1
|
Chung A, Alipio JB, Ghosh M, Evans L, Miller SM, Goode TD, Mehta I, Ahmed OJ, Sahay A. Neotenic expansion of adult-born dentate granule cells reconfigures GABAergic inhibition to enhance social memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643806. [PMID: 40166333 PMCID: PMC11957001 DOI: 10.1101/2025.03.17.643806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Adult-born dentate granule cells (abDGCs) contribute to hippocampal dentate gyrus (DG)-CA3/CA2 circuit functions in memory encoding, retrieval and consolidation. Heightened synaptic and structural plasticity of immature abDGCs is thought to govern their distinct contributions to circuit and network mechanisms of hippocampal-dependent memory operations. Protracted maturation or neoteny of abDGCs in higher mammals is hypothesized to offset decline in adult hippocampal neurogenesis by expanding the capacity for circuit and network plasticity underlying different memory operations. Here, we provide evidence for this hypothesis by genetically modelling the effective impact of neoteny of abDGCs on circuitry, network properties and social cognition in mice. We show that selective synchronous expansion of a single cohort of 4 weeks old immature, but not 8 weeks old mature abDGCs, increases functional recruitment of fast spiking parvalbumin expressing inhibitory interneurons (PV INs) in CA3/CA2, number of PV IN-CA3/CA2 synapses, and GABAergic inhibition of CA3/CA2. This transient increase in feed-forward inhibition in DG-CA2 decreased social memory interference and enhanced social memory consolidation. In vivo local field potential recordings revealed that the expansion of a single cohort of 4-week-old abDGCs increased baseline power, amplitude, and duration, as well as sensitivity to social investigation-dependent rate changes of sharp-wave ripples (SWRs) in CA1 and CA2, a neural substrate for memory consolidation. Inhibitory neuron-targeted chemogenetic manipulations implicate CA3/CA2 INs, including PV INs, as necessary and sufficient for social memory consolidation following neotenic expansion of the abDGC population and in wild-type mice, respectively. These studies suggest that neoteny of abDGCs may represent an evolutionary adaptation to support cognition by reconfiguring PV IN-CA3/CA2 circuitry and emergent network properties underlying memory consolidation.
Collapse
Affiliation(s)
- Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
- Department of Bio and Brain Engineering, Korea Advanced Institution for Science and Technology, Deajeon, KOR
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Megha Ghosh
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Samara M Miller
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Iyanah Mehta
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Omar J Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, United States Department of Psychology, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
2
|
Marcourt C, Pin-Barre C, Langeard A, Rivera C, Temprado JJ, Laurin J. Cognitive and sensorimotor benefits of moderate- and high-intensity exercise are associated with specific expression of neurotrophic markers in older rats. Sci Rep 2025; 15:6292. [PMID: 39984706 PMCID: PMC11845600 DOI: 10.1038/s41598-025-90719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Endurance training is strongly recommended for older adults to maintain cognitive and motor function. The respective effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on improving behavioural function and cerebral plasticity remain unknown. The purpose of this study was to determine the relative effects of 4 weeks of MICT and HIIT training on endurance, sensorimotor, and cognitive performance, as well as on the expression of neurotrophic markers in the hippocampus and cerebral cortex in aged rats. Twenty-two old male Wistar rats were assigned to one of the following groups: MICT (n = 7), HIIT (n = 6), and Control (n = 9). Incremental treadmill exercise tests, the forelimb grip strength test, the adhesive removal test, and the novel object recognition test were performed. Cerebral cortex and hippocampus were then removed for ELISA and Western blot measurements. The results showed similar benefits of MICT and HIIT on sensorimotor and cognitive functions, and a greater benefit of HIIT on endurance performance. HIIT and MICT differentially promoted cortical and hippocampal neurotrophic markers, demonstrating their complementarity. However, MICT was found to be more effective in promoting a broader range of markers, suggesting its potential as an initial training strategy for older adults.
Collapse
Affiliation(s)
- Cécile Marcourt
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Aix Marseille University, CNRS, ISM, Marseille, France
| | - Caroline Pin-Barre
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
| | - Antoine Langeard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, Caen, France
| | - Claudio Rivera
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| | | | - Jérôme Laurin
- Aix Marseille University, INSERM, INMED-UMR 1249, 163, Avenue de Luminy-BP13, 13273, Marseille Cedex 09, France.
| |
Collapse
|
3
|
Trinchero MF, Herrero M, Mugnaini M, Aguilar-Arredondo A, Benas S, Satorre IG, Kropff E, Schinder AF. Audiovisual gamma stimulation enhances hippocampal neurogenesis and neural circuit plasticity in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632794. [PMID: 39868258 PMCID: PMC11761652 DOI: 10.1101/2025.01.13.632794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Gamma oscillations are disrupted in various neurological disorders, including Alzheimer's disease (AD). In AD mouse models, non-invasive audiovisual stimulation (AuViS) at 40 Hz enhances gamma oscillations, clears amyloid-beta, and improves cognition. We investigated mechanisms of circuit remodeling underlying these restorative effects by leveraging the sensitivity of hippocampal neurogenesis to activity in middle-aged wild-type mice. AuViS increased progenitor cell proliferation, neuronal differentiation and morphological maturation of newborn granule cells, promoting their synaptic integration. While visual or auditory stimuli alone induced dendritic growth, axonal changes required combined audiovisual stimulation. The actions of AuViS involved neurotrophin pathways, as shown by the lack of effect upon TrkB signaling blockade. These results reveal widespread plasticity mechanisms triggered by AuViS, a therapeutic approach currently proposed for treating neurological disorders in humans.
Collapse
Affiliation(s)
- Mariela F Trinchero
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Magalí Herrero
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Matías Mugnaini
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Andrea Aguilar-Arredondo
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Sabrina Benas
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Ignacio G Satorre
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Emilio Kropff
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| | - Alejandro F Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET); Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
4
|
Ohline SM, Logan BJ, Hughes SM, Abraham WC. Egr1 Expression Is Correlated With Synaptic Activity but Not Intrinsic Membrane Properties in Mouse Adult-Born Dentate Granule Cells. Hippocampus 2024; 34:729-743. [PMID: 39403835 DOI: 10.1002/hipo.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
The discovery of adult-born granule cells (aDGCs) in the dentate gyrus of the hippocampus has raised questions regarding how they develop, incorporate into the hippocampal circuitry, and contribute to learning and memory. Here, we used patch-clamp electrophysiology to investigate the intrinsic and synaptic excitability of mouse aDGCs as they matured, enabled by using a tamoxifen-induced genetic label to birth date the aDGCs at different animal ages. Importantly, we also undertook immunofluorescence studies of the expression of the immediate early gene Egr1 and compared these findings with the electrophysiology data in the same animals. We examined two groups of animals, with aDGC birthdating when the mice were 2 months and at 7-9 months of age. In both groups, cells 4 weeks old had lower thresholds for current-evoked action potentials than older cells but fired fewer spikes during long current pulses and responded more poorly to synaptic activation. aDGCs born in both 2 and 7-9-month-old mice matured in their intrinsic excitability and synaptic properties from 4-12 weeks postgenesis, but this occurred more slowly for the older age animals. Interestingly, this pattern of intrinsic excitability changes did not correlate with the pattern of Egr1 expression. Instead, the development of Egr1 expression was correlated with the frequency of spontaneous excitatory postsynaptic currents. These results suggest that in order for aDGCs to fully participate in hippocampal circuitry, as indicated by Egr1 expression, they must have developed enough synaptic input, in spite of the greater input resistance and reduced firing threshold that characterizes young aDGCs.
