1
|
Zabeti Touchaei A, Vahidi S. Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: implications for immune dysfunction and therapeutic approaches. J Transl Med 2024; 22:1131. [PMID: 39707465 DOI: 10.1186/s12967-024-05963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
MicroRNAs (miRNAs) emerge as critical regulators of CD8 + T cell function within the complex tumor microenvironment (TME). This review explores the multifaceted interplay between miRNAs and CD8 + T cells across various cancers. We discuss how specific miRNAs influence CD8 + T cell activation, recruitment, infiltration, and effector function. Dysregulation of these miRNAs can contribute to CD8 + T cell exhaustion and immune evasion, hindering anti-tumor immunity. Conversely, manipulating miRNA expression holds promise for enhancing CD8 + T cell activity and improving cancer immunotherapy outcomes. We delve into the role of miRNAs in CD8 + T-cell function across different cancer types, including gliomas, gastric and colon cancer, oral squamous cell carcinoma, thyroid carcinoma, lymphomas, melanoma, breast cancer, renal cell carcinoma, ovarian cancer, uterine corpus endometrial cancer, bladder cancer, acute myeloid leukemia, chronic myelogenous leukemia, and osteosarcoma. Additionally, we explore how extracellular vesicles and cytokines modulate CD8 + T-cell function through complex interactions with miRNAs. Finally, we discuss the potential impact of radiotherapy and specific drugs on miRNA expression and CD8 + T-cell activity within the TME. This review highlights the immense potential of targeting miRNAs to manipulate CD8 + T-cell activity for the development of novel and improved cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Han J, Huang J, Hu J, Shi W, Wang H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-744-5p promotes T-cell differentiation via inhibiting STK11. Gene 2024; 926:148635. [PMID: 38830518 DOI: 10.1016/j.gene.2024.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
T cells utilized in adoptive T cell immunotherapy are typically activated in vitro. Although these cells demonstrate proliferation and anti-tumor activity following activation, they often face difficulties in sustaining long-term survival post-reinfusion. This issue is attributed to the induction of T cells into a terminal differentiation state upon activation, whereas early-stage differentiated T cells exhibit enhanced proliferation potential and survival capabilities. In previous study, we delineated four T cell subsets at varying stages of differentiation: TN, TSCM, TCM, and TEM, and acquired their miRNA expression profiles via high-throughput sequencing. In the current study, we performed a differential analysis of miRNA across these subsets, identifying a distinct miRNA, hsa-miR-744-5p, characterized by progressively increasing expression levels upon T cell activation. This miRNA is not expressed in TSCM but is notably present in TEM. Target genes of miR-744-5p were predicted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, revealing that these genes predominantly associate with pathways related to the 'Wnt signaling pathway'. We established that miR-744-5p directly targets STK11, influencing its expression. Further, we investigated the implications of miR-744-5p on T cell differentiation and functionality. Overexpression of miR-744-5p in T cells resulted in heightened apoptosis, reduced proliferation, an increased proportion of late-stage differentiated T cells, and elevated secretion of the cytokine TNF-α. Moreover, post-overexpression of miR-744-5p led to a marked decline in the expression of early-stage differentiation-associated genes in T cells (CCR7, CD62L, LEF1, BCL2) and a significant rise in late-stage differentiation-associated genes (KLRG1, PDCD1, GZMB). In conclusion, our findings affirm that miR-744-5p contributes to the progressive differentiation of T cells by downregulating the STK11 gene expression.
Collapse
Affiliation(s)
- Jiayi Han
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieming Hu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenkai Shi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongqiong Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
4
|
Huang H, Ge J, Fang Z, Wu S, Jiang H, Lang Y, Chen J, Xiao W, Xu B, Liu Y, Chen L, Zheng X, Jiang J. Precursor exhausted CD8 +T cells in colorectal cancer tissues associated with patient's survival and immunotherapy responsiveness. Front Immunol 2024; 15:1362140. [PMID: 38510246 PMCID: PMC10950923 DOI: 10.3389/fimmu.2024.1362140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Exhausted CD8+T cells represent a distinct cellular lineage that emerges during both chronic infections and cancers. Recent studies have shown that persistent antigen exposure can drive the differentiation of precursor exhausted CD8+T cells, termed Tpex cells, which are characterized as TCF-1+PD-1+CD8+T cells. Elevated Tpex cell frequencies in the tumor microenvironment (TME) are associated with improved overall survival (OS) in cancer patients and heightened responsiveness to anti-PD-1 therapy. In our present study, we utilized multi-color immunohistochemistry (mIHC) to determine the localization and clinical implications of tumor-infiltrating Tpex cells within the TME of human colorectal cancer (CRC) tissues. We also conducted a multi-omics integrative analysis using single-cell RNA sequencing (scRNA-seq) data derived from both the murine MC38 tumor model and human CRC tissues. This analysis helped delineate the transcriptional and functional attributes of Tpex cells within the CRC TME. Furthermore, we employed spatial transcriptome sequencing data from CRC patients to investigate the interactions between Tpex cells and other immune cell subsets within the TME. In conclusion, our study not only established a method for Tpex cell detection using mIHC technology but also confirmed that assessing Tpex cells within the CRC TME could be indicative of patients' survival. We further uncovered the transcriptional and functional characteristics of Tpex cells in the TME and ascertained their pivotal role in the efficacy of immunotherapy against CRC.
Collapse
Affiliation(s)
- Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Yanyan Lang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Wenlu Xiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Jiangsu, Changzhou, China
| |
Collapse
|
5
|
Madaan P, Sharma U, Tyagi N, Brar BK, Bansal S, Kushwaha HR, Kapoor HS, Jain A, Jain M. A panel of blood-based circulatory miRNAs with diagnostic potential in patients with psoriasis. Front Med (Lausanne) 2023; 10:1207993. [PMID: 37700769 PMCID: PMC10493330 DOI: 10.3389/fmed.2023.1207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with keratinocyte hyperproliferation and T cells as key mediators of lesional and systemic inflammatory changes. To date, no suitable differential biomarkers are available for the disease diagnosis. More recently, microRNAs have been identified as critical regulators of lesional and systemic immune changes in psoriasis with diagnostic potential. We have performed expression profiling of T cell-specific miRNAs in 38 plasma samples from psoriasis vulgaris patients and an equal number of age- and gender-matched healthy subjects. Our findings have identified a panel of five blood-based circulatory miRNAs with a significant change in their expression levels, comprising miR-215, miR-148a, miR-125b-5p, miR-223, and miR-142-3p, which can differentiate psoriasis vulgaris patients from healthy individuals. The receiver operating characteristic (ROC) curves for all five miRNAs individually and in combination exhibited a significant disease discriminatory area under the curve with an AUC of 0.762 and a p < 0.0001 for all the miRNAs together. Statistically, all five miRNAs in combination depicted the best-fit model in relation to disease severity (PASI) compared with individual miRNAs, with the highest R2 value of 0.94 and the lowest AIC score of 131.8. Each of the miRNAs also exhibited a significant association with at least one of the other miRNAs in the panel. Importantly, the five miRNAs in the panel regulate one or more immune-inflammation pathways based on target prediction, pathway network analysis, and validated roles in the literature. The miRNA panel provides a rationalized combination of biomarkers that can be tested further on an expanded cohort of patients for their diagnostic value.
Collapse
Affiliation(s)
- Priyanka Madaan
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Balvinder Kaur Brar
- Department of Skin and VD, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, India
| | - Shivani Bansal
- Department of Dermatology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | | | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Alvanou M, Lysandrou M, Christophi P, Psatha N, Spyridonidis A, Papadopoulou A, Yannaki E. Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers (Basel) 2023; 15:1935. [PMID: 37046597 PMCID: PMC10093039 DOI: 10.3390/cancers15071935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.
Collapse
Affiliation(s)
- Maria Alvanou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Memnon Lysandrou
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Panayota Christophi
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 570 10 Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 98195-2100, USA
| |
Collapse
|
7
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Schaible P, Bethge W, Lengerke C, Haraszti RA. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Res 2023; 83:354-362. [PMID: 36512627 PMCID: PMC7614194 DOI: 10.1158/0008-5472.can-22-2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have recently emerged as potent tools in the fight against cancer, with promising therapeutic efficacy against hematological malignancies. However, several limitations hamper their widespread clinical use, including availability of target antigen, severe toxic effects, primary and secondary resistance, heterogeneous quality of autologous T cells, variable persistence, and low activity against solid tumors. Development of allogeneic off-the-shelf CAR T cells could help address some of these limitations but is impeded by alloimmunity with either rejection and limited expansion of allo-CAR T cells or CAR T cells versus host reactions. RNA therapeutics, such as small interfering RNAs, microRNAs, and antisense oligonucleotides, are able to silence transcripts in a sequence-specific and proliferation-sensitive way, which may offer a way to overcome some of the challenges facing CAR T-cell development and clinical utility. Here, we review how different RNA therapeutics or a combination of RNA therapeutics and genetic engineering could be harnessed to improve the safety and efficacy of autologous and allogeneic CAR T-cell therapy.
