, resulting in neuropsychological cognitive abnormalities. Here we assessed the pathological functional organization that may underlie the behavioral impairments in NF1 using resting-state functional connectivity MRI. Coherent spontaneous fluctuations in the fMRI signal across the entire brain were used to interrogate the pattern of functional organization of corticocortical and corticostriatal networks in both NF1 pediatric patients and mice with a heterozygous mutation in the Nf1 gene (Nf1+/-). Children with NF1 demonstrated abnormal organization of cortical association networks and altered posterior-anterior functional connectivity in the default network. Examining the contribution of the striatum revealed that corticostriatal functional connectivity was altered. NF1 children demonstrated reduced functional connectivity between striatum and the frontoparietal network and increased striatal functional connectivity with the limbic network. Awake passive mouse functional connectivity MRI in Nf1+/- mice similarly revealed reduced posterior-anterior connectivity along the cingulate cortex as well as disrupted corticostriatal connectivity. The striatum of Nf1+/- mice showed increased functional connectivity to somatomotor and frontal cortices and decreased functional connectivity to the auditory cortex. Collectively, these results demonstrate similar alterations across species, suggesting that NF1 pathogenesis is linked to striatal dysfunction and disrupted corticocortical connectivity in the default network.
Collapse
Affiliation(s)
- Ben Shofty
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel; The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gil Zur
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jad Asleh
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noam Bosak
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Liat Ben-Sira
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Roger J Packer
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA
| | - Gilbert L Vezina
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC, USA
| | - Shlomi Constantini
- The Gilbert Israeli NF Center, Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Medical Center, and Tel Aviv University, Tel Aviv, Israel
| | - Maria T Acosta
- The Gilbert Family Neurofibromatosis Institute, Children's National Health System, Department of Neurology and Pediatrics, George Washington University, Washington, DC, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine and Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
28
|
Holter MC, Hewitt LT, Koebele SV, Judd JM, Xing L, Bimonte-Nelson HA, Conrad CD, Araki T, Neel BG, Snider WD, Newbern JM. The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PLoS Genet 2019; 15:e1008108. [PMID: 31017896 PMCID: PMC6502435 DOI: 10.1371/journal.pgen.1008108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/06/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
RASopathies are a family of related syndromes caused by mutations in regulators of the RAS/Extracellular Regulated Kinase 1/2 (ERK1/2) signaling cascade that often result in neurological deficits. RASopathy mutations in upstream regulatory components, such as NF1, PTPN11/SHP2, and RAS have been well-characterized, but mutation-specific differences in the pathogenesis of nervous system abnormalities remain poorly understood, especially those involving mutations downstream of RAS. Here, we assessed cellular and behavioral phenotypes in mice expressing a Raf1L613V gain-of-function mutation associated with the RASopathy, Noonan Syndrome. We report that Raf1L613V/wt mutants do not exhibit a significantly altered number of excitatory or inhibitory neurons in the cortex. However, we observed a significant increase in the number of specific glial subtypes in the forebrain. The density of GFAP+ astrocytes was significantly increased in the adult Raf1L613V/wt cortex and hippocampus relative to controls. OLIG2+ oligodendrocyte progenitor cells were also increased in number in mutant cortices, but we detected no significant change in myelination. Behavioral analyses revealed no significant changes in voluntary locomotor activity, anxiety-like behavior, or sociability. Surprisingly, Raf1L613V/wt mice performed better than controls in select aspects of the water radial-arm maze, Morris water maze, and cued fear conditioning tasks. Overall, these data show that increased astrocyte and oligodendrocyte progenitor cell (OPC) density in the cortex coincides with enhanced cognition in Raf1L613V/wt mutants and further highlight the distinct effects of RASopathy mutations on nervous system development and function. The RASopathies are a large and complex family of syndromes caused by mutations in the RAS/MAPK signaling cascade with no known cure. Individuals with these syndromes often present with heart defects, craniofacial differences, and neurological abnormalities, such as developmental delay, cognitive changes, epilepsy, and an increased risk of autism. However, there is wide variation in the extent of intellectual ability between individuals. It is currently unclear how different RASopathy mutations affect brain development. Here, we describe the cellular and behavioral consequences of a mutation in a gene called Raf1 that is associated with a common RASopathy, Noonan Syndrome. We find that mice harboring a mutation in Raf1 show moderate increases in the number of two subsets of glial cells, which is also observed in a number of other RASopathy brain samples. Surprisingly, we found that Raf1 mutant mice show improved performance in several learning and memory tasks. Our work highlights potential mutation-specific changes in RASopathy brain function and helps set the framework for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michael C. Holter
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lauren. T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Jessica M. Judd
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Lei Xing
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
- Arizona Alzheimer’s Consortium, Phoenix, Arizona, United States of America
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, United States of America
| | - William D. Snider
- Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
29
|
Suo N, Guo YE, He B, Gu H, Xie X. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia 2019; 67:1320-1332. [PMID: 30815939 PMCID: PMC6593996 DOI: 10.1002/glia.23606] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
Oligodendrocytes (OLs) are the myelinating glia of the central nervous system. Injury to OLs causes myelin loss. In demyelinating diseases, such as multiple sclerosis, the remyelination is hindered principally due to a failure of the oligodendrocyte precursor cells (OPCs) to differentiate into mature OLs. To identify inducers of OPC to OL differentiation, a high‐throughput screening based on myelin basic protein expression using neural progenitor cells‐derived OPCs has been performed and, PD0325901—an MEK (MAPK kinase) inhibitor—is found to significantly enhance OPC to OL differentiation in a dose‐ and time‐dependent manner. Other MEK inhibitors also display similar effect, indicating blockade of MAPK–ERK signaling is sufficient to induce OPC differentiation into OLs. PD0325901 facilitates the formation of myelin sheaths in OPC–neuron co‐culture in vitro. And in experimental autoimmune encephalomyelitis model and cuprizone‐induced demyelination model, PD0325901 displays significant therapeutic effect by promoting myelin regeneration. Our results suggest that targeting the MAPK–ERK pathway might be an intriguing way to develop new therapies for demyelinating diseases.