Collapse
Affiliation(s)
- Shane M Ohline
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Aotearoa Brain Project-Kaupapa Roro O Aotearoa, Dunedin, New Zealand
| | - Barbara J Logan
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Aotearoa Brain Project-Kaupapa Roro O Aotearoa, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Aotearoa Brain Project-Kaupapa Roro O Aotearoa, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Aotearoa Brain Project-Kaupapa Roro O Aotearoa, Dunedin, New Zealand
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
6
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
8
|
Fritze J, Lang S, Sommarin M, Soneji S, Ahlenius H. Single-cell RNA sequencing of aging neural progenitors reveals loss of excitatory neuron potential and a population with transcriptional immune response. Front Neurosci 2024; 18:1400963. [PMID: 39184324 PMCID: PMC11341460 DOI: 10.3389/fnins.2024.1400963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
In the adult murine brain, neural stem cells (NSCs) can be found in two main niches: the dentate gyrus (DG) and the subventricular zone (SVZ). In the DG, NSCs produce intermediate progenitors (IPs) that differentiate into excitatory neurons, while progenitors in the SVZ migrate to the olfactory bulb (OB), where they mainly differentiate into inhibitory interneurons. Neurogenesis, the process of generating new neurons, persists throughout life but decreases dramatically with aging, concomitantly with increased inflammation. Although many cell types, including microglia, undergo significant transcriptional changes, few such changes have been detected in neural progenitors. Furthermore, transcriptional profiles in progenitors from different neurogenic regions have not been compared on a single-cell level, and little is known about how they are affected by aging-related inflammation. We have generated a single cell RNA sequencing dataset enriched for IPs, which revealed that most aged neural progenitors only acquire minor transcriptional changes. However, progenitors set to become excitatory neurons decrease faster than others. In addition, a population in the aged SVZ, not detected in the OB, acquired major transcriptional activation related to immune responses. This suggests that differences in age related neurogenic decline between regions is not due to tissue differences but rather cell type specific intrinsic transcriptional programs, and that subset of neuroblasts in the SVZ react strongly to age related inflammatory cues.
Collapse
Affiliation(s)
- Jonas Fritze
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Stefan Lang
- Lund Stem Cell Center, Lund, Sweden
- Computational Genomics Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Mikael Sommarin
- Lund Stem Cell Center, Lund, Sweden
- Stem Cells and Leukemia Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Shamit Soneji
- Lund Stem Cell Center, Lund, Sweden
- Computational Genomics Group, Faculty of Medicine, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Group, Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| |
Collapse
|
9
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
10
|
Arellano JI, Rakic P. Modelling adult neurogenesis in the aging rodent hippocampus: a midlife crisis. Front Neurosci 2024; 18:1416460. [PMID: 38887368 PMCID: PMC11181911 DOI: 10.3389/fnins.2024.1416460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Contrary to humans, adult hippocampal neurogenesis in rodents is not controversial. And in the last three decades, multiple studies in rodents have deemed adult neurogenesis essential for most hippocampal functions. The functional relevance of new neurons relies on their distinct physiological properties during their maturation before they become indistinguishable from mature granule cells. Most functional studies have used very young animals with robust neurogenesis. However, this trait declines dramatically with age, questioning its functional relevance in aging animals, a caveat that has been mentioned repeatedly, but rarely analyzed quantitatively. In this meta-analysis, we use data from published studies to determine the critical functional window of new neurons and to model their numbers across age in both mice and rats. Our model shows that new neurons with distinct functional profile represent about 3% of the total granule cells in young adult 3-month-old rodents, and their number decline following a power function to reach less than 1% in middle aged animals and less than 0.5% in old mice and rats. These low ratios pose an important logical and computational caveat to the proposed essential role of new neurons in the dentate gyrus, particularly in middle aged and old animals, a factor that needs to be adequately addressed when defining the relevance of adult neurogenesis in hippocampal function.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Pasko Rakic
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Kavli Institute for Neuroscience at Yale, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Terrier C, Greco-Vuilloud J, Cavelius M, Thevenet M, Mandairon N, Didier A, Richard M. Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol Aging 2024; 136:133-156. [PMID: 38364691 DOI: 10.1016/j.neurobiolaging.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.
Collapse
Affiliation(s)
- Claire Terrier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Juliette Greco-Vuilloud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Matthias Cavelius
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Marc Thevenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Nathalie Mandairon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Anne Didier
- Institut universitaire de France (IUF), France
| | - Marion Richard
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France.
| |
Collapse
|
12
|
Fuller OK, Egan CL, Robinson TL, Perera N, Latchman HK, Terry LV, McLennan ED, Chavez C, Burrows EL, Scott JW, Murphy RM, van Praag H, Whitham M, Febbraio MA. Exercise training improves long-term memory in obese mice. LIFE METABOLISM 2024; 3:load043. [PMID: 39871877 PMCID: PMC11749366 DOI: 10.1093/lifemeta/load043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 01/29/2025]
Abstract
Obesity has been linked to a range of pathologies, including dementia. In contrast, regular physical activity is associated with the prevention or reduced progression of neurodegeneration. Specifically, physical activity can improve memory and spatial cognition, reduce age-related cognitive decline, and preserve brain volume, but the mechanisms are not fully understood. Accordingly, we investigated whether any detrimental effects of high-fat diet (HFD)-induced obesity on cognition, motor behavior, adult hippocampal neurogenesis, and brain-derived neurotrophic factor (BDNF) could be mitigated by voluntary exercise training in male C57Bl/6 mice. HFD-induced impairment of motor function was not reversed by exercise. Importantly, voluntary wheel running improved long-term memory and increased hippocampal neurogenesis, suggesting that regular physical activity may prevent cognitive decline in obesity.
Collapse
Affiliation(s)
- Oliver K Fuller
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Casey L Egan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Tina L Robinson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Heidy K Latchman
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Lauren V Terry
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Emma D McLennan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Carolina Chavez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - John W Scott
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| | - Robyn M Murphy
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Henriette van Praag
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, and Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, United States
| | - Martin Whitham
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, 3052, Australia
| |
Collapse
|
13
|
Latino F, Tafuri F. Physical Activity and Cognitive Functioning. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:216. [PMID: 38399504 PMCID: PMC10890300 DOI: 10.3390/medicina60020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Neuroscience applied to motor activity is a growing area that aims to understand the effects of motor activity on the structures and functions of the Central Nervous System. Attention has been paid to this multidisciplinary field of investigation by the scientific community both because it is of great importance in the treatment of many chronic diseases and because of its potential applications in the Movement Sciences. Motor activity during a developmental age is, in fact, an indispensable tool for the physical and mental growth of children, both able-bodied and disabled. Through movement, individuals can improve their physical efficiency and promote their own better health, establish relationships with the environment and others, express themselves and their emotions, form their identity and develop cognitive processes. This literature review aims, therefore, to highlight how an adequate practice of motor activity offers extraordinary possibilities for everyone in relation to learning, from the perspective of an integral development of the person, and, consequently, can raise the awareness of those involved in the training and growth, especially the youngest, towards the educational value of motor and sports activities. According to this review, and in line with the modern neuroscientific approach toward the relationships between motor activities and cognitive functions, it is possible to claim that hypokinesia tends to inhibit learning. Therefore, it now seems more topical than ever to draw attention to the need to introduce working proposals that integrate brain-based motor activity programs into the school curriculum.
Collapse
Affiliation(s)
- Francesca Latino
- Department of Human Science, Educational and Sport, Pegaso University, 80143 Naples, Italy
| | - Francesco Tafuri
- Heracle Lab Research in Educational Neuroscience, Niccolò Cusano University, 00166 Rome, Italy;
| |
Collapse
|
14
|
Wu Y, Bottes S, Fisch R, Zehnder C, Cole JD, Pilz GA, Helmchen F, Simons BD, Jessberger S. Chronic in vivo imaging defines age-dependent alterations of neurogenesis in the mouse hippocampus. NATURE AGING 2023; 3:380-390. [PMID: 37117787 PMCID: PMC10154232 DOI: 10.1038/s43587-023-00370-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian hippocampus1. Advancing age leads to a decline in neurogenesis, which is associated with impaired cognition2,3. The cellular mechanisms causing reduced neurogenesis with advancing age remain largely unknown. We genetically labeled NSCs through conditional recombination driven by the regulatory elements of the stem-cell-expressed gene GLI family zinc finger 1 (Gli1) and used chronic intravital imaging to follow individual NSCs and their daughter cells over months within their hippocampal niche4,5. We show that aging affects multiple steps, from cell cycle entry of quiescent NSCs to determination of the number of surviving cells, ultimately causing reduced clonal output of individual NSCs. Thus, we here define the developmental stages that may be targeted to enhance neurogenesis with the aim of maintaining hippocampal plasticity with advancing age.