Collapse
Affiliation(s)
- Philipp Schaible
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Ménoret A, Agliano F, Karginov TA, Karlinsey KS, Zhou B, Vella AT. Antigen-specific downregulation of miR-150 in CD4 T cells promotes cell survival. Front Immunol 2023; 14:1102403. [PMID: 36817480 PMCID: PMC9936563 DOI: 10.3389/fimmu.2023.1102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
MicroRNA-150 (miR-150) has been shown to play a general role in the immune system, but very little is known about its role on CD4+ T cell responses. During T cell responses against superantigen Staphylococcal Enterotoxin A, miR-150 expression was down-regulated in antigen-specific CD4+ T cells but up-regulated in CD8+ T cells. CD4+ and CD8+ T cell clonal expansion was greater in miR-150-KO mice than in WT mice, but miR-150 selectively repressed IL-2 production in CD4+ T cells. Transcriptome analysis of CD4+ T cells demonstrated that apoptosis and mTOR pathways were highly enriched in the absence of miR-150. Mechanistic studies confirmed that miR-150 promoted apoptosis specifically in antigen-specific CD4+ T cells, but not in bystander CD4+ nor in CD8+ T cells. Furthermore, inhibition of mTOR-linked mitochondrial superoxidedismutase-2 increased apoptosis in miR-150-/- antigen-specific CD4+ T. Thus, miR-150 impacts CD4+ T cell helper activity by attenuating IL-2 production along with clonal expansion, and suppresses superoxidedismutase to promote apoptosis.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, Farmington, CT, United States
| | | | | | | | | | - Anthony T. Vella
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
10
|
Akbari B, Hosseini Z, Shahabinejad P, Ghassemi S, Mirzaei HR, O'Connor RS. Metabolic and epigenetic orchestration of (CAR) T cell fate and function. Cancer Lett 2022; 550:215948. [DOI: 10.1016/j.canlet.2022.215948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
11
|
Zhang Y, Liu WS, Zhang XY, Tong HX, Yang H, Liu WF, Fan J, Zhou J, Hu J. Low expression of exosomal miR-150 predicts poor prognosis in colorectal cancer patients after surgical resections. Carcinogenesis 2022; 43:930-940. [PMID: 35767307 DOI: 10.1093/carcin/bgac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023] Open
Abstract
Liver metastasis is a leading indicator of poor prognosis in patients with colorectal cancer (CRC). Exosomal intercellular communication has been reported to play an important role in cancer invasion and metastasis. Here, we characterized exosomal miRNAs underlying liver metastasis in CRC patients (Cohort 1, n = 30) using miRNA arrays. Exosomal miR-150 was found to be downregulated in CRC patients with liver metastases compared to those without (P = 0.025, fold change [FC] = 2.01). These results were then validated using another independent cohort of CRC patients (Cohort 2, n = 64). Patients with low expression of exosomal miR-150 had significantly shorter overall survival (OS) time (33.3 months versus 43.3 months, P = 0.002). In addition, the low expression of exosomal miR-150 was significantly correlated with advanced tumor node metastasis staging (P = 0.013), higher CA199 level (P = 0.018), and the presence of liver metastasis (P = 0.048). Multivariate analysis showed that low expression of exosomal miR-150 (P = 0.035) and liver metastasis (P < 0.001) were independent prognostic factors for overall survival. In vivo and in vitro studies showed that the viability and invasion of CRC cells were both significantly suppressed by ExomiR-150. Target-prediction assessment and dual-luciferase reporter assay indicated that FTO (the fat mass and obesity-associated gene) was a direct target for miR-150. This study first demonstrated that exosomal miR-150 may be a potential prognostic factor and treatment target for CRC.
Collapse
Affiliation(s)
- Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Shuai Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiang-Yu Zhang
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Han-Xing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Yang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei-Feng Liu
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Hu
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
12
|
Xia S, Huang J, Yan L, Han J, Zhang W, Shao H, Shen H, Wang J, Wang J, Tao C, Wang D, Wu F. miR-150 promotes progressive T cell differentiation via inhibiting FOXP1 and RC3H1. Hum Immunol 2022; 83:778-788. [PMID: 35999072 DOI: 10.1016/j.humimm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
T cells used in immune cell therapy, represented by T cell receptor therapy (TCR-T), are usually activated and proliferated in vitro and are induced to a terminally differentiated phenotype, with limited viability after transfusion back into the body. T cells exhibited a robust proliferative potential and in vivo viability in the early stages of progressive differentiation. In this study, we identified microRNAs that regulate T cell differentiation. After microRNA sequencing of the four subsets: Naïve T cells (TN), stem cell-like memory T cells (TSCM), central memory T cells (TCM), and effector memory T cells (TEM), miR-150 was identified as the most highly expressed miRNA among the four subsets and was lowly expressed in the TSCM cells. We predicted the target genes of miR-150 miRNA and performed Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses. We observed that the target genes of miR-150 were enriched in pathways associated with T-cell differentiation. FOXP1 and RC3H1 were identified as key target genes of miR-150 in the regulation of T-cell function. We examined the effects of miR-150 on the differentiation and function of healthy donor T-cells. We observed that miR-150 overexpression promoted T-cell differentiation to effector T-cells and effector memory T-cells, enhanced apoptosis, inhibited cell proliferation and increased secretion of pro-inflammatory cytokines such as IFN-γ and TNF-α. In addition, the expressions of early differentiation-related genes (ACTN1, CERS6, BCL2, and EOMES), advanced differentiation-related genes (KLRG1), and effector-function-related genes (PRF1 and GZMB) were significantly decreased after overexpression of miR-150. Collectively, our results suggested that miR-150 can promote progressive differentiation of T cells and the downmodulation of miR-150 expression while performing adoptive immunotherapy may inhibit T-cell differentiation and increase the proliferative potential of T cells.
Collapse
Affiliation(s)
- Shengfang Xia
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijun Yan
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayi Han
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dingding Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Tsui C, Kretschmer L, Rapelius S, Gabriel SS, Chisanga D, Knöpper K, Utzschneider DT, Nüssing S, Liao Y, Mason T, Torres SV, Wilcox SA, Kanev K, Jarosch S, Leube J, Nutt SL, Zehn D, Parish IA, Kastenmüller W, Shi W, Buchholz VR, Kallies A. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 2022; 609:354-360. [PMID: 35978192 PMCID: PMC9452299 DOI: 10.1038/s41586-022-05105-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality—which is referred to as T cell exhaustion1,2—is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1− exhausted effector T cells3–6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity. CD62L+ precursors of exhausted T cells retain long-term proliferative potential, multipotency and repopulation capacity, and the transcription factor MYB is essential for the development and function of this population of cells.
Collapse
Affiliation(s)
- Carlson Tsui
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Svenja Rapelius
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sarah S Gabriel
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Teisha Mason
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen A Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Krystian Kanev
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Justin Leube
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Han Y, Zhou Y. Comprehensive Identification of Human Cell Type Chromatin Activity-Specific and Cell Type Expression-Specific MicroRNAs. Int J Mol Sci 2022; 23:ijms23137324. [PMID: 35806329 PMCID: PMC9266980 DOI: 10.3390/ijms23137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression landscape of a cell. Information about miRNA expression and distribution across cell types is crucial for the understanding of miRNAs’ functions and their translational applications as biomarkers or therapeutic targets. In this study, we identify cell-type-specific miRNAs by combining multiple correspondence analysis and Gini coefficients to dissect miRNAs’ expression profiles and chromatin activity score profiles, which results in collections of chromatin activity-specific miRNAs in 91 cell types and expression-specific miRNAs in 124 cell types. Moreover, we find that cell-type-specific miRNAs are closely associated with disease miRNAs, such as T-cell-specific miRNAs, which are closely associated with cancer prognosis. Finally, we constructed mirCellType, an online tool based on cell-type-specific miRNA signatures, to dissect the cell type composition of complex samples with miRNA expression profiles.