Collapse
Affiliation(s)
- Na Suo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Graduate School, Beijing, China
| | - Yu-E Guo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Graduate School, Beijing, China
| | - Bingqing He
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Graduate School, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haifeng Gu
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Isakson SH, Rizzardi AE, Coutts AW, Carlson DF, Kirstein MN, Fisher J, Vitte J, Williams KB, Pluhar GE, Dahiya S, Widemann BC, Dombi E, Rizvi T, Ratner N, Messiaen L, Stemmer-Rachamimov AO, Fahrenkrug SC, Gutmann DH, Giovannini M, Moertel CL, Largaespada DA, Watson AL. Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1. Commun Biol 2018; 1:158. [PMID: 30302402 PMCID: PMC6168575 DOI: 10.1038/s42003-018-0163-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies.
Collapse
Affiliation(s)
- Sara H Isakson
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Anthony E Rizzardi
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Alexander W Coutts
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Daniel F Carlson
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - Mark N Kirstein
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - James Fisher
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Room 459, 717 Delaware Street SE, Minneapolis, MN, 55414, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, 675 Charles E Young Drive S, MRL Room 2240, Los Angeles, CA, 90095, USA
| | - Kyle B Williams
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - G Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, 660S. Euclid Avenue, CB 8118, St. Louis, MO, 63110, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC 1-5750, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, CRC 1-5750, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tilat Rizvi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, 3333 Burnet Avenue, ML 7013, Cincinnati, OH, 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, 3333 Burnet Avenue, ML 7013, Cincinnati, OH, 45229, USA
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Kaul Building, 720 20th Street South, Birmingham, AL, 35294, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Warren Building, Room 333A, 55 Fruit Street, Boston, MA, 02114, USA
| | - Scott C Fahrenkrug
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, 675 Charles E Young Drive S, MRL Room 2240, Los Angeles, CA, 90095, USA
| | - Christopher L Moertel
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Room 3-129, Cancer Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Adrienne L Watson
- Recombinetics Inc., 1246 University Avenue W., Suite 301, St. Paul, MN, 55104, USA.
| |
Collapse
|
31
|
Liu J, Gallo RM, Khan MA, Renukaradhya GJ, Brutkiewicz RR. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma. Front Immunol 2018; 8:1901. [PMID: 29354122 PMCID: PMC5760513 DOI: 10.3389/fimmu.2017.01901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromin 1 (NF1) is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT) cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair) host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT) littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,College of Applied Medical Sciences, Al-Qassim University, Buraidah, Saudi Arabia
| | - Gourapura J Renukaradhya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center (OARDC), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
32
|
Titus HE, López-Juárez A, Silbak SH, Rizvi TA, Bogard M, Ratner N. Oligodendrocyte RasG12V expressed in its endogenous locus disrupts myelin structure through increased MAPK, nitric oxide, and notch signaling. Glia 2017; 65:1990-2002. [PMID: 28856719 DOI: 10.1002/glia.23209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023]
Abstract
Costello syndrome (CS) is a gain of function Rasopathy caused by heterozygous activating mutations in the HRAS gene. Patients show brain dysfunction that can include abnormal brain white matter. Transgenic activation of HRas in the entire mouse oligodendrocyte lineage resulted in myelin defects and behavioral abnormalities, suggesting roles for disrupted myelin in CS brain dysfunction. Here, we studied a mouse model in which the endogenous HRas gene is conditionally replaced by mutant HRasG12V in mature oligodendrocytes, to separate effects in mature myelinating cells from developmental events. Increased myelin thickness due to decompaction was detectable within one month of HRasG12V expression in the corpus callosum of adult mice. Increases in active ERK and Nitric Oxide (NO) were present in HRas mutants and inhibition of NO synthase (NOS) or MEK each partially rescued myelin decompaction. In addition, genetic or pharmacologic inhibition of Notch signaling improved myelin compaction. Complete rescue of myelin structure required dual drug treatments combining MAPK, NO, or Notch inhibition; with MEK + NOS blockade producing the most robust effect. We suggest that individual or concomitant blockade of these pathways in CS patients may improve aspects of brain function.
Collapse
Affiliation(s)
- Haley E Titus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Sadiq H Silbak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Madeleine Bogard
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| |
Collapse
|