Collapse
Affiliation(s)
- Yicheng Wu
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Roberto Fisch
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Cinzia Zehnder
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - John Darby Cole
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Gregor-Alexander Pilz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
- BioMedical Center, Department of Cell Biology and Anatomy, Ludwig Maximilians University, Planegg-Martinsried, Germany
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Zocher S, Toda T. Epigenetic aging in adult neurogenesis. Hippocampus 2023; 33:347-359. [PMID: 36624660 DOI: 10.1002/hipo.23494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) in the hippocampus generate new neurons throughout life, which functionally contribute to cognitive flexibility and mood regulation. Yet adult hippocampal neurogenesis substantially declines with age and age-related impairments in NSC activity underlie this reduction. Particularly, increased NSC quiescence and consequently reduced NSC proliferation are considered to be major drivers of the low neurogenesis levels in the aged brain. Epigenetic regulators control the gene expression programs underlying NSC quiescence, proliferation and differentiation and are hence critical to the regulation of adult neurogenesis. Epigenetic alterations have also emerged as central hallmarks of aging, and recent studies suggest the deterioration of the NSC-specific epigenetic landscape as a driver of the age-dependent decline in adult neurogenesis. In this review, we summarize the recently accumulating evidence for a role of epigenetic dysregulation in NSC aging and propose perspectives for future research directions.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Institute of Medical Physics and Microtissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Zhou OY, Brunet A. Seeing is believing: old clones die young. NATURE AGING 2023; 3:371-373. [PMID: 37117790 PMCID: PMC10833654 DOI: 10.1038/s43587-023-00394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The ability of adult neural stem cells to produce new neurons (neurogenesis) declines markedly during aging, but exactly how this occurs is largely unknown. Using sophisticated in vivo imaging, a study in Nature Aging shows that aging affects several steps of neurogenesis — most notably, increasing the death of newborn clones.
Collapse
Affiliation(s)
- Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Chen P, Guo Z, Zhou B. Insight into the role of adult hippocampal neurogenesis in aging and Alzheimer's disease. Ageing Res Rev 2023; 84:101828. [PMID: 36549424 DOI: 10.1016/j.arr.2022.101828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and seriously affects the quality of life of the elderly. Neurodegeneration is closely related to hippocampal dysfunction in AD patients. The hippocampus is key to creating new memories and is also one of the first areas of the brain to deteriorate with age. Mammalian neurogenesis occurs mainly in the hippocampus. Recent studies have confirmed that neurogenesis in the hippocampus is sustainable but decreases with age, which seriously affects the learning and memory function of AD patients. At present, our understanding of neurogenesis is still relatively shallow, especially pertaining to the influence and role of neurogenesis during aging and cognitive deficits in AD patients. Interestingly, many recent studies have described the characteristics of neurogenesis in animal models. This article reviews the progress of neurogenesis research in the context of aging and AD to provide new insights into neurogenesis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China.
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Lee YJ, Jeong YJ, Kang EJ, Kang BS, Lee SH, Kim YJ, Kang SS, Suh SW, Ahn EH. GAP-43 closely interacts with BDNF in hippocampal neurons and is associated with Alzheimer's disease progression. Front Mol Neurosci 2023; 16:1150399. [PMID: 37143467 PMCID: PMC10152972 DOI: 10.3389/fnmol.2023.1150399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Growth-associated protein 43 (GAP-43) is known as a neuronal plasticity protein because it is widely expressed at high levels in neuronal growth cones during axonal regeneration. GAP-43 expressed in mature adult neurons is functionally important for the neuronal communication of synapses in learning and memory. Brain-derived neurotrophic factor (BDNF) is closely related to neurodegeneration and synaptic plasticity during the aging process. However, the molecular mechanisms regulating neurodegeneration and synaptic plasticity underlying the pathogenesis and progression of Alzheimer's disease (AD) still remain incompletely understood. Methods Remarkably, the expressions of GAP-43 and BDNF perfectly match in various neurons in the Human Brain Atlas database. Moreover, GAP-43 and BDNF are highly expressed in a healthy adults' hippocampus brain region and are inversely correlated with the amyloid beta (Aβ), which is the pathological peptide of amyloid plaques found in the brains of patients with AD. Results These data led us to investigate the impact of the direct molecular interaction between GAP-43 and BDNF in hippocampal neuron fate. In this study, we show that GAP-43 and BDNF are inversely associated with pathological molecules for AD (Tau and Aβ). In addition, we define the three-dimensional protein structure for GAP-43 and BDNF, including the predictive direct binding sites via analysis using ClusPro 2.0, and demonstrate that the deprivation of GAP-43 and BDNF triggers hippocampal neuronal death and memory dysfunction, employing the GAP-43 or BDNF knock-down cellular models and 5XFAD mice. Conclusion These results show that GAP-43 and BDNF are direct binding partners in hippocampal neurons and that their molecular signaling might be potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Ye Ji Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - You Jin Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- Sang Won Suh
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- *Correspondence: Eun Hee Ahn
| |
Collapse
|
19
|
Li WP, Su XH, Hu NY, Hu J, Li XW, Yang JM, Gao TM. Astrocytes Mediate Cholinergic Regulation of Adult Hippocampal Neurogenesis and Memory Through M 1 Muscarinic Receptor. Biol Psychiatry 2022; 92:984-998. [PMID: 35787318 DOI: 10.1016/j.biopsych.2022.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND In the neurogenic niches of the adult hippocampus, new functional neurons are continuously generated throughout life, and generation of these neurons has been implicated in learning and memory. Astrocytes, as components of the neurogenic niches, are critical in the regulation of adult hippocampal neurogenesis (AHN). However, little is known about how astrocytes receive and respond to extrinsic cues to regulate AHN. METHODS By using a transgenic strategy to conditionally delete astrocytic CRHM1 in mice and AAV (adeno-associated virus)-mediated overexpression of astrocytic CHRM1 specifically in the hippocampal dentate gyrus, we systematically investigated the role of astrocytic CHRM1 in the regulation of AHN and the underlying mechanisms using the combined approaches of immunohistochemistry, retrovirus labeling, electrophysiology, primary astrocyte cultures, immunoblotting, and behavioral assays. RESULTS We report that genetic ablation of CHRM1 in astrocytes led to defects in neural stem cell survival, neuronal differentiation, and maturation and integration of newborn neurons in the dentate gyrus. Astrocytic CHRM1-mediated modulation of AHN was mediated by BDNF (brain-derived neurotrophic factor) signaling. Furthermore, CHRM1 ablation in astrocytes impaired contextual fear memory. These impairments in both AHN and memory were rescued by overexpression of astrocytic CHRM1 in the dentate gyrus. CONCLUSIONS Our findings reveal a critical role for astrocytes in mediating cholinergic regulation of AHN and memory through CHRM1.