Collapse
|
15
|
Stelekati E, Cai Z, Manne S, Chen Z, Beltra JC, Buchness LA, Leng X, Ristin S, Nzingha K, Ekshyyan V, Niavi C, Abdel-Hakeem MS, Ali MA, Drury S, Lau CW, Gao Z, Ban Y, Zhou SK, Ansel KM, Kurachi M, Jordan MS, Villarino AV, Ngiow SF, Wherry EJ. MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proc Natl Acad Sci U S A 2022; 119:e2106083119. [PMID: 35446623 PMCID: PMC9169946 DOI: 10.1073/pnas.2106083119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
CD8 T cells mediate protection against intracellular pathogens and tumors. However, persistent antigen during chronic infections or cancer leads to T cell exhaustion, suboptimal functionality, and reduced protective capacity. Despite considerable work interrogating the transcriptional regulation of exhausted CD8 T cells (TEX), the posttranscriptional control of TEX remains poorly understood. Here, we interrogated the role of microRNAs (miRs) in CD8 T cells responding to acutely resolved or chronic viral infection and identified miR-29a as a key regulator of TEX. Enforced expression of miR-29a improved CD8 T cell responses during chronic viral infection and antagonized exhaustion. miR-29a inhibited exhaustion-driving transcriptional pathways, including inflammatory and T cell receptor signaling, and regulated ribosomal biogenesis. As a result, miR-29a fostered a memory-like CD8 T cell differentiation state during chronic infection. Thus, we identify miR-29a as a key regulator of TEX and define mechanisms by which miR-29a can divert exhaustion toward a more beneficial memory-like CD8 T cell differentiation state.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lance Alec Buchness
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Svetlana Ristin
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Viktoriya Ekshyyan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christina Niavi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohamed S. Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohammed-Alkhatim Ali
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sydney Drury
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chi Wai Lau
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Zhen Gao
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Surgical Oncology, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, CA 94143
- Department of Microbiology & Immunology, University of California, San Francisco, CA 94143
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martha S. Jordan
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Expression characteristics and interaction networks of microRNAs in spleen tissues of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266189. [PMID: 35344574 PMCID: PMC8959171 DOI: 10.1371/journal.pone.0266189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The spleen is an important immune organ in fish. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of immune function. However, miRNA expression profiles and their interaction networks associated with the postnatal late development of spleen tissue are still poorly understood in fish. The grass carp (Ctenopharyngodon idella) is an important economic aquaculture species in China. Here, two small RNA libraries were constructed from the spleen tissue of healthy grass carp at one-year-old and three-year-old. A total of 324 known conserved miRNAs and 9 novel miRNAs were identified by using bioinformatic analysis. Family analysis showed that 23 families such as let-7, mir-1, mir-10, mir-124, mir-8, mir-7, mir-9, and mir-153 were highly conserved between vertebrates and invertebrates. In addition, 14 families such as mir-459, mir-430, mir-462, mir-7147, mir-2187, and mir-722 were present only in fish. Expression analysis showed that the expression patterns of miRNAs in the spleen of one-year-old and three-year-old grass carp were highly consistent, and the percentage of miRNAs with TPM > 100 was above 39%. Twenty significant differentially expressed (SDE) miRNAs were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these SDE miRNAs were primarily involved in erythrocyte differentiation, lymphoid organ development, immune response, lipid metabolic process, the B cell receptor signaling pathway, the T cell receptor signaling pathway, and the PPAR signaling pathway. In addition, the following miRNA-mRNA interaction networks were constructed: immune and hematopoietic, cell proliferation and differentiation, and lipid metabolism. This study determined the miRNA transcriptome as well as miRNA-mRNA interaction networks in normal spleen tissue during the late development stages of grass carp. The results expand the number of known miRNAs in grass carp and are a valuable resource for better understanding the molecular biology of the spleen development in grass carp.
Collapse
|
17
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
18
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
19
|
Chirichella M, Bianchi N, Džafo E, Foli E, Gualdrini F, Kenyon A, Natoli G, Monticelli S. RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biol 2022; 20:e3001538. [PMID: 35143476 PMCID: PMC8865640 DOI: 10.1371/journal.pbio.3001538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/23/2022] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9–mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes. MicroRNAs exert key regulatory functions in the immune system, but their targets are largely unknown. This study shows that the ability of primary human T lymphocytes to proliferate in response to T cell receptor activation is modulated by a network comprising miR-150, transcription factors of the RFX family, and the RNA-binding protein PDAP1.
Collapse
Affiliation(s)
- Michele Chirichella
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elena Foli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Francesco Gualdrini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amy Kenyon
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
20
|
Abstract
Immunological memory and exhaustion are fundamental features of adaptive immunity. Recent advances reveal increasing heterogeneity and diversity among CD8 T-cell subsets, resulting in new subsets to annotate and understand. Here, we review our current knowledge of differentiation and maintenance of memory and exhausted CD8 T cells, including phenotypic classification, developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors. Additionally, we use this outline to discuss the nomenclature of effector, memory, and exhausted CD8 T cells. Finally, we discuss how new findings about these cell types may impact the therapeutic efficacy and development of immunotherapies targeting effector, memory, and/or exhausted CD8 T cells in chronic infections and cancer.
Collapse
Affiliation(s)
- Yuki Muroyama
- Institute for Immunology
- Department of Systems Pharmacology and Translational Therapeutics
| | - E John Wherry
- Institute for Immunology
- Department of Systems Pharmacology and Translational Therapeutics
- Abramson Cancer Center
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Cho S, Dong J, Lu LF. Cell-intrinsic and -extrinsic roles of miRNAs in regulating T cell immunity. Immunol Rev 2021; 304:126-140. [PMID: 34549446 DOI: 10.1111/imr.13029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022]
Abstract
T cells are crucial to generate an effective response against numerous invading microbial pathogens and play a pivotal role in tumor surveillance and elimination. However, unwanted T cell activation can also lead to deleterious immune-mediated inflammation and tissue damage. To ensure that an optimal T cell response can be established, each step, beginning from T cell development in the thymus to their activation and function in the periphery, is tightly regulated by many transcription factors and epigenetic regulators including microRNAs (miRNAs). Here, we first summarize recent progress in identifying major immune regulatory miRNAs in controlling the differentiation and function of distinct T cell subsets. Moreover, as emerging evidence has demonstrated that miRNAs can impact T cell immunity through targeting both immune- and non-immune cell populations that T cells closely interact with, the T cell-extrinsic role of miRNAs in regulating different aspects of T cell biology is also addressed. Finally, we discuss the complex nature of miRNA-mediated control of T cell immunity and highlight important questions that remain to be further investigated.
Collapse
Affiliation(s)
- Sunglim Cho
- Division of Biological Sciences, University of California, La Jolla, California, USA
| | - Jiayi Dong
- Division of Biological Sciences, University of California, La Jolla, California, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, California, USA.,Moores Cancer Center, University of California, La Jolla, California, USA.,Center for Microbiome Innovation, University of California, La Jolla, California, USA
| |
Collapse
|
22
|
Wang Y, Qiu F, Xu Y, Hou X, Zhang Z, Huang L, Wang H, Xing H, Wu S. Stem cell-like memory T cells: The generation and application. J Leukoc Biol 2021; 110:1209-1223. [PMID: 34402104 DOI: 10.1002/jlb.5mr0321-145r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-like memory T cells (Tscm), are a newly defined memory T cell subset with characteristics of long life span, consistent self-renewing, rapid differentiation into effector T cells, and apoptosis resistance. These features indicate that Tscm have great therapeutic or preventive purposes, including being applied in chimeric Ag receptor-engineered T cells, TCR gene-modified T cells, and vaccines. However, the little knowledge about Tscm development restrains their applications. Strength and duration of TCR signaling, cytokines and metabolism in the T cells during activation all influence the Tscm development via regulating transcriptional factors and cell signaling pathways. Here, we summarize the molecular and cellular pathways involving Tscm differentiation, and its clinical application for cancer immunotherapy and prevention.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yifan Xu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhili Zhang
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huijun Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
24
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
25
|
Dutka M, Bobiński R, Ulman-Włodarz I, Hajduga M, Bujok J, Pająk C, Ćwiertnia M. Various aspects of inflammation in heart failure. Heart Fail Rev 2021; 25:537-548. [PMID: 31705352 PMCID: PMC7181445 DOI: 10.1007/s10741-019-09875-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the prevention and treatment of heart failure (HF), the prognosis in patients who have been hospitalised on at least one occasion due to exacerbation of HF is still poor. Therefore, a better understanding of the underlying pathophysiological mechanisms of HF is crucial in order to achieve better results in the treatment of this clinical syndrome. One of the areas that, for years, has aroused the interest of researchers is the activation of the immune system and the elevated levels of biomarkers of inflammation in patients with both ischaemic and non-ischaemic HF. Additionally, it is intriguing that the level of circulating pro-inflammatory biomarkers correlates with the severity of the disease and prognosis in this group of patients. Unfortunately, clinical trials aimed at assessing interventions to modulate the inflammatory response in HF have been disappointing, and the modulation of the inflammatory response has had either no effect or even a negative effect on the HF prognosis. The article presents a summary of current knowledge on the role of immune system activation and inflammation in the pathogenesis of HF. Understanding the immunological mechanisms pathogenetically associated with left ventricular remodelling and progression of HF may open up new therapeutic possibilities for HF.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland.
| | - Rafał Bobiński
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Izabela Ulman-Włodarz
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Maciej Hajduga
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Jan Bujok
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Celina Pająk
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Michał Ćwiertnia
- Faculty of Health Sciences, Department of Emergency Medicine, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| |
Collapse
|
26
|
Chen Z, Arai E, Khan O, Zhang Z, Ngiow SF, He Y, Huang H, Manne S, Cao Z, Baxter AE, Cai Z, Freilich E, Ali MA, Giles JR, Wu JE, Greenplate AR, Hakeem MA, Chen Q, Kurachi M, Nzingha K, Ekshyyan V, Mathew D, Wen Z, Speck NA, Battle A, Berger SL, Wherry EJ, Shi J. In vivo CD8 + T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 2021; 184:1262-1280.e22. [PMID: 33636129 PMCID: PMC8054351 DOI: 10.1016/j.cell.2021.02.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/26/2020] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
Improving effector activity of antigen-specific T cells is a major goal in cancer immunotherapy. Despite the identification of several effector T cell (TEFF)-driving transcription factors (TFs), the transcriptional coordination of TEFF biology remains poorly understood. We developed an in vivo T cell CRISPR screening platform and identified a key mechanism restraining TEFF biology through the ETS family TF, Fli1. Genetic deletion of Fli1 enhanced TEFF responses without compromising memory or exhaustion precursors. Fli1 restrained TEFF lineage differentiation by binding to cis-regulatory elements of effector-associated genes. Loss of Fli1 increased chromatin accessibility at ETS:RUNX motifs, allowing more efficient Runx3-driven TEFF biology. CD8+ T cells lacking Fli1 provided substantially better protection against multiple infections and tumors. These data indicate that Fli1 safeguards the developing CD8+ T cell transcriptional landscape from excessive ETS:RUNX-driven TEFF cell differentiation. Moreover, genetic deletion of Fli1 improves TEFF differentiation and protective immunity in infections and cancer.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Eri Arai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhen Zhang
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan He
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammed A Ali
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed A Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viktoriya Ekshyyan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuoyu Wen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Shelley L Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| | - Junwei Shi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|
28
|
Overexpression of aberrant Wnt5a and its effect on acquisition of malignant phenotypes in adult T-cell leukemia/lymphoma (ATL) cells. Sci Rep 2021; 11:4114. [PMID: 33603066 PMCID: PMC7892546 DOI: 10.1038/s41598-021-83613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is a ligand of the non-canonical Wnt signaling pathway involved in cell differentiation, motility, and inflammatory response. Adult T-cell leukemia/lymphoma (ATL) is one of the most aggressive T-cell malignancies caused by infection of human T-cell leukemia virus type1 (HTLV-1). Among subtypes of ATL, acute-type ATL cells are particularly resistant to current multidrug chemotherapies and show remarkably high cell-proliferative and invasive phenotypes. Here we show a dramatic increase of WNT5A gene expression in acute-type ATL cells compared with those of indolent-type ATL cells. Treatment with IWP-2 or Wnt5a-specific knockdown significantly suppressed cell growth of ATL-derived T-cell lines. We demonstrated that the overexpression of c-Myb and FoxM1 was responsible for the synergistic activation of the WNT5A promoter. Also, a WNT5A transcript variant without the exon4 (the ΔE4-WNT5A mRNA), encoding ΔC-Wnt5 (1-136aa of 380aa), is overexpressed in acute-type ATL cells. The ΔC-Wnt5a is secreted extracellularly and enhances cellular migration/invasion to a greater extent compared with wildtype (WT)-Wnt5a. Moreover, the ΔC-Wnt5a secretion was not suppressed by IWP-2, indicating that this mutant Wnt5a is secreted via a different pathway from the WT-Wnt5a. Taken together, synergistic overexpression of the ΔC-Wnt5a by c-Myb and FoxM1 may be responsible for the malignant phenotype of acute-type ATL cells.
Collapse
|
29
|
MiR-150-5p regulate T cell activation in severe aplastic anemia by targeting Bach2. Cell Tissue Res 2021; 384:423-434. [PMID: 33447883 DOI: 10.1007/s00441-020-03373-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
MiR-150-5p is an immune-related miRNA and elevated in the plasma of patients with aplastic anemia (AA), but its role in T cell activation in patients with severe aplastic anemia (SAA) is unclear. This study aims to explore the role of miR-150-5p in T cell activation of SAA. RT-PCR and Western blot were used to detect the expression of mRNA and protein. The cell proportion was detected by flow cytometry. The lentiviruses expressing miR-150-5p inhibitor and Bach2 shRNA were respectively infected to produce stable miR-150-5p or Bach2 knockout cells. Brdu incorporation method was used to detect T cell proliferation. SAA mouse model was induced with cyclophosphamide and busulfan, and intravenous injection of LV inhibitor NC and LV-miR-150-5p inhibitor. The miR-150-5p expression is up-regulated in SAA, which is negatively correlated with Bach2. Inhibition of miR-150-5p reduces the activation of T cells. MiR-150-5p directly targeted 3'UTR of Bach2. Moreover, the expression of miR-150-5p and the activation of T cells were decreased in SAA mouse model. MiR-150-5p promotes T cell activation in SAA by targeting Bach2. Targeting miR-150-5p may be a new molecular therapy for SAA patients.
Collapse
|
30
|
Johnnidis JB, Muroyama Y, Ngiow SF, Chen Z, Manne S, Cai Z, Song S, Platt JM, Schenkel JM, Abdel-Hakeem M, Beltra JC, Greenplate AR, Ali MAA, Nzingha K, Giles JR, Harly C, Attanasio J, Pauken KE, Bengsch B, Paley MA, Tomov VT, Kurachi M, Vignali DAA, Sharpe AH, Reiner SL, Bhandoola A, Johnson FB, Wherry EJ. Inhibitory signaling sustains a distinct early memory CD8 + T cell precursor that is resistant to DNA damage. Sci Immunol 2021; 6:6/55/eabe3702. [PMID: 33452106 DOI: 10.1126/sciimmunol.abe3702] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.
Collapse
Affiliation(s)
- Jonathan B Johnnidis
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Shufei Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse M Platt
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jason M Schenkel
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohamed Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim A Ali
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kito Nzingha
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christelle Harly
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France.,LabEx IGO 'Immunotherapy, Graft, Oncology', Nantes, France
| | - John Attanasio
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Germany.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Michael A Paley
- Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
| | - Vesselin T Tomov
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh PA 15232, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology and Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - F Bradley Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Bianchi N, Emming S, Zecca C, Monticelli S. Vitamin D and IFN-β Modulate the Inflammatory Gene Expression Program of Primary Human T Lymphocytes. Front Immunol 2020; 11:566781. [PMID: 33343562 PMCID: PMC7746617 DOI: 10.3389/fimmu.2020.566781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023] Open
Abstract
IFN-β treatment is a commonly used therapy for relapsing-remitting multiple sclerosis (MS), while vitamin D deficiency correlates with an increased risk of MS and/or its activity. MS is a demyelinating chronic inflammatory disease of the central nervous system, in which activated T lymphocytes play a major role, and may represent direct targets of IFN-β and vitamin D activities. However, the underlying mechanism of action of vitamin D and IFN-β, alone or in combination, remains incompletely understood, especially when considering their direct effects on the ability of T lymphocytes to produce inflammatory cytokines. We profiled the expression of immune-related genes and microRNAs in primary human T lymphocytes in response to vitamin D and IFN-β, and we dissected the impact of these treatments on cytokine production and T cell proliferation. We found that the treatments influenced primarily memory T cell plasticity, rather than polarization toward a stable phenotype. Moreover, our data revealed extensive reprogramming of the transcriptional output of primary T cells in response to vitamin D and IFN-β and provide the bases for further mechanistic insights into these commonly used treatments.