Collapse
Affiliation(s)
- Wei-Peng Li
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Hong Su
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Optimized N-methyl-D-aspartate receptor antagonist exhibits hippocampal proneurogenic effects in aged senescence-accelerated mouse prone 8 mice. Neuroreport 2022; 33:623-628. [DOI: 10.1097/wnr.0000000000001825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhou Y, Su Y, Li S, Kennedy BC, Zhang DY, Bond AM, Sun Y, Jacob F, Lu L, Hu P, Viaene AN, Helbig I, Kessler SK, Lucas T, Salinas RD, Gu X, Chen HI, Wu H, Kleinman JE, Hyde TM, Nauen DW, Weinberger DR, Ming GL, Song H. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature 2022; 607:527-533. [PMID: 35794479 PMCID: PMC9316413 DOI: 10.1038/s41586-022-04912-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Immature dentate granule cells (imGCs) arising from adult hippocampal neurogenesis contribute to plasticity and unique brain functions in rodents1,2 and are dysregulated in multiple human neurological disorders3-5. Little is known about the molecular characteristics of adult human hippocampal imGCs, and even their existence is under debate1,6-8. Here we performed single-nucleus RNA sequencing aided by a validated machine learning-based analytic approach to identify imGCs and quantify their abundance in the human hippocampus at different stages across the lifespan. We identified common molecular hallmarks of human imGCs across the lifespan and observed age-dependent transcriptional dynamics in human imGCs that suggest changes in cellular functionality, niche interactions and disease relevance, that differ from those in mice9. We also found a decreased number of imGCs with altered gene expression in Alzheimer's disease. Finally, we demonstrated the capacity for neurogenesis in the adult human hippocampus with the presence of rare dentate granule cell fate-specific proliferating neural progenitors and with cultured surgical specimens. Together, our findings suggest the presence of a substantial number of imGCs in the adult human hippocampus via low-frequency de novo generation and protracted maturation, and our study reveals their molecular properties across the lifespan and in Alzheimer's disease.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiying Li
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Benjamin C Kennedy
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Y Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Lu
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Hu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K Kessler
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D Salinas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David W Nauen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, The Solomon H. Snyder Department of Neuroscience, Department of Neurology, and Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Seng C, Luo W, Földy C. Circuit formation in the adult brain. Eur J Neurosci 2022; 56:4187-4213. [PMID: 35724981 PMCID: PMC9546018 DOI: 10.1111/ejn.15742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience—such as neurological disorders, adult‐brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming—which demonstrates robust circuit formation in adult brain. In some cases, adult‐brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.
Collapse
Affiliation(s)
- Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zurich, Zürich, Switzerland
| |
Collapse
|
23
|
Bond AM, Ming GL, Song H. What Is the Relationship Between Hippocampal Neurogenesis Across Different Stages of the Lifespan? Front Neurosci 2022; 16:891713. [PMID: 35685774 PMCID: PMC9173723 DOI: 10.3389/fnins.2022.891713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hippocampal neurogenesis has typically been studied during embryonic development or in adulthood, promoting the perception of two distinct phenomena. We propose a perspective that hippocampal neurogenesis in the mammalian brain is one continuous, lifelong developmental process. We summarize the common features of hippocampal neurogenesis that are maintained across the lifespan, as well as dynamic age-dependent properties. We highlight that while the progression of hippocampal neurogenesis across the lifespan is conserved between mammalian species, the timing of this progression is species-dependent. Finally, we discuss some current challenges in the hippocampus neurogenesis field, and future research directions to address them, such as time course analysis across the lifespan, mechanisms regulating neurogenesis progression, and interspecies comparisons. We hope that this new perspective of hippocampal neurogenesis will prompt fresh insight into previous research and inspire new directions to advance the field to identify biologically significant ways to harness the endogenous capacity for neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Allison M. Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Hongjun Song,
| |
Collapse
|
24
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
25
|
Zheng J. Hippocampal neurogenesis and pro-neurogenic therapies for Alzheimer's disease. Animal Model Exp Med 2022; 5:3-14. [PMID: 35229998 PMCID: PMC8879631 DOI: 10.1002/ame2.12212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
Adult hippocampal neurogenesis (AHN) facilitates hippocampal circuits plasticity and regulates hippocampus-dependent cognition and emotion. However, AHN malfunction has been widely reported in both human and animal models of Alzheimer's disease (AD), the most common form of dementia in the elderly. Pro-neurogenic therapies including rescuing innate AHN, cell engraftment and glia-neuron reprogramming hold great potential for compensating the neuronal loss and rewiring the degenerated neuronal network in AD, but there are still great challenges to be overcome. This review covers recent advances in unraveling the involvement of AHN in AD and highlights the prospect of emerging pro-neurogenic remedies.
Collapse
Affiliation(s)
- Jie Zheng
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationKey Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
| |
Collapse
|
26
|
Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci 2021; 41:2541-2553. [PMID: 33762406 DOI: 10.1523/jneurosci.0675-20.2020] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
The rodent hippocampus generates new neurons throughout life. This process, named adult hippocampal neurogenesis (AHN), is a striking form of neural plasticity that occurs in the brains of numerous mammalian species. Direct evidence of adult neurogenesis in humans has remained elusive, although the occurrence of this phenomenon in the human dentate gyrus has been demonstrated in seminal studies and recent research that have applied distinct approaches to birthdate newly generated neurons and to validate markers of adult-born neurons. Our data point to the persistence of AHN until the 10th decade of human life, as well as to marked impairments in this process in patients with Alzheimer's disease. Moreover, our work demonstrates that the methods used to process and analyze postmortem human brain samples can limit the detection of various markers of AHN to the point of making them undetectable. In this Dual Perspectives article, we highlight the critical methodological aspects that should be strictly controlled in human studies and the robust evidence that supports the occurrence of AHN in humans. We also put forward reasons that may account for current discrepancies on this topic. Finally, the unresolved questions and future challenges awaiting the field are highlighted.
Collapse
|
27
|
Hita FJ, Bekinschtein P, Ledda F, Paratcha G. Leucine-rich repeats and immunoglobulin-like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Dev Neurobiol 2021; 81:774-785. [PMID: 34114331 DOI: 10.1002/dneu.22840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Leucine-rich repeat (LRR) transmembrane proteins have been directly linked to neurodevelopmental and cognitive disorders. We have previously shown that the LRR transmembrane protein, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), is a physiological regulator of dendrite complexity of hippocampal pyramidal neurons and social behavior. In this study, we performed a battery of behavioral tests to evaluate spatial memory and cognitive capabilities in Lrig1 mutant mice. The cognitive assessment demonstrated deficits in recognition and spatial memory, evaluated by novel object recognition and object location tests. Moreover, we found that Lrig1-deficient mice present specific impairments in the processing of similar but not dissimilar locations in a spatial pattern separation task, which was correlated with an enhanced dendritic growth and branching of Doublecortin-positive immature granule cells of the dentate gyrus. Altogether, these findings indicate that Lrig1 plays an essential role in controlling morphological and functional plasticity in the hippocampus.
Collapse
Affiliation(s)
- Francisco Javier Hita
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Fernanda Ledda
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Hourigan B, Balay SD, Yee G, Sharma S, Tan Q. Capicua regulates the development of adult-born neurons in the hippocampus. Sci Rep 2021; 11:11725. [PMID: 34083623 PMCID: PMC8175746 DOI: 10.1038/s41598-021-91168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.
Collapse
Affiliation(s)
- Brenna Hourigan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Spencer D Balay
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.,Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Graydon Yee
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Saloni Sharma
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.
| |
Collapse
|
29
|
Vazquez-Roque R, Pacheco-Flores M, Penagos-Corzo JC, Flores G, Aguilera J, Treviño S, Guevara J, Diaz A, Venegas B. The C-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) improves motor activity and neuronal morphology in the limbic system of aged mice. Synapse 2021; 75:e22193. [PMID: 33141999 DOI: 10.1002/syn.22193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.