Collapse
Affiliation(s)
- Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefan Emming
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Chiara Zecca
- Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
32
|
Lee YJ, Kim J. Resveratrol Activates Natural Killer Cells through Akt- and mTORC2-Mediated c-Myb Upregulation. Int J Mol Sci 2020; 21:ijms21249575. [PMID: 33339133 PMCID: PMC7765583 DOI: 10.3390/ijms21249575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are suitable targets for cancer immunotherapy owing to their potent cytotoxic activity. To maximize the therapeutic efficacy of cancer immunotherapy, adjuvants need to be identified. Resveratrol is a well-studied polyphenol with various potential health benefits, including antitumor effects. We previously found that resveratrol is an NK cell booster, suggesting that it can serve as an adjuvant for cancer immunotherapy. However, the molecular mechanism underlying the activation of NK cells by resveratrol remains unclear. The present study aimed to determine this mechanism. To this end, we investigated relevant pathways in NK cells using Western blot, real-time polymerase chain reaction, pathway inhibitor, protein/DNA array, and cytotoxicity analyses. We confirmed the synergistic effects of resveratrol and interleukin (IL)-2 on enhancing the cytolytic activity of NK cells. Resveratrol activated Akt by regulating Mammalian Target of Rapamycin (mTOR) Complex 2 (mTORC2) via phosphatase and tensin homolog (PTEN) and ribosomal protein S6 kinase beta-1 (S6K1). Moreover, resveratrol-mediated NK cell activation was more dependent on the mTOR pathway than the Akt pathway. Importantly, resveratrol increased the expression of c-Myb, a downstream transcription factor of Akt and mTORC2. Moreover, c-Myb was essential for resveratrol-induced NK cell activation in combination with IL-2. Our results demonstrate that resveratrol activates NK cells through Akt- and mTORC2-mediated c-Myb upregulation.
Collapse
Affiliation(s)
- Yoo-Jin Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 08758, Korea
| | - Jongsun Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Correspondence: ; Tel.: +82-2-2228-1814
| |
Collapse
|
33
|
Lyu M, Cheng Y, Zhou J, Chong W, Wang Y, Xu W, Ying B. Systematic evaluation, verification and comparison of tuberculosis-related non-coding RNA diagnostic panels. J Cell Mol Med 2020; 25:184-202. [PMID: 33314695 PMCID: PMC7810967 DOI: 10.1111/jcmm.15903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
We systematically summarized tuberculosis (TB)‐related non‐coding RNA (ncRNA) diagnostic panels, validated and compared panel performance. We searched TB‐related ncRNA panels in PubMed, OVID and Web of Science up to 28 February 2020, and available datasets in GEO, SRA and EBI ArrayExpress up to 1 March 2020. We rebuilt models and synthesized the results of each model in validation sets by bivariate mixed models. Specificity at 90% sensitivity, area under curve (AUC) and inconsistence index (I2) were calculated. NcRNA biofunctions were analysed. Nineteen models based on 18 ncRNA panels (miRNA, lncRNA, circRNA and snoRNA panels) and 18 datasets were included. Limited available datasets only allowed to evaluate miRNA panels further. Cui 2017 and Latorre 2015 exhibited specificity >70% at 90% sensitivity and AUC >80% in all validation sets. Cui 2017 showed higher specificity at 90% sensitivity (92%) and AUC (95%) and lower heterogeneity (I2 = 0%) in ethological‐confirmation validation sets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that most ncRNAs in panels involved in immune cell activation, oxidative stress, and Wnt and MAPK signalling pathway. Cui 2017 outperformed other models in both all available and aetiological‐confirmed validation sets, meeting the criteria of target product profile of WHO. This work provided a basis for clinical choice of TB‐related ncRNA diagnostic panels to a certain extent.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuhui Cheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weelic Chong
- Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Chen YC, Lee CP, Hsiao CC, Hsu PY, Wang TY, Wu CC, Chao TY, Leung SY, Chang YP, Lin MC. MicroRNA-23a-3p Down-Regulation in Active Pulmonary Tuberculosis Patients with High Bacterial Burden Inhibits Mononuclear Cell Function and Phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 Signaling via Targeting IRF1/SP1. Int J Mol Sci 2020; 21:E8587. [PMID: 33202583 PMCID: PMC7697976 DOI: 10.3390/ijms21228587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to explore the role of microRNAs (miR)-21/23a/146a/150/155 targeting the toll-like receptor pathway in active tuberculosis (TB) disease and latent TB infection (LTBI). Gene expression levels of the five miRs and predicted target genes were assessed in peripheral blood mononuclear cells from 46 patients with active pulmonary TB, 15 subjects with LTBI, and 17 non-infected healthy subjects (NIHS). THP-1 cell lines were transfected with miR-23a-3p mimics under stimuli with Mycobacterium TB-specific antigens. Both miR-155-5p and miR-150-5p gene expressions were decreased in the active TB group versus the NIHS group. Both miR-23a-3p and miR-146a-5p gene expressions were decreased in active TB patients with high bacterial burden versus those with low bacterial burden or control group (LTBI + NIHS). TLR2, TLR4, and interleukin (IL)10 gene expressions were all increased in active TB versus NIHS group. MiR-23a-3p mimic transfection reversed ESAT6-induced reduction of reactive oxygen species generation, and augmented ESAT6-induced late apoptosis and phagocytosis, in association with down-regulations of the predicted target genes, including tumor necrosis factor (TNF)-α, TLR4, TLR2, IL6, IL10, Notch1, IL6R, BCL2, TGF-β1, SP1, and IRF1. In conclusion, the down-regulation of miR-23a-3p in active TB patients with high bacterial burden inhibited mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chiu Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.P.L.); (C.-C.H.); (P.-Y.H.); (T.-Y.W.); (C.-C.W.); (T.-Y.C.); (S.-Y.L.); (Y.-P.C.)
| |
Collapse
|
35
|
Migueles SA, Rogan DC, Gavil NV, Kelly EP, Toulmin SA, Wang LT, Lack J, Ward AJ, Pryal PF, Ludwig AK, Medina RG, Apple BJ, Toumanios CN, Poole AL, Rehm CA, Jones SE, Liang CJ, Connors M. Antigenic Restimulation of Virus-Specific Memory CD8 + T Cells Requires Days of Lytic Protein Accumulation for Maximal Cytotoxic Capacity. J Virol 2020; 94:e01595-20. [PMID: 32907983 PMCID: PMC7654275 DOI: 10.1128/jvi.01595-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
In various infections or vaccinations of mice or humans, reports of the persistence and the requirements for restimulation of the cytotoxic mediators granzyme B (GrB) and perforin (PRF) in CD8+ T cells have yielded disparate results. In this study, we examined the kinetics of PRF and GrB mRNA and protein expression after stimulation and associated changes in cytotoxic capacity in virus-specific memory cells in detail. In patients with controlled HIV or cleared respiratory syncytial virus (RSV) or influenza virus infections, all virus-specific CD8+ T cells expressed low PRF levels without restimulation. Following stimulation, they displayed similarly delayed kinetics for lytic protein expression, with significant increases occurring by days 1 to 3 before peaking on days 4 to 6. These increases were strongly correlated with, but were not dependent upon, proliferation. Incremental changes in PRF and GrB percent expression and mean fluorescence intensity (MFI) were highly correlated with increases in HIV-specific cytotoxicity. mRNA levels in HIV-specific CD8+ T-cells exhibited delayed kinetics after stimulation as with protein expression, peaking on day 5. In contrast to GrB, PRF mRNA transcripts were little changed over 5 days of stimulation (94-fold versus 2.8-fold, respectively), consistent with posttranscriptional regulation. Changes in expression of some microRNAs, including miR-17, miR-150, and miR-155, suggested that microRNAs might play a significant role in regulation of PRF expression. Therefore, under conditions of extremely low or absent antigen levels, memory virus-specific CD8+ T cells require prolonged stimulation over days to achieve maximal lytic protein expression and cytotoxic capacity.IMPORTANCE Antigen-specific CD8+ T cells play a major role in controlling most virus infections, primarily by perforin (PRF)- and granzyme B (GrB)-mediated apoptosis. There is considerable controversy regarding whether PRF is constitutively expressed, rapidly increased similarly to a cytokine, or delayed in its expression with more prolonged stimulation in virus-specific memory CD8+ T cells. In this study, the degree of cytotoxic capacity of virus-specific memory CD8+ T cells was directly proportional to the content of lytic molecules, which required antigenic stimulation over several days for maximal levels. This appeared to be modulated by increases in GrB transcription and microRNA-mediated posttranscriptional regulation of PRF expression. Clarifying the requirements for maximal cytotoxic capacity is critical to understanding how viral clearance might be mediated by memory cells and what functions should be induced by vaccines and immunotherapies.