Collapse
Affiliation(s)
- Ruben Vazquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Aguilera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Networked Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Samuel Treviño
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Berenice Venegas
- Faculty of Biological Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
30
|
Gao Y, Shen M, Gonzalez JC, Dong Q, Kannan S, Hoang JT, Eisinger BE, Pandey J, Javadi S, Chang Q, Wang D, Overstreet-Wadiche L, Zhao X. RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell Rep 2021; 32:107997. [PMID: 32755589 DOI: 10.1016/j.celrep.2020.107997] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023] Open
Abstract
Voluntary running enhances adult hippocampal neurogenesis, with consequences for hippocampal-dependent learning ability and mood regulation. However, the underlying mechanism remains unclear. Here, we show that voluntary running induces unique and dynamic gene expression changes specifically within the adult-born hippocampal neurons, with significant impact on genes involved in neuronal maturation and human diseases. We identify the regulator of G protein signaling 6 (RGS6) as a key factor that mediates running impact on adult-born neurons. RGS6 overexpression mimics the positive effects of voluntary running on morphological and physiological maturation of adult new neurons and reduced sensitivity of adult-born neurons to the inhibitory effect of GABAB (γ-Aminobutyric acid B) receptor activation. Knocking down RGS6 abolishes running-enhanced neuronal maturation and hippocampal neurogenesis-dependent learning and anxiolytic effect. Our study provides a data resource showing genome-wide intrinsic molecular changes in adult-born hippocampal neurons that contribute to voluntary running-induced neurogenesis.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jose Carlos Gonzalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sudharsan Kannan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Johnson T Hoang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian E Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jyotsna Pandey
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sahar Javadi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
31
|
Lu MH, Ji WL, Chen H, Sun YY, Zhao XY, Wang F, Shi Y, Hu YN, Liu BX, Wu JW, Xu DE, Zheng JW, Liu CF, Ma QH. Intranasal Transplantation of Human Neural Stem Cells Ameliorates Alzheimer's Disease-Like Pathology in a Mouse Model. Front Aging Neurosci 2021; 13:650103. [PMID: 33776747 PMCID: PMC7987677 DOI: 10.3389/fnagi.2021.650103] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairments, which has no effective therapy. Stem cell transplantation shows great potential in the therapy of various disease. However, the application of stem cell therapy in neurological disorders, especially the ones with a long-term disease course such as AD, is limited by the delivery approach due to the presence of the brain blood barrier. So far, the most commonly used delivery approach in the therapy of neurological disorders with stem cells in preclinical and clinical studies are intracranial injection and intrathecal injection, both of which are invasive. In the present study, we use repetitive intranasal delivery of human neural stem cells (hNSCs) to the brains of APP/PS1 transgenic mice to investigate the effect of hNSCs on the pathology of AD. The results indicate that the intranasally transplanted hNSCs survive and exhibit extensive migration and higher neuronal differentiation, with a relatively limited glial differentiation. A proportion of intranasally transplanted hNSCs differentiate to cholinergic neurons, which rescue cholinergic dysfunction in APP/PS1 mice. In addition, intranasal transplantation of hNSCs attenuates β-amyloid accumulation by upregulating the expression of β-amyloid degrading enzymes, insulin-degrading enzymes, and neprilysin. Moreover, intranasal transplantation of hNSCs ameliorates other AD-like pathology including neuroinflammation, cholinergic dysfunction, and pericytic and synaptic loss, while enhancing adult hippocampal neurogenesis, eventually rescuing the cognitive deficits of APP/PS1 transgenic mice. Thus, our findings highlight that intranasal transplantation of hNSCs benefits cognition through multiple mechanisms, and exhibit the great potential of intranasal administration of stem cells as a non-invasive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mei-Hong Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hong Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yun Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiu-Yun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Shi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Ning Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo-Xiang Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jing-Wen Wu
- Department of Functional Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - De-En Xu
- Department of Neurology, Wuxi No. 2 People's Hospital, Wuxi, China
| | | | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Lambertus M, Øverberg LT, Andersson KA, Hjelden MS, Hadzic A, Haugen ØP, Storm‐Mathisen J, Bergersen LH, Geiseler S, Morland C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1. Acta Physiol (Oxf) 2021; 231:e13587. [PMID: 33244894 DOI: 10.1111/apha.13587] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022]
Abstract
AIM Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.
Collapse
Affiliation(s)
- Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Linda Thøring Øverberg
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| | - Krister A. Andersson
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Malin S. Hjelden
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Øyvind P. Haugen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
| | - Jon Storm‐Mathisen
- Division of Anatomy Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory Institute of Oral Biology Faculty of Dentistry University of Oslo Oslo Norway
- Center for Healthy Aging Department of Neuroscience and Pharmacology Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Samuel Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences Department of Pharmacy The Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
- Institute for Behavioural Sciences Faculty of Health Sciences OsloMet—Oslo Metropolitan University Oslo Norway
| |
Collapse
|
33
|
Constans A, Pin-Barre C, Molinari F, Temprado JJ, Brioche T, Pellegrino C, Laurin J. High-intensity interval training is superior to moderate intensity training on aerobic capacity in rats: Impact on hippocampal plasticity markers. Behav Brain Res 2021; 398:112977. [PMID: 33141075 DOI: 10.1016/j.bbr.2020.112977] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
The use of endurance regimens could be improved by defining their respective effectiveness on aerobic fitness and brain health that remains controversial. We aimed at comparing work-matched high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) on aerobic performance and muscular plasticity markers in healthy rats. Cognitive functions and brain plasticity markers were also investigated following the 8-week training. Rats performed the incremental exercise test and behavioural tests before and after training at day 1 (D1), D15, D29 and D57. Key cerebral markers were assessed by Western blot and quantitative polymerase chain reaction to provide information on brain function related to angiogenesis, aerobic metabolism and neurotrophin activity at D59. Muscular protein levels involved in angiogenesis and aerobic metabolism were measured in both triceps brachii and soleus muscles. HIIT induced superior improvement of aerobic fitness compared to MICT, as indicated by enhancement of speed associated with lactate threshold (SLT) and maximal speed (Smax). In the triceps brachii muscle, markers of angiogenesis and aerobic activity were upregulated as well as myokines involved in neuroplasticity. Moreover, levels of key brain plasticity markers increased in the hippocampus after 8 weeks of HIIT, without improving cognitive functions. These findings might contribute to define physical exercise guidelines for maintaining brain health by highlighting the promising role of HIIT when using SLT for distinguishing low running speed from high running speed. Further studies are required to confirm these brain effects by exploring synaptic plasticity and neurogenesis mechanisms when exercise intensity is standardized and individualized.
Collapse
Affiliation(s)
- Annabelle Constans
- Aix-Marseille Univ, CNRS, ISM, UMR 7287, 163, Avenue de Luminy - CP910, 13288 Marseille Cedex 09, France
| | - Caroline Pin-Barre
- Aix-Marseille Univ, CNRS, ISM, UMR 7287, 163, Avenue de Luminy - CP910, 13288 Marseille Cedex 09, France
| | - Florence Molinari
- Aix-Marseille Univ, INSERM, INMED, UMR 1249, 163, Avenue de Luminy - BP13, 13273 Marseille Cedex 09, France
| | - Jean-Jacques Temprado
- Aix-Marseille Univ, CNRS, ISM, UMR 7287, 163, Avenue de Luminy - CP910, 13288 Marseille Cedex 09, France
| | - Thomas Brioche
- Université de Montpellier, INRA, DMEM, UMR 866, 2 Place Pierre Viala, Bât 22, 34060 MONTPELLIER Cedex 2, France
| | - Christophe Pellegrino
- Aix-Marseille Univ, INSERM, INMED, UMR 1249, 163, Avenue de Luminy - BP13, 13273 Marseille Cedex 09, France
| | - Jérôme Laurin
- Aix-Marseille Univ, INSERM, INMED, UMR 1249, 163, Avenue de Luminy - BP13, 13273 Marseille Cedex 09, France.