Collapse
Affiliation(s)
- Stephen A Migueles
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C Rogan
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Noah V Gavil
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth P Kelly
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sushila A Toulmin
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence T Wang
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - Addison J Ward
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick F Pryal
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda K Ludwig
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Renata G Medina
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin J Apple
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina N Toumanios
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - April L Poole
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine A Rehm
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara E Jones
- Clinical Research Program Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Connors
- HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Milner JJ, Nguyen H, Omilusik K, Reina-Campos M, Tsai M, Toma C, Delpoux A, Boland BS, Hedrick SM, Chang JT, Goldrath AW. Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proc Natl Acad Sci U S A 2020; 117:25667-25678. [PMID: 32978300 PMCID: PMC7568335 DOI: 10.1073/pnas.2008571117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Memory CD8 T cells provide durable protection against diverse intracellular pathogens and can be broadly segregated into distinct circulating and tissue-resident populations. Paradigmatic studies have demonstrated that circulating memory cells can be further divided into effector memory (Tem) and central memory (Tcm) populations based on discrete functional characteristics. Following resolution of infection, we identified a persisting antigen-specific CD8 T cell population that was terminally fated with potent effector function but maintained memory T cell qualities and conferred robust protection against reinfection. Notably, this terminally differentiated effector memory CD8 T cell population (terminal-Tem) was conflated within the conventional Tem population, prompting redefinition of the classical characteristics of Tem cells. Murine terminal-Tem were transcriptionally, functionally, and developmentally unique compared to Tem cells. Through mass cytometry and single-cell RNA sequencing (RNA-seq) analyses of human peripheral blood from healthy individuals, we also identified an analogous terminal-Tem population of CD8 T cells that was transcriptionally distinct from Tem and Tcm Key findings from this study show that parsing of terminal-Tem from conventionally defined Tem challenge the reported characteristics of Tem biology, including enhanced presence in lymphoid tissues, robust IL-2 production, and recall potential, greater than expected homeostatic fitness, refined transcription factor dependencies, and a distinct molecular phenotype. Classification of terminal-Tem and clarification of Tem biology hold broad implications for understanding the molecular regulation of memory cell states and harnessing immunological memory to improve immunotherapies.
Collapse
Affiliation(s)
- J Justin Milner
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| | - Hongtuyet Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Miguel Reina-Campos
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Matthew Tsai
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Arnaud Delpoux
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Stephen M Hedrick
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
37
|
Casabonne D, Benavente Y, Seifert J, Costas L, Armesto M, Arestin M, Besson C, Hosnijeh FS, Duell EJ, Weiderpass E, Masala G, Kaaks R, Canzian F, Chirlaque MD, Perduca V, Mancini FR, Pala V, Trichopoulou A, Karakatsani A, La Vecchia C, Sánchez MJ, Tumino R, Gunter MJ, Amiano P, Panico S, Sacerdote C, Schmidt JA, Boeing H, Schulze MB, Barricarte A, Riboli E, Olsen A, Tjønneland A, Vermeulen R, Nieters A, Lawrie CH, de Sanjosé S. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer 2020; 147:1315-1324. [PMID: 32012253 DOI: 10.1002/ijc.32894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease accounting for almost one-third of leukemias in the Western world. Aberrant expression of microRNAs (miRNAs) is a well-established characteristic of CLL, and the robust nature of miRNAs makes them eminently suitable liquid biopsy biomarkers. Using a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC), the predictive values of five promising human miRNAs (hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p), identified in a pilot study, were examined in serum of 224 CLL cases (diagnosed 3 months to 18 years after enrollment) and 224 matched controls using Taqman based assays. Conditional logistic regressions were applied to adjust for potential confounders. The median time from blood collection to CLL diagnosis was 10 years (p25-p75: 7-13 years). Overall, the upregulation of hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-29a-3p was associated with subsequent risk of CLL [OR1∆Ct-unit increase (95%CI) = 1.42 (1.18-1.72), 1.64 (1.31-2.04) and 1.75 (1.31-2.34) for hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-29a-3p, respectively] and the strongest associations were observed within 10 years of diagnosis. However, the predictive performance of these miRNAs was modest (area under the curve <0.62). hsa-miR-16-5p and hsa-miR-223-3p levels were unrelated to CLL risk. The findings of this first prospective study suggest that hsa-miR-29a, hsa-miR-150-5p and hsa-miR-155-5p were upregulated in early stages of CLL but were modest predictive biomarkers of CLL risk.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Case-Control Studies
- Europe/epidemiology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Male
- MicroRNAs/blood
- Middle Aged
- Odds Ratio
- Predictive Value of Tests
- Prospective Studies
- Up-Regulation
Collapse
Affiliation(s)
- Delphine Casabonne
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Yolanda Benavente
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Julia Seifert
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Laura Costas
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - María Armesto
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - María Arestin
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Caroline Besson
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Fatemeh S Hosnijeh
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Vittorio Perduca
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
| | - Francesca R Mancini
- CESP, Faculté de Médecine, Université Paris-Sud, UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Dept. of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale (ASP), Ragusa, Italy
| | - Marc J Gunter
- Section of Nutrition and Metabolism, IARC, International Agency for Research on Cancer, Lyon, France
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute e Della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Postdam-Rehbrücke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Aurelio Barricarte
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, The Copenhagen University, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Alexandra Nieters
- Institute for Immunodeficiency (IFI) Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Silvia de Sanjosé
- Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Molecular and Genetic Epidemiology in Infections and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Reproductive Health, PATH, Seattle, WA
| |
Collapse
|
38
|
Gagnon JD, Kageyama R, Shehata HM, Fassett MS, Mar DJ, Wigton EJ, Johansson K, Litterman AJ, Odorizzi P, Simeonov D, Laidlaw BJ, Panduro M, Patel S, Jeker LT, Feeney ME, McManus MT, Marson A, Matloubian M, Sanjabi S, Ansel KM. miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. Cell Rep 2020; 28:2169-2181.e4. [PMID: 31433990 PMCID: PMC6715152 DOI: 10.1016/j.celrep.2019.07.064] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/03/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
Coordinate control of T cell proliferation, survival, and differentiation are essential for host protection from pathogens and cancer. Long-lived memory cells, whose precursors are formed during the initial immunological insult, provide protection from future encounters, and their generation is the goal of many vaccination strategies. microRNAs (miRNAs) are key nodes in regulatory networks that shape effective T cell responses through the fine-tuning of thousands of genes. Here, using compound conditional mutant mice to eliminate miR-15/16 family miRNAs in T cells, we show that miR-15/16 restrict T cell cycle, survival, and memory T cell differentiation. High throughput sequencing of RNA isolated by cross-linking immunoprecipitation of AGO2 combined with gene expression analysis in miR-15/16-deficient T cells indicates that these effects are mediated through the direct inhibition of an extensive network of target genes within pathways critical to cell cycle, survival, and memory.