| |
Collapse
|
34
|
Ji Y, Kumar R, Gokhale A, Chao HP, Rycaj K, Chen X, Li Q, Tang DG. LRIG1, a regulator of stem cell quiescence and a pleiotropic feedback tumor suppressor. Semin Cancer Biol 2021; 82:120-133. [PMID: 33476721 PMCID: PMC8286266 DOI: 10.1016/j.semcancer.2020.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
LRIG1, leucine-rich repeats and immunoglobulin-like domains protein 1, was discovered more than 20 years ago and has been shown to be downregulated or lost, and to function as a tumor suppressor in several cancers. Another well-reported biological function of LRIG1 is to regulate and help enforce the quiescence of adult stem cells (SCs). In both contexts, LRIG1 regulates SC quiescence and represses tumor growth via, primarily, antagonizing the expression and activities of ERBB and other receptor tyrosine kinases (RTKs). We have recently reported that in treatment-naïve human prostate cancer (PCa), LRIG1 is primarily regulated by androgen receptor (AR) and is prominently overexpressed. In castration-resistant PCa (CRPC), both LRIG1 and AR expression becomes heterogeneous and, frequently, discordant. Importantly, in both androgen-dependent PCa and CRPC models, LRIG1 exhibits tumor-suppressive functions. Moreover, LRIG1 induction inhibits the growth of pre-established AR+ and AR− PCa. Here, upon a brief introduction of the LRIG1 and the LRIG family, we provide an updated overview on LRIG1 functions in regulating SC quiescence and repressing tumor development. We further highlight the expression, regulation and functions of LRIG1 in treatment-naïve PCa and CRPC. We conclude by offering the perspectives of identifying novel cancer-specific LRIG1-interacting signaling partners and developing LRIG1-based anti-cancer therapeutics and diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Yibing Ji
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Rahul Kumar
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hseu-Ping Chao
- Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xin Chen
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qiuhui Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Epigenetics & Mol. Carcinogenesis, the University of Texas M.D Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
35
|
Masachs N, Charrier V, Farrugia F, Lemaire V, Blin N, Mazier W, Tronel S, Montaron MF, Ge S, Marsicano G, Cota D, Deroche-Gamonet V, Herry C, Abrous DN. The temporal origin of dentate granule neurons dictates their role in spatial memory. Mol Psychiatry 2021; 26:7130-7140. [PMID: 34526669 PMCID: PMC8873024 DOI: 10.1038/s41380-021-01276-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/20/2021] [Indexed: 11/27/2022]
Abstract
The dentate gyrus is one of the only brain regions that continues its development after birth in rodents. Adolescence is a very sensitive period during which cognitive competences are programmed. We investigated the role of dentate granule neurons (DGNs) born during adolescence in spatial memory and compared them with those generated earlier in life (in embryos or neonates) or during adulthood by combining functional imaging, retroviral and optogenetic tools to tag and silence DGNs. By imaging DGNs expressing Zif268, a proxy for neuronal activity, we found that neurons generated in adolescent rats (and not embryos or neonates) are transiently involved in spatial memory processing. In contrast, adult-generated DGNs are recruited at a later time point when animals are older. A causal relationship between the temporal origin of DGNs and spatial memory was confirmed by silencing DGNs in behaving animals. Our results demonstrate that the emergence of spatial memory depends on neurons born during adolescence, a function later assumed by neurons generated during adulthood.
Collapse
Affiliation(s)
- Nuria Masachs
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Vanessa Charrier
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Fanny Farrugia
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Valerie Lemaire
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Nicolas Blin
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Wilfrid Mazier
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Energy Balance and Obesity Group, U1215, F-33000 Bordeaux, France
| | - Sophie Tronel
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Marie-Françoise Montaron
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000 Bordeaux, France
| | - Shaoyu Ge
- grid.36425.360000 0001 2216 9681Program in Neuroscience, SUNY at Stony Brook, Stony Brook, New York, NY USA
| | - Giovanni Marsicano
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Endocannabinoids and Neuroadaptation Group, U1215, F-33000 Bordeaux, France
| | - Daniela Cota
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Energy Balance and Obesity Group, U1215, F-33000 Bordeaux, France
| | - Véronique Deroche-Gamonet
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Psychobiology of Drug Addiction Group, U1215, F-33000 Bordeaux, France
| | - Cyril Herry
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocenter Magendie, Neuronal Circuits of Associative Learning Group, U1215, F-33000 Bordeaux, France
| | - Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocenter Magendie, Neurogenesis and Pathophysiology Group, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
36
|
Gustus K, Li L, Newville J, Cunningham LA. Functional and Structural Correlates of Impaired Enrichment-Mediated Adult Hippocampal Neurogenesis in a Mouse Model of Prenatal Alcohol Exposure. Brain Plast 2020; 6:67-82. [PMID: 33680847 PMCID: PMC7902980 DOI: 10.3233/bpl-200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Fetal alcohol spectrum disorders (FASDs) are associated with a wide range of cognitive deficiencies. Objective: We previously
found that gestational exposure to moderate levels of alcohol in mice throughout the 1st-2nd human trimester-equivalents
for brain development results in profound impairment of the hippocampal neurogenic response to enriched environment
(EE) in adulthood, without altering baseline neurogenesis rate under standard housing (SH). However, the functional and
structural consequences of impaired EE-mediated neurogenesis in the context of prenatal alcohol exposure (PAE) have
not been determined. Results: Here, we demonstrate that PAE-EE mice display impaired performance on a neurogenesis-dependent
pattern discrimination task, broadened behavioral activation of the dentate gyrus, as assessed by expression of the immediate
early gene, c-Fos, and impaired dendritic branching of adult-generated dentate granule cells (aDGCs). Conclusions: These studies further underscore the impact of moderate gestational alcohol exposure on adult hippocampal plasticity and support adult hippocampal neurogenesis as a potential therapeutic target to remediate certain neurological outcomes in FASD.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lu Li
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
37
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
38
|
Iwata K, Wu Q, Ferdousi F, Sasaki K, Tominaga K, Uchida H, Arai Y, Szele FG, Isoda H. Sugarcane ( Saccharum officinarum L.) Top Extract Ameliorates Cognitive Decline in Senescence Model SAMP8 Mice: Modulation of Neural Development and Energy Metabolism. Front Cell Dev Biol 2020; 8:573487. [PMID: 33123536 PMCID: PMC7573230 DOI: 10.3389/fcell.2020.573487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related biological alterations in brain function increase the risk of mild cognitive impairment and dementia, a global problem exacerbated by aging populations in developed nations. Limited pharmacological therapies have resulted in attention turning to the promising role of medicinal plants and dietary supplements in the treatment and prevention of dementia. Sugarcane (Saccharum officinarum L.) top, largely considered as a by-product because of its low sugar content, in fact contains the most abundant amounts of antioxidant polyphenols relative to the rest of the plant. Given the numerous epidemiological studies on the effects of polyphenols on cognitive function, in this study, we analyzed polyphenolic constituents of sugarcane top and examined the effect of sugarcane top ethanolic extract (STEE) on a range of central nervous system functions in vitro and in vivo. Orally administrated STEE rescued spatial learning and memory deficit in the senescence-accelerated mouse prone 8 (SAMP8) mice, a non-transgenic strain that spontaneously develops a multisystemic aging phenotype including pathological features of Alzheimer's disease. This could be correlated with an increased number of hippocampal newborn neurons and restoration of cortical monoamine levels in STEE-fed SAMP8 mice. Global genomic analysis by microarray in cerebral cortices showed multiple potential mechanisms for the cognitive improvement. Gene set enrichment analysis (GSEA) revealed biological processes such as neurogenesis, neuron differentiation, and neuron development were significantly enriched in STEE-fed mice brain compared to non-treated SAMP8 mice. Furthermore, STEE treatment significantly regulated genes involved in neurotrophin signaling, glucose metabolism, and neural development in mice brain. Our in vitro results suggest that STEE treatment enhances the metabolic activity of neuronal cells promoting glucose metabolism with significant upregulation of genes, namely PGK1, PGAM1, PKM, and PC. STEE also stimulated proliferation of human neural stem cells (hNSCs), regulated bHLH factor expression and induced neuronal differentiation and astrocytic process lengthening. Altogether, our findings suggest the potential of STEE as a dietary intervention, with promising implications as a novel nutraceutical for cognitive health.