Collapse
Affiliation(s)
- John D Gagnon
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robin Kageyama
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hesham M Shehata
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marlys S Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Darryl J Mar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric J Wigton
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kristina Johansson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam J Litterman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pamela Odorizzi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dimitre Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisella Panduro
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sana Patel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lukas T Jeker
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mehrdad Matloubian
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shomyseh Sanjabi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, Sauler M, Yan X, Stewart E, Santerian K, Grant N, Liu Q, Fry R, Rager J, Cohn L, Alexis N, Chupp GL. A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. Am J Respir Crit Care Med 2020; 202:51-64. [PMID: 32255668 PMCID: PMC7328332 DOI: 10.1164/rccm.201912-2360oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Rationale: MicroRNAs are potent regulators of biologic systems that are critical to tissue homeostasis. Individual microRNAs have been identified in airway samples. However, a systems analysis of the microRNA-mRNA networks present in the sputum that contribute to airway inflammation in asthma has not been published.Objectives: Identify microRNA and mRNA networks in the sputum of patients with asthma.Methods: We conducted a genome-wide analysis of microRNA and mRNA in the sputum from patients with asthma and correlated expression with clinical phenotypes. Weighted gene correlation network analysis was implemented to identify microRNA networks (modules) that significantly correlate with clinical features of asthma and mRNA expression networks. MicroRNA expression in peripheral blood neutrophils and lymphocytes and in situ hybridization of the sputum were used to identify the cellular sources of microRNAs. MicroRNA expression obtained before and after ozone exposure was also used to identify changes associated with neutrophil counts in the airway.Measurements and Main Results: Six microRNA modules were associated with clinical features of asthma. A single module (nely) was associated with a history of hospitalizations, lung function impairment, and numbers of neutrophils and lymphocytes in the sputum. Of the 12 microRNAs in the nely module, hsa-miR-223-3p was the highest expressed microRNA in neutrophils and was associated with increased neutrophil counts in the sputum in response to ozone exposure. Multiple microRNAs in the nely module correlated with two mRNA modules enriched for TLR (Toll-like receptor) and T-helper cell type 17 (Th17) signaling and endoplasmic reticulum stress. hsa-miR-223-3p was a key regulator of the TLR and Th17 pathways in the sputum of subjects with asthma.Conclusions: This study of sputum microRNA and mRNA expression from patients with asthma demonstrates the existence of microRNA networks and genes that are associated with features of asthma severity. Among these, hsa-miR-223-3p, a neutrophil-derived microRNA, regulates TLR/Th17 signaling and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jose L. Gomez
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Ailu Chen
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maria Paula Diaz
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nicholas Zirn
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amolika Gupta
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Clemente Britto
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xiting Yan
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emma Stewart
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kyle Santerian
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nicole Grant
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Qing Liu
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; and
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; and
| | - Lauren Cohn
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Neil Alexis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina
| | - Geoffrey L. Chupp
- Pulmonary, Critical Care and Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
40
|
Srivastava J, Chaturvedi CP, Rahman K, Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S, Nityanand S. Differential expression of miRNAs and their target genes: Exploring a new perspective of acquired aplastic anemia pathogenesis. Int J Lab Hematol 2020; 42:501-509. [PMID: 32490599 DOI: 10.1111/ijlh.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) play a critical role in orchestrating T cell differentiation and activation and may thus play a vital role in acquired aplastic anemia (aAA). The study aimed to evaluate the differential expression of selected miRNAs and their relevant target genes in bone marrow samples of aAA patients. METHODS Differential expression of 8 miRNAs viz; hsa-miR-126-3p, miR-145-5p, miR-155-5p, miR-150-5p, miR-146b-5p, miR-34a, miR-29a, and miR-29b was evaluated in the bone marrow mononuclear cells of aAA patients. TaqMan microRNA assay was performed for preparing the cDNA of specific miRNA, followed by expression analysis using qRT-PCR. Data were normalized using two endogenous controls, RNU6B and RNU48. Delta-delta CT method was used to calculate the fold change (FC) of miRNA expression in individual samples, and a FC of >1.5 was taken as significant. Target genes of these miRNAs were evaluated by qRT-PCR. RESULTS Thirty five samples of aAA patients and 20 controls were evaluated. Irrespective of the disease severity, five miRNAs were found to be deregulated; miR-126 (FC-0.348; P-value-.0001) and miR-145 (FC-0.31; P-value-.0001) were downregulated, while miR-155 (FC-3.50; P-value-.0067), miR-146 (FC-3.13; P-value-.0105), and miR-150 (FC-5.78; P-value-.0001) were upregulated. Target gene study revealed an upregulation of PIK3R2, MYC, SOCS1, and TRAF-6, and downregulation of MYB. CONCLUSION This is the first study from the Indian subcontinent demonstrating the presence of altered miRNA expression in the bone marrow samples of aAA patients, suggesting their role in the pathogenesis of the disease. A comprehensive study focusing on the effect of these miRNA-mRNA interactions is likely to open new avenues of management.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
41
|
Balkhi MY. Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion. Oncoimmunology 2020; 9:1747349. [PMID: 32363117 PMCID: PMC7185212 DOI: 10.1080/2162402x.2020.1747349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Exhaustion cripples T cell effector responses against metastatic cancers and chronic infections alike. There has been considerable interest in understanding the molecular and cellular mechanisms driving T cell exhaustion in human cancers fueled by the success of immunotherapy drugs especially the checkpoint receptor blockade (CRB) inhibitory antibodies that reverses T cell functional exhaustion. The current understanding of molecular mechanism of T cell exhaustion has been elucidated from the studies utilizing murine models of chronic viral infections. These studies have formed the basis for much of our understanding of the process of exhaustion and proven vital to developing anti-exhaustion therapies against human cancers. In this review, we discuss the T cell exhaustion differentiation pathway in cancers and chronic viral infections and explore how the transcription factors expression dynamics play role in T cell exhaustion fate choices and maturation. Finally, we summarize the role of some of the most important transcription factors involved in T cell functional exhaustion and construct exhaustion specific signaling pathway maps.
Collapse
Affiliation(s)
- Mumtaz Y Balkhi
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA.,Division of Hematology/Oncology Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.,Immune Therapy Bio, Nest.Bio Labs, Vassar St. Cambridge, MA, USA
| |
Collapse
|
42
|
Wells AC, Pobezinskaya EL, Pobezinsky LA. Non-coding RNAs in CD8 T cell biology. Mol Immunol 2020; 120:67-73. [PMID: 32085976 PMCID: PMC7093237 DOI: 10.1016/j.molimm.2020.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections and cancer. CD8 T cell development, maintenance, activation and differentiation are under the tight control of multiple transcriptional and post-transcriptional networks. Over the last two decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our understanding of the function of specific miRNAs has increased since the discovery of RNA interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including differentiation into memory and exhausted cells.
Collapse
Affiliation(s)
- Alexandria C Wells
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, United States.
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
43
|
Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, Huang AC, Johnson J, Staupe RP, Bengsch B, Xu C, Yu S, Kurachi M, Herati RS, Vella LA, Baxter AE, Wu JE, Khan O, Beltra JC, Giles JR, Stelekati E, McLane LM, Lau CW, Yang X, Berger SL, Vahedi G, Ji H, Wherry EJ. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity 2019; 51:840-855.e5. [PMID: 31606264 PMCID: PMC6943829 DOI: 10.1016/j.immuni.2019.09.013] [Citation(s) in RCA: 468] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/11/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander C Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Johnson
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caiyue Xu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sixiang Yu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Vella
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erietta Stelekati
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chi Wai Lau
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaolu Yang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Che H, Wang Y, Li Y, Lv J, Li H, Liu Y, Dong R, Sun Y, Xu X, Zhao J, Wang L. Inhibition of microRNA-150-5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose-treated cardiac fibroblasts. J Cell Physiol 2019; 235:7769-7779. [PMID: 31710102 DOI: 10.1002/jcp.29386] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Hyperglycemia-induced cardiac fibrosis is a prominent characteristic of diabetic cardiomyopathy. Changes in proinflammatory cytokines have been shown to lead to cardiac fibrosis in patients with diabetes mellitus. This study aimed to investigate the role of miR-150-5p in mediating cardiac inflammation and fibrosis in cardiac fibroblasts (CFs). Herein, we found that high-glucose (HG) treatment significantly induced cardiac inflammation, as manifested by increased proinflammatory cytokine production (IL-1β) and NF-κB activity in CFs. Moreover, HG markedly aggravated cardiac fibrosis and increased levels of fibrotic markers (CTGF, FN, α-SMA) and extracellular matrix proteins (Col-I, Col-III) in CFs. At the same time, HG disturbed the TGF-β1/Smad signaling pathway, as evidenced by increases in TGF-β1 and p-Smad2/3 levels and decreases in Smad7 levels in CFs. Furthermore, we found that miR-150-5p was upregulated by HG, which negatively regulated Smad7 expression at the posttranscription level. Further study demonstrated that cardiac inflammation and fibrosis in CFs were corrected following miR-150-5p knockdown, but exacerbated by miR-150-5p overexpression. These data indicated that miR-150-5p inhibition could ameliorate NF-κB-related inflammation and TGF-β1/Smad-induced cardiac fibrosis through targeting Smad7. Thus, miR-150-5p may be a novel promising target for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hui Che
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Yueqiu Wang
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Lv
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Li
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yining Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruixue Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongle Sun
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaodan Xu
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zhao
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lihong Wang
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Nazimek K, Bustos-Morán E, Blas-Rus N, Nowak B, Ptak W, Askenase PW, Sánchez-Madrid F, Bryniarski K. Syngeneic red blood cell-induced extracellular vesicles suppress delayed-type hypersensitivity to self-antigens in mice. Clin Exp Allergy 2019; 49:1487-1499. [PMID: 31365154 DOI: 10.1111/cea.13475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND At present, the role of autologous cells as antigen carriers inducing immune tolerance is appreciated. Accordingly, intravenous administration of haptenated syngeneic mouse red blood cells (sMRBC) leads to hapten-specific suppression of contact hypersensitivity (CHS) in mice, mediated by light chain-coated extracellular vesicles (EVs). Subsequent studies suggested that mice intravenously administered with sMRBC alone may also generate regulatory EVs, revealing the possible self-tolerogenic potential of autologous erythrocytes. OBJECTIVES The current study investigated the immune effects induced by mere intravenous administration of a high dose of sMRBC in mice. METHODS The self-tolerogenic potential of EVs was determined in a newly developed mouse model of delayed-type hypersensitivity (DTH) to sMRBC. The effects of EV's action on DTH effector cells were evaluated cytometrically. The suppressive activity of EVs, after coating with anti-hapten antibody light chains, was assessed in hapten-induced CHS in wild-type or miRNA-150-/- mice. RESULTS Intravenous administration of sMRBC led to the generation of CD9 + CD81+ EVs that suppressed sMRBC-induced DTH in a miRNA-150-dependent manner. Furthermore, the treatment of DTH effector cells with sMRBC-induced EVs decreased the activation of T cells but enhanced their apoptosis. Finally, EVs coated with antibody light chains inhibited hapten-induced CHS. CONCLUSIONS AND CLINICAL RELEVANCE The current study describes a newly discovered mechanism of self-tolerance induced by the intravenous delivery of a high dose of sMRBC that is mediated by EVs in a miRNA-150-dependent manner. This mechanism implies the concept of naturally occurring immune tolerance, presumably activated by overloading of the organism with altered self-antigens.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland.,Department of Immunology, Health Research Institute of Princesa Hospital (ISS-IP), Hospital de la Princesa, Autonomous University of Madrid, Madrid, Spain.,Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Eugenio Bustos-Morán
- Department of Immunology, Health Research Institute of Princesa Hospital (ISS-IP), Hospital de la Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, Health Research Institute of Princesa Hospital (ISS-IP), Hospital de la Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Bernadeta Nowak
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Włodzimierz Ptak
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Philip W Askenase
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Francisco Sánchez-Madrid
- Department of Immunology, Health Research Institute of Princesa Hospital (ISS-IP), Hospital de la Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland.,Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that play critical roles in the regulation of a broad range of biological processes. Like transcription factors, miRNAs exert their effects by modulating the expression of networks of genes that operate in common or convergent pathways. CD8+ T cells are critical agents of the adaptive immune system that provide protection from infection and cancer. Here, we review the important roles of miRNAs in the regulation of CD8+ T cell biology and provide perspectives on the broader emerging principles of miRNA function.