Collapse
Affiliation(s)
- Kengo Iwata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.,Nippo Co., Ltd., Daito, Japan
| | - Qingqing Wu
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | | | | | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hiroko Isoda
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
39
|
Bonafina A, Trinchero MF, Ríos AS, Bekinschtein P, Schinder AF, Paratcha G, Ledda F. GDNF and GFRα1 Are Required for Proper Integration of Adult-Born Hippocampal Neurons. Cell Rep 2020; 29:4308-4319.e4. [PMID: 31875542 DOI: 10.1016/j.celrep.2019.11.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is required for the survival and differentiation of diverse neuronal populations during nervous system development. Despite the high expression of GDNF and its receptor GFRα1 in the adult hippocampus, the functional role of this system remains unknown. Here, we show that GDNF, acting through its GFRα1 receptor, controls dendritic structure and spine density of adult-born granule cells, which reveals that GFRα1 is required for their integration into preexisting circuits. Moreover, conditional mutant mice for GFRα1 show deficits in behavioral pattern separation, a task in which adult neurogenesis is known to play a critical role. We also find that running increases GDNF in the dentate gyrus and promotes GFRα1-dependent CREB (cAMP response element-binding protein) activation and dendrite maturation. Together, these findings indicate that GDNF/GFRα1 signaling plays an essential role in the plasticity of adult circuits, controlling the integration of newly generated neurons.
Collapse
Affiliation(s)
- Antonela Bonafina
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mariela Fernanda Trinchero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Antonella Soledad Ríos
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| | - Alejandro Fabián Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - Fernanda Ledda
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina; Laboratorio de Neurobiología Molecular y Celular, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
40
|
Heppt J, Wittmann MT, Schäffner I, Billmann C, Zhang J, Vogt-Weisenhorn D, Prakash N, Wurst W, Taketo MM, Lie DC. β-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 2020; 39:e104472. [PMID: 32929771 PMCID: PMC7604596 DOI: 10.15252/embj.2020104472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023] Open
Abstract
In adult hippocampal neurogenesis, stem/progenitor cells generate dentate granule neurons that contribute to hippocampal plasticity. The establishment of a morphologically defined dendritic arbor is central to the functional integration of adult‐born neurons. We investigated the role of canonical Wnt/β‐catenin signaling in dendritogenesis of adult‐born neurons. We show that canonical Wnt signaling follows a biphasic pattern, with high activity in stem/progenitor cells, attenuation in immature neurons, and reactivation during maturation, and demonstrate that this activity pattern is required for proper dendrite development. Increasing β‐catenin signaling in maturing neurons of young adult mice transiently accelerated dendritic growth, but eventually produced dendritic defects and excessive spine numbers. In middle‐aged mice, in which protracted dendrite and spine development were paralleled by lower canonical Wnt signaling activity, enhancement of β‐catenin signaling restored dendritic growth and spine formation to levels observed in young adult animals. Our data indicate that precise timing and strength of β‐catenin signaling are essential for the correct functional integration of adult‐born neurons and suggest Wnt/β‐catenin signaling as a pathway to ameliorate deficits in adult neurogenesis during aging.
Collapse
Affiliation(s)
- Jana Heppt
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Charlotte Billmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
| | - Daniela Vogt-Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Dahan L, Rampon C, Florian C. Age-related memory decline, dysfunction of the hippocampus and therapeutic opportunities. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109943. [PMID: 32298784 DOI: 10.1016/j.pnpbp.2020.109943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
While the aging of the population is a sign of progress for societies, it also carries its load of negative aspects. Among them, cognitive decline and in particular memory loss is a common feature of non-pathological aging. Autobiographical memories, which rely on the hippocampus, are a primary target of age-related cognitive decline. Here, focusing on the neurobiological mechanisms of memory formation and storage, we describe how hippocampal functions are altered across time in non-pathological mammalian brains. Several hallmarks of aging have been well described over the last decades; among them, we consider altered synaptic communication and plasticity, reduction of adult neurogenesis and epigenetic alterations. Building on the neurobiological processes of cognitive aging that have been identified to date, we review some of the strategies based on lifestyle manupulation allowing to address age-related cognitive deficits.
Collapse
Affiliation(s)
- Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Cédrick Florian
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France.
| |
Collapse
|
42
|
Montaron M, Charrier V, Blin N, Garcia P, Abrous DN. Responsiveness of dentate neurons generated throughout adult life is associated with resilience to cognitive aging. Aging Cell 2020; 19:e13161. [PMID: 32599664 PMCID: PMC7431828 DOI: 10.1111/acel.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
During aging, some individuals are resilient to the decline of cognitive functions whereas others are vulnerable. These inter-individual differences in memory abilities have been associated with differences in the rate of hippocampal neurogenesis measured in elderlies. Whether the maintenance of the functionality of neurons generated throughout adult life is linked to resilience to cognitive aging remains completely unexplored. Using the immediate early gene Zif268, we analyzed the activation of dentate granule neurons born in adult (3-month-old), middle-aged (12-month-old), or senescent (18-month-old) rats (n = 96) in response to learning when animals reached 21 months of age. The activation of neurons born during the developmental period was also examined. We show that adult-born neurons can survive up to 19 months and that neurons generated 4, 10, or 19 months before learning, but not developmentally born neurons, are activated in senescent rats with good learning abilities. In contrast, aged rats with bad learning abilities do not exhibit activity-dependent regulation of newborn cells, whatever their birthdate. In conclusion, we propose that resilience to cognitive aging is associated with responsiveness of neurons born during adult life. These data add to our current knowledge by showing that the aging of memory abilities stems not only from the number but also from the responsiveness of adult-born neurons.
Collapse
Affiliation(s)
- Marie‐Françoise Montaron
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Vanessa Charrier
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Nicolas Blin
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Pierre Garcia
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Djoher Nora Abrous
- INSERM UMR 1215, Magendie Neurocenter Neurogenesis and Pathophysiology Group Bordeaux France
- Université de Bordeaux Bordeaux France
| |
Collapse
|
43
|
Liu F, Tian N, Zhang HQ, Li SH, Zhou QZ, Yang Y, Zheng J, Wang JZ. GSK-3β activation accelerates early-stage consumption of Hippocampal Neurogenesis in senescent mice. Theranostics 2020; 10:9674-9685. [PMID: 32863953 PMCID: PMC7449917 DOI: 10.7150/thno.43829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) deficits contribute to the progression of cognitive impairments during accelerated senescence, with the mechanistic causes poorly understood. Glycogen synthase kinase-3β (GSK-3β) is a critical regulator in prenatal neurodevelopment. The present study aims to study whether and how GSK-3β regulates AHN during the accelerated senescence. Methods: AHN and AHN-dependent cognition and GSK-3β were evaluated in 3- and 6-month senescence-accelerated mice prone 8 (SAM-P8) and senescence resistant 1 (SAM-R1) mice, respectively. GSK-3β was selectively overexpressed in wild-type mice using adeno-associated virus, or knocked-out by crossbreeding with GSK-3β floxed mice in the neural stem cells (NSCs) of Nestin-Cre mice, or pharmacologically inhibited with SB216763 in SAM-P8 mice. AHN was evaluated by BrdU-, DCX-staining and retrovirus-labeling. Results: AHN transiently increased at 3-month, but dramatically dropped at 6-month of age in SAM-P8 mice with a simultaneous activation of GSK-3β at 3-month. Selective overexpression of GSK-3β in hippocampal NSCs of wildtype mice induced long-term AHN deficits due to an accelerated depletion of NSC pool, although it transiently increased the proliferation and survival of the newborn neurons. Pharmacologically inhibiting GSK-3β by SB216763 efficiently preserved AHN and improved contextual memory in 6-month SAM-P8 mice, while conditional knock-out of GSK-3β in NSCs impaired AHN. Conclusion: Early-stage activation of GSK-3β in NSCs impairs AHN by accelerating the depletion of NSC pool, and pharmacological inhibition of GSK-3β is efficient to preserve AHN during the accelerated aging. These results reveal novel mechanisms underlying the AHN impairments during accelerated senescence and provide new targets for pro-neurogenic therapies for related diseases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Human Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Na Tian
- Department of Histology and Embryology, Key Laboratory of Ministry of Education of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua-Qiu Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zheng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| |
Collapse
|
44
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Abstract
In the adult mammalian hippocampus, new neurons arise from stem and progenitor cell division, in a process known as adult neurogenesis. Adult-generated neurons are sensitive to experience and may participate in hippocampal functions, including learning and memory, anxiety and stress regulation, and social behavior. Increasing evidence emphasizes the importance of new neuron connectivity within hippocampal circuitry for understanding the impact of adult neurogenesis on brain function. In this Review, we discuss how the functional consequences of new neurons arise from the collective interactions of presynaptic and postsynaptic neurons, glial cells, and the extracellular matrix, which together form the "tetrapartite synapse."
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Schouten M, Bielefeld P, Garcia-Corzo L, Passchier EMJ, Gradari S, Jungenitz T, Pons-Espinal M, Gebara E, Martín-Suárez S, Lucassen PJ, De Vries HE, Trejo JL, Schwarzacher SW, De Pietri Tonelli D, Toni N, Mira H, Encinas JM, Fitzsimons CP. Circadian glucocorticoid oscillations preserve a population of adult hippocampal neural stem cells in the aging brain. Mol Psychiatry 2020; 25:1382-1405. [PMID: 31222184 PMCID: PMC7303016 DOI: 10.1038/s41380-019-0440-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pulses that generate characteristic circadian oscillations. Here, we investigated the hypothesis that GC oscillations prevent NSPC activation and preserve a quiescent NSPC pool in the aging hippocampus. We found that hippocampal NSPC populations lacking expression of the glucocorticoid receptor (GR) decayed exponentially with age, while GR-positive populations decayed linearly and predominated in the hippocampus from middle age onwards. Importantly, GC oscillations controlled NSPC activation and GR knockdown reactivated NSPC proliferation in aged mice. When modeled in primary hippocampal NSPC cultures, GC oscillations control cell cycle progression and induce specific genome-wide DNA methylation profiles. GC oscillations induced lasting changes in the methylation state of a group of gene promoters associated with cell cycle regulation and the canonical Wnt signaling pathway. Finally, in a mouse model of accelerated aging, we show that disruption of GC oscillations induces lasting changes in dendritic complexity, spine numbers and morphology of newborn granule neurons. Together, these results indicate that GC oscillations preserve a population of GR-expressing NSPC during aging, preventing their activation possibly by epigenetic programming through methylation of specific gene promoters. Our observations suggest a novel mechanism mediated by GC that controls NSPC proliferation and preserves a dormant NSPC pool, possibly contributing to a neuroplasticity reserve in the aging brain.
Collapse
Affiliation(s)
- M Schouten
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - P Bielefeld
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - L Garcia-Corzo
- Biomedicine Institute of Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - E M J Passchier
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - S Gradari
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - T Jungenitz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - M Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - E Gebara
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - P J Lucassen
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - H E De Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J L Trejo
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - S W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - D De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - N Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - H Mira
- Biomedicine Institute of Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - J M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- University of the Basque Country (UPV/EHU), Leioa, Spain
| | - C P Fitzsimons
- Neuroscience Collaboration, Swammerdam Institute for Life Sciences, Faculty of Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Adult-Born Hippocampal Neurons Undergo Extended Development and Are Morphologically Distinct from Neonatally-Born Neurons. J Neurosci 2020; 40:5740-5756. [PMID: 32571837 DOI: 10.1523/jneurosci.1665-19.2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/28/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2 to 7 weeks, neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites, and more dendritic filopodia than all other groups. Indeed, between 7 and 24 weeks, adult-born neurons gained additional dendritic branches, formed a second primary dendrite, acquired more mushroom spines, and had enlarged mossy fiber presynaptic terminals. Compared with neonatal-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the life span, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatal-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENT Neurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats and may end up with distinct morphological features compared with neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.
Collapse
|
48
|
Murray KD, Liu XB, King AN, Luu JD, Cheng HJ. Age-Related Changes in Synaptic Plasticity Associated with Mossy Fiber Terminal Integration during Adult Neurogenesis. eNeuro 2020; 7:ENEURO.0030-20.2020. [PMID: 32332082 PMCID: PMC7240290 DOI: 10.1523/eneuro.0030-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
Mouse hippocampus retains the capacity for neurogenesis throughout lifetime, but such plasticity decreases with age. Adult hippocampal neurogenesis (AHN) involves the birth, maturation, and synaptic integration of newborn granule cells (GCs) into preexisting hippocampal circuitry. While functional integration onto adult-born GCs has been extensively studied, maturation of efferent projections onto CA3 pyramidal cells is less understood, particularly in aged brain. Here, using combined light and reconstructive electron microscopy (EM), we describe the maturation of mossy fiber bouton (MFB) connectivity with CA3 pyramidal cells in young adult and aged mouse brain. We found mature synaptic contacts of newborn GCs were formed in both young and aged brains. However, the dynamics of their spatiotemporal development and the cellular process by which these cells functionally integrated over time were different. In young brain newborn GCs either formed independent nascent MFB synaptic contacts or replaced preexisting MFBs, but these contacts were pruned over time to a mature state. In aged brain only replacement of preexisting MFBs was observed and new contacts were without evidence of pruning. These data illustrate that functional synaptic integration of AHN occurs in young adult and aged brain, but with distinct dynamics. They suggest elimination of preexisting connectivity is required for the integration of adult-born GCs in aged brain.
Collapse
Affiliation(s)
- Karl D Murray
- Center for Neuroscience
- Department of Psychiatry and Behavioral Neuroscience
| | | | | | | | - Hwai-Jong Cheng
- Center for Neuroscience
- Department of Neurobiology, Physiology and behavior
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95618
| |
Collapse
|
49
|
Whoolery CW, Yun S, Reynolds RP, Lucero MJ, Soler I, Tran FH, Ito N, Redfield RL, Richardson DR, Shih HY, Rivera PD, Chen BPC, Birnbaum SG, Stowe AM, Eisch AJ. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep 2020; 10:2737. [PMID: 32066765 PMCID: PMC7026431 DOI: 10.1038/s41598-020-59419-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.
Collapse
Affiliation(s)
- Cody W Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melanie J Lucero
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Soler
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naoki Ito
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Rachel L Redfield
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biology, Hope College, Holland, MI, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Wang N, Ma J, Liu J, Wang J, Liu C, Wang H, Liu Y, Yan H, Jiang S. Histamine H3 Receptor Antagonist Enhances Neurogenesis and Improves Chronic Cerebral Hypoperfusion-Induced Cognitive Impairments. Front Pharmacol 2020; 10:1583. [PMID: 32038255 PMCID: PMC6985542 DOI: 10.3389/fphar.2019.01583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a neurodegenerative disease, which induces cognitive impairments in the central nervous system (CNS). Histamine H3 receptor (H3R) is an autoreceptor involved in the modulation of neurogenesis and synaptic plasticity in the CNS. However, the role of H3R in CCH-induced injury and the related mechanisms remain to be clarified. Here, we found that thioperamide (THIO), a H3R antagonist, promotes the proliferation of NE-4C stem cells under either normal or oxygen-glucose deprivation (OGD) condition in vitro. Thioperamide promotes the phosphorylation of cAMP-response element binding (CREB), and thereby upregulates the expression and release of brain-derived neurotrophic factor (BDNF). However, H89, an inhibitor of protein kinase A (PKA)/CREB, reverses the effects of thioperamide on either BDNF expression and release or cell proliferation in NE-4C stem cells. Moreover, thioperamide has protective effects on OGD-induced impairment of cell viability and neuronal morphology in primary neurons in vitro. Furthermore, thioperamide enhanced neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) regions in vivo, and ameliorated CCH-induced cognitive impairments. Taken together, these findings showed that thioperamide protects primary neurons against OGD-induced injury and promotes the proliferation of neural stem cells in DG and SVZ regions through CREB/BDNF pathways, thereby improving cognitive deficit.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology, Binzhou Medical University, Yantai, China.,Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Jiangong Wang
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Cuilan Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Hua Wang
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yong Liu
- Department of Physiology, Binzhou Medical University, Yantai, China.,Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Haijing Yan
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, China
| |
Collapse
|