Collapse
Affiliation(s)
- John D Gagnon
- Sandler Asthma Basic Research Center, Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Abstract
Myocardial infarction and post-infarction left ventricular remodelling involve a high risk of morbidity and mortality. For this reason, ongoing research is being conducted in order to learn the mechanisms of unfavourable left ventricular remodelling following a myocardial infarction. New biomarkers are also being sought that would allow for early identification of patients with a high risk of post-infarction remodelling and dysfunction of the left ventricle. In recent years, there has been ever more experimental data that confirms the significance of microRNA in cardiovascular diseases. It has been confirmed that microRNAs are stable in systemic circulation, and can be directly measured in patients' blood. It has been found that significant changes occur in the concentrations of various types of microRNA in myocardial infarction and heart failure patients. Various types of microRNA are also currently being intensively researched in terms of their usefulness as markers of cardiomyocyte necrosis, and predictors of the post-infarction heart failure development. This paper is a summary of the current knowledge on the significance of microRNA in post-infarction left ventricular remodelling and heart failure.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Jan Korbecki
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
48
|
Berberine Promotes Beige Adipogenic Signatures of 3T3-L1 Cells by Regulating Post-transcriptional Events. Cells 2019; 8:cells8060632. [PMID: 31234575 PMCID: PMC6627823 DOI: 10.3390/cells8060632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
Induced brown adipocytes (also referred to as beige cells) execute thermogenesis, as do the classical adipocytes by consuming stored lipids, being related to metabolic homeostasis. Treatment of phytochemicals, including berberine (BBR), was reported to induce conversion from white adipocytes to beige cells. In this study, results of microRNA (miRNA)-seq analyses revealed a decrease in miR-92a, of which the transcription is driven by the c13orf25 promoter in BBR-treated 3T3-L1 cells. BBR treatment manipulated the expressions of SP1 and MYC, in turn, reducing the activity of the c13orf25 promoter. A decrease in miR-92a led to an increase in RNA-binding motif protein 4a (RBM4a) expression, which facilitated the beige adipogenesis. Overexpression of miR-92a or depletion of RBM4a reversely interfered with the impact of BBR treatment on the beige adipogenic signatures, gene expressions, and splicing events in 3T3-L1 cells. Our findings demonstrated that BBR treatment enhanced beige adipogenesis of 3T3-L1 cells through transcription-coupled post-transcriptional regulation.
Collapse
|
49
|
Amini L, Vollmer T, Wendering DJ, Jurisch A, Landwehr-Kenzel S, Otto NM, Jürchott K, Volk HD, Reinke P, Schmueck-Henneresse M. Comprehensive Characterization of a Next-Generation Antiviral T-Cell Product and Feasibility for Application in Immunosuppressed Transplant Patients. Front Immunol 2019; 10:1148. [PMID: 31191530 PMCID: PMC6546853 DOI: 10.3389/fimmu.2019.01148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Viral infections have a major impact on morbidity and mortality of immunosuppressed solid organ transplant (SOT) patients because of missing or failure of adequate pharmacologic antiviral treatment. Adoptive antiviral T-cell therapy (AVTT), regenerating disturbed endogenous T-cell immunity, emerged as an attractive alternative approach to combat severe viral complications in immunocompromised patients. AVTT is successful in patients after hematopoietic stem cell transplantation where T-cell products (TCPs) are manufactured from healthy donors. In contrast, in the SOT setting TCPs are derived from/applied back to immunosuppressed patients. We and others demonstrated feasibility of TCP generation from SOT patients and first clinical proof-of-concept trials revealing promising data. However, the initial efficacy is frequently lost long-term, because of limited survival of transferred short-lived T-cells indicating a need for next-generation TCPs. Our recent data suggest that Rapamycin treatment during TCP manufacture, conferring partial inhibition of mTOR, might improve its composition. The aim of this study was to confirm these promising observations in a setting closer to clinical challenges and to deeply characterize the next-generation TCPs. Using cytomegalovirus (CMV) as model, our next-generation Rapamycin-treated (Rapa-)TCP showed consistently increased proportions of CD4+ T-cells as well as CD4+ and CD8+ central-memory T-cells (TCM). In addition, Rapamycin sustained T-cell function despite withdrawal of Rapamycin, showed superior T-cell viability and resistance to apoptosis, stable metabolism upon activation, preferential expansion of TCM, partial conversion of other memory T-cell subsets to TCM and increased clonal diversity. On transcriptome level, we observed a gene expression profile denoting long-lived early memory T-cells with potent effector functions. Furthermore, we successfully applied the novel protocol for the generation of Rapa-TCPs to 19/19 SOT patients in a comparative study, irrespective of their history of CMV reactivation. Moreover, comparison of paired TCPs generated before/after transplantation did not reveal inferiority of the latter despite exposition to maintenance immunosuppression post-SOT. Our data imply that the Rapa-TCPs, exhibiting longevity and sustained T-cell memory, are a reasonable treatment option for SOT patients. Based on our success to manufacture Rapa-TCPs from SOT patients under maintenance immunosuppression, now, we seek ultimate clinical proof of efficacy in a clinical study.
Collapse
Affiliation(s)
- Leila Amini
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Tino Vollmer
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Desiree J Wendering
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Anke Jurisch
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department for Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Natalie Maureen Otto
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Karsten Jürchott
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
50
|
Cron MA, Maillard S, Truffault F, Gualeni AV, Gloghini A, Fadel E, Guihaire J, Behin A, Berrih-Aknin S, Le Panse R. Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Front Immunol 2019; 10:539. [PMID: 30984166 PMCID: PMC6450174 DOI: 10.3389/fimmu.2019.00539] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Autoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms. Here, we investigated the causes and consequences of the miR-150 increase in the serum of early-onset MG patients. We observed that miR-150 expression was upregulated in MG thymuses in correlation with the presence of thymic B cells and showed by in situ hybridization experiments, that miR-150 was mainly expressed by cells of the mantle zone of GCs. However, we did not observe any correlation between the degree of thymic hyperplasia and the serum levels in MG patients. In parallel, we also investigated the expression of miR-150 in peripheral blood mononuclear cells (PBMCs) from MG patients. We observed that miR-150 was down-regulated, especially in CD4+ T cells compared to controls. These results suggest that the increased serum levels of miR-150 could result from a release from activated peripheral CD4+ T cells. Next, we demonstrated that the in vitro treatment of PBMCs with miR-150 or antimiR-150 oligonucleotides, respectively, decreased or increased the expression of one of its major target gene: the proto-oncogene MYB, a well-known actor of hematopoiesis. These results revealed that increased serum levels of miR-150 in MG patients could have a functional effect on PBMCs. We also showed that antimiR-150 caused increased cellular death of CD4+ and CD8+ T cells, along with the overexpression of pro-apoptotic genes targeted by miR-150 suggesting that miR-150 controlled the survival of these cells. Altogether, these results showed that miR-150 could play a role in MG both at the thymic level and in periphery by modulating the expression of target genes and peripheral cell survival.
Collapse
Affiliation(s)
- Mélanie A Cron
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Solène Maillard
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Frédérique Truffault
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Ambra Vittoria Gualeni
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Anthony Behin
- Neuromuscular Disease Center, AIM, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Rozen Le Panse
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| |
Collapse